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Abstract

In this paper we investigate the stability analysis of nonlinear sampled-data systems, which are affine in the input. We assume
that a stabilizing controller is designed using the emulation technique. We intend to provide sufficient stability conditions for
the resulting sampled-data system. This allows to find an estimate of the upper bound on the asynchronous sampling intervals,
for which stability is ensured. The main idea of the paper is to address the stability problem in a new framework inspired by
the dissipativity theory. Furthermore, the result is shown to be constructive. Numerically tractable criteria are derived using
linear matrix inequality for polytopic systems and using sum of squares technique for the class of polynomial systems.
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1 Introduction

Recent years have witnessed an increasing number of
works on stability analysis of nonlinear sampled-data
systems. This challenging problem is of great interest
since in applications practical controllers are often im-
plemented digitally.

⋆ The research leading to these results has received funding
from the European Community’s 7th Framework Program
(FP7/2007-2013) HYCON2 Network of Excellence (grant
agreement No 257462), Region Nord-Pas de Calais, France
(ESTIREZ project) and ANR project ROCC-SYS (agree-
ment ANR-14-CE27-0008). The material in this paper was
partially presented at the 13th European Control Conference
(ECC 13), July 17-19, Zurich, Switzerland.

Email addresses: hassan.omran@mines-douai.fr (Hassan
Omran), laurentiu.hetel@ec-lille.fr (Laurentiu Hetel),
mihaly.petreczky@ec-lille.fr (Mihaly Petreczky),
jean-pierre.richard@ec-lille.fr (Jean-Pierre Richard),
francoise.lamnabhi-lagarrigue@lss.supelec.fr

(Francoise Lamnabhi-Lagarrigue).

When implementing a controller digitally, the emulation
approach is often considered [34]. In this approach, a
continuous-time controller is designed, next it is imple-
mented using a sample-and-hold device. However, the
digital implementation must preserve the stability of
the continuous-time system. Intuitively, the sampling in-
terval must be sufficiently small to ensure the stability
[20,6]. Still, in practice it is difficult to maintain a con-
stant sampling period during real-time control and the
variations of the sampling interval may have a destabi-
lizing effect [10,13], even for small sampling intervals. A
quantitative estimation of the so-called Maximum Sam-
pling Interval MSI that ensures stability (under time-
varying sampling intervals), is very important from the
practical point of view. Several works in the literature
target this problem (see for example [34,23,24,28]).

The case of linear sampled-data systems has been ex-
tensively studied. For the input delay approach, see
[14,12,42,29] where stability conditions are derived
based on Lyapunov-Krasovskii functionals [43]. The
works in [31] and [15] use tools from robust control
theory. A polytopic approximation of the discrete-time
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model is used in [19,9] to handle the sampling effect
based on Lyapunov-Razumikhin functions. In the hy-
brid systems modeling approach [17], the sampled-data
system is represented as an impulsive system [11] and
stability is investigated using Lyapunov functions with
discontinuities at the impulse times [5,33]. The previ-
ous works provide constructive methods to estimate the
MSI, such as Linear Matrix Inequalities (LMIs) based
criteria.

The problem is more challenging in the nonlinear case
[32,26]. We cite as follows some recent works. In [34],
the authors specialized the results on generic Net-
worked Control Systems (NCSs) for the particular
case of sampled-data systems; stability conditions are
presented based on the hybrid systems theory. In [1],
asymptotic stability of NCSs is studied using the same
hybrid systems formulation; the Lyapunov functions are
constructed with a sum of squares (SOS) techniques.
The input delay approach is explored in [23] for the
nonlinear case, where Razumikhin functions together
with theory of vector Lyapunov functions have been
used. The work in [28] also considers the input delay
approach and it investigates the robustness of nonlin-
ear systems, with respect to both sampling and delay.
The approach is inspired by the Lyapunov-Krasovskii
functional method.

Here, we investigate a new research direction for nonlin-
ear affine systems. The considered approach is inspired
by the notion of exponential dissipativity [18]. This no-
tion was initiated byWillems [44]. Since its introduction,
it has been attracting an increasing attention. Dissipa-
tivity can be used to study stability, passivity, robust-
ness and it is useful in a large variety of analysis and
design problems. It was motivated by passivity proper-
ties of electrical circuits and it can be seen as a gener-
alized notion of abstract energy for dynamical systems.
Recently, local asymptotic stability of bilinear sampled-
data systems controlled by a linear state feedback has
been considered in [36], using the analysis of contractive
invariant sets and dissipativity theory. The obtained re-
sults are promising, but the extension for generic non-
linear systems is not trivial.

The purpose of this work is to extend our previous result
in [36], concerning the analysis of bilinear sampled-data
systems, to the case of input-affine nonlinear sampled-
data systems. Dissipativity based conditions are used
to estimate the MSI. The robustness with respect to
variations of the sampling intervals is considered. The
results are shown to be applicable for local and global
analysis. Additionally, in order to show the effectiveness
of the results, we study the particular cases of polytopic
systems and polynomial systems. We apply the result to
a benchmark example from the literature to show the
usefulness of the proposed stability conditions.

The remainder of the paper is organized as follows: the

✛

✲ ẋ = f(x) + g(x)u

SH K(x(tk))

x(t)u(t)

Fig. 1. Sampled-data feedback control of an affine nonlinear
system.

problem under study is introduced in Section 2; in Sec-
tion 3, the system is represented by an equivalent model
which is useful for our analysis; the main result is given
in Section 4; case studies are presented in Section 5,
where the main result is applied to the cases of poly-
topic and polynomial systems; finally, illustrative exam-
ples are presented in Section 6.

Notation: R is the set of real numbers and R
+ is the set

of positive real numbers. Rn is the n-dimensional Eu-
clidean space. The space of functions f : [a, b) → R

n

which are quadratically integrable over the interval [a, b)
is Ln

2 [a, b). The set of real matrices of dimension n×m
is denoted by R

n×m. The transpose of a matrix M is
denoted by MT . For P ∈ R

n×n, P > 0 (resp. P ≥ 0)
means that it is a positive definite (resp. positive semi-
definite) matrix. The identity matrix is I, the zero ma-
trix is 0, both with appropriate dimensions. For a given
MT = M ≥ 0, the weighted inner product is denoted
by 〈x, y〉M = xTMy, and the corresponding norm by

‖x‖M =
√

〈x, x〉
M
. The Euclidean norm is denoted by

|x|. The convex hull is denoted by conv{·}. The notation
p(χ) ∈ R[χ] with χ ∈ R

n, denotes that p(χ) belongs to
the set of polynomials in the variables {χ1, χ2, · · · , χn}
with coefficients in R. For x1, x2 ∈ R

n, (x1, x2) denotes
[xT

1 , x
T
2 ]

T . A function β : R≥0 → R≥0 is said to be of
class K if it is continuous, zero at zero and strictly in-
creasing. It is said to be of classK∞ if it is of classK, and
it is unbounded. A function β : R≥0×R≥0 → R≥0 is said
to be of classKL if β(·, t) is of classK for each t ≥ 0, and
β(s, ·) is non-increasing and satisfies limt→∞ β(s, t) = 0
for each s ≥ 0. Recall that a function f : R → R

n is said
to be piecewise-continuous on an interval J ⊂ R if for
every bounded subinterval J0 ⊂ J , f is continuous for
all t ∈ J0 except, possibly, at a finite number of points
where f may have discontinuities. It is right-continuous
at t if f(t) = limθ ↑ t f(θ) , limθ→t, θ>t f(θ).

2 Problem formulation

Consider the affine nonlinear control system given by

ẋ = f(x) + g(x)u, (1)
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where f(·), g(·) are sufficiently smooth functions on a
neighborhood of the origin x = 0 denoted by D, x ∈ R

n

and u ∈ R
m are the state and the input, respectively.

Suppose that there exists a sufficiently smooth func-
tion K(·) which defines the continuous-time stabilizer
u = K(x). The interconnection between the previous
controller and the continuous-time system (1) yields

ẋ = fn(x) := f(x) + g(x)K(x). (2)

H.1 We suppose that system (2) has a well-defined solu-
tion x(t) ∈ D on the interval [t0,+∞) for any initial
condition x(t0) = x0 ∈ D.

Note thatD is an invariant set for the closed-loop system
(2). We consider the sampled-data implementation of
the controller under the following assumptions:

H.2 The control is piecewise constant, calculated based on
the sampled-data version of the state

u(t) = K
(

x(tk)
)

, ∀t ∈ [tk, tk+1), ∀k ∈ N. (3)

H.3 The set of sampling instants {tk}k∈N satisfies

0 < tk+1 − tk ≤ h, ∀k ∈ N,

for a given MSI h, and limk→∞ tk = +∞.
H.4 For any initial condition x(t0) = x0 ∈ D, the system

ẋ(t) = f(x(t)) + g(x(t))K(x0), (4)

admits a unique solution x(t) originating from x0

which is defined on the interval [t0, t0 + h) and
x(t) ∈ D.

We obtain the closed-loop sampled-data system (see also
Fig. 1):

ẋ(t) = f
(

x(t)
)

+ g
(

x(t)
)

K
(

x(tk)
)

,

∀t ∈ [tk, tk+1), ∀k ∈ N. (5)

If assumptions H.1-H.4 hold, then the system solution
x(t) is constructed in an iterative manner by integrat-
ing (5) over the interval [tk, tk+1), and using x(tk+1) =
limt ↑ tk+1

x(t) (see [23] for a similar construction). As-
sumption H.4 can be satisfied if, for example, f(·) and
g(·) are globally Lipschitz.

We consider the following notions of stability:

Definition 2.1 The equilibrium point x = 0 of system
(5) is locally uniformly asymptotically stable in a neigh-
borhood D0 of the equilibrium, if there exists a class KL
function β(·, ·), such that

|x(t)| ≤ β(|x(t0)|, t−t0), ∀t ≥ t0, ∀x(t0) ∈ D0. (6)

✛

✲

{

ẋ = fn(x) + gn(x)w

y = ∂K
∂x

ẋ

∆sh

y(t)w(t)

Fig. 2. An equivalent representation of the sampled-data
system (5).

In this case D0 is an estimate of the domain of attrac-
tion of x = 0. The equilibrium point x = 0 is globally
uniformly asymptotically stable if (6) is satisfied for any
initial state x(t0) ∈ R

n ( i.e. D0 = R
n).

Definition 2.2 The equilibrium point x = 0 of system
(5) is locally uniformly exponentially stable in a neigh-
borhood D0 of the equilibrium, if (6) is satisfied with

β(s, t) = ̺se−λt, ̺ > 0, λ > 0. (7)

In this case D0 is an estimate of the domain of attraction
of x = 0. The equilibrium point x = 0 is globally uni-
formly exponentially stable if this condition is satisfied
for any initial state x(t0) ∈ R

n, ( i.e. D0 = R
n).

The problem under study is formalized as follows.

Problem: Find a criterion for the asymptotic/
exponential stability of the equilibrium point x = 0 of the
sampled-data system (5).

3 Modeling of sampled-data systems

The objective of this section is to present an equiva-
lent representation of the sampled-data system (5). This
representation has interesting properties from a robust
control point of view. The system (5) can be written as

ẋ(t) = fn(x(t)) + gn(x(t))w(t), ∀t ∈ [tk, tk+1), k ∈ N,(8)

where fn(x) = f(x) + g(x)K(x), gn(x) = g(x) and
w(t) = K

(

x(tk)
)

−K
(

x(t)
)

. Note that fn(x) represents
the dynamics of the nominal, continuous-time, closed-
loop system, i.e. the dynamics without the sampled-data
implementation. w(t) represents the effect of sampling
and the variations of the sampling intervals. From (8),
the sampled-data system (5) can be represented by the
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equivalent feedback connection of the system

G :

{

ẋ = fn(x) + gn(x)w,

y = ∂K
∂x

ẋ,
(9)

with the reset integrator

∆sh : w(t) = K
(

x(tk)
)

−K
(

x(t)
)

= −

∫ t

tk

y(τ)dτ,

∀t ∈ [tk, tk+1), ∀k ∈ N. (10)

This representation is shown in Fig. 2. In the next sec-
tion, we will show how this model will be used for sta-
bility analysis of the sampled-data system.

4 Main results

In the following, we provide the main results of this pa-
per.

Theorem 1 Consider the sampled-data system (5)
under hypotheses H.1-H.4, and the equivalent represen-
tation (9), (10). Consider the notations y(t) and w(t)
defined in (9) and (10), respectively. Assume that:

I) there exists a continuous function S(y, w) which sat-
isfies the following integral property

∫ t

tk

S
(

y(θ), w(θ)
)

dθ ≤ 0, t ∈ [tk, tk+1), ∀k ∈ N,

(11)
along all system solutions x(t) originating in D;

II) there exist a differentiable positive definite function
V : D → R

+, class K functions β1 and β2 and α > 0
which satisfy:

β1(|x|) ≤ V (x) ≤ β2(|x|), ∀x ∈ D, (12)

V̇
(

x(t)
)

+ αV
(

x(t)
)

≤ e−ατ(t)S
(

y(t), w(t)
)

,

∀t ∈ [tk, tk+1), ∀x(t) ∈ D, (13)

with τ(t) = t− tk.

Then, the equilibrium x = 0 of the system (5) is locally
uniformly asymptotically stable, and the decay rate of
the function V

(

x(t)
)

is at least α. Moreover, the set Lc∗

defined by the maximal sub-level set of V contained in D

c∗ = max
Lc⊂D

c (14)

is an estimate of the domain of attraction, where Lc is
the sub-level set defined by V (·) and a scalar c > 0

Lc := {x ∈ R
n : V (x) ≤ c}. (15)

Finally, if all the conditions are satisfied for D = R
n,

with class K∞ functions β1 and β2, then the equilibrium
x = 0 is globally uniformly asymptotically stable.

Proof. First note thatw(t) and y(t) are right-continuous,
thus the integral term in (11) exists. Consider the fol-
lowing function

W (t) = V
(

x(t)
)

eατ(t) −

∫ t

tk

S
(

y(θ), w(θ)
)

dθ,

∀t ∈ [tk, tk+1), ∀k ∈ N.

The condition (13) yields

Ẇ (t) ≤ 0, ∀t ∈ [tk, tk+1), ∀x(t) ∈ D. (16)

The last equation yields

V
(

x(t)
)

eατ(t) −

∫ t

tk

S
(

y(θ), w(θ)
)

dθ ≤ V
(

x(tk)
)

. (17)

From the integral property in (11), it is easy to see that

V
(

x(t)
)

≤ e−ατ(t)V
(

x(tk)
)

,

∀t ∈ [tk, tk+1), ∀x(t) ∈ D. (18)

Clearly, the set Lc∗ is positively invariant [25], and it is
the largest sub-level set of V contained in D. Consider
an initial condition x0 ∈ Lc∗ . From the continuity of the
solution x(t), (18) leads to

V
(

x(t)
)

≤ e−α(t−t0)V
(

x(t0)
)

,

∀t ≥ t0, ∀x0 ∈ Lc∗ . (19)

From (12) and (19), we see that for any solution with
x(t0) ∈ Lc∗

|x(t)| ≤ β−1
1

(

V
(

x(t0)
)

e−α(t−t0)
)

≤ β−1
1

(

β2(|x(t0)|)e
−α(t−t0)

)

:= β(|x(t0)|, t− t0), ∀t ≥ t0, ∀x(t0) ∈ Lc∗ .

The function β(·, ·) can be easily seen to be a class KL
function. This shows that x = 0 is locally uniformly
asymptotically stable. Finally, it is trivial to see that if
all the conditions are satisfied globally, with a class K∞

functions β1 and β2, then x = 0 is globally uniformly
asymptotically stable. This completes the proof. ✷

Corollary 4.1 Suppose that all the conditions of Theo-
rem 1 are satisfied with

β1(|x|) ≥ k1|x|
q , β2(|x|) ≤ k2|x|

q,

for some k1, k2, q > 0. (20)
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Then, the equilibrium x = 0 is locally exponentially sta-
ble. Moreover, the sub-level set Lc∗ defined in (15) and
(14), is an estimate of the domain of attraction. If the
conditions hold globally, then x = 0 is globally exponen-
tially stable.

Proof. Following the same steps as in the proof of The-
orem 1, we get

V
(

x(t)
)

≤ e−α(t−t0)V
(

x(t0)
)

, ∀t ≥ t0, ∀x0 ∈ Lc∗ .

Thus, from (12) and (20)

|x(t)| ≤
(V

(

x(t0)
)

e−α(t−t0)

k1

)1/q

≤
(

k2|x(t0)|
qe−α(t−t0)

k1

)1/q

=
(k2

k1

)1/q

|x(t0)|e
−(α/q)(t−t0), ∀t ≥ t0, ∀x(t0) ∈ Lc∗ .

This shows that x = 0 is locally exponentially stable. If
the conditions hold globally, global exponential stability
is trivial. ✷

Remark 4.1 The result in Theorem 1 is a general, the-
oretical one. In particular, conditions (11) and (13) are
not easily verified, as they require the knowledge of all
the trajectories of the system. In the following section,
we show how Theorem 1 can be modified in a construc-
tive manner and we provide tractable numeric criteria
for the case of polytopic and polynomial systems.

5 Constructive analysis conditions

Characterizing candidate functions S(·, ·) in Theorem 1
which satisfy the inequality (11), requires studying the
properties of the reset integrator (10). It has been stud-
ied from the operator theory point of view, and it has
two interesting properties. It has been shown in [21,31]
that ∆sh has a bounded gain. Also, an anti-passivity
property was found by Fujioka in [15]. The properties are
stated in the following two lemmas which are adapted
from [36]. They are based on the work in [15].

Lemma 5.1 (Small gain property) [36] Consider
the reset integrator in (10). Then, for any y ∈
Lm
2 [tk, tk+1) and 0 < XT = X ∈ R

m×m we have the
following inequality:

∫ t

tk

(

wT (θ)Xw(θ) − δ20y
T (θ)Xy(θ)

)

dθ ≤ 0, (21)

for all t ∈ [tk, tk+1), where δ0 = 2
π
h.

Lemma 5.2 (Anti-passivity property) [36] Con-
sider the reset integrator in (10). Then, for any

y ∈ Lm
2 [tk, tk+1) and 0 ≤ Y T = Y ∈ R

m×m, we have
the following inequality:

∫ t

tk

(

wT (θ)Y y(θ) + yT (θ)Y w(θ)
)

dθ ≤ 0, (22)

for all t ∈ [tk, tk+1).

In [15], the properties of ∆sh have been used in the LTI
context, and they lead to LMI stability conditions, which
are based on Integral Quadratic Constraints (IQC) [30].
Local stability conditions in the form of LMIs have been
proposed for the bilinear case in [36]. The method de-
pends on the properties of ∆sh, it is based on the anal-
ysis of invariant sets [3] and dissipativity theory [45]. It
is important to notice that the extension of the previous
results to a more general class of nonlinear systems is
not direct. Next, we show how Theorem 1 along with the
properties in Lemma 5.1 and Lemma 5.2, can be used to
provide a stability criterion for the case of affine nonlin-
ear systems with sampled-data control.

Corollary 5.1 Consider the sampled-data system (5)
under hypotheses H.1-H.3, for the case where f(·), g(·)
and K(·) are continuously differentiable functions on D.
Suppose that there exist α > 0, 0 ≤ XT = X ∈ R

m×m,
0 ≤ Y T = Y ∈ R

m×m, and a differentiable positive
definite function V : D → R

+, which satisfies (12), such
that

∂V

∂x

(

fn(x) + gn(x)w
)

+ αV (x) ≤
(

− δ
2
0

∥

∥

∥

∥

∂K

∂x

(

fn(x) + gn(x)w
)

∥

∥

∥

∥

2

X

+‖w‖2X + 2〈
∂K

∂x

(

fn(x) + gn(x)w
)

, w〉Y
)

e
−αhl

, ∀l ∈ {0, 1}, (23)

for all x ∈ D andw ∈ R
m. Then the equilibrium x = 0 of

the system (5) is locally uniformly asymptotically stable
and the decay rate of the function V

(

x(t)
)

is α. Moreover,
the set Lc∗ defined in (15) and (14), is an estimate of the
domain of attraction.

Proof. The proof is based on constructing the solution
of the sampled-data system (5) in the same manner as
in Theorem 3.3 in [25], and proving the stability of the
system such as in Theorem 1.
Given x0 ∈ Lc∗ , the system dynamics over the interval
[t0, t1) are given by

ẋ(t) = F0

(

x(t)
)

= f
(

x(t)
)

+ g
(

x(t)
)

K
(

x(t0)
)

, ∀t ∈ [t0, t1).(24)

Since f(·) and g(·) are continuously differentiable, then
using Theorem 3.2 in [25] we have that F0 is locally
Lipschitz continuous on D. Thus, using Theorem 3.1 in
[25], we have that ∃ ξ > 0 for which ẋ = F0(x) has a
unique solution over [t0, t0 + ξ], with t0 + ξ < t1.

5



Consider η(t) := e−α(t−t0)−e−αh

1−e−αh
∈ [0, 1], ∀t ∈ [t0, t0 + ξ].

Then, by multiplying (23) by η(t) for l = 0, and by
1− η(t) for l = 1 we obtain

V̇
(

x(t)
)

+αV
(

x(t)
)

≤ e−α(t−t0)S
(

y(t), w(t)
)

, ∀t ∈ [t0, t0+ξ],
(25)

with

S
(

y(t), w(t)
)

=

[

y(t)

w(t)

]T [

−δ20X Y

Y X

][

y(t)

w(t)

]

. (26)

Now, consider the following function

W (t) = V
(

x(t)
)

eα(t−t0) −

∫ t

t0

S
(

y(θ), w(θ)
)

dθ, ∀t ∈ [t0, t0 + ξ].

The condition (25) yields Ẇ (t) ≤ 0 for all t ∈ [t0, t0+ξ],
which implies

V
(

x(t)
)

eα(t−t0)−

∫ t

t0

S
(

y(θ), w(θ)
)

dθ ≤ V
(

x(t0)
)

, ∀t ∈ [t0, t0+ξ].

(27)
Finally, by using Lemma 5.1 and Lemma 5.2 we have
that

V
(

x(t)
)

≤ e−α(t−t0)V
(

x(t0)
)

, ∀t ∈ [t0, t0 + ξ]. (28)

From equation (28) we have that x(t0 + ξ) ∈ Lc∗ , and
thus we can apply again Theorem 3.2 in [25] to extend
the solution. Now let us suppose that the solution can
not be extended for [t0, t1). Then, ∃ tf < t1 such that
the solution does not exist for t > tf . Let [t0, tf ) be the
maximal interval of existence of a solution. The solution
of (24) is

x(t) = x(t0) +

∫ t

t0

F0

(

x(s)
)

ds, t ∈ [t0, tf ). (29)

Note that from the continuity of F0 and the fact that
the solution lies inside the compact set Lc∗ , then ∃Λ > 0
such that

|F0

(

x(t)
)

| ≤ Λ, ∀t ∈ [t0, tf ),

and for any s1, s2 ∈ [t0, tf ) we have

|x(s2)− x(s1)| =
∣

∣

∣

∫ s1

s1

F0

(

x(s)
)

ds
∣

∣

∣
≤ (s2 − s1)Λ,

which shows that the solution (29) is uniformly contin-
uous on [t0, tf ). Consider

x(tf ) := x(t0) + lim
t→tf

∫ t

t0

F0

(

x(s)
)

ds.

From the uniform continuity of the solution (29) we have
that

x(tf ) = x(t0) +

∫ tf

t0

F0

(

x(s)
)

ds. (30)

Thus,

x(t) = x(t0) +

∫ t

t0

F0

(

x(s)
)

ds, t ∈ [t0, tf ], (31)

is a solution on [t0, tf ]. This contradicts the fact that
[t0, tf ) is a maximal interval of existence of a solution,
and the solution can then be extended to t1. Moreover,
using the same steps as in (25)-(28).

V
(

x(t)
)

≤ e−α(t−t0)V
(

x(t0)
)

, ∀t ∈ [t0, t1]. (32)

The rest of the proof is obtained by repeating the same
steps on the intervals [tk, tk+1) for all k ∈ N, and follows
the proof of Theorem 1. ✷

Remark 5.1 Note that the hypothesis H.4 which was
used in Theorem 1 is no longer needed in Corollary 5.1,
where only geometric properties are being used. This is
due to the fact that we show the existence of solutions in
Corollary 5.1, while in Theorem 1 we needed the existence
of solutions in order to prove the stability properties.

Remark 5.2 From the dissipativity theory point of view,
the inequalities in (23) show that the system (9) is expo-
nentially dissipative [18,8], with a storage function V (x),

and with supply rate functions S
(

y, w
)

and e−αhS
(

y, w
)

respectively, where S is defined in (26). This can be seen
from the Remark 2.8 in [8].

Remark 5.3 The quadratic function in (26) is estab-
lished using the properties in Lemma 5.1 and Lemma 5.2.
Providing new characterizations of∆sh can lead to other
candidates of supply rate functions.

In the following, we show how to obtain numerical cri-
teria using Corollary 5.1. We consider the cases of poly-
topic and polynomial systems.

5.1 Case study 1: polytopic systems

Consider the problem formulation in Section 2, when the
system (2) has the polytopic representation [2,40]

ẋ(t) = A(x(t))x(t) +B(x(t))u(t), (33)

where A(·) ∈ R
n×n, B(·) ∈ R

n×m are continuously dif-
ferentiable functions which satisfy:

[A(x), B(x)] ∈ conv{[A1, B1], [A2, B2], · · · , [Ap, Bp]}, ∀x ∈ D.(34)

Here Ai, Bi, ∀i ∈ {1, 2, · · · , p} are known matrices of
appropriate dimensions. Suppose that a continuous-time
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controller u(t) = Fx(t) stabilizes the equilibrium locally
asymptotically in D, where F ∈ R

m×n. Consider the
sampled-data implementation of the last controller

u(t) = Fx(tk), ∀t ∈ [tk, tk+1). (35)

The following corollary provides criteria for the stability
of the sampled-data systems (33) and (35).

Corollary 5.2 Consider the sampled-data system in
(33) and (35). Suppose there exist symmetric positive
definite matrices X, Y ∈ R

m×m, P ∈ R
n×n, matri-

ces P2, P3 ∈ R
n×n, and a scalar α > 0 such that the

following LMIs are feasible











αP + (Ai + BiF )TP2 + PT
2 (Ai + BiF ) P − PT

2 + (Ai +BiF )TP3 PT
2 Bi

∗ −P3 − PT
3 + δ20e

−αhlFTXF PT
3 Bi − e−αhlFTY

∗ ∗ −e−αhlX











< 0,

∀i ∈ {1, 2, · · · , p}, ∀l ∈ {0, 1}. (36)

Then the equilibrium x = 0 of the sampled-data system
(33) and (35) is locally asymptotically stable. If for some
c > 0 we define

Ec := {x ∈ R
n : xTPx ≤ c∗}, (37)

then an estimate of the domain of attraction is given by
Ec∗, where

c∗ = max
Ec⊂D

c.

Proof. Consider a quadratic function V (x) = xTPx, vec-
tors x ∈ R

n, z ∈ R
n and w ∈ R

m. Multiplying the LMIs
(36) by (x z w) from the right, and its transpose from
the left implies

2xTPz + αxTPx+ 2(xTPT
2 + zTPT

3 )(−z +Aix+BiFx+Biw)

≤
(

− δ20‖Fz‖2X + ‖w‖2X + 2〈Fz,w〉Y

)

e−αhl,

∀i ∈ {1, 2, · · · , p}, ∀l ∈ {0, 1}. (38)

From (34), these exist barycentric coordinates {λi(x)}i∈{1,2,··· ,p}

such that

A(x) =

p
∑

i=1

λi(x)Ai, B(x) =

p
∑

i=1

λi(x)Bi, x ∈ D.(39)

For z = ẋ = (A(x) + B(x)F )x + B(x)w, and by mul-
tiplying each of the inequalities (38) by the appropriate

λi(x), and having the sum over the resulting inequalities
yield:

2xTP
(

(A(x) +B(x)F )x +B(x)w
)

+ αxTPx (40)

≤
(

− δ20

∣

∣

∣

∣

∣

∣
F
(

(A(x) +B(x)F )x +B(x)w
)

∣

∣

∣

∣

∣

∣

2

X
+ ‖w‖2X

+2
〈

F
(

(A(x) +B(x)F )x +B(x)w
)

, w
〉

Y

)

e−αhl,

∀l ∈ {0, 1}, ∀x ∈ D, ∀w ∈ R
m,

where the following fact from the descriptor method [14]
has been used:

(xTPT
2 + ẋTPT

3 )(−ẋ+A(x)x+B(x)Fx+B(x)w) = 0.

The proof follows from Corollary 5.1. ✷

5.2 Case study 2: sum of squares stability conditions
for the class of polynomial systems

In this section, we specialize the result of Corollary 5.1
for the class of affine polynomial sampled-data systems
using SOS decomposition and semi-definite program-
ming techniques [38,37]. We formulate a constructive
method to find functions V (·) and S(·, ·) which satisfy
the proposed stability conditions (23) in Corollary 5.1
for the global stability case.

Consider the stability problem defined in Section 2, for
the particular case where f(·), g(·) and K(·) are polyno-
mial functions. System (9) will be defined by polynomial
functions F (x,w) := fn(x) + gn(x)w and G(x,w) :=
∂K
∂x

F (x,w):
{

ẋ = F (x,w),

y = G(x,w).
(41)

When looking for a polynomial function V (x), checking
the dissipativity inequalities (23) is a problem of check-
ing the non negativity of polynomials. We will use the
SOS technique [38].

Definition 5.1 [37] A multivariate polynomial p(χ) ∈
R[χ] is said to be a sum of squares (SOS), if there exist
some polynomials pi(χ) ∈ R[χ], i ∈ {1, . . . ,M}, such

that p(χ) =
∑M

i=1 p
2
i (χ).

In the following, we re-formulate Corollary 5.1 using the
SOS method. We only consider the case of global sta-
bility. See [35] for the local applicability of the method,
using a technique similar to the S-procedure [4].

Corollary 5.3 Consider the sampled-data system (5)
in the case where f(x), g(x) and K(x) are polynomial
functions, or the equivalent representation (41) and (10).
Suppose that there exist a polynomial function V (x) ∈
R[x] of degree 2d, 0 < XT = X ∈ R

m×m, 0 ≤ Y T = Y ∈
R

m×m and α > 0 such that the following polynomials are
SOS

7



V̂ (x) = V (x)− ϕ(x), (42)

ρ1(ξ) = −
∂V

∂x
F (x,w)− αV (x)

+
[

− (
2

π
h)2GT (x,w)XG(x,w) + 2GT (x,w)Y w + w

T
Xw

]

,

(43)

ρ2(ξ) = −
∂V

∂x
F (x,w)− αV (x)

+
[

− (
2

π
h)2GT (x,w)XG(x,w) + 2GT (x,w)Y w + w

T
Xw

]

e
−αh

.

(44)

with ξ = (x,w) and ϕ(x) a positive definite polynomial
defined by:

ϕ(x) =

n
∑

i=1

d
∑

j=1

ǫijx
2j
i , such that

d
∑

j=1

ǫij > γ, ∀i = 1, . . . , n

(45)
with γ a positive number, and ǫij ≥ 0 for all i and j.

Then, the equilibrium x = 0 of the sampled-data system
is globally uniformly asymptotically stable.

Proof. First, note that from (42) and Proposition 5 from
[37], the function V (x) is ensured to be definite posi-
tive. Also, it is easily seen that it is radially unbounded
(V (x) → ∞ when x → ∞). Therefore, using Lemma 4.3
from [25], there exist class K∞ functions β1 and β2, such
that

β1(|x|) ≤ V (x) ≤ β2(|x|), ∀x ∈ R
n.

Finally, using the notations F (x,w) := fn(x) + gn(x)w
and G(x,w) := ∂K

∂x
F (x,w) in (41), the inequalities (43),

(44) implies (23). Thus all the global stability conditions
of Corollary 5.1 are satisfied. ✷

Remark 5.4 (Numerical issues) Note that for a
fixed h and α, the sufficient stability conditions in Corol-
lary 5.2 and Corollary 5.3 are numerically tractable.
For the polytopic case, checking the conditions of
Corollary 5.2 is an LMIs feasibility problem. However,
we have restricted our choice to quadratic functions
V (x) = xTPx with P > 0, which might be a source of
conservatism. For the polynomial systems case, semi-
definite programming and SOS decomposition [39] are
used to ensure the applicability of the proposed criterion.
In this case, one must also fix γ and the degree of V (·).
In fact, the choice of the degree of the storage function
V (·) is a difficult question [27]. For similar problems,
try-and-error methods are being used in the literature
[41,7]. This is done by considering small values. Next,
these values are increased if the conditions are not satis-
fied. For both the polytopic and polynomial cases, a line
search permits to find an estimate of the value of h which
ensures stability.

6 Illustrative Examples

In this section, we will apply the proposed methods on
numeric examples. First, we consider a nonlinear sys-
tem of the form (33) and we apply Corollary 5.2 in or-
der to analyze the stability of the sampled-data system.
Then, we consider a benchmark example from the liter-
ature. The considered system is polynomial. We apply
Corollary 5.3 and show the effectiveness of the proposed
method.

6.1 Example 1

Consider the following system

(

ẋ1

ẋ2

)

=

(

1 + 0.1x2 1

0 0.1sin(x1)

)(

x1

x2

)

+

(

0

1

)

u,

with the state feedback controller given by the gain
F = [−6 − 4]. This controller stabilizes the system in
continuous-time. The system will have a polytopic rep-
resentation given by (39) inside the domain D = {x ∈
R

2 : x2 ∈ [−1,+1]}. Using Corollary 5.2 we find that
the system is stable under aperiodic sampled-data ver-
sion of the control, for h = 0.389 and α = 0.01. An esti-
mate of the domain of attraction along with simulations
of the system evolution (from various initial conditions

with arbitrary sampling intervals over bounded by h) are
presented in Fig 3. Note that the estimate of the domain
of attraction was not found by performing ad-hoc sim-
ulations, but by Corollary 5.2. More precisely, the esti-
mate of the domain of attraction given by Ec∗ in equation
(37), is found numerically by solving an LMI optimiza-
tion problem. It represents the maximal sub-level set of
V (·), contained in the domain {x ∈ R

2 : |x2| ≤ 1}. The
function V (·) is found from (36), while c∗ is found by
solving an additional LMI problem:

κ∗ = min

s.t.

[

κ aT

a P

]

≥0

γ,

with a = [0 1]T and c∗ = 1/κ∗.

6.2 Example 2

Consider the following system from [34]

ẋ = dx2 − x3 + u,

with a bounded time-varying |d| ≤ 1 and a stabilizing
control u = K(x) = −2x. Emulating this controller re-
sults in a sampled-data system that can be represented
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Fig. 3. An estimate of the domain of attraction (in green)
for the sampled-data control of the system in Example 6.1,
with h = 0.389. Simulations of the continuous (in red) and
sampled-data (in dashed black) control of the system, for
few initial conditions inside the domain on attraction.

by the reset integrator in (10) and a system (9) described
by

{

ẋ = dx2 − x3 − 2x+ w,

y = −2(dx2 − x3 − 2x+ w).

We apply Corollary 5.3 in order to find a storage function
of the form V (x) = ax2 + bx4, such that (42), (43) and
(44) are SOS. We choose ϕ(x) = 10−3x2, α = 0.1 and
h = 0.72. We intend to test the global stability. In this
case, the polynomials (43) and (44) are

ρ1(ξ) = −(2ax+ 4bx3)(dx2 − x
3 − 2x+ w)− α(ax2 + ax

4)

+
[

− 4δ20X(dx2 − x
3 − 2x+ w)2 − 4Y (dx2 − x

3 − 2x+w)w +Xw
2
]

,

(46)

ρ2(ξ) = −(2ax+ 4bx3)(dx2 − x
3 − 2x+ w)− α(ax2 + ax

4)

+
[

− 4δ20X(dx2 − x
3 − 2x+ w)2 − 4Y (dx2 − x

3 − 2x+w)w +Xw
2]
e
−αh

,

(47)

where a, b,X, Y are decision variables. Note that
the time-varying terms d and d2 appear in the
polynomial expressions. However, if both (46) and
(47) are ensured to be SOS for all the values of
(d, d2) ∈ {(1, 0), (1, 1), (−1, 0), (−1, 1)}, then they
will be SOS for any time-varying |d| ≤ 1. This is
found to be satisfied using the SOSTOOLS [39], for
V (x) = 0.77402x2 + 0.19911x4, X = 0.47522 and
Y = 0.62302 10−3. By Corollary 5.3, we obtain the
global uniform asymptotic stability of the equilibrium
x = 0 of the sampled-data system. This result cannot
be obtained when trying a quadratic storage function.
Previous works considered this example in the literature
for estimating the MSI. In [34], a bound of h = 0.368 is
found. In [23], the proposed upper bound is h = 0.1428.

The conditions proposed in this paper are found feasible
for h = 0.72. The stability conditions have been used
in order to find estimates of h for several values of the
decay rate. The relation between the decay rate α and
h is illustrated in Table 1. Note that one cannot expect
that the upper bound provided by our method would
always be better than the ones provided by the methods
in [34,23]. Those flexible methods are based on different
approaches and can handle a large class of nonlinear
systems.

7 Conclusion

In this note we have provided sufficient conditions for
the stability of nonlinear sampled-data systems, which
are affine in the control. The main idea is to use the dis-
sipativity theory to provide an estimate of the MSI. For
some particular cases, the proposed methodology leads
to numerically tractable conditions. More precisely, the
stability criterion for polytopic sampled-data systems is
expressed as an LMI feasibility problem, while the case
of polynomial sampled-data systems leads to the use of
SOSdecomposition and semi-definite programming.The
method is applied on two examples and it shows that it
can provide a good estimate of the MSI. The novelty of
this contribution is that it provides a quantitative esti-
mate of the MSI using robust control tools based on the
dissipativity theory. It must be noticed that it is possible
to enhance the results numerically by studying the reset
integrator ∆sh. In fact, providing new characterizations
[16,22], can lead to other candidates of supply rate func-
tions, which can be used to decrease the conservatism of
the proposed method.
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