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Abstract

In this paper, we introduce a novel framework for
WEakly supervised Learning of Deep cOnvolutional neu-
ral Networks (WELDON). Our method is dedicated to au-
tomatically selecting relevant image regions from weak an-
notations, e.g. global image labels, and encompasses the
following contributions. Firstly, WELDON leverages recent
improvements on the Multiple Instance Learning paradigm,
i.e. negative evidence scoring and top instance selection.
Secondly, the deep CNN is trained to optimize Average Pre-
cision, and fine-tuned on the target dataset with efficient
computations due to convolutional feature sharing. A thor-
ough experimental validation shows that WELDON outper-
forms state-of-the-art results on six different datasets.

1. Introduction

Over the last few years, deep learning and Convolutional
Neural Networks (CNN) [22] have become state-of-the-art
methods for various visual recognition tasks, e.g. image
classification or object detection. To overcome the limited
invariance capacity of CNN, bounding box annotations are
often used [33, 16]. However, these rich annotations rapidly
become costly to obtain [6], making the development of
Weakly Supervised Learning (WSL) models appealing.

Recently, there have been some attempts for WSL train-
ing of deep CNNs [34, 36]. In this context, image an-
notations consist in global labels, and the training objec-
tive is to localize image regions which are the most rel-
evant for classification. In computer vision, the domi-
nant approach for WSL is the Multiple Instance Learn-
ing (MIL) paradigm [9]: an image is considered as a bag
of regions, and the model seeks the max scoring instance
in each bag [35, 41, 37, 5, 47, 44, 11]. Recently, relax-
ations of standard MIL assumptions have been introduced
in the context of Latent SVM models and shallow archi-
tectures [27, 38, 10], showing improved recognition perfor-
mances on various object and scene datasets.

Figure 1. The WELDON model is a deep CNN trained in a weakly
supervised manner. To perform image prediction, e.g. classifica-
tion or ranking, WELDON automatically selects multiple positive
(green) + negative (red) evidences on several regions in the image.

In this paper, we propose a new model for WEakly su-
pervised Learning of Deep cOnvolutional neural Networks
(WELDON), which is illustrated in Figure 1. WELDON
is trained to automatically select relevant regions from im-
ages annotated with a global label, and to perform end-to-
end learning of a deep CNN from the selected regions. The
ultimate goal is image classification (or ranking). We call
this setting weakly-supervised, because the localization step
only exploits global labels.

Regarding WSL, WELDON is dedicated to selecting two
types of regions, adapted from [27, 10, 38] to deep net-
works: green regions in Figure 1 correspond to areas with
top scores, i.e. regions which best support the presence of
the global label. On the contrary, red regions incorporate
negative evidence for the class, i.e. are the lowest scoring
areas. Our deep WSL model is detailed in section 3.

Regarding training, the model parameters are optimized
using back-propagation with standard classification losses,
but we also adapt the learning to structured output ranking.
We design a network architecture which enables fast region
feature computation by convolutional sharing. The network
is initialized from deep features trained on ImageNet, and
the parameters are fine-tuned on the target dataset.

2. Related Works & Contributions
The computer vision community is currently witnessing

a revolutionary change, essentially caused by Convolutional
Neural Networks (CNN) and deep learning. Beyond the
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outstanding success reached in the context of large scale
classification (ImageNet) [22], deep features also prove to
be very effective for transfer learning: state-of-the-art re-
sults on standard benchmarks are nowadays obtained with
deep features as input. Recent studies reveal that perfor-
mances can further be improved by collecting large datasets
that are semantically closer to the target domain [54], or by
fine-tuning the network with data augmentation [7].

Despite their excellent performances, current CNN ar-
chitectures only carry limited invariance properties: al-
though a small amount of shift invariance is built into the
models through subsampling (pooling) layers, strong invari-
ance is generally not dealt with [53]. Recently, attempts
have been made to overcome this limitation. Some meth-
ods revisit the BoW model with deep features as local re-
gion activations [19, 18] or designed BoW layers [2]. The
drawback of these models is that background regions are en-
coded into the final representation, decreasing its discrimi-
native power. Another option to gain strong invariance is to
explicitly align image regions, e.g. by using Weakly Super-
vised Learning (WSL) models.

In the computer vision community, WSL has been pre-
dominantly addressed through the Multiple Instance Learn-
ing (MIL) paradigm [9]. In standard MIL modeling, an im-
age is regarded as a bag of instances (regions), and there
is an asymmetric relationship between bag and instance
labels: a bag is positive if it contains at least one pos-
itive instance, and negative if all its instances are nega-
tive - i.e. the Negative instances in Negative bags (NiN)
hypothesis. MIL models thus perform image prediction
through its max scoring region. The Deformable Part
Model (DPM) [14] is an instantiation of the MI-SVM
model [1] for MIL, which is extremely popular for WSL
due to its excellent performances for object detection. Ex-
tensive works have therefore used DPM and its general-
ization to structured output prediction, LSSVM [50], for
weakly supervised scene recognition and object localiza-
tion [23, 35, 41, 5, 42, 37, 21, 47]. Contrarily to these
methods built upon handcrafted features, e.g. BoW models
[46, 39, 3, 17] or biologically-inspired models [43, 49, 48],
recent approaches tackle the problem of WSL training of
deep CNNs, e.g. [34, 36], incorporating a max CNN layer
accounting for the MIL hypothesis.

Recently, interesting MIL extensions have been intro-
duced in [51, 24, 27, 38, 10]. All these methods use a bag
prediction strategy which departs from the standard max
scoring function in MIL, especially due to the relaxation
of the common Negative instances in Negative bags (NiN)
MIL assumption. In the Learning with Label Proportion
(LLP) framework [51], only label ratios between ⊕/	 in-
stances in bags are provided during training. In [24], the
LLP method of [51] is explicitly applied to MIL problems,
in the context of video event detection. LLP is shown to

outperform baseline methods (mi/MI-SVM [1]), especially
by its capacity to relax the NiN assumption. In [27], the
authors question the NiN assumption by claiming that it
is often violated in practice during image annotation: hu-
man rather label images based on their dominant concept
than on the actual presence of the concept in each sub-
region. To support the dominant concept annotation, the
authors in [27] introduce a prediction function selecting the
top scoring instances in each bag. Other approaches departs
from the NiN assumption by tracking negative evidence of
a class with regions [38, 10]: for example, a cow detec-
tor should strongly penalize the prediction of the bedroom
class. In [38], the authors introduce a WSL learning formu-
lation specific to multi-class classification, where negative
evidence is explicitly encoded by augmenting model pa-
rameters to represent the positive/negative contribution of a
part to a class. In [10], the idea of negative evidence is for-
malized by the introduction of a generic structured output
latent variable, where the prediction function is extended
from max to max+min region scores. The min scoring re-
gion accounts for the concept of negative evidence, and is
capitalized on for learning a more robust model.

Many computer vision tasks are evaluated with ranking
metrics, e.g. Average Precision (AP). In the WSL setting,
this is, however, a very challenging problem: for example,
no algorithm exists for solving the loss-augmented infer-
ence problem with Latent Structural SVM [50]. In [4],
LAPSVM is introduced, enabling a tractable optimization
by defining an ad-hoc prediction rule dedicated to rank-
ing. In [10], the proposed ranking model offers the abil-
ity to solve loss-augmented inference with an elegant sym-
metrization due to the max+min prediction function.

In this paper, we introduce a new model for WSL train-
ing of deep CNNs, which takes advantage of recent MIL ex-
tensions. The approach the most closely connected to ours
is [34], which we extend at several levels. Our submission
therefore encompasses the following contributions:

• We improve the deep WSL modeling in [34] by incor-
porating top instance [27] and negative evidence [38,
10] insights into our deep prediction function. Contrar-
ily to [38, 10, 27], we propose an end-to-end training
of deep CNNs.

• We improve deep WSL training in [34] by introduc-
ing a specific architecture design which enable an easy
and effective transfer learning and fine-tuning. In ad-
dition, we adapt our training scheme to explicitly opti-
mize over ranking metrics, e.g. AP.

• We report excellent performances, outperforming
state-of-the-art results on six challenging datasets. A
systematic evaluation of our modeling and training
contributions highlights their importance for training
deep CNN models from weak annotations.



Figure 2. WELDON deep architecture: our model is composed of 2 sub-networks. The feature extraction net outputs a fixed-size vector for
any region in the image, using a multi-scale sliding window mechanism. The prediction net is composed of a transfer layer with weights
W6, which enables using networks pre-trained on large-scale datasets for model initialization, and a Weakly-Supervised Prediction (WSP)
module, which is the main point studied in this submission. In the proposed WSP module, the spatial aggregation function s combines
improvements on the MIL modeling, i.e. top-instance scoring and negative evidence into the training of the full deep CNN.

3. WELDON Model
The proposed WELDON model is decomposed into two

sub-networks: a deep feature extraction net and a prediction
net, as illustrated in Figure 2. The feature extraction net pur-
pose is to extract a fixed-size deep descriptor for each region
in the image, while the prediction net outputs a structured
output for the whole image. We firstly detail the predic-
tion network, since the main paper contributions are incor-
porated at this level, mainly by the introduction of novel
methods for weakly supervised learning of deep CNNs.

3.1. Prediction network design

The prediction net acts on the L5 layer, which is a set of
d(= 512) feature maps with n×n (n ≥ 7) spatial neurons.
L5 is computed by the feature extraction net (Section 3.2).

a) Transfer layer The first layer of the prediction network
transforms the L5 layer into a layer L6 of size n′×n′×d′1
(d′ = 4096), as illustrated in Figure 2. This convolutional
layer is composed of filters W6, each of size 7×7×d. Note
that each 7×7 area in L5 in thus mapped to a fixed-size d′-
dimensional vector, so that this transfer layer is equivalent
to applying the whole CNN on each of the 7× 7 region.
This architecture design serves two purposes: fast feature
computation in regions (see Section 3.2), and transferring
W6 weights from large scale datasets (see Section 4).

b) Weakly-Supervised Prediction (WSP) module This
is the heart of the proposed method, and is dedicated to se-
lecting relevant regions for properly predicting the global
(structured) label associated to each training image.

The WSP module consists in a succession of two layers.
The first layer is a linear prediction model W7, which is

1n′ = n− 6 because of the W6 filter padding.

dedicated to providing a (structured output) prediction for
each of the n′×n′ spatial cell in L6. This corresponds to
a fully connected layer applied to each spatial cell in L6,
which we implement using 1×1 convolutions, as in [29].
The L7 layer is thus of size n′×n′×C, where C is the
size of the structured prediction map, e.g. C is the number
of classes for multi-class classification (we detail our struc-
tured output instantiations in Section 4).

The second layer of the WSP module is a spatial pooling
layer s, which aggregates, for each output c ∈ {1;C}, the
score over the n′×n′ regions into a single scalar value. This
give the final prediction layer L8. As mentioned in Sec-
tion 2, the standard approach for WSL inherited from MIL
is to select the max scoring region. We propose to improve
this strategy in two complementary directions.

i) Top instances Based on recent MIL insights on
learning with top instances [27], we propose to extend the
selection of a single region to multiple high scoring regions.

Formally, let us denote as hi ∈ {0, 1} the binary vari-
able denoting the selection of the ith region from layer L7,
and l7i,c the value of the ith region score for output (e.g.
class) c.We propose the following aggregation strategy stop,
which selects the k highest scoring regions as follows:

stop (L7) = max
h

n′2∑
i=1

hi · l7i , s.t.
n′2∑
i=1

hi = k (1)

where h = {hi}, i ∈
{

1;n′2
}

, and l7i =
{
l7i,c
}

, c ∈ {1;C}.
Beyond the relaxation of the NiN assumption, which is
sometimes inappropriate (see Section 2), the intuition be-
hind stop is to provide a more robust region selection strat-
egy. Indeed, using a single area for training the model nec-
essarily increases the risk of selecting outliers, guiding the
training of the deep CNN towards bad local minima.



ii) MinMax layer When using top instances in Eq (1)
for classifying images, we make use of the most informa-
tive regions. Recent studies show that this information can
be effectively combined with negative evidence for a class,
e.g. using regions which best support the absence of the
class [38, 10]. In this submission, we propose to incorporate
this negative evidence in our prediction layer using multiple
instances, in the same way as for top instances. Therefore,
we augment our aggregation strategy with the term slow,
which selects the m lowest-scoring regions in an image:

slow (L7) = min
h

n′2∑
i=1

hi · l7i , s.t.
n′2∑
i=1

hi = m (2)

The final prediction of the network, that we denote as
L8, simply consists in summing stop and slow. If we denote
as t∗c (resp. l∗c ) the k top (resp. m lowest) instances selected
for output c, the cth output feature L8(c) is:

L8(c)=stop (L7(c)) + slow (L7(c))=

k∑
t∗c=1

l7t∗c +

m∑
l∗c=1

l7l∗c

(3)
The proposed WSP aggregation scheme in Eq. (3) thus gen-
eralizes the max+min prediction function in [10] in the
case of multiple top positive/negative instances.

3.2. Feature extraction network design

The feature extraction network is dedicated to comput-
ing a fixed-size representation for any region of the input
image. When using CNNs as feature extractors, the most
naive option is to process input regions independently, i.e.
to resize each region to match the size of a full image for
CNN architectures trained on large scale databases such as
ImageNet (e.g. 224×224). This is the approach followed in
R-CNN [16], or in MANTRA [10]. This is, however, highly
inefficient since feature computation in (close) neighbor re-
gions is not shared. Recent improvements in SPP nets [19]
or fast R-CNN [15] process images of any size by using
only convolutional/pooling layers of CNNs trained on Ima-
geNet, subsequently applying max pooling to map each re-
gion into a fixed-size vector. Fully-convolutional networks
are also used for semantic segmentation [8, 31].

We propose here a different strategy, which is based on
a multi-scale sliding window scheme. In the proposed ar-
chitecture, input images at a given scale are rescaled to
a constant size IxI , with I ≥ 224. For all I , we con-
sider regions of size 224× 224 pixels, so that the region
scale is α = 224/I (see details in Table 1 of supplemen-
tary 1). Input images are processed with the fully convolu-
tional/pooling layers of CNNs trained on ImageNet, leading
to L5 layers of different sizes.

Our multi-scale strategy is close to that of [34], but the
region size is designed to fit a 224×224 pixel area (i.e. 7×7

in L5 layer), which is not the case in [34]. This is a cru-
cial difference, which enables the weights W6 to the first
prediction layer L6 in Figure 2 to be transferred from Ima-
geNet, which is capitalized on for defining a training strat-
egy robust to over-fitting, see Section 4.2. We now detail
the training of our deep WSL architecture.

4. Training the WELDON Model
As shown in Figure 2, the WELDON model outputs

L8 ∈ RC . This vector represents a structured output, which
can be used in a multi-class or multi-label classification
framework, but also in a ranking problem formulation.

4.1. Training formulation

In this paper, we consider three different structured pre-
diction for WELDON, and their associated loss functions
during training.

Multi-class classification In this simple case, C is the
number of classes. We use the usual soft-max activation
function on top of L8: P (L8(c)) = eL8(c)/

∑
c′ e

L8(c′),
with its corresponding log loss during training.

Multi-label classification In the case of multiple labels,
we use a one-against-all strategy, as [34]. For C different
classes, we train theC binary classifiers jointly, using logis-
tic regression for prediction P (L8(c)) =

(
1 + e−L8(c)

)−1
,

with its associated log loss2.

Ranking: Average Precision We also tackle the problem
of optimizing ranking metrics, and especially Average Pre-
cision (AP) with our WELDON model. We use a latent
structured output ranking formulation, following [52]: our
input is a set of N training images x = {xi}, i ∈ {1;N},
with their binary labels yi, and our goal is to predict a rank-
ing matrix c ∈ C of size N × N providing an ordering of
the training examples (our ranking feature map is detailed
supplementary 2.1, Eq (1)). Here, we explicitly denote the
output L8(x, c) to highlight the dependence on x.

During training, we aim at minimizing the following
loss: ∆ap(c∗, c) = 1−AP (c∗, c) , where c∗ is the ground-
truth ranking. Since AP is non-smooth, we define the fol-
lowing surrogate (upper-bound) loss:

`W(x, c∗)=max
c∈C

[∆ap(c∗, c)+L8(x, c)−L8(x, c∗)] (4)

The maximization in Eq (4) is generally referred to as
Loss-Augmented Inference (LAI), while inference consists
computing ĉ(x) = arg max

c∈C
L8(x, c). Exhaustive maxi-

mization is intractable due to the huge size of the structured

2Experimentally, hinge loss with linear prediction performs similarly.



output space. The problem is even exacerbated in the WSL
setting, see [4, 10]. We exhibit here the following result for
WELDON (proof in supplementary 2.2):

Proposition 1 For each training example, let us denote
s(i) = stop(W7L6

i) + slow(W7L6
i) in Eq (3). Inference

and LAI for the WELDON ranking model can be solved ex-
actly by sorting examples in descending order of score s(i).

Proposition 1 shows that the optimization over regions,
i.e. score s(i), decouples from the maximization over output
variables c. This reduces inference and LAI optimization
to fully supervised problems. Inference solution directly
corresponds to s(i) sorting. For solving LAI with AP loss
∆ap in Eq (4), we use the exact greedy algorithm of [52]3.

4.2. Optimization

Given the loss functions given in Section 4.1, WELDON
parameters are adjusted using gradient-based methods.

For multi-class and multi-label predictions, error gradi-
ents in L8 are well-known. For the ranking instantiation,
we have (details in supplementary 3):

∂`

∂W7
=
∂L8(x, c̃)

∂W7
− ∂L8(x, c∗)

∂W7

where c̃ is the LAI solution. In all cases, error gradient is
back-propagated in the deep CNN through chain rule.

Transfer learning & fine-tuning Similarly to other deep
WSL models, our whole CNN contains a lot of parameters.
The vast majority of weights is located in W6 (Figure 2),
which contains∼ 108 parameters. Training such huge mod-
els on medium-size datasets as those studied in this paper
(with [103-105] examples) is highly prone to over-fitting.

With a network even bigger than ours, the authors in [34]
address this issue by extensively using regularization during
training with dropout and data-augmentation. We propose
here to couple these regularization strategies with a two-step
learning procedure to limit over-fitting.

In a first training phase, all parameters except those of
the WSP prediction module, i.e. W7, are frozen. All other
parameters, i.e. convolutional layers and W6 are trans-
ferred from CNNs trained on large-scale datasets (Ima-
geNet). Note that the transfer for W6 is fully effective
thanks to the carefully designed architecture of our feature
extraction network (Section 3.2) and the transfer layer (Sec-
tion 3.1a)). It is, for example, not possible as it with the
architecture in [34]. Note that W7 only contains ∼ 104

parameters, and can therefore robustly be optimized in the
considered medium-size datasets.

3Faster (approximate) methods, e.g. [32], could also be used.

In a second training phase, starting with W7 initialized
from the first phase, a fine-tuning of all other CNN parame-
ters is achieved. We use dropmap as regularization strategy,
consisting in randomly freezing maps in L6.

5. Experiments
Our deep CNN architecture is based on VGG16 [45]. We

implement our model using Torch7 (http://torch.ch/)4.
We evaluate our WELDON strategy on several Com-

puter Vision benchmarks corresponding to various visual
recognition tasks. While some choose pre-trained deep fea-
tures according to the target task (like Places features for
Scene recognition [54]), we knowingly decide with WEL-
DON to use only deep features pre-trained on ImageNet
whatever the visual recognition task. This is to put to the
proof our claim about genericity of our deep architecture.

Absolute comparison with state-of-the-art methods is
provided in Section 5.1, while Section 5.2 analyzes the im-
pact of the different improvements introduced in Section 3
and 4 for training deep WSL CNNs.

Experimental Setup In order to get results in very differ-
ent recognition contexts, 6 datasets are used: object recogni-
tion (Pascal VOC 2007 [12], Pascal VOC 2012 [13]), scene
categorization (MIT67 [40] and 15 Scene [26]), and visual
recognition, where context plays an important role (COCO
[30], Pascal VOC 2012 Action [13]).

For MIT67, 15 Scene and VOC 2007, performances are
evaluated following the standard protocol. For VOC 2012,
evaluation is carried out on the val set (which does not re-
quire server evaluation). On COCO dataset, we follow the
protocol in [34], and perform classification experiments. On
Pascal VOC 2012 Action, we use the same weakly super-
vised protocol as in [10], with evaluation on the val set.

5.1. Overall comparison

Firstly, we compare the proposed WELDON model to
state-of-the-art methods. We use the multi-scale WSL
model described in Section 3.2, and scale combination is
performed using an Object-Bank [28] strategy. For the se-
lection of top/low instances, we use here the default setting
of k = m = 3 (Eq (1) and Eq (2) in Section 3.1), for scale
α ≤ 70% (Table 1 of supplementary 1). This parameter is
analyzed in Section 5.2, showing further improvements by
careful tuning. Results for object (resp. scene and context)
datasets are gathered in Table 1 (resp. Table 2 and Table 3).

For object datasets, we can show in Table 1 that WEL-
DON outperforms all recent methods based on deep fea-
tures by a large margin. More specifically, the improve-
ment compared to deep features computed on the whole
image [7, 45] is significant: there is an improvement over

4We will make our code publicly available if accepted.

http://torch.ch/


VOC 2007 VOC 2012
Return Devil [7] 82.4
VGG16 (online code) [45] 84.5 82.8
SPP net [19] 82.4
Deep WSL MIL [34] 81.8
MANTRA [10] 85.8
WELDON 90.2 88.5

Table 1. mAP results on object recognition datasets. WELDON
and state-of-the-art methods results are reported.

the best method [45] of ∼ 6 pt on both datasets. Note that
since we use deep features VGG16 from [45], the perfor-
mance gain directly measures the relevance of using a WSL
method, which selects localized evidence for performing
prediction, rather than relying on the whole image informa-
tion. Compared to SPP net [19], the improvement of ∼ 8 pt
on VOC 2007 highlights the superiority of region selection
based on supervised information, rather than using hand-
crafted aggregation with spatial-pooling BoW models. The
most important comparison is the improvement over other
recent WSL methods on deep features [34, 10]. Compared
to [10], the improvement of 4.4 pt on VOC 2007 essen-
tially shows the importance of using multiple instances, and
the relevance of an end-to-end training of a deep CNN in
the target dataset. We also outperform the deep WSL CNN
in [34], the approach which is the most closely connected to
ours, by 6.7 pt on VOC 2012. This big improvement illus-
trates the positive impact of incorporating MIL relaxations
for WSL training of deep CNNs, i.e. negative evidence scor-
ing and top-instance selection. Finally, we can point out the
outstanding score reached by WELDON on VOC 2007, ex-
ceeding the nominal score of 90%.

15 Scene MIT67
CaffeNet ImageNet [20] 84.2 56.8
CaffeNet Places [54] 90.2 68.2
VGG16 (online code) [45] 91.2 69.9
MOP CNN [18] 68.9
MANTRA [10] 93.3 76.6
Negative parts [38] 77.1
WELDON (OB) 94.3 78.0

Table 2. Multiclass accuracy results on scene categorization
datasets. WELDON and state-of-the-art methods results are re-
ported.

The results shown in Table 2 for scene recognition also
illustrate the big improvement of WELDON compared to
deep features computed on the whole image [20, 54, 45]
and MOP CNN [18], a BoW method pooling deep features
with VLAD. It is worth noticing that WELDON also out-
performs recent part-based methods including negative evi-
dence during training [10, 38]. This shows the improvement

brought out by the end-to-end deep WSL CNN training with
WELDON. Note that in these scene datasets, deep features
trained on Places [54] reach much better results than those
trained on ImageNet. Therefore, we can expect further per-
formance improvement with WELDON by using stronger
feature as input for transfer, before fine-tuning the network
to the target dataset.

In Table 3, we show the results in datasets where con-
textual information is important for performing prediction.
On VOC 2012 action and COCO, selecting the regions cor-
responding to objects or parts directly related to the class
is important, but contextual features are also strongly re-
lated to the decision. WELDON outperforms VGG16 [45]
by ∼ 8 pt on both datasets, again validating our WSL deep
method in this context. On COCO, the improvement is from
62.8% [34] to 68.8% for WELDON. This shows the im-
portance of the negative evidence and top-instance scoring
in our WSP module, which better help to capture contex-
tual information than the standard MIL max function used
in [34]. Finally, note that the very good results in COCO
also illustrate the efficiency of the proposed WSL training
of deep CNN with WELDON, which is able to deal with
this large datasets (80 classes and ∼ 80000 training exam-
ples).

VOC 2012 action COCO
VGG16 (online code) [45] 67.1 59.7
Deep WSL MIL [34] 62.8
WELDON 75.0 68.8

Table 3. WELDON results and comparison to state-of- the-art
methods on context datasets.

5.2. WELDON Analysis

In this section, we analyze the impact on prediction per-
formances of the different contributions of WELDON given
in Section 3 and 4. Our baseline model a) is the WSL CNN
model using an aggregation function s=max at the WSP
module stage (Figure 2), evaluated at scale α = 30%. It
gives a network similar to [34], trained at a single scale.
To measure the importance of the difference between WEL-
DON and a), we perform a systematic evaluation on the per-
formance when the following variations are incorporated:

b) Use of k top instances instead of the max. We use k = 3.

c) Incorporation of negative evidence through max+min
aggregation function. When b)+c) are combined, we use
m lowest-instances instead of the min, with m = 3.

d) Learning the deep WSL with ranking loss, e.g. AP, in the
concerned datasets (PASCAL VOC).

e) Fine-tuning the network on the target dataset, i.e. using
the second training phase in Section 4.2.



The results are reported in Table 4 for object and context
datasets with AP evaluation (VOC 2007 and VOC 2012 ac-
tion), and in Table 5 for scene datasets.

a) max b) +top c) +min d) +AP VOC07 VOC act
X 83.6 53.5
X X 86.3 62.6
X X 87.5 68.4
X X X 88.4 71.7
X X X 87.8 69.8
X X X X 88.9 72.6

Table 4. Systematic evaluation of our WSL deep CNN contribu-
tions. Object and Context databases with AP evaluation.

a) max b) +top c) +min d) +FT MIT67 15-Scene
X 42.3 72.0
X X 69.5 85.9
X X 72.1 89.7
X X X 74.5 90.9
X X X X 75.1 91.5

Table 5. Systematic evaluation of our WSL deep CNN contribu-
tions. Scene databases with multi-class classification evaluation.
FT: fine-tuning.

From this systematic evaluation, we can draw the follow-
ing conclusions:

• Both b) and c) improvements result in a very large per-
formance gain on all datasets, with a comparable im-
pact on performances: ∼ +30 pt on MIT67, ∼ +15
pt on 15-Scene, ∼ +15 pt on VOC 2012 Action and∼
+4 pt on VOC 2007. When looking more accurately,
we can notice that max+min leads always to a larger
improvement, e.g. is 4 pt above on 15-Scene or VOC
2012 Action and 3 pt on MIT67.

• Combining b) and c) improvements further boost per-
formances: +3 pt on MIT67 and VOC 2012 Action, +2
pt on 15-Scene, +1pt on VOC 2007. This shows the
complementarity of these two extensions at the aggre-
gation level. We perform an additional experiment for
comparing b)+c) and c), by setting the same number of
regions (e.g. 6 for k-max and 3-3 for k-m max+min).
It turns out that k-m max+min is the best method
for various k/m values, showing that negative evidence
contains significant information for visual prediction.

• Minimizing an AP loss enables to further improve per-
formances. Interestingly, the same level of improve-
ment is observed when AP optimizing is added to the
c) configuration than to the more powerful b)+c) con-
figuration: +3pt on VOC 2012 Action, +1 pt on VOC
2007. This shows that b) and c) are conditionally inde-
pendent from the AP optimization.

• Fine-tuning favorably impacts performances, with
+0.6 pt gain on MIT67 and 15-Scene. Note that
the performance level is already high at the b)+c)
configuration, making further improvements challeng-
ing. These results are obtained with the two-step fine-
tuning proposed in section 4.2. We compare this strat-
egy to a parallel optimization, consisