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Abstract

This paper investigates the generalization of Principal Component
Analysis (PCA) to Riemannian manifolds. We first propose a new and
more general type of family of subspaces in manifolds that we call barycen-
tric subspaces. They are implicitly defined as the locus of points which
are weighted means of k + 1 reference points. As this definition relies on
points and not on tangent vectors, it can also be extended to geodesic
spaces which are not Riemannian. For instance, in stratified spaces, it
naturally allows principal subspaces that span several strata, which is im-
possible in previous generalizations of PCA. We show that barycentric
subspaces locally define a submanifold of dimension k which generalizes
geodesic subspaces.

Second, we rephrase PCA in Euclidean spaces as an optimization on
flags of linear subspaces (a hierarchy of properly embedded linear sub-
spaces of increasing dimension). We show that the Euclidean PCA min-
imizes the sum of the unexplained variance by all the subspaces of the
flag, also called the Area-Under-the-Curve (AUC) criterion. Barycentric
subspaces are naturally nested, allowing the construction of hierarchically
nested subspaces. Optimizing the AUC criterion to optimally approxi-
mate data points with flags of affine spans in Riemannian manifolds lead
to a particularly appealing generalization of PCA on manifolds, that we
call Barycentric Subspaces Analysis (BSA).
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1 Introduction

In a Euclidean space, the principal k-dimensional affine subspace of the Principal
Component Analysis (PCA) procedure is equivalently defined by minimizing the
variance of the residuals (the projection of the data point to the subspace) or
by maximizing the explained variance within that affine subspace. This double
interpretation is available through Pythagoras’ theorem, which does not hold
in more general manifolds. A second important observation is that principal
components of different orders are nested, enabling the forward or backward
construction of nested principal components.

Generalizing PCA to manifolds first requires the definition of the equivalent
of affine subspaces in manifolds. For the zero-dimensional subspace, an intrinsic
generalization of the mean on manifolds naturally comes into mind: the Fréchet
mean is the set of global minima of the variance, as defined by Fréchet [1948]
in general metric spaces. The set of local minima of the variance was named
Karcher mean by Kendall [1990] after the work of Karcher [1977] on Riemannian
centers of mass (see Karcher [2014] for a discussion of the naming and earlier pa-
pers). From a statistical point of view, Bhattacharya and Patrangenaru [2003,
2005] have studied in depth the asymptotic properties of the empirical Fréchet
/ Karcher mean.

The one-dimensional component would then quite naturally be a geodesic
passing through the mean point. Higher-order components are more difficult to
define. The simplest generalization is tangent PCA (tPCA), which amounts un-
folding the whole distribution in the tangent space at the mean, and computing
the principal components of the covariance matrix in the tangent space. The
method is thus based on the maximization of the explained variance, which is
consistent with the entropy maximization definition of a Gaussian on a manifold
proposed by Pennec [2006]. tPCA is actually implicitly used in most statistical
works on shape spaces and Riemannian manifolds because of its simplicity and
efficiency. However, if tPCA is good for analyzing data which are sufficiently
centered around a central value (unimodal or Gaussian-like data), it is often not
sufficient for distributions which are multimodal or supported on large compact
subspaces (e.g. circles or spheres).

Instead of an analysis of the covariance matrix, Fletcher et al. [2004] pro-
posed the minimization of least squares distances to subspaces which are to-
tally geodesic at a point. These Geodesic Subspaces (GS) are spanned by the
geodesics going through a point with tangent vector restricted to belong to a lin-
ear subspace of the tangent space. They coined the procedure Principal Geodesic
Analysis (PGA). However, the least-squares procedure is computationally ex-
pensive, so that they approximated it in practice with tPCA in this paper. This
led to many confusions between tPCA and PGA. A real implementation of the
original PGA procedure was only recently provided by Sommer et al. [2013].
PGA is allowing to build a flag (sequences of embedded subspaces) of principal
geodesic subspaces consistent with a forward component analysis approach. We
build components iteratively from dimension 0 (the mean point), dimension 1
(a geodesic) and higher dimensions by selecting the direction in the tangent
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space at the mean that optimally reduces the square distance of data points to
the geodesic subspace. In this procedure, the mean always belongs to geodesic
subspaces even when they are not part of the distribution support.

To alleviate this problem, Huckemann and Ziezold [2006], and later Huckemann et al.
[2010], proposed a relaxation of the requirement that the base-point of the
geodesic subspace be the Fréchet mean: they start at the first order component
directly with the geodesic best fitting the data, which is not necessarily going
through the mean. The second principal geodesic is chosen orthogonally to the
first one, and higher order components are added orthogonally at the cross-
ing point of the first two components. The method was named Geodesic PCA
(GPCA). Further relaxing the assumption that second and higher order compo-
nents should cross at a single point, Sommer [2013] proposed a parallel transport
of the second direction along the first principal geodesic to define the second
coordinates, and iteratively define higher order coordinates through horizontal
development along the previous modes. Other principal decompositions have
also been proposed, like the principal graphs of Gorban and Zinovyev [2009],
extending the idea of principal points and k-means.

All the above-cited methods except the last one are intrinsically forward
methods that build successively larger and larger approximation spaces for the
data. A notable exception is the concept of Principal Nested Spheres (PNS),
proposed by Jung et al. [2012]: a framework for non-geodesic decomposition of
high-dimensional spheres used in the context of planar landmarks shape spaces.
Here, subspheres are viewed as slices of a higher dimensional sphere by affine hy-
perplanes. In this process, the nested subsphere is not of radius one, unless the
hyperplane passes through the origin. The backward analysis approach deter-
mines a decreasing family of subspace. Damon and Marron [2013] have recently
generalized this approach to manifolds with the help of a nested sequence of
relations. However, up to now, such a sequence of relationships was only known
for spheres or Euclidean spaces.

We first propose in this paper new types of family of subspaces in manifolds:
barycentric subspaces (BS). Barycentric subspaces generalize geodesic subspaces
and nested spheres and can naturally be nested, allowing the construction of
inductive forward or backward nested subspaces. We then rephrase PCA in
Euclidean spaces as an optimization on flags of linear subspaces (a hierarchy
of properly embedded linear subspaces of increasing dimension). To that end,
we propose an extension of the unexplained variance criterion that generalizes
nicely to flags of barycentric subspaces in Riemannian manifolds. This leads
to a particularly appealing generalization of PCA on manifolds, that we call
Barycentric Subspaces Analysis (BSA).

1.1 Paper Organization

Barycentric subspaces are defined in Section 2 as the locus of points which are
weighted means of k + 1 reference points. Depending on the generalization of
the mean that we use on manifolds, Fréchet mean, Karcher mean or exponential
barycenter, we obtain the Fréchet / Karcher or Exponential (FBS / KBS / EBS)
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barycentric subspaces. As the definition relies on points and not explicitly on
tangent vectors for geodesic parametrization, an interesting side effect is that BS
can also be extended to more general geodesic spaces that are not Riemannian.
For instance, in stratified spaces, barycentric subspaces may naturally span
several strata. For Riemannian manifolds, we show that these definition are
highly related since they are subsets of each other (except possibly at the cut
locus of the reference points). The EBS is the largest of these barycentric
subspaces. Its implicit definition exhibits some affine properties which do not
depend on the metric. We define the affine span as the closure of the EBS. When
the manifold M is complete, this implies that the affine span is also complete.
A first draft of these definitions was proposed in Pennec [2015] without any
proof. In this preliminary work, one should be careful that the affine span had
a different definition as it was just a synonym for the EBS.

In generic conditions, we show in Section 3 that the regular part of a barycen-
tric subspace is a stratified space which is locally a submanifold of dimension
k. Its singular set of dimension k − l corresponds to the case where l of the
reference point belongs to the affine span defined by the k − l other reference
points. In non-generic conditions, points may coalesce along certain directions,
defining non local jets1 instead of a regular k + 1-tuple. Restricted geodesic
subspaces, which are defined by k tangent vectors at a point, correspond to the
limit of the affine span when the k-tuple converges towards that jet.

We exemplify in Section 4 the equations of barycentric subspaces in one of
the simplest manifold: the sphere. We show that the affine span of k + 1 dif-
ferent reference points on the n-dimensional sphere is the k-dimensional great
subsphere that contains the reference points. In fact, any k + 1-tuple of points
of that great k-dimensional subsphere generates the same affine span, which is
also a geodesic subspace. This coincidence of spaces is due to the very high
symmetry of the sphere. For second order jets, we show that we obtain sub-
spheres of different radii, which show that Principal Nested Spheres are also a
limit case of affine spans. We conjecture that this can be generalized to higher
order derivatives in general manifolds using techniques from sub-Riemannian
geometry. This way, some non-geodesic decomposition schemes such as loxo-
dromes and splines could probably also be seen as limit cases of barycentric
subspaces. Determining which of the points of the spherical affine span belong
to the Karcher barycentric subspaces (KBS) turns out to be a difficult algebraic
problem. Simple numerical tests with random data show that the index of the
Hessian of the variance at critical points can be arbitrary, thus subdividing the
EBS into many regions. As a result, the KBS covers only a small portion of the
subsphere containing the reference points in generic conditions. This suggests
that the affine span might be a much more interesting definition for subspace
analysis purposes.

Finally, we discuss in Section 5 the use of these barycentric subspaces to
generalize PCA on manifolds. BS can be naturally nested by defining an or-

1Non-local jets, or multijets, generalize subspaces of the tangent spaces to higher differential

orders with multiple base points.
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dering of the reference points. Like for PGA, this enables the construction of
a forward nested sequence of subspaces which contains the Fréchet mean. In
addition, BSA also provides backward nested sequences which may not contain
the mean. However, the criterion on which these constructions are based can be
optimized for each subspace independently but not consistently for the whole
sequence of subspaces. In order to obtain a global criterion, we rephrase PCA in
Euclidean spaces as an optimization on flags of linear subspaces (a hierarchies of
properly embedded linear subspaces of increasing dimension). To that end, we
propose an extension of the unexplained variance criterion (the Area-Under-the-
Curve criterion) that generalizes nicely to flags of affine spans in Riemannian
manifolds. This results into a particularly appealing generalization of PCA on
manifolds, that we call Barycentric Subspaces Analysis (BSA).

1.2 Riemannian geometry

We summarize in this section the notations used for Riemannian manifolds. A
more detailed introduction to these notations can be found in Pennec [2006]
and in A. We consider a differential manifold M provided with a smooth scalar
products 〈 . | . 〉x called the Riemannian metric on each tangent space TxM at
point x of M. In a chart, the metric is fully specified by the dot product of the
tangent vector to the coordinate curves: gij(x) = 〈 ∂i | ∂j 〉. The Riemannian
distance between any two points on M is the infimum of the length of the
curves joining these points. Geodesics are defined as the critical points of the
energy functional. Geodesics are parametrized by arc-length in addition to
optimizing the length functional. We assume in this paper that the manifold
is geodesically complete, i.e. that the definition domain of all geodesics can
be extended to R. This means that the manifold has no boundary nor any
singular point that we can reach in a finite time. As an important consequence,
the Hopf-Rinow-De Rham theorem states that there always exists at least one
minimizing geodesic between any two points of the manifold (i.e. whose length
is the distance between the two points).

Normal coordinate system From the theory of second order differential
equations, we know that there exists one and only one geodesic γ(x,v)(t) starting
from the point x with the tangent vector v ∈ TxM . The exponential map at
point x maps each tangent vector v ∈ TxM to the point of the manifold that is
reached after a unit time by the geodesic: expx(v) = γ(x,v)(1). The exponential
map is locally one-to-one around 0: we denote by −→xy = logx(y) its inverse. The
maximal domain D(x) ⊂ TxM containing 0 where the exponential map is a
diffeomorphism is a connected star-shape domain limited by the tangential cut
locus ∂D(x) = C(x) ⊂ TxM (the set of vectors tv where the geodesic γ(x,v)(t)
ceases to be length minimizing). Its image by the exponential map is the cut
locus C(x) = expx(C(x)) ⊂ M. This is the closure of the set of points where
several minimizing geodesics starting from x meet. The image of the domain
D(x) by the exponential map covers all the manifold except the cut locus, which
has a null measure. When the tangent space is provided with an orthonormal
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basis, the chart realized by the exp and log maps is called an normal coordinate
systems at x. A set of normal coordinate systems at each point of the manifold
realize an atlas which is the basis of programming on Riemannian manifolds as
exemplified in Pennec et al. [2006].

Differential of the Riemannian log On M/C(y), the gradient of the
squared distance d2y(x) = dist2(x, y) with respect to the fixed point y is well de-
fined and is equal to ∇d2y(x) = −2 logx(xi). The Hessian operator of the square
distance is thus directly related to the differential of the log map: ∇2d2y(x) =
−2(Dx logx(xi)). It can also be written in terms of derivatives of the expo-
nential map as ∇2d2y(x) = (D expx|−→xy)−1 Dx expx|−→xy to make more explicit the
link with Jacobi fields. Following Brewin [2009], we computed in A the Taylor
expansion of this matrix in a normal coordinate system at x:

− [Dx logx(y)]
a
b = δab − 1

3
Ra

cbd
−→xyc−→xyd − 1

12
∇cR

a
dbe

−→xyc−→xyd−→xye +O(ǫ3). (1)

Here, Ra
cbd(x) are the coefficients of the curvature tensor at x. Since we are

in a normal coordinate system, the zeroth order term is the identity matrix,
like in the Euclidean space, and the first order term vanishes. The Riemannian
curvature tensor appear in the second order term and its covariant derivative
in the third order term. It is important to see that the curvature is the leading
term that makes this matrix departing from the identity (i.e. the Euclidean
case) and which may lead to the non invertibility of the differential.

1.3 Moments of point distributions

In the following, we will intensively use a set of (k + 1) points on a Manifold.
Adding weights (λ0, . . . λk) that do not sum up to zero to each point, we may see
these weighted points as the sum of weighted Diracs µ(x) =

∑

i λiδxi
(x). As this

distribution is not normalized and weights can be negative, it is generally not
a probability. This distribution is singular in the sense that it is not uniformly
dominated by the Riemannian measure. Thus, we have to take extra care in
defining its moments as the Riemannian log and distance functions are not
smooth at the cut-locus of the points.

Definition 1 ((k + 1)-pointed / punctured Riemannian manifold).
Let {x0, . . . xk} ∈ Mk+1 be a set of k + 1 reference points in the Riemannian
manifold M and C(x0, . . . xk) = ∪k

i=0C(xi) be the union of the cut loci of these
points. We call (k + 1)-pointed manifold the object consisting of the smooth
manifold M and the k + 1 reference points, and (k + 1)-punctured manifold the
submanifold M∗(x0, . . . xk) = M/C(x0, . . . xk) of the non-cut points of the k+1
reference points.

On M∗(x0, . . . xk), the distance to the points {x0, . . . xk} is smooth. The
Riemannian log function −→xxi = logx(xi) is also well defined for all the points of
M∗(x0, . . . xk) but becomes multivalued at the cut locus C(xi) of xi. Since the
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cut locus of each point is closed and has null measure, the punctured manifold
M∗(x0, . . . xk) is open and dense in M, which means that it is a submanifold
of M. However, this submanifold is not necessarily connected. For instance
in the flat torus (S1)

n, the cut-locus of k + 1 points divides the torus into kn

disconnected cells.

Definition 2 (Weighted moments of a (k + 1)-pointed manifold).
Let (λ0, . . . λk) ∈ R

k+1 such that
∑

i λi 6= 0. The weighted n-order moment of
a (k + 1)-pointed Riemannian manifold is the n-contravariant tensor:

Mn(x, λ) =
∑

i

λi
−→xxi ⊗−→xxi . . .⊗−→xxi
︸ ︷︷ ︸

n times

, (2)

and the normalized weighted n-order moment is:

Mn(x, λ) = Mn(x,
¯
λ) = Mn(x, λ)/M0(

¯
λ). (3)

Both tensors are smoothly defined on the punctured manifold M∗(x0, . . . xk).

The 0-th order moment M0(λ) =
∑

i λi = 1
Tλ is the mass. The n-th

order moment is homogeneous of degree 1 in λ while the normalized n-th order
moment is naturally invariant by a change of scale of the weights thanks to the
use of the normalized weights. For a fixed weight λ, the first order moment
M1(x, λ) =

∑

i λi
−→xxi is a smooth vector field on the manifold M∗(x0, . . . xk)

whose zeros will be the subject of our interest. The second and higher order
moments are smooth (n, 0) tensor fields that will be used later through their
contraction with the Riemannian curvature tensor.

2 Barycentric subspaces

2.1 Affine subspaces in a Euclidean space

In Euclidean PCA, a zero dimensional space is a point, a one-dimensional space
is a line, and an affine subspace of dimension k is generated by a point and k
non-collinear vectors. Alternatively, one could also generate such a subspace
by taking the affine hull of k + 1 points in general position: Aff(x0, . . . xk) =
{

x =
∑

i λixi,with
∑k

i=0 λi = 1
}

. While the first definition parametrizes the

space of affine subspaces with a contact element of dimension k, the second
definition relies on the configuration space of k+1 points in general position (a
k-simplex). These two definitions are of course equivalent in a Euclidean space,
but turn out to have different generalizations in manifolds. It is worth noticing
that when the points are not in general conditions, the affine span is still well
defined but has a lower dimensionality.

When there exists a vector of coefficients λ = (λ0 : λ1 : . . . : λk) ∈ R
k+1

(with do not sum to zero) such that
∑k

i=0 λi(xi − x) = 0, then λ is called the
barycentric coordinates of the point x with respect to the k-simplex {x0, . . . xk}.
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Barycentric coordinates are not unique since they are homogeneous of degree
one. Thus, one usually renormalize the coordinates by the total mass so that
∑k

i=0 λi = 1. In that case, the vertices of the simplex have the coordinates
(1, 0, 0, ..., 0) . . . (0, 0, 0, ..., 1).

Definition 3 (Projective space of barycentric coordinates (weights)). Barycen-
tric coordinates of k+1 points live in the projective space Pk minus the orthog-
onal of the line element 1 = (1 : 1 : . . . 1):

P∗
k =

{

(λ0 : λ1 : . . . : λk) ∈ R
k+1 s.t.

k∑

i=0

λi 6= 0

}

.

Standard charts of this space are given either by the intersection of the line
elements with the ”upper” unit sphere Sk of Rk+1 with north pole 1/

√
k or by

the k-plane of Rk+1 passing through the point 1/k and orthogonal to this vector.

We call normalized weights
¯
λi = λi/(

∑k
j=0 λj) this last projection.

2.2 Fréchet / Karcher Barycentric subspaces metric spaces

The reformulation of the affine span as the weighted mean of (k + 1) points for
some weights suggests first to generalize the definition to metric manifolds using
the Fréchet or the Karcher mean.

Definition 4 (Fréchet / Karcher barycentric subspaces of k + 1 points). Let
(M, dist) be a metric space and (x0, . . . xk) ∈ Mk be k + 1 distinct reference
points. The (normalized) weighted variance at point x with weight λ ∈ P∗

k is:

σ2(x, λ) =
1

2

k∑

i=0
¯
λi dist

2(x, xi) =
1

2

k∑

i=0

λi dist
2(x, xi)/(

k∑

j=0

λj).

The Fréchet barycentric subspace of these points is the locus of weighted Fréchet
means of these points, i.e. the set of absolute minima of the weighted variance:

FBS(x0, . . . xk) =

{

arg min
x∈M

σ2(x, λ), λ ∈ P∗
k

}

The Karcher barycentric subspaces KBS(x0, . . . xk) are defined similarly with
local minima instead of global ones.

This definition restores the full symmetry between all parameters of the
subspaces, contrarily to the geodesic subspaces which are intrinsically privileg-
ing one point. This definition is also sufficiently general to work on metric
spaces more general than Riemannian manifolds. In stratified metric spaces,
for instance, the barycentric subspace spanned by points belonging to differ-
ent strata naturally maps over several strata. This is a significant improvement
over geodesic subspaces used in PGA which can only be defined within a regular
strata.
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The reference points could be seen as landmarks in the manifold. However,
since landmark has a specific meaning in morphometry, we prefer not to use
this terminology. In biology, Shoval et al. [2012] used archetype points in a
similar way to characterize the geometry of the phenotype space using Pareto
optimality. Here, ”archetype” suggests that these points are extremal in some
way (for instance barycentric coordinates should be between -1 and 1), which is
interesting by not mandatory in our framework.

2.3 Exponential Barycentric Subspace (EBS) and Affine
Span in Riemannian manifolds

A third definition of the mean in manifolds can be used to define barycentric
subspaces: exponential barycenters.

Definition 5 (Barycentric coordinates in a (k+1)-pointed manifold). A point
x ∈ M∗(x0, . . . xk) has barycentric coordinates λ ∈ P∗

k if

M1(x, λ) =

k∑

i=0

λi
−→xxi = 0. (4)

Since the Riemannian log function −→xxi = logx(xi) is multiply defined on the
cut locus of xi, this definition cannot be extended to the the union of all cut
loci C(x0, . . . xk), which is why we exclude this set and restrict the definition to
M∗(x0, . . . xk) in the present work.

Definition 6 (Exponential Barycentric Subspace (EBS)). The EBS of the
points (x0, . . . xk) ∈ Mk is the set of weighted exponential barycenters of the
reference points in M∗(x0, . . . xk):

EBS(x0, . . . xk) = {x ∈ M∗(x0, . . . xk)|∃λ ∈ P∗
k : M1(x, λ) = 0}.

On the punctured manifold M∗(x0, . . . xk), the gradient of the squared dis-
tance d2xi

(x) = dist2(x, xi) is well defined and is equal to ∇d2xi
(x) = −2 logx(xi).

Thus, one recognizes that Eq.(4) defines nothing else than the critical points of
the variance σ2(x, λ) = 1

2

∑

i ¯
λi dist

2(x, xi). The EBS is thus a superset of the
FBS / KBS in M∗(x0, . . . xk).

The discontinuity of the Riemannian log on the cut locus of the reference
points may hide the continuity or discontinuities of the exponential barycentric
subspace. In order to ensure the completeness of the subspace and potentially
reconnect different components, we define consider the closure of this set.

Definition 7 (Affine span of (k + 1) points in a Riemannian manifold). The
affine span is the closure of the EBS in M: Aff(x0, . . . xk) = EBS(x0, . . . xk).
Because we assumed that M is geodesically complete, this is equivalent to the
metric completion of the EBS.

The local minima of the variance which are potentially located on the cut-
locus of the reference points are not part of the EBS but they are recovered
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in the affine span thanks to the metric completion. FBS and KBS are thus
included in the affine span, and the affine span is the largest of the barycentric
subspaces.

For the following, it is interesting to introduce the dual space of admissible
barycentric coordinates at each point of x ∈ M∗(x0, . . . xk):

Proposition 1 (Dual subspace of admissible barycentric weights). The space
of valid barycentric weights Λ(x) = {λ ∈ P∗

k |M1(x, λ) = 0} is either void, a
point, or a linear subspace of P∗

k .

2.4 A SVD characterizations of the exponential barycen-
tric subspace

Let Z(x) = [−−→xx0, . . .−−→xxk] be the smooth field of n× (k + 1) matrices of vectors
pointing from any point x ∈ M∗(x0, . . . xk) to the reference points. We can
rewrite the constraint

∑

i λi
−→xxi = 0 in matrix form: M1(x, λ) = Z(x)λ = 0,

where λ is the k + 1 vector of homogeneous coordinates λi.

Theorem 1 (Characterization of the exponential barycentric subspace). Let
Z(x) = U(x).S(x).V (x)T be a singular decomposition of the n× (k + 1) matrix
fields Z(x) = [−−→xx0, . . .−−→xxk] on M∗(x0, . . . xk) (with singular values {si(x)}0≤i≤k

sorted in decreasing order). The barycentric subspace Aff(x0, . . . xk) is the zero
level-set of the k + 1 singular value sk+1(x) and the dual subspace of valid
barycentric weights is spanned by the right singular vectors corresponding to
the l vanishing singular values: Λ(x) = Span(vk−l, . . . vk) (it is void if l = 0).

Proof. Since U and V are orthogonal matrices, Z(x)λ = 0 if and only if at least
one singular value (necessarily the smallest one sk) is null, and λ has to live in
the corresponding right-singular space: Λ(x) = Ker(Z(x)). If we have only one
zero singular value (sk+1 = 0 and sk > 0), then λ is proportional to vk+1. If
l singular values vanish, then we have a higher dimensional linear subspace of
solutions for λ.

The dimension of the dual space Λ(x) is actually controlling the local di-
mension of the barycentric space, as we will see below.

2.5 Link between the different barycentric subspaces

In order to analyze the relationship between the Fréchet / Karcher / Exponen-
tial barycentric subspaces, we follow the seminal work of Karcher [1977]. First,
the locus of local minima (i.e. Karcher mean) is a superset of the global min-
ima (Fréchet mean). On the punctured manifolds M∗(x0, . . . xk), the weighted
variance is smooth and its critical points are the points of exponential barycen-
tric subspace, which is also the restriction of the affine span to M∗(x0, . . . xk).
Among the critical points with a non-degenerate Hessian, local minima are char-
acterized by a positive definite Hessian. When the Hessian is degenerate, we
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cannot conclude on the local minimality without going to higher order differen-
tials. Thus, we have

FBS ∩M∗ ⊂ KBS ∩M∗ ⊂ Aff ∩M∗ = EBS.

The goal of this section is to decompose the EBS into cells according to the
index of the Hessian operator of the variance:

H(x, λ) = ∇2σ2(x, λ) = −
k∑

i=0
¯
λiDx logx(xi). (5)

Plugging the value of the Taylor expansion of the differential of the log of
Eq.(20), we obtain the Taylor expansion:

[H(x, λ)]
a
b = δab − 1

3
Ra

cbd(x)M
cd
2 (x,

¯
λ) − 1

12
∇cR

a
dbe(x)M

cde
3 (x,

¯
λ) +O(ǫ4). (6)

The key factor in this expression is the contraction of the Riemannian curva-
ture with the weighted covariance tensor of the reference points. This contrac-
tion can be seen as an extension of the Ricci curvature tensor. Exactly as the
Ricci curvature tensor encodes (through its metric trace, the scalar curvature)
how the volume of an isotropic geodesic ball in the manifold deviates from the
volume of the standard ball in a Euclidean space, the extended Ricci curvature
encodes how the volume of the ellipsoid −→xyT

M2(x,
¯
λ)(-1)−→xy ≤ ǫ centered at the

point x in the manifold deviates from the volume of the same ellipsoid in a
Euclidean space (the tangent space).

Interestingly, in symmetric spaces (or even more generally locally symmetric
affine spaces), the covariant derivative of the curvature is identically zero, which
simplifies the formula above. We should be careful however that the curvature
tensor still appears in higher terms. In the limit of null curvature, (e.g. for a
locally Euclidean space like the torus), the Hessian matrix H(x, λ) converges
to the unit matrix, which means that it never vanishes. In general Riemannian
manifolds, Equation (6) only gives a qualitative behavior but does not provide
guaranties as it is a series involving higher order moments of the reference points.
In order to obtain hard bounds on the spectrum ofH(x, λ), one has to investigate
bounds on Jacobi fields using Riemannian comparison theorems, as is done for
the proof of uniqueness of the Karcher and Fréchet means (see Karcher [1977],
Kendall [1990], Le [2004], Afsari [2010], Yang [2011]).

Definition 8 (Degenerate, non-degenerate and positive points).
An exponential barycenter x ∈ EBS(x0, . . . xk) is degenerate (resp. non-

degenerate or positive) if the Hessian matrix H(x, λ) is singular (resp. definite
or positive definite) for all λ in the the dual space of valid weights Λ(x) (the
right singular space of the zero singular value of Z(x)). The set of degenerate
(resp. non-degenerate or positive) exponential barycenter is called the degenerate
EBS and denoted EBS0(x0, . . . , xk) (resp. non-degenerate EBS

∗(x0, . . . , xk) or
positive EBS+(x0, . . . xk)).
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Positive points are obviously non-degenerate. In flat spaces (e.g. Euclidean),
all the points of the punctured manifold are positive and non-degenerate. In
curved manifolds, we may have degenerate points and non-degenerate but non-
positive points, as we will see with the example of spheres. The definition of
non-degenerate and positive points could be generalized to non-critical points
(outside the affine span) by considering for instance the right singular space of
the smallest singular value of Z(x). However, this extended definition would
depend on the metric that we choose for the space of weights and a renormal-
ization of the weights (such as the one we will do for spheres in Section 4) can
change the smallest singular value.

Theorem 2 (Karcher barycentric subspace and positive span).
EBS+(x0, . . . xk) is the set of non-degenerate points of the Karcher barycentric
subspace KBS(x0, . . . xk) on M∗(x0, . . . xk). In other words, the KBS is the
positive EBS plus potentially some degenerate points of the affine span and some
points of the cut locus of the reference points.

3 Properties of the barycentric subspaces

3.1 Link with the convex hull

In a vector space, a point lies in the convex hull of a simplex if and only if
its barycentric coordinates are all non-negative (meaning that they are be-
tween 0 and 1 with the unit sum constraint). In that case, the weights λ
can be interpreted as a vector of probabilities. Consequently, barycentric coor-
dinates are often thought to be related to convex hulls. However, in a general
Riemannian manifold, the situation is quite different. When there are closed
geodesics, the convex hull can reveal several disconnected components, unless
one restrict to convex subsets of the manifolds as shown in Groisser [2004]. In
metric spaces with negative curvature (CAT spaces), Weyenberg [2015] displays
explicit examples of convex hulls of 3 points which are 3-dimensional rather than
2-dimensional as expected. In fact, the equivalence of barycentric subspaces with
convex hulls only holds whenever the barycentric subspace is totally geodesic
at each point, which happens for spheres (and probably for constant curvature
spaces) but not for general Riemannian manifolds.

3.2 Barycentric simplex in a regular geodesic ball

We call barycentric simplex the subset of the FBS that has non-negative weights.
It contains all the reference points, the geodesics segments between the reference
points, and of course the Fréchet mean of the reference points. This is the
generalization of a geodesic segment for 2 points, a triangle for 3 points, etc.
The (k − l)-faces of a k-simplex are the simplices defined by the barycentric
subspace of k− l+1 points among the k+1. They are obtained by imposing the
l remaining barycentric coordinates to be zero. In parallel to the writing of this
paper, Weyenberg [2015] has investigated barycentric simplexes as extensions of
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principal subspaces in the negatively curved metric spaces of trees in under the
name Locus of Fréchet mean (LFM), with very interesting results.

Theorem 3 (Barycentric simplex in a regular geodesic ball). Let κ be an up-
per bound of sectional curvatures of M and inj(M) be the radius of injection
(which can be infinite) of the Riemannian manifold. Let X = {x0, . . . xk} ∈
M(k+1) be a set of points included in a regular geodesic ball B(x, ρ) with ρ <
1
2 min{inj(M), 12π/

√
κ} (π/

√
κ being infinite if κ < 0). The barycentric simplex

is the graph of a k-dimensional differentiable function from the non-negative
quadrant of homogeneous coordinates (P∗

k )
+ to B(x, ρ) and is thus at most k-

dimensional. The k − l-faces of the simplex are the simplices defined by the
barycentric subspace of k − l + 1 points among the k + 1 and include the refer-
ence points themselves as vertices (0-faces) and the geodesics joining them as
edges (1-faces).

Proof. The proof closely follows the one of Karcher [1977] for the uniqueness of
the Riemannian barycenter. The main argument is that µ(X,λ)(x) =

∑

¯
λiδxi

(x)
is a probability distribution whose support is included in the strongly con-
vex geodesic ball B(x, ρ). Following Karcher [1977], the variance σ2(x, λ) =
1
2

∑

i ¯
λid

2(x, xi) is strictly convex on that ball and has a unique minimum
xλ ∈ B(x, ρ), which is necessarily the weighted Fréchet mean. This proof of
the uniqueness of the weighted Fréchet mean with non-negative weights was
actually already present in Buser and Karcher [1981]. We supplement the proof
here by noting that since the Hessian H(xλ, λ) =

∑

i λiHi(xλ) is the convex
combination of positive matrices, it is positive definite for all λ ∈ (P∗

k )
+ in the

positive quadrant. Thus the function xλ is differentiable thanks to the implicit
function theorem: Dλxλ = H(xλ, λ)

(-1)Z(xλ). The rank of this derivative is
at most k since Z(xλ) = 0, which proves that the graph of the function xλ de-
scribes at most a k dimensional subset in M. As we will see below, it is actually
a stratified space in generic conditions.

3.3 Local dimension of the barycentric subspaces

Let x be point of the EBS verifying Z(x)λ = 0 for some λ ∈ Λ(x). This
expression is smooth in x and λ so that we can take a Taylor expansion: at
the first order, a variation of barycentric coordinates δλ induces a variation of
position δx which are linked through H(x, λ)δx+Z(x)δλ = 0. Thus, at regular
points, we have

δx = −H(x, λ)(-1)Z(x)δλ.

Let Z(x) = U(x)S(x)V (x)T be a singular value decomposition with singular
values sorted in decreasing order. Since x belongs to the EBS, there is at least
one (say m ≥ 1) singular value that vanish and the dual space of admissible
weights is Λ(x) = Span(vk−m, . . . vk). For a variation of weights δλ in this
subspace, there is no change of coordinates, while any variation of weights in
Span(v0, . . . vk−m−1) induces a non-zero position variation. Thus, the tangent
space of the EBS restricts to the (k−m)-dimensional linear space generated by
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{δx′i = −H(x, λ)(-1)ui}0≤i≤k−m. Here, we see that the Hessian matrix H(x, λ)
encodes the distortion of the orthonormal frame fields u1(x), . . . uk(x) to match
the tangent space. Since the lower dimensional subspaces are included one the
larger ones, we have a stratification of our k-dimensional submanifold into k−1,
k − 2, . . . 0-dimensional boundaries.

Theorem 4 (Dimension of the exponential barycentric subspace at non-de-
generate points). EBS∗(x0, . . . , xk) is a stratified space of dimension k on
M∗(x0, . . . xk). On the m-dimensional strata, Z(x) has exactly k −m+ 1 van-
ishing singular values.

At degenerate points, H(x, λ) is not invertible and vectors living in its kernel
are also authorized, which potentially raises the dimensionality of the tangent
space, even if they do not change the barycentric coordinates. Thus pathologies
may appear at degenerate points in barycentric subspaces of general manifolds.
In practice, this is not the case for the sphere, as we will see in the sequel, and
we conjecture that this is also not the case for symmetric spaces.

3.4 Two alternative characterizations in the spirit of PCA

Theorem 5. Let Ω(x) = Z(x)TG(x)Z(x) be the smooth (k+1)× (k+1) matrix
field on M∗(x0, . . . xk) with components Ωij(x) = 〈 −→xxi | −−→xxj 〉x and Σ(x) =

M2(x,1) =
∑k

i=0
−→xxi−→xxiT = Z(x)Z(x)Tbe the (scaled) n× n covariance matrix

field of the reference points. EBS(x0, . . . xk) is the zero level-set of: det(Ω(x)),
the minimal eigenvalue σ2

k+1 of Ω(x), the k+1 eigenvalue (in decreasing order)
of the covariance Σ(x).

Proof. The constraint M1(x, λ) = 0 is satisfied if and only if its squared norm
is zero:

‖M1(x, λ)‖2x = ‖∑i λi
−→xxi‖2x = λT.Ω(x).λ.

As the function is homogeneous in λ, we can restrict to unit vectors. Adding
this constrains with a Lagrange multiplier to the cost function, we end-up with
the Lagrangian

L(x, λ, α) = λT.Ω(x).λ + α(λTλ− 1) (7)

The minimum with respect to λ is obtained for the eigenvector µk+1(x) associ-
ated to the smallest eigenvalue σk+1 (x) of Ω(x) (assuming that eigenvalues are
sorted in decreasing order) and we have ‖M1(x, µk+1(x))‖22 = σk+1(x), which is
null if and only if the minimal eigenvalue is zero. Thus, the barycentric subspace
of k + 1 points is the locus of rank deficient matrices Ω(x):

EBS(x0, . . . xk) = φ(-1)(0) where φ(x) = det(Ω(x)).

One may want to relate the singular values of Z(x) to the eigenvalues of
Ω(x). The later are the square of the singular values of G(x)1/2Z(x). However,
the left multiplication by the square root of the metric (a non singular but non
orthogonal matrix) obviously changes the singular values in general. There is
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however a special case where some singular values are equal: this is for vanishing
ones. The (right) kernels of G(x)1/2Z(x) and Z(x) are indeed the same. This
shows that the EBS is an affine notion rather than a metric one, contrarily to
the Fréchet / Karcher barycentric subspace.

To draw the link with the n × n covariance matrix of the reference points
(we intentionally dropped the usual normalization factor 1/k + 1 to simplify
the notations), let us notice first that the definition does not assumes that
the coordinate system is orthonormal. Thus, the eigenvalues of the covariance
matrix are depending on the chosen coordinate system, unless they vanish. In
fact only the joint eigenvalues of Σ(x) and G(x) really make sense, which is why
this last decomposition is sometimes called the proper orthogonal decomposition
(POD). Now, the singular values of Z(x) = U(x)S(x)V (x)T are also the square
root of the first k + 1 eigenvalues of Σ(x) = U(x)S2(x)U(x)T, the remaining
n− k − 1 eigenvalues being null. Similarly, the singular values of G(x)1/2Z(x)
are the square root of the first k + 1 joint eigenvalues of Σ(x) and G(x). Thus,
our barycentric subspace may also be characterized as the zero level-set of the
k + 1 eigenvalue (sorted in decreasing order) of Σ (or of the joint eigenvalue
of Σ(x) and G(x)), and this characterization is once again independent of the
basis chosen.

3.5 Stability of the affine span with respect to the metric
power

The Fréchet (resp. Karcher) mean can be further generalized by taking a power

α of the metric to define the α-variance σα(x) = 1
α

∑k
i=0 distα(x, xi). The

absolute (resp. local) minima of this α-variance defines the median for α =
1 and the modes for α → 0. This suggest that we could further generalize
barycentric subspaces by taking the locus of the minima of the weighted α-
variance σα(x, λ) = 1

α

∑k
i=0 λidist

α(x, xi). In fact, it turns out that all these ”α-
subspaces” are necessarily included in the affine span, which shows this notion
is really central. To see that, let us we compute the gradient of the α-variance
at any point of M∗(x0, . . . xk):

∇x
1

α
σα(x, λ) = −

k∑

i=0

λi dist
α−2(x, xi) logx(xi).

We see that the critical points satisfy the equation
∑k

i=0 λ
′
i logx(xi) = 0 for the

new weights λ′i = λidist
α−2(x, xi). Thus the critical points of the α-variance are

simply elements of the EBS and changing the power of the metric just amounts
to a reparametrization of the barycentric weights.

3.6 Restricted geodesic submanifolds are limit of affine
spans

So far, we have considered that the reference points {x0, . . . xk} were distinct in
order to have a chance to generate a k-dimensional subspace. Let us investigate
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what is happening when all the points {xi = expx0
(ηwi)}1≤i≤k are converging

to x0 at first order along k independent vectors {wi}1≤i≤k. Here, we fix w0 = 0
to simplify the derivations, but the proof can be easily extended to w0 6= 0 with
a suitable change of coordinate system provided that

∑k
i=0 wi = 0.

By analogy with Euclidean spaces, where a point of the affine span y =
∑k

i=0 ¯
λixi may be rewritten as the point y = x+ η

∑k
i=1 ¯

λiwi of the ”geodesic
subspace” generated by the family of vectors {wi}1≤i≤k, we expect the expo-
nential barycentric subspace EBS(x0, expx0

(ηw1) . . . expx0
(ηwk)) to be close to

the geodesic subspace

GS(x,w1, . . . wk) =
{

expx

(
∑k

i=1 αiwi

)

∈ M for α ∈ R
k
}

generated by the k independent vectors w1, . . . wk at x.
In fact, the above definition of the geodesic subspaces (which is the one

implicitly used in most of the works using PGA) may be too large and may not
define a k-dimensional submanifold when there is a cut-locus. For instance, it is
well known that geodesics of a flat square torus are either periodic or everywhere
dense in a flat torus submanifold depending on whether the components of the
initial velocity field have rational or irrational ratios. This means that the
geodesic space generated by a single vector for which all ratio of coordinates
are irrational (e.g. w = (π, π2, . . . πk)) is filling the full k-dimensional flat torus.
Thus all the 1-dimensional geodesic subspaces that have irrational ratio of all
coordinates minimize the distance to any set of data points in a flat square
torus of any dimension, which is not very interesting from the application point
of view. In order to have a more meaningful definition and to guaranty the
dimensionality of the geodesic subspace, we need to restrict the definition to
the points of the geodesics that are minimizing the distance.

Definition 9 (Restricted Geodesic Submanifolds). Let x ∈ M be a point of a

Riemannian manifold and let Wx = {
∑k

i=1 αiwi, α ∈ R
k} be the k-dimensional

linear subspace of TxM generated a k-uplet {wi}1≤i≤k ∈ (TxM)k of tangent
vectors at x.

We call restricted geodesic submanifold GS∗(Wx) at x generated by the vector
subspace Wx the submanifold of M generated by the geodesics starting at x with
tangent vectors w ∈ Wx, but up to the first cut-point of x only:

GS∗(Wx) = GS∗(x,w1, . . . wk) = {expx (w) , w ∈ Wx ∩D(x)},

where D(x) ⊂ TxM is the maximal definition domain on which the exponential
map is diffeomorphic.

It may not be immediately clear that the subspace we define that way is
a submanifold of M: since expx is a diffeomorphism from D(x) ⊂ TxM to
M/C(x) whose differential has full rank, its restriction to the open star-shape
subset Wx ∩ D(x) of dimension k is a diffeomorphism from that subset to the
restricted geodesic subspace GS∗(Wx) which is thus an open submanifolds of
dimension k of M. However, this submanifold is generally not geodesically
complete.
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Theorem 6 (Restricted geodesic subspaces are limit of affine spans). Points
of the restricted geodesic submanifold GS∗(Wx) = {expx (w) , w ∈ Wx ∩D(x)}
are points of the affine span Aff(x, x1, . . . xk) parametrized by points at infinity
of P∗

k when the points xi = expx(ηwi) are converging to x at first order along
the tangent vectors wi defining the k-dimensional subspace Wx ⊂ TxM.

Proof. We first establish a useful formula exploiting the symmetry of the geodesics
from x to y 6∈ C(x) with respect to time. Reverting time along a geodesic, we
have: γ(x,−→xy)(t) = γ(y,−→yx)(1 − t), which means in particular that γ̇(x,−→xy)(1) =
−γ̇(y,−→yx)(0) = −−→yx. Since γ(x,−→xy)(t) = expx(t

−→xy), we obtain−→yx = −D expx|−→xy −→xy.
Now, we also have

(

D expx|−→xy
)

.D logx|y = Id because expx(logx(y)) = y. Fi-

nally, D expx and D logx have full rank on M/C(x) since there is no conjugate
point before the cut-locus, so that we can multiply by their inverse and we end
up with:

∀y 6∈ C(x), −→xy = −D logx|y −→yx. (8)

In order to work properly, let us first restrict to a convenient domain of M:
we consider a open geodesic ball B(x0, ǫ) of radius ǫ centered at x0 and we
exclude all the points of M which cut locus intersect this ball, or equivalently
the cut-locus of all the points of this ball. We obtain an open domain Dǫ(x0) =
M/C(B(x0, ǫ)) in which logx(y) is well defined and smooth for all x ∈ B(x0, ǫ)
and all y ∈ Dǫ(x0). Thanks to the symmetry of the cut-locus, logy(x) is also
well defined and smooth in the same conditions and Eq. (8) can be rephrased
as:

∀x ∈ B(x0, ǫ), y ∈ Dǫ(x0),
−→xy = −D logx|y −→yx. (9)

Let ‖w‖∞ = maxi ‖wi‖x0 be the maximal length of the vectors wi. For η <
ǫ/‖w‖∞, we have ‖ηwi‖x0 ≤ η‖w‖∞ < ǫ, so that all the points xi = expx0

(ηwi)
belong to the open geodesic ball B(x0, ǫ). Thus, logx(xi) and logxi

(x) are well
defined and smooth for any x ∈ Dη(x0), and we can write the Taylor expansion
in a normal coordinate system at x0:

logx(xi) = logx(expx0
(ηwi)) = logx(x0) + ηD logx |x0wi +O(η2).

Now let x = expx0
(w) (or logx0

(x) = w) with w =
∑k

i=1 αiwi ∈ Dǫ(x0).
Using formula (9), we can write equivalently logx(x0) = − D logx|x0

w and
combined that with the above equation to obtain: logx(xi) = D logx|x0

(ηwi −
w)+O(η2). Thus, the implicit equationM1(x, λ) =

∑k
i=0 λi

−→xxi = 0 is equivalent

to
∑k

i=0 λi(ηwi−w) = O(η2), and showing that x is a point of the EBS amounts
to find the normalized homogeneous coordinates

¯
λ satisfying

k∑

i=0

(
¯
λiη − αi)wi = O(η2).

Taking λi = αi for 1 ≤ i ≤ k and λ0 = η − (
∑

i αi) obviously satisfy this
condition. With normalized coordinates, this writes:

¯
λi = αi/η for 1 ≤ i ≤ k
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and
¯
λ0 = 1− (

∑

i αi)/η, so that we clearly see that it tends towards coordinates
that sum up to zero (a point at infinity of P∗

k). Thus, x is not a point of the
EBS when η goes to zero, but since it is the limit of a series of points which are
in it, it belongs to the closure of this set, which is the affine span.

We conjecture that the construction can be generalized using techniques
from sub-Riemannian geometry to higher order derivatives when the first or-
der derivative do not span a k-dimensional subspace. This would mean that
we could also see some non-geodesic decomposition schemes as limit cases of
barycentric subspaces, such as splines on manifolds that have been developed
by Crouch and Leite [1995], Machado et al. [2010], Gay-Balmaz et al. [2012],
Hinkle et al. [2014], Singh et al. [2015]. In fact, we will show in the next section
shows that this is indeed the case for spheres where principal nested spheres
developed by Jung et al. [2010, 2012] can be seen as a limit case of barycentric
subspaces when they converge to a second-order jet.

4 Example on spheres

Intrinsic weighted averaging on spheres has been investigated in Buss and Fillmore
[2001]. In particular, they have shown that for positive weights, there is a unique
Fréchet mean if the points are within one hemisphere with at least one non-zero
weight point not on the equator. In this section, we derive a similar result using
different computations to exemplify how the barycentric subspaces are defined
on spheres. We also provide show that the affine span is in generic conditions
a great subsphere, and that it converges towards the Principal Nested Spheres
when reference points converge toward a second-order jet.

4.1 Computing on spheres

We consider the unit sphere in dimension n ≥ 1 embedded in R
n+1 so that

points of M = Sn are unit vectors of Rn+1. The tangent space at x is the linear
space of vectors orthogonal to x: TxSn = {v ∈ R

n+1, vTx = 0}. The natural
Riemannian metric on the unit sphere is inherited from the Euclidean metric
of the embedding space. With these conventions, the Riemannian distance is
the arc-length d(x, y) = arccos(xTy) = θ ∈ [0, π]. Denoting f(θ) = 1/sincθ =
θ/sin θ, the spherical exp and log maps are:

expx(v) = cos(‖v‖)x+ sinc(‖v‖)v (10)

logx(y) = f(θ) (y − cos θ x) with θ = arccos(xTy). (11)

Notice that f(θ) is a smooth function from ]− π;π[ to R that is always greater
than one and is locally quadratic at zero: f(θ) = 1 + θ2/6 +O(θ4).

Using the orthogonal projection v = (Id−xxT)w of an unconstrained vector
w ∈ R

n+1 onto the tangent space TxSn we obtain a chart around a point x ∈ Sn

where we can compute the gradient and Hessian of the squared-distance on the
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sphere:

∇d2y(x) = −2f(θ)( Id− xxT)y = −2 logx(y) (12)

Hx(y) = 2vvT + 2f(θ) cos θ( Id− xxT − vvT) (13)

The eigenvectors and eigenvalues of this matrix are easy to determine. By
construction, x is an eigenvector with eigenvalue µ0 = 0. Then the vector v (or
equivalently logx(y) = θv) is an eigenvector with eigenvalue µ1 = 1. To finish,
every vector v which is orthogonal to these two vectors (i.e. orthogonal to the
plane spanned by 0, x and y) has eigenvalue µ2 = f(θ) cos θ = θ cot θ. This last
eigenvalue is positive for θ ∈ [0, π/2[, vanishes for θ = π/2 and becomes negative
for θ ∈]π/2π[. We retrieve here the results of [Buss and Fillmore, 2001, lemma
2] expressed in a more general coordinate system.

4.2 k + 1-pointed spheres

Let us now pick k+1 points X = {x0; . . . xk} on the sphere. We also denote by
X the matrix of coordinates of the reference points X = [x0; . . . xk]. The cut
locus of xi is its antipodal point −xi so that the (k + 1)-punctured manifold
is M∗(x0, . . . xk) = Sn/ − X . Denoting θi = arccos(xT

i x), we have logx(xi) =
( Id− xxT)f(θi)xi, so that the first weighted moment is

M1(x, λ) = ( Id− xxT)
∑

i

λif(θi)xi = ( Id− xxT)XF (X, x)λ

where F (X, x) = Diag(f(θi)) is a diagonal matrix with entries that are always
greater than one for x ∈ M∗(x0, . . . xk). Thus, we get the following expression
for the reference matrix Z(x), the covariance matrix of the reference points Σ(x)
and the and the Gram matrix Ω(x):

Z(x) = ( Id− xxT)XF (X, x)

Σ(x) = Z(x)Z(x)T = ( Id− xxT)XF (X, x)2XT( Id− xxT)

Ω(x) = Z(x)TG(x)Z(x) = F (X, x)XT( Id− xxT)XF (X, x).

In all the above expressions, we recognize classical matrix equations, except
for the scaling matrix F (X, x) acting on homogeneous projective weights, which
is non-stationary and non-linear in both X and x. In order to simplify all the
computations, we introduce the change of coordinate system λ̃ = F (X, x)λ that
we call renormalized weights. Since F (X, x) = Diag(θi/ sin θi) is an invertible
diagonal matrix, the original barycentric coordinates can be obtained by λ =
F (X, x)(-1)λ̃, or λi = λ̃i sin θi/θi.

Introducing the vector ζ(X, x) = F (X, x)(-1)1 = [sin θ0/θ0; . . . sin θk/θk]
T ,

the constraints 1Tλ 6= 0 on the original weights becomes ζ(X, x)Tλ̃ 6= 0 on the
renormalized weights: it now excludes the hyperplane orthogonal to the vector
ζ(X, x) (instead of 1) from the projective space Pk. The reference and Gram
matrices become Z̃(x) = ( Id− xxT)X and Ω̃(x) = XT( Id− xxT)X , which are
now standard matrix expressions. In the following, we systematically work with
the rescaled barycentric coordinates λ̃.
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4.3 Exponential barycentric subspaces in generic condi-
tions

The kernel of the matrix Z̃(x) (or equivalently the Gram matrix Ω̃(x)) deter-
mines the space of admissible (renormalized) weights Λ̃(x) = Ker(Z̃(x)) =
Ker(Ω̃(x)). The solutions of the equation Z̃(x)λ̃ = 0 under the constraint
‖x‖ = 1 are given by (xTXλ̃)x = Xλ̃ or more explicitly x = ±Xλ̃/‖Xλ̃‖.
Thus, the point x ∈ M∗(X) has to belong to the Euclidean span of the refer-
ence vectors. Conversely, for any unit vector x = Xα of the Euclidean span of
X , we have Z̃(x) = X − xxTX = X −XααTXTX so that Z̃(x)α = 0 because
‖x‖2 = αTXTXα = 1. Thus λ̃ = α are the renormalized barycentric coordinates
of x (whenever x is not at the cut locus of the reference points so that F (X, x)
is invertible) and the non-normalized barycentric coordinates λ = F (X, x)(-1)α
are well defined. This shows that

EBS(X) = Span{x0, . . . xk} ∩ Sn/{−x0, . . .− xk}. (14)

Notice that for each barycentric coordinates λ we have two two antipodal solu-
tion points x = ±XF (X, x)λ.

Using the renormalization principle, we can orthogonalize the reference points:
let X = USV T be a singular value decomposition of the matrix of reference
vectors. All the singular values si are positive since the reference vectors
xi are assumed to be linearly independent. Thus, the new renormalization
λ̆ = SV Tλ̃ = SV TF (X, x)λ gives us the reference matrix Z̆(x) = ( Id− xxT)U .
By definition of the singular value decomposition, the Euclidean span of X
and U are the same, so that EBS(U) = Span{x0, . . . xk} ∩ Sn/ − U . This
shows that the exponential barycentric subspace generated by the original points
X = [x0; . . . xk] and the orthogonalized points U = [u0; . . . uk] are the same, ex-
cept at the cut locus of all these points.

4.4 Affine spans in generic conditions

To obtain the affine span, we take the closure of the EBS, which incorporates
the cut locus of the reference points:

Aff(X) = Span{x0, . . . xk} ∩ Sn (15)

Thus, for spherical data as for Euclidean data, the affine span only depend on
the reference points through the point of the Grassmanian that they define.
When the reference points are not linearly independent, the matrix X has one
or more (say l) vanishing singular values. A singular value decomposition X =
USV T shows that the value of λ̃ (and thus of λ = F (-1)(X, x)λ̃) is in that
case unconstrained in the vector space generated by the right singular vectors
associated to the l vanishing singular values. Thus, the space of admissible
weights at each point of the affine span is of dimension l, and the affine span
itself is still the subsphere generated the Euclidean span of the reference vectors
which is of dimension k − l.
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Theorem 7 (Affine span in spheres). The affine span Aff(X) of k+1 different
reference unit points X = [x0; . . . xk] on the n-dimensional sphere Sn provided
with the canonical Euclidean metric of the embedding space R

n+1 is the great
subsphere of dimension rank(X)− 1 that contains the reference points.

4.5 Projection onto the affine span

A point unit vector of R
n+1 can be split in a unique way into its compo-

nent within the Euclidean span of X and its Euclidean orthogonal comple-
ment. Among the vectors x̂ = Xλ̃ of the Euclidean span of X , the closest
one in the Euclidean sense is parametrized by the λ̃ solution of XTx = XTXλ̃,
i.e. λ̃ = (XTX)−1XTx when the the Gram matrix XTX is full rank. When
the Gram matrix is rank deficient, the smallest norm solution is given by the
Moore-Penrose pseudo-inverse λ̃ = X†x and we can add any vector of the kernel
of XTX without changing the point x. Thus, the component of x in AffRn+1(X)
is x̂ = XX†x and the orthogonal component is x̌ = ( Id − XX†)x. Denoting
φ = arctan(‖x̌‖/‖x̂‖) = arccos(‖x̂‖) = arcsin(‖x̌‖), this amount to the decom-
position x = cosφ xaff + sinφ x⊥ on the sphere (if φ < π/2) with

xaff =
x̂

‖x̂‖ =
XX†x

‖XX†x‖ and x⊥ =
x̌

‖x̌‖ =
( Id−XX†)x

‖( Id−XX†)x‖ .

It turns out that the point xaff is also the spherical projection of x (in the sense
of the closest point) onto the spherical affine span of X (when x̂ 6= 0 so that it
is defined).

4.6 Karcher barycentric subspaces

We turn in this section to the locus of local minima of the (normalized) weighted
variance. Excluding the cut locus of the reference points from the analysis, we
know that the critical points of the variance are the points of the EBS, so that
the problem amounts to distinguish the minima from the maxima and saddle
points (i.e non-degenerate and positive points according to definitions 8). For
that, we compute the Hessian of the normalized variance. Using Eq.(25), we
obtain :

H(x, λ) =
(∑

i ¯
λiθi cot θi

)
( Id− xxT) +

∑

i ¯
λi(1− θi cot θi)viv

T

i

As expected, x is an eigenvector with eigenvalue µ0 = 0 due to the projection on
the tangent space at x. Any vector w of the tangent space at x (thus orthogonal
to x) which is orthogonal to the affine span (and thus to the vectors vi) is an
eigenvector with eigenvalue µ2(λ) = (

∑

i ¯
λif(θi) cos θi). Since the Euclidean

affine span ofX has rank(X) ≤ k+1 dimensions, the multiplicity this eigenvalue
is n+1−rank(X) ≥ n−k if x ∈ Aff(X) and n−rank(X) ≥ n−k−1 otherwise.
The last Rank(X)− 1 (resp Rank(X)) eigenvalues have associated eigenvectors
within AffRn+1(X).
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Buss and Fillmore [2001] have have shown that this Hessian matrix is posi-
tive definite for positive weights when the points are within one hemisphere with
at least one non-zero weight point which is not on the equator. However, in our
case, we are not interested by the positivity and definiteness of the Hessian
H(x, λ) for all the possible positive weights, but for the positive and negative
weights which live in dual space of valid weights Λ(x). This is actually a quite
difficult algebraic geometry problem. However, simulation tests with random
reference points X in general conditions show that n−k non-zero eigenvalues of
H(x,

¯
λ(x)) can be positive or negative at different points of the EBS. This simple

test illustrate that the EBS on spheres is actually subdivided into different cells
depending on the index of the critical point and that the positive points do not
in general cover the full subsphere containing the reference points. Moreover,
the frontiers of these cells do evolve when we move the reference points within
the generated subsphere, contrarily to the affine span which consistently covers
the whole subsphere. For subspace definition purposes, this suggests that the
affine span might thus be the most interesting definition to work with.

4.7 Affine span with reference points coalescing at order
1

In the previous section, we assumed that all the reference points were distinct.
We now investigate limit cases. We first assume that all the reference points
coalesce to a single point xi = expx0

(ǫwi) along the tangent vectors wi which
are satisfying xT

0wi = 0 (to belong to the tangent space at x0) and
∑

iwi = 0.
Denoting X0 = x01

T, this amounts to say that we are following the curve
Xǫ = X0 + ǫW in the space of affine spans, with XT

0W = 0 and WXT
0 = 0.

Solving the equation Z̃(x)λ̃ = 0, we find that x = ±Xǫλ̃/αǫ for some scalar
factor αǫ that we can determine thanks to the orthogonality of X0 and W :
αǫ = ‖1Tλ̃x0 + ǫWλ̃‖. Thus, we end-up with x = x0 + ǫWλ̃/‖1Tλ̃‖ + O(ǫ2),
which shows that the space EBS(X0) is the intersection of the sphere with
the Euclidean hyperplane going through x0 generated by the vectors of W ,
minus the cut locus of x0. Thus, its completion Aff(X) is once again the great
subsphere generated by the completion of the geodesic subspace GS(x0,W ).

4.8 Coalescence at order 2 and link with principal nested
spheres

Principal nested spheres were proposed by Jung et al. [2010] and Jung et al.
[2012] as a general framework for non-geodesic decomposition of high-dimensional
spheres with applications to planar landmarks shape spaces. A subsphere An−1

of Sn is defined as the set of points which are at a fixed distance θ ∈ (0, π/2]
of a point x ∈ Sn: An−1(x, θ) = {y ∈ Sn / d(x, y) = θ}. The subsphere
An−1(x, θ) can be viewed as the slice of Sn by the n-dimensional affine hyper-
plane P (x, θ) = {y ∈ R

n+1 / yTx = cos θ}. Notice that the coordinates (x, cos θ)
of the affine hyperplane parametrize all the possible subspheres of dimension
n − 1. In this process, the subsphere is not of radius one, unless one takes
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θ = π/2, in which case the hyperplane is passing through the origin. In this
case, it is equivalent to the affine span, since any set of n non-collinear points
x1, . . . xn in the hyperplane P (x, θ) generate an affine span which is the great
sphere Sn−1 = {y ∈ R

n+1 / ‖x‖ = 1 , yTx = 0}.
In order to figure out how smaller subspheres are related to affine spans,

we consider the example of a circle of radius α ∈] − 1; 1[ around the axis e3
on the 3-sphere. It is described by the implicit equation xTe3 =

√
1− α2 and

the explicit equation: x(ψ) = α cos(ψ)e1 + α sin(ψ)e2 +
√
1− α2e3. Now, let us

consider the barycentric subspace generated by the three points on that circle
at angles ψ0 = 0, ψ1 = ǫ and ψ2 = −ǫ. The matrix of reference points is
X = [x(0), x(ǫ), x(−ǫ)]. Using the change of coordinates s = (λ̃0 + λ̃1 + λ̃2),
u = (λ̃1 − λ̃2)ǫ/s and v = (λ̃1 + λ̃2)ǫ

2/(2s), and setting the scaling factor s = 1
because we use homogeneous coordinates, we get that: Xλ̃ = α(1−v)e1+αue2+√
1− α2e3 +O(ǫ3). Thus, the points of the affine span x = Xλ̃/‖Xλ̃‖ can only

be in the hyperplane xTe3 =
√
1− α2 when ǫ goes to zero, whose intersection

with the sphere describes the original circle of radius α.
Iterating the process, one can generalize the above construction to sub-

spheres of arbitrary dimensions. Thus, nested spheres can be seen as a limit of
the affine span when the k reference points tend to a 2-jet. It would be inter-
esting to determine which types of subspaces could be obtained by such limits
for more general non-local and higher order jets.

5 Barycentric subspace analysis

This section generalizes principal component analysis itself. PCA can be viewed
as the search for a sequence of nested linear spaces that best approximate the
data at each level. In a Euclidean space, minimize the variance of the residues
boils down to an independent optimization of orthogonal subspaces at each level
of approximation, thanks to the Pythagorean theorem. This enables building
each subspace of the sequence by adding (resp. subtracting) the optimal one-
dimensional subspace iteratively in a forward (resp. backward) analysis. Of
course, this property does not scale up to manifolds, for which the orthogonality
of subspaces is not even well defined.

5.1 Flags of barycentric subspaces in manifolds

Damon and Marron [2013] have argued that the nestedness of approximation
spaces is one of the most important characteristics for generalizing PCA to
more general spaces. Barycentric subspaces can easily be nested, for instance
by adding or removing one or several points at a time, to obtains a family of
embedded submanifolds which generalizes flags of vector spaces.

A flag of a vector space V is a filtration of subspaces (an increasing sequence
of subspaces, where each subspace is a proper subspace of the next): {0} =
V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = V . Denoting di = dim(Vi) the dimension of the
subspaces, we have 0 = d0 < d1 < d2 < · · · < dk = n, where n is the dimension
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of V. Hence, we must have k ≤ n. A flag is complete if di = i, otherwise it is
a partial flag. Notice that a linear subspace W of V can be identified to the
partial flag {0} ⊂W ⊂ V .

With barycentric subspaces of an n-dimensional manifold M, an ordering
of n + 1 distinct points x0 ≺ x1 . . . ≺ xn defines the filtration of subspaces:
BS(x0) = {x0} ⊂ · · ·BS(x0, x1, xk) · · · ⊂ BS(x0, . . . xn). Notice that the 0-
dimensional subspace is now a points in M instead of the null vector in flags of
vector spaces because we are in an affine setting. Grouping points together in
the addition/removal process generates a partial flag of barycentric subspaces.
Among the barycentric subspaces, the affine span seems to be the most inter-
esting definition. Indeed, when the manifold M∗(x0, . . . xk) is connected, the
EBS of n + 1 distinct points covers the full manifold M∗(x0, . . . xk), and its
completion covers the original manifold: Aff(x0, . . . xn) = M. With the Fréchet
or Karcher barycentric subspaces, we only generate a submanifold (the positive
span) that does not cover the whole manifold in general, as we have seen with
the example of spheres.

Definition 10 (Flags of affine spans in manifolds).
Let x0 � x1 . . . � xk be k+1 ≤ n distinct and partially ordered points of M. By
partially ordered, we mean that two or more successive points can be considered
as exchangeable (xi ∼ xi+1). For a totally ordered set of points, we call flag
of affine spans FL(x0 ≺ x1 . . . ≺ xk) the sequence of properly nested subspaces
FLi(x0 ≺ x1 . . . ≺ xk) = Aff(x0, . . . xi) for 0 ≤ i ≤ k. For partially ordered
sets of points x0 � x1 . . . � xk, subspaces in the sequence are only generated at
strict ordering signs or at the end, so that all exchangeable points are always
considered together.

A flag is said complete if it is totally ordered with k = n. We call pure
subspace a flag of completely exchangeable points FL(x0 ∼ x1 . . . ∼ xk) be-
cause the sequence is reduced to the unique subspace FLk(x0 ∼ x1 . . . ∼ xk) =
Aff(x0, . . . xk).

5.2 Forward and backward barycentric subspaces analysis

In Euclidean PCA, the flag of linear subspaces can be built in a forward way,
by computing the best 0-th order approximation (the mean), then the best
first order approximation (the first mode), etc. It can also be built backward,
by removing the direction with the minimal residue from the current affine
subspace. In a manifold, we can use similar forward and backward analysis, but
they have no reason to give the same result.

With a forward analysis, we compute iteratively the flag of affine spans by
adding one point at a time and keeping the previous ones fixed. Thus, we begin
by computing the optimal barycentric subspace of dimension 0: Aff(x0) = {x0}.
Since there is only one weight and it should be unit, the optimal point x0 found
by minimizing the unexplained variance is a Karcher mean. Adding a second
point amounts to compute the geodesic passing through the mean that best
approximate the data. Adding one more point now differ from PGA, unless
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the three points coalesce to a single one. The procedure is continued point
by point, which implies that the Fréchet mean always belong to the barycentric
subspace. In practice, the forward analysis should be stopped when the variance
of the residues reaches the noise level of the data, hopefully with k much lower
than the dimension n of the embedding manifold, in order to realize an efficient
dimension reduction.

The backward analysis consists in iteratively removing one dimension, thus
one point in our case. One should theoretically start with a full set of points
x0, . . . xn which generates the full manifold and chose which one to remove.
However, as all the sets of n + 1 distinct points generate the full manifold
with the affine span, the optimization really begin with the set of n points
x0, . . . xn−1. Actually this should normally be the only time when we perform
an optimization for the point positions, since one should afterward only test for
which of the n points we should remove, and this optimization is particularly
ill-posed and inefficient in large dimensional spaces!

In order to get around this problem, we may run a forward analysis until we
reach the noise level of the data for a dimension k ≫ n. Since the goal is only
to characterize the optimal k-dimensional subspace, we may optimize the point
positions at each step to better fit the data. Then, a backward sweep at the end
only reorders the points if necessary by iteratively selecting the one that least
increase the unexplained variance. With this process, there is no reason why
the Fréchet mean should belong to the reference points (and even to any of the
barycentric subspaces). For instance, if we have clusters of points, one expects
the reference points to localize within these clusters rather than at the Fréchet
mean.

5.3 Approximating data using a pure subspace

Let Y = {ŷi}Ni=1 ∈ MN be N data points and X = {x0, . . . xk} be k + 1 dis-
tinct reference points. We assume in this analysis that each data point ŷi has
almost surely one unique closest point yi(X) on the barycentric subspace. This
is the situation that we observe for Euclidean spaces and for the sphere, and
this should be the case for all the points outside the focal set of the barycentric
subspace. This allows us to write the residual ri(X) = dist(ŷi, yi(X)) and to
consider the minimization of the unexplained variance σ2

out(X) =
∑

j r
2
i (X).

For a fixed number k of reference points X = {x0, . . . xk}, this boils down to
an optimization problem on Mk, which can be achieved by standard techniques
of optimization on manifolds (see e.g. Absil et al. [2008]). Here, it is not ob-
vious that the canonical product Riemannian metric is the right metric to use,
especially close to coincident points. In this case, one would like to consider
switching to the space of (non-local) jets to guaranty the numerical stability of
the solution. In practice, we may constraint on the distance between reference
points to be larger than a threshold.

A second potential problem is the lack of identifiability: the minimum of
the unexplained variance may not be unique. This is the case for instance in
Euclidean spaces and on spheres for which every linearly independent k-uplet
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of points in a given subspace parametrizes the same barycentric subspace. In
a Euclidean space, this can be taken into account using a suitable polar or
QR matrix factorization. In general manifolds, we expect that the absence
of symmetries will break the multiplicity of this relationship (at least locally)
thanks to the curvature. However, it can lead to very badly conditioned systems
to solve from a numerical point of view for small curvatures.

A last problem is that the criterion we use here (the unexplained variance)
is only valid for a pure subspace of fixed dimension, and considering a different
dimension will lead in general to pure subspaces which cannot be described
by a common subset of reference points. Thus, the forward and backward
optimization of nested barycentric subspaces cannot lead to the simultaneous
optimality of all the subspaces of a flag in general manifolds.

5.4 A criterion for hierarchies of subspaces: AUC on flags
of affine spans

In order to obtain better properties, it is be necessary to define a criterion
which depends on the whole flag of subspaces and not on each of the subspaces
independently. The simplest proposal for that is to sum the criterion of each of
the subspaces for all the dimensions (accounting of course for the multiplicity
in incomplete flags). In PCA, one often plot the unexplained variance as a
function of the number of modes used to approximate the data. This curve
should decreases as fast as possible from the variance of the data (for 0 modes)
to 0 (for n modes). Summing the values at all steps amount to compute the
area under the curve, which is a standard way to quantify the decrease.

Given a totally ordered flag of affine subspaces Fl(x0 ≺ x1 . . . ≺ xk), we
thus propose to optimize the AUC criterion:

AUC(Fl(x0 ≺ x1 . . . ≺ xk)) =

k∑

i=0

σ2
out(Fli(x0 ≺ x1 . . . ≺ xk))

instead of the unexplained variance at order k. We could of course consider a
complete flag but in practice it is often useful to stop at a dimension k much
smaller than the possibly very high dimension n. The criterion is extended
to more general partial flags by weighting the unexplained variance of each
subspace by the number of (exchangeable) points that are added at each step.
With this global criterion, the point xi influences all the subspaces of the flag
that are larger than Fli(x0 ≺ x1 . . . ≺ xk) but not the smaller subspaces. It
turns out that optimizing this criterion results in the usual PCA up to mode k
in a Euclidean space.

Theorem 8 (Euclidean PCA as an optimization in the flag space). Let Ŷ =
{ŷi}Ni=1 be a set of N data points in R

n. We denote as usual the mean by ȳ =
1
N

∑N
i=1 ŷi and the empirical covariance matrix by Σ = 1

N

∑N
i=1(ŷi− ȳ)(ŷi− ȳ)T.

Its spectral decomposition is denoted Σ =
∑n

j=1 σ
2
juju

T

j with the eigenvalues
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sorted in decreasing order. We assume that the first k + 1 eigenvalues have
multiplicity one, so that the order from σ1 to σk+1 is strict.

Then the partial flag of affine subspaces Fl(x0 ≺ x1 . . . ≺ xk) optimizing the
AUC criterion:

AUC(Fl(x0 ≺ x1 . . . ≺ xk)) =

k∑

i=0

σ2
out(Fli(x0 ≺ x1 . . . ≺ xk))

is totally ordered and can be parametrized by x0 = ȳ, xi = x0+ui for 1 ≤ i ≤ k.
The parametrization by points is not unique but the flag of subspaces which is
generated is and is equal to the flag generated by the PCA modes up to mode k
included.

The proof is not very difficult but relies on tedious computations which are
summarized below. A more detailed proof is provided in the appendix B.

Proof. Given k + 1 reference points x0, . . . xk in generic conditions, we first
perform the QR decomposition [x1 − x0; . . . xi − x0; . . . xk − x0] = QT using
the Gram-Schmidt orthogonalization process, to obtain the n × k orthogonal
matrix Q = [q1; . . . qk] and the k × k triangular superior matrix T with entries
tij = qT

i (xj − x0) for j ≥ i. The decomposition is unique when all the points
are linearly independent. The affine span generated by the k + 1 reference
points is thus Aff(X = [x0;x1; . . . xk]) = {x = x0 +Qα/α ∈ R

k}. The matrix
T has no influence and may thus be freely chosen to be the identity, so that
Aff(X) is parametrized by x0 and k orthonormal vectors q1 . . . qk. This partial
orthonormal basis can be complemented by n − k unit vector qk+1, . . . qn to
constitute a complete orthonormal basis of Rn.

The key property of the QR decomposition is its stability under the removal
of reference points: if we only consider the i < k first reference points, then
Aff(Xi = [x0; . . . xi]) is parametrized by x0 and the first i orthonormal vec-
tors Qi = [q0, . . . qi]. Using these notations, the projection of a data point y
on the subspace Aff(Xi) is Proj(y,Aff(Xi)) = x0 + QiQ

T

i (y − x0) and the
unexplained variance (sum of squared residuals to Aff(Xi)) is: σ2

out(Xi) =
Tr (Wi(Σ− (ȳ − x0)(ȳ − x0)

T)) , withWi = (Idn−QiQ
T

i ) =
∑n

j=i+1 qjq
T

j .. Thus
the AUC criterion can be written:

AUC(Xk) = Tr
(
W̄ (Σ− (ȳ − x0)(ȳ − x0)

T)
)

with W̄ =
∑k

i=0Wi =
∑k

i=1 iqiq
T

i + (k + 1)
∑n

i=k+1 qiq
T

i . The minimum of this
criterion over x0 is obviously achieved for x0 = ȳ. Optimizing one by one the
qi’s starting from q1 and taking into account the orthonormality constraints, we
find that each qi (for i ≤ k) should be an eigenvector of Σ. Assuming that all
the eigenvalues σ2

i of Σ are different (so that they can be sorted in a strict order
and the eigenvectors have multiplicity one), the optimal values are q∗i = uπ(i)
for some permutation π of the number 1 . . . n. The value of the AUC criterion
at this critical point is AUC([q∗1 , q

∗
2 . . . q

∗
n]) =

∑k
i=q iσ

2
π(i)+(k+1)

∑n
i=k+1 σ

2
π(i).

Now, to finish, we can show that the permutation of two indices π(i) and π(j)
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give a lower (or equal) criterion when π(i) < π(j). The global minimum is thus
achieved for the identity permutation π(i) = i for the indices 1 ≤ i ≤ k. For the
higher indices, any combination of the last n−k eigenvectors of Σ gives the same
value of the criterion. When some eigenvalues of Σ have a multiplicity larger
than one, then the corresponding eigenvectors cannot be uniquely determined
since they can be rotated within the eigenspace. We end-up in that case with a
partial flag.

6 Discussion

We investigated in the paper several notions of subspaces in manifolds gener-
alizing the notion of affine span in a Euclidean space. The Fréchet / Karcher
/ exponential barycentric subspaces are the nested locus of weighted Fréchet /
Karcher / exponential barycenters with positive or negative weights summing
up to 1. The affine spans is the metric completion of the largest one (the EBS).
It may be a multiply connected manifold with boundaries. The completeness
of the affine span enables reconnecting part of the subspace that arrive from
different directions at the cut-locus of reference points if needed. It also allows
ensuring that there exits a closest point on the submanifold for data projection
purposes, which is fundamental for dimension reduction purposes. The fact
that modifying the power of the metric does not change the affine span is an
unexpected stability result which suggests that the notion is quite central.

In the case of spheres, we have shown that the affine span encompass both
principal geodesic subspaces and principal nested subspheres as limit cases. It
would be interesting to see if we can obtain other types of subspaces with higher
order and non-local jets. The study of the subspaces that can be obtain with this
technique should of course be pushed to other spaces where PCA is used. For
instance, Eltzner et al. [2015] adaptively deforms the a product of spheres into a
unique sphere to allow principal nested spheres (PNS) analysis. A quick look at
the flat torus shows that the the cut-locus of k+1 points in Sn

1 divides the torus
into kn cells in which the affine span is a k-dimensional linear subspace. The
subspaces generated in each cell are generally disconnected, but when points
coalesce with each others into a jet, the number of cells decreases and at the
limit we recover a single cell that contain a connected affine span. For a first
order jet, we recover as expected the restricted geodesic subspace (here a linear
subspace limited to the cut locus of the jet base-point), but higher order jets
may generate more interesting curved subspaces that may better describe the
data geometry.

The next practical step is obviously the implementation of generic algorithms
to work with barycentric subspaces in general Riemannian manifolds. Example
algorithms include: finding a point with given barycentric coordinates (there
might be several so this has to be a local search); finding the closest point (and
its coordinates) on the barycentric subspace; optimizing the reference points
to minimize the residual error after projection of data points, etc. If such al-
gorithms can be designed relatively simply for simple specific manifolds as we
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have done here on the sphere, the generalization to general manifolds requires
a study of the focal set of the barycentric subspaces. We conjecture that the
focal set is a stratified set of zero measure in generic cases, but this remains
to be established for guarantying the correct behavior of algorithms. Another
difficulty will be non-identifiability of the subspace parameters for simple (con-
stant curvature?) spaces like Euclidean and spheres, where the right parameter
space is actually the k-Grassmanian. In more general manifolds, the curvature
and the interaction with the cut-locus break the symmetry of the barycentric
subspaces, but may lead to a poor numerical conditioning of the system and
good renormalization techniques need to be designed to guaranty the numerical
stability.

Finding the subspace that best explain the data can also be recast as a prob-
lem of optimization on manifolds. This raise the question of which metric should
be considered on the space of barycentric subspaces. In this paper, we mainly
see this space as the configuration space of k+1 points in general position, with
convergence to spaces of jets (including non-local jets) when several points coa-
lesce. Such a construction was named Multispace by Olver [2001] in the context
of symmetry-preserving numerical approximations to differential invariants. It
is likely that similar techniques could be investigated to construct numerically
stable implementations of barycentric subspaces of higher order parametrized
by non-local jets, which are needed to optimize safely. Conversely, barycentric
subspaces could help shedding a new light on the multispace construction for
differential invariants.

Barycentric subspaces could probably be also used to extended methods like
probabilistic PCA of Tipping and Bishop [1999] which was generalized to PGA
by Zhang and Fletcher [2013]. A first easy step in that direction is to replace
the reference points by reference distributions on the manifold and to look at
the locus of weighted expected means. Interestingly, this procedure soften the
constraints that we had in this paper about the cut locus. Thus, following
Karcher [1977], reference distributions could be used in a mollifier smoothing
approach to study the regularity of the barycentric subspaces.

For applications where data live on Lie groups, generalizing BS to more
general non-Riemannian spaces like affine connection manifolds is a particu-
larly appealing extension. In computational anatomy, for instance, deformations
of shapes are lifted to a group of diffeomorphism for statistical purposes (see
e.g. Lorenzi and Pennec [2013], Lorenzi et al. [2015]). All Lie groups can be
provided with a bi-invariant symmetric Cartan-Schouten connection for which
geodesics are the left and right translation of one-parameter subgroups. This
provides the Lie group with an affine connection structure which may be metric
or not. When the group is the direct product of compact and Abelian groups,
it admits a bi-invariant metric for which the Cartan-Schouten connection is the
natural Levy-Civita connection. Other groups do not admit any bi-invariant
metric (this is the case for rigid transformations in more than 2 dimensions be-
cause of the semi-direct product), so that a Riemannian structure can only be
left or right invariant but not both. However the bi-invariant Cartan-Schouten
connection continues to exists, and one can design bi-invariant means using ex-
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ponential barycenter as proposed by Pennec and Arsigny [2012]. Thus, we may
still define exponential barycentric subspaces and affine spans in these affine
connection spaces, the main difference being that the derivative of the log is not
any more the Hessian of a distance function. This might considerably complexify
the analysis of the generated subspaces.

The second topic of this paper concerns the generalization of PCA to man-
ifolds using Barycentric Subspace Analysis (BSA). Damon and Marron [2013]
argued that an interesting generalization of PCA should rely on nested sequence
of relations, like embedded linear subspaces in the Euclidean space or embed-
ded spheres in PNS. Barycentric subspaces can naturally be nested by adding or
removing points or equivalently by setting the corresponding barycentric coor-
dinate to zero. Thus we can easily generalize PCA to manifolds using a forward
analysis by iteratively adding one or more points at a time. At the limit where
points coalesce at the first order, this amounts to build a flag of (restricted)
principal geodesic subspaces. Thus it generalizes the Principal Geodesic Anal-
ysis (PGA) of Fletcher et al. [2004], Sommer et al. [2013] when starting with a
zeroth dimensional space (the Fréchet mean) and the Geodesic PCA (GPCA) of
Huckemann and Ziezold [2006], Huckemann et al. [2010] when starting directly
with a first order jet defining a geodesic. One can also design a backward anal-
ysis by starting with a large subspace and iteratively removing one or more
points to define embedded subspaces. In the case of spheres, this corresponds
to the Principal Nested Spheres procedure at the limit of points coalescing to a
second order jet.

However, the greedy optimization of these forward/backward methods lead
generally to different solutions which are not optimal for all subspace jointly.
The key idea is to consider PCA as a joint optimization of the whole flag of sub-
spaces instead of each subspace independently. In a Euclidean space, we showed
that the sum of the unexplained variance with respect to all the subspaces of
the hierarchy (the area under the curve of unexplained variance) is a proper
criterion on the space of Euclidean flags. We proposed to extend this criterion
to barycentric subspaces in manifolds, where an ordering of the reference points
naturally defines a flag of nested barycentric subspaces. A similar idea could be
used with other iterative least-squares methods like partial least-squares (PLS)
which are also one-step at a time minimization methods.
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A Hessian of the Riemannian squared distance

This appendix details the notions of Riemannian geometry that are underlying
the main paper. In particular, it investigates the Hessian of the Riemannian
square distance whose definiteness controls the local regularity of the barycentric
subspaces. This is exemplified on the Sphere.

A.1 Riemannian manifolds

A Riemannian manifold is a differential manifold provided with a smooth col-
lection of scalar products 〈 . | . 〉x on each tangent space TxM at point x of the
manifold, called the Riemannian metric. In a chart, the metric is expressed
by a symmetric positive definite matrix G(x) = [gij(x)] where each element
is given by the dot product of the tangent vector to the coordinate curves:
gij(x) = 〈 ∂i | ∂j 〉. This matrix is called the local representation of the Rieman-
nian metric in the chart x and the dot products of two vectors v and w in TxM
is now 〈 v | w 〉x = vT G(x) w.

A.1.1 Riemannian distance and geodesics

If we consider a curve γ(t) on the manifold, we can compute at each point its
instantaneous speed vector γ̇(t) (this operation only involves the differential
structure) and its norm ‖γ̇(t)‖γ(t) to obtain the instantaneous speed (the Rie-

mannian metric is needed for this operation). To compute the length of the
curve, this value is integrated along the curve:

Lb
a(γ) =

∫ b

a

‖γ̇(t)‖γ(t) dt =
∫ b

a

(

〈 γ̇(t) | γ̇(t) 〉γ(t)
) 1

2

dt

The distance between two points of a connected Riemannian manifold is the
minimum length among the curves joining these points. The curves realizing this
minimum are called geodesics. Finding the curves realizing the minimum length
is a difficult problem as any time-reparameterization is authorized. Thus one
rather defines the metric geodesics as the critical points of the energy functional

E(γ) = 1
2

∫ 1

0
‖∂γ‖2 dt. It turns out that they also optimize the length functional

but they are moreover parameterized proportionally to arc-length.
Let [gij ] = [gij ]

(-1) be the inverse of the metric matrix (in a given coordinate
system x) and Γi

jk = 1
2g

im (∂kgmj + ∂jgmk − ∂mgjk) the Christoffel symbols
(using Einstein summation convention that implicit sum upon each index that
appear up and down in the formula). The calculus of variations shows the
geodesics are the curves satisfying the following second order differential system:

γ̈i + Γi
jk γ̇

j γ̇k = 0.

The fundamental theorem of Riemannian geometry states that on any Rie-
mannian manifold there is a unique (torsion-free) connection which is compatible
with the metric, called the Levi-Civita (or metric) connection. This connection
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is determined in a local coordinate system through the Christoffel symbols:
∇∂i

∂j =
∑

k Γ
k
ij .∂k. For that choice of connection, shortest paths (geodesics)

are auto-parallel curves (”straight lines”).
In the following, we only consider the Levi-Civita connection and we assume

that the manifold is geodesically complete, i.e. that the definition domain of all
geodesics can be extended to R. This means that the manifold has no boundary
nor any singular point that we can reach in a finite time. As an important
consequence, the Hopf-Rinow-De Rham theorem states that there always exists
at least one minimizing geodesic between any two points of the manifold (i.e.
whose length is the distance between the two points).

A.1.2 Normal coordinate systems

Let x be a point of the manifold that we consider as a local reference and v
a vector of the tangent space TxM at that point. From the theory of second
order differential equations, we know that there exists one and only one geodesic
γ(x,v)(t) starting from that point with this tangent vector. This allows to wrap
the tangent space onto the manifold, or equivalently to develop the manifold
in the tangent space along the geodesics (think of rolling a sphere along its
tangent plane at a given point). The mapping expx(v) = γ(x,v)(1) of each vector
v ∈ TxM to the point of the manifold that is reached after a unit time by the
geodesic γ(x,v)(t) is called the exponential map at point x. Straight lines going
through 0 in the tangent space are transformed into geodesics going through
point x on the manifold and distances along these lines are conserved.

The exponential map is defined in the whole tangent space TxM (since the
manifold is geodesically complete) but it is generally one-to-one only locally
around 0 in the tangent space (i.e. around x in the manifold). In the sequel,
we denote by −→xy = logx(y) the inverse of the exponential map: this is the
smallest vector (in norm) such that y = expx(

−→xy). It is natural to search for
the maximal domain where the exponential map is a diffeomorphism. If we
follow a geodesic γ(x,v)(t) = expx(t v) from t = 0 to infinity, it is either always
minimizing all along or it is minimizing up to a time t0 <∞ and not any more
after (thanks to the geodesic completeness). In this last case, the point γ(x,v)(t0)
is called a cut point and the corresponding tangent vector t0 v a tangential cut
point. The set of tangential cut points at x is called the tangential cut locus
C(x) ∈ TxM, and the set of cut points of the geodesics starting from x is the
cut locus C(x) = expx(C(x)) ∈ M. This is the closure of the set of points where
several minimizing geodesics starting from x meet. On the sphere S2(1) for
instance, the cut locus of a point x is its antipodal point and the tangential cut
locus is the circle of radius π.

The maximal bijective domain of the exponential chart is the domain D(x)
containing 0 and delimited by the tangential cut locus (∂D(x) = C(x)). This
domain is connected and star-shaped with respect to the origin of TxM. Its
image by the exponential map covers all the manifold except the cut locus,
which has a null measure. Moreover, the segment [0,−→xy] is mapped to the
unique minimizing geodesic from x to y: geodesics starting from x are straight
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lines, and the distance from the reference point are conserved. This chart is
somehow the “most linear” chart of the manifold with respect to the reference
point x.

When the tangent space is provided with an orthonormal basis, this is called
an normal coordinate systems at x. A set of normal coordinate systems at each
point of the manifold realize an atlas which allows to work very easily on the
manifold. The implementation of the exponential and logarithmic maps (from
now on exp and log) is indeed the basis of programming on Riemannian man-
ifolds, and we can express using them practically all the geometric operations
needed for statistics [Pennec, 2006] or image processing [Pennec et al., 2006].

The size of the maximal definition domain is quantified by the injectivity
radius inj(M, x) = dist(x, C(x)), which is the maximal radius of centered balls
in TxM on which the exponential map is one-to-one. The injectivity radius of
the manifold inj(M) is the infimum of the injectivity over the manifold. It may
be zero, in which case the manifold somehow tends towards a singularity (think

e.g. to the surface z = 1/
√

x2 + y2 as a sub-manifold of R3).
In a Euclidean space, normal coordinate systems are realized by orthonormal

coordinates system translated at each point: we have in this case−→xy = logx(y) =
y − x and expx(

−→v ) = x+−→v . This example is more than a simple coincidence.
In fact, most of the usual operations using additions and subtractions may
be reinterpreted in a Riemannian framework using the notion of bipoint, an
antecedent of vector introduced during the 19th Century. Indeed, vectors are
defined as equivalent classes of bipoints in a Euclidean space. This is possible
because we have a canonical way (the translation) to compare what happens
at two different points. In a Riemannian manifold, we can still compare things
locally (by parallel transportation), but not any more globally. This means that
each “vector” has to remember at which point of the manifold it is attached,
which comes back to a bipoint.

A.2 Hessian of the squared distance

A.2.1 Computing the differential of the Riemannian log

On M/C(y), the gradient of the squared distance d2y(x) = dist2(x, y) with
respect to the fixed point y is well defined and is equal to ∇d2y(x) = −2 logx(xi).
The Hessian operator ∇2f(x) from TxM to TxM is the covariant derivative of
the gradient, defined by the identity ∇2f(v) = ∇v(∇f). In a chart (for instance
a normal coordinate system at point x), the Hessian operator of the squared
distance is thus

∇2d2y(x) = −2(Dx logx(xi))

The points x and y = expx(v) are called conjugate if D expx(v) is singular. It
is known that the cut point (if it exists) occurs at or before the first conjugate
point along any geodesic [Lee, 1997]. Thus, D expx(v) has full rank inside the
tangential cut-locus of x. This is in essence why there is a well posed inverse
function −→xy = logx(y), called the Riemannian log, which is continuous and
differentiable everywhere except at the cut locus of x. Moreover, its differential
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can be computed easily: since expx(logx(y)) = y, we have D expx|−→xyD logx(y) =
Id, so that

D logx(y) =
(

D expx|−→xy
)−1

(16)

is well defined and of full rank on M/C(x).
We can also see the Riemannian log logx(y) = −→xy as a function of the

foot-point x, and differentiating expx(logx(y)) = y with respect to it gives:
Dx expx|−→xy + D expx|−→xy .Dx logx(y) = 0. Once again, we obtain a well defined
and full rank differential for x ∈ M/C(y):

Dx logx(y) = −
(

D expx|−→xy
)−1

Dx expx|−→xy . (17)

The Hessian of the squared distance can thus be written:

1

2
∇2d2y(x) = −Dx logx(xi) =

(

D expx|−→xy
)−1

Dx expx|−→xy .

If we notice that J0(t) = D expx|t−→xy (respectively J1(t) = Dx expx|t−→xy) are

actually matrix Jacobi field solutions of the Jacobi equation J̈(t)+R(t)J(t) = 0
with J0(0) = 0 and J̇0(0) = Idn (respectively J1(0) = Idn and J̇1(0) = 0), we
see that the above formulation of the Hessian operator is equivalent to the one
of Villani [2011][Equation 4.2]: 1

2∇2d2y(x) = J0(1)
(-1)J1(1).

A.2.2 Taylor expansion of the Riemannian log

In order to better figure out what the dependence of the Hessian of the squared
Riemannian distance on curvature, we compute here the Taylor expansion of
the Riemannian log function. Following Brewin [2009], we consider a normal
coordinate system centered at x and xv = expx(v) a variation of the point x.
We denote by Rihjk(x) the coefficients of the curvature tensor at x and by ǫ a
conformal gauge scale that encodes the size of the path in terms of ‖v‖x and
‖−→xy‖x normalized by the curvature (see Brewin [2009] for details).

In a normal coordinate system centered at x, we have the following Taylor
expansion of the metric tensor coefficients:

gab(v) =gab −
1

3
Rcabdv

cvd − 1

6
∇eRcabdv

evcvd

+

(

− 1

20
∇e∇fRcabd +

2

45
Rg

cadR
h
ebf δgh

)

vcvdvevf +O(ǫ5).
(18)

A geodesic joining point z to point z + δz has tangent vector:

[logz(z +∆z)]
a

= ∆za +
1

3
zb∆zc∆zdRa

cbd +
1

12
zbzc∆zd∆ze∇dR

a
bce

+
1

6
zbzc∆zd∆ze∇bR

a
dce +

1

24
zbzc∆zd∆ze∇aRbdce

+
1

12
zb∆zc∆zd∆ze∇cR

a
dbe +O(ǫ4).
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Using z = v and z + ∆z = −→xy (i.e. ∆z = −→xy − v) in a normal coordinate
system centered at x, and keeping only the first order terms in v, we obtain the
first terms of the series development of the log:

[
logx+v(y)

]a
= −→xya − va +

1

3
Ra

cbdv
b−→xyc−→xyd + 1

12
∇cR

a
dbev

b−→xyc−→xyd−→xye +O(ǫ4).

(19)

Thus, the differential of the log with respect to the foot point is:

− [Dx logx(y)]
a
b = δab − 1

3
Ra

cbd
−→xyc−→xyd − 1

12
∇cR

a
dbe

−→xyc−→xyd−→xye +O(ǫ3) (20)

Since we are in a normal coordinate system, the zeroth order term is the identity
matrix, like in the Euclidean space, and the first order term vanishes. The
Riemannian curvature tensor appear in the second order term and its covariant
derivative in the third order term. The important point here is to see that
the curvature is the leading term that makes this matrix departing from the
identity (i.e. the Euclidean case) and which may lead to the non invertibility of
the differential.

A.3 Example on spheres

We consider the unit sphere in dimension n ≥ 1 embedded in R
n+1 and we

represent points of M = Sn as unit vectors in R
n+1. The tangent space at x

is naturally represented by the linear space of vectors orthogonal to x: TxSn =
{v ∈ R

n+1, vTx = 0}. The natural Riemannian metric on the unit sphere is
inherited from the Euclidean metric of the embedding space R

n+1. With these
conventions, the Riemannian distance is the arc-length d(x, y) = arccos(xTy) =
θ ∈ [0, π]. Denoting f(θ) = 1/sinc(θ) = θ/sin(θ), the spherical exp and log
maps are:

expx(v) = cos(‖v‖)x+ sinc(‖v‖)v (21)

logx(y) = f(θ) (y − cos(θ)x) with θ = arccos(xTy). (22)

Notice that f(θ) is a smooth function from ]− π;π[ to R that is always greater
than one and is locally quadratic at zero: f(θ) = 1 + θ2/6 +O(θ4).

A.3.1 Hessian of the squared distance on the sphere

To compute the gradient and Hessian of functions on the sphere, we first need
a chart in a neighborhood of a point x ∈ Sn. We consider the unit vector
xv = expx(v) which is a variation of x parametrized by the tangent vector
v ∈ TxSn (i.e. verifying xTv = 0). In order to extend this mapping to the
embedding space to simplify computations, we consider that v is the orthogonal
projection of an unconstrained vector w ∈ R

n+1 onto the tangent space at x:
v = (Id−xxT)w. Using the above formula for the exponential map, we get at first
order xv = x−v+O(‖v‖2) in the tangent space or xw = x+(Id−xxT)w+O(‖w‖2)
in the embedding space.
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It is worth verifying first that the gradient of the squared distance θ2 =
d2y(x) = arccos2 (xTy) is indeed ∇d2y(x) = −2 logx(y). We considering the
variation xw = expx(( Id − xxT)w) = x + ( Id − xxT)w + O(‖w‖2). Because
Dx arccos(y

Tx) = −yT/
√

1− (yTx)2, we get:

Dw arccos2 (xT

wy) =
−2θ

sin θ
yT( Id− xxT) = −2f(θ)yT( Id− xxT),

and the gradient is as expected:

∇d2y(x) = −2f(θ)( Id− xxT)y = −2 logx(y). (23)

To obtain the Hessian, we now compute the Taylor expansion of logxw
(y).

First, we have

f(θw) = f(θ)− f ′(θ)

sin θ
yT( Id− xxT)w +O(‖w‖2),

with f ′(θ) = (1 − f(θ) cos θ)/ sin θ. Thus, the first order Taylor expansion of
logxw

(y) is:

logxw
(y) =

(

f(θ)− f ′(θ)

sin θ
yT( Id− xxT)w

)

( Id− xxT − ( Id− xxT)wxT − xwT( Id− xxT)) y +O(‖w‖2)

so that

−2Dw logxw
(y) =

f ′(θ)

sin θ
( Id− xxT)yyT( Id− xxT)− f(θ) (xTy Id + xyT) ( Id− xxT)

Now, since we have computed the derivative in the embedding space, we have
obtained the Hessian with respect to the flat connection of the embedding space,
which exhibits a non-zero normal component. In order to obtain the Hessian
with respect to the connection of the sphere, we need to project back on TxSn

(i.e. multiply by ( Id− xxT) on the left) and we obtain:

1

2
Hx(y) =

(
1− f(θ) cos θ

sin2 θ

)

( Id− xxT) yyT( Id− xxT) + f(θ) cos θ( Id− xxT)

= ( Id− xxT)

(

(1 − f(θ) cos θ)
yyT

sin2 θ
+ f(θ) cos θ Id

)

( Id− xxT),

To simplify this expression, we note that ‖( Id − xxT)y‖2 = sin θ, so that

v = ( Id−xxT)y
sin θ =

log
x
(y)

θ is a unit vector of the tangent space at x (for y 6= y
so that θ > 0). Using this unit vector and the intrinsic parameters logx(y) and
θ = ‖ logx(y)‖, we can rewrite the Hessian:

1

2
Hx(y) = f(θ) cos θ( Id− xxT) +

(
1−f(θ) cos θ

θ2

)

logx(y) logx(y)
T (24)

= vvT + f(θ) cos θ( Id− xxT − vvT) (25)
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The eigenvectors and eigenvalues of this matrix are now very easy to deter-
mine. By construction, x is an eigenvector with eigenvalue µ0 = 0. Then the
vector v (or equivalently logx(y) = f(θ)( Id − xxT)y = θv) is an eigenvector
with eigenvalue µ1 = 1. Lastly, every vector v which is orthogonal to these
two vectors (i.e. orthogonal to the plane spanned by 0, x and y) has eigen-
value µ2 = f(θ) cos θ = θ cot θ. This last eigenvalue is positive for θ ∈ [0, π/2[,
vanishes for θ = π/2 and becomes negative for θ ∈]π/2π[. We retrieve here
the results of [Buss and Fillmore, 2001, lemma 2] expressed in a more general
coordinate system.

B PCA as an optimization on the flag manifold

This appendix details in length the proof that the flag of linear subspaces found
by PCA optimizes the Area-Under-the-Curve (AUC) criterion in a Euclidean
space.

B.1 A QR decomposition of the reference matrix

Let X = [x0; . . . xk] be a matrix of k + 1 independent reference points in R
n.

Following the notations of the main paper, we write the reference matrix

Z(x) = [x− x0; . . . x− xk] = x1T

k+1 −X.

The affine span Aff(X) is the locus of points x satisfying Z(x)λ = 0 i.e. x =
Xλ/(1T

k+1λ). Here, working with the barycentric weights is not so convenient,
and in view of the principal component analysis, we prefer to work with a variant
of the QR decomposition using the Gram-Schmidt orthogonalization process.

Choosing x0 as the pivot point, we iteratively decompose X − x01
T

k+1 to
find an orthonormal basis of the affine span of X . For convenience, we define
the zeroth vectors v0 = q0 = 0. The first axis is defined by v1 = x1 − x0,
or by the unit vector q1 = v1/‖v1‖. Next, we project the second direction
x2 − x0 onto Aff(x0, x1) = Aff(x0, x0 + e1): the orthogonal component v2 =
( Id− e1e

T
1 )(x2 − x0) is described by the unit vector q2 = v2/‖v2‖. The general

iteration is then (for i ≥ 1):

vi = ( Id−
i−1∑

j=0

eje
T

j )(xi − x0), and qi = vi/‖vi‖.

Thus, we obtain the decomposition:

X = x01
T

k+1 +QT

Q = [q0; q1; . . . qk]

T =









qT
0 (x0 − x0) qT

0 (x1 − x0) qT
0 (x2 − x0) . . . qT

0 (xk − x0)
0 qT

1 (x1 − x0) qT
1 (x2 − x0) . . . qT

1 (xk − x0)
0 0 qT

2 (x2 − x0) . . . qT
2 (xk − x0)

0 0 . . . . . . . . .
0 0 . . . . . . qT

k (xk − x0)








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With this affine variant of the QR decomposition, the (k+1)×(k+1) matrix T is
triangular superior with vanishing first row and first column (since q0 = 0). The
n× (k+1) matrix Q also has a first null vector before the usual k orthonormal
vectors in its k + 1 columns. The decomposition into matrices of this form is
unique when we assume that all the points x0, . . . xk are linearly independent.
This means that we can parametrize the matrix X by the orthogonal (aside the
first vanishing column) matrix Q and the triangular (with first row and column
zero matrix) T .

In view of PCA, it is important to notice that the decomposition is stable
under the addition/removal of reference points. Let Xi = [x0; . . . xi] be the
matrix of the first i+1 reference points (we assume i < k to simplify here) and
Xi = x01

T

i+1 +QiTi his QR factorization. Then, the matrix Qi is made of the
first i+ 1 columns of Q and the matrix Ti is the upper (i+ 1)× (i+ 1) bloc of
the upper triangular matrices T .

B.2 Optimizing the k-dimensional subspace

With our decomposition, we can now write any point of x ∈ Aff(X) as the
base-point x0 plus any linear combination of the vectors qi: x = x0 +Qα with
α ∈ R

k+1. The projection of a point y on Aff(X) is thus parametrized by the
k + 1 dimensional vector α that minimizes the (squared) distance d(x, y)2 =
‖x0 + Qα − y‖2. Notice that we have QTQ = Idk+1 − e1e

T
1 (here e1 is the

first basis vector of the embedding space R
K+1) so that Q† = QT. The null

gradient of this criterion implies that α is solving QTQα = QT(y − x0), i.e.
α = Q†(y − x0) = QT(y − x0). Thus, the projection of y on Aff(X) is

Proj(y,Aff(X)) = x0 +QQT(y − x0),

and the residue is

r2(y) = ‖( Idn −QQT)(y − x0)‖2 = Tr (( Idn −QQT)(y − x0)(y − x0)
T)

Accounting now for the N data points Y = {yi}Ni=1, and denoting as usual

ȳ = 1
N

∑N
i=1 yi and Σ = 1

N

∑N
i=1(yi − ȳ)(yi − ȳ)T, the unexplained variance is:

σ2
out(X) = Tr (( Idn −QQT)(Σ− (ȳ − x0)(ȳ − x0)

T)) .

In this formula, we see that the value of the upper triangular matrix T does not
appear and can thus be chosen freely. The point x0 that minimizes the unex-
plained variance is evidently x0 = ȳ. To determine the matrix Q, we diagonal-
ize the empirical covariance matrix to obtain the spectral decomposition Σ =
∑n

j=1 σ
2
juju

T

j where by convention, the eigenvalues are sorted in decreasing or-

der. The remaining unexplained variance σ2
out(X) = Tr

(
( Idn − (UTQ)(UTQ)T)Diag(σ2

i )
)

reaches its minimal value
∑n

i=k+1 σ
2
i for [q1, . . . qk] = [u1, . . . uk]R where R is

any k × k orthogonal matrix. Here, we see that the solution is unique in terms
of subspaces (we have Span(q1, . . . qk) = Span(u1, . . . uk) whatever orthogonal
matrix R we choose) but not in terms of the matrix Q. In particular, the matrix
X = [ȳ, ȳ+u1, . . . ȳ+uk] is one of the matrices describing the optimal subspace
but the order of the vectors is not prescribed.
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B.3 The AUC criterion

In PCA, one often plots the unexplained variance as a function of the number
of modes used to approximate the data. This curve should decreases as fast
as possible from the variance of the data (for 0 modes) to 0 (for n modes).
Summing the values at all steps amount to compute the area under the curve,
which is a standard way to quantify the decrease. We show in this section
that the optimal flag of subspaces (up to dimension k) that optimize the AUC
criterion is precisely the result of the PCA analysis.

As previously, we consider k + 1 points xi but they are now ordered. We
denote byXi = [x0; . . . xi] the matrix of the first i+1 columns ofX = [x0; . . . xk].
The flag generated by X is thus

Aff(X0) = {x0} ⊂ Aff(X1) ⊂ . . . ⊂ Aff(X) ⊂ R
n.

The QR decomposition ofX gives k orthonormal unit vectors q1 . . . qk which can
be complemented by n− k unit vector qk+1, . . . qn to constitute an orthonormal
basis of Rn. Using this extended basis, we can write:

σ2
out(X) = Tr (W (Σ− (ȳ − x0)(ȳ − x0)

T))

withW = (Idn−QQT) =
∑n

j=k+1 qjq
T
j . Since the decomposition is stable under

the removal of reference points, we have the QR factorizationXi = x01
T

i+1+QiTi
with Qi = [q0; . . . qi] and we can write the unexplained variance for the subspace
Aff(Xi) as:

σ2
out(Xi) = Tr (Wi(Σ− (ȳ − x0)(ȳ − x0)

T))

with Wi = ( Idn −QiQ
T
i ) =

∑n
j=i+1 qjq

T
j . Plugging this value into the criterion

AUC(X) =
∑k

i=0 σ
2
out(Xi), we get:

AUC(Xk) = Tr
(
W̄ (Σ− (ȳ − x0)(ȳ − x0)

T)
)

with

W̄ =
k∑

i=0

Wi =
k∑

i=0

(Idn−QiQ
T

i ) =
k∑

i=0

n∑

j=i+1

qjq
T

j =
k∑

i=1

iqiq
T

i +(k+1)
n∑

i=k+1

qiq
T

i .

B.4 PCA optimizes the AUC criterion

The minimum over x0 is achieved as before for x0 = ȳ and the AUC for this
value it now parametrized only by the matrix Q:

AUC(Q) = Tr
(
UTWkUDiag(σ2

i )
)
=

k∑

i=1

iqT

i Σqi + (k + 1)
n∑

i=k+1

qT

i Σqi.

Assuming that the the first k + 1 eigenvalues σ2
i (1 ≤ i ≤ k + 1) of Σ are

all different (so that they can be sorted in a strict order), we claim that the
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optimal unit orthogonal vectors are qi = ui for 1 ≤ i ≤ k and [qk+1, . . . qn] =
[uk+1, . . . un]R where R ∈ O(n− k) is any orthogonal matrix.

In order to simplify the proof, we start by assuming that all the eigenvalues
have multiplicity one, and we optimize iteratively over each unit vector qi. We
start by q1: augmenting the Lagrangian with the the constraint ‖q1‖2 = 1 using
the Lagrange multiplier λ1 and differentiating, we obtain:

∇q1(AUC(Q) + λ‖q1‖2) = Σq1 + λ1q1 = 0.

This means that q1 is a unit eigenvector of Σ. Denoting π(1) the index of this
eigenvector, we have q∗1 = uπ(1) and the eigenvalue is −λ1 = σ2

π(1). The criterion
for this partially optimal value is now

AUC([q∗1 , q2 . . . qn]) = σ2
π(1) +

k∑

i=2

iqT

i Σqi + (k + 1)

n∑

i=k+1

qT

i Σqi.

To take into account the orthogonality of the remaining vectors qi (i > 1) with
q∗1 in the optimization, we can project all the above quantities along uπ(1).
Optimizing now for q2 under the constraint ‖q2‖2 = 1, we find that q2 is a unit
eigenvector of Σ−σ2

π(1)uπ(1)u
T

π(1) associated to a non-zero eigenvalue. Denoting

π(2) the index of this eigenvector (which is thus different from π(1) because it
has to be non-zero), we have q∗2 = uπ(2) and the eigenvalue is −λ2 = 2σ2

π(2).
Iterating the process, we conclude that q∗i = uπ(i) for some permutation π

of the indices 1, . . . n. Moreover, the value of the criterion for that permutation
is

AUC([q∗1 , q
∗
2 . . . q

∗
n]) =

k∑

i=q

iσ2
π(i) + (k + 1)

n∑

i=k+1

σ2
π(i).

In order to find the global minimum, we now have to compare the values of this
criterion for all the possible permutations.

Assuming that i < j, we now show that the permutation of two indices
π(i) and π(j) give a lower (or equal) criterion when π(i) < π(j). Because
eigenvalues are sorted in strictly decreasing order, we have σ2

π(i) > σ2
π(j). Thus,

(α− 1)σ2
π(i) > (α− 1)σ2

π(j) for any α ≥ 1 and adding σ2
π(i)+σ

2
π(j) on both sides,

we get ασ2
π(i) + σ2

π(j) > σ2
π(i) + ασ2

π(j). For the value of α, we distinguish there
cases:

• i < j ≤ k: we take α = j/i > 1. multiplying on both sides by the positive
value i, we get: iσ2

π(i)+ jσ
2
π(j) < iσ2

π(j)+ jσ
2
π(i). The value of the criterion

is thus strictly lower if π(i) < π(j).

• i ≤ k < j: we take α = (k + 1)/i > 1 and we get: iσ2
π(i) + (k + 1)σ2

π(j) <

iσ2
π(j) +(k+1)σ2

π(i). Once again, the value of the criterion is thus strictly

lower if π(i) < π(j).

• k < i < j: here permuting the indices does not change the criterion since
σ2
π(i) and σ

2
π(j) are both counted with the weight (k + 1).
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In all cases, the criterion is strictly minimized by swapping indices in the per-
mutation such that π(i) < π(j) for i < j and i < k. The global minimum is
thus achieved for the identity permutation π(i) = i for the indices 1 ≤ i ≤ k.
For the higher indices, any linear combination of the last n− k eigenvectors of
Σ gives the same value of the criterion. Taking into account the orthonormality
constraints, such a linear combination writes [qk+1, . . . qn] = [uk+1, . . . un]R for
some orthonormal (n− k)× (n− k) matrix R.

When some eigenvalues of Σ have a multiplicity larger than one, then the
corresponding eigenvectors cannot be uniquely determined since they can be
rotated within the eigenspace. With our assumptions, this can only occur within
the last n − k eigenvalues and this does not change anyway the value of the
criterion. We have thus proved the following theorem.

Theorem 9 (Euclidean PCA as an optimization in the flag space).
Let Ŷ = {ŷi}Ni=1 be a set of N data points in R

n. We denote as usual the mean

by ȳ = 1
N

∑N
i=1 ŷi and the empirical covariance matrix by Σ = 1

N

∑N
i=1(ŷi −

ȳ)(ŷi − ȳ)T. Its spectral decomposition is denoted Σ =
∑n

j=1 σ
2
juju

T

j with the
eigenvalues sorted in decreasing order. We assume that the first k+1 eigenvalues
have multiplicity one, so that the order from σ1 to σk+1 is strict.

Then the partial flag of affine subspaces Fl(x0 ≺ x1 . . . ≺ xk) optimizing the
AUC criterion:

AUC(Fl(x0 ≺ x1 . . . ≺ xk)) =

k∑

i=0

σ2
out(Fli(x0 ≺ x1 . . . ≺ xk))

is totally ordered and can be parameterized by x0 = ȳ, xi = x0+ui for 1 ≤ i ≤ k.
The parametrization by points is not unique but the flag of subspaces which is
generated is and is equal to the flag generated by the PCA modes up to mode k
included.
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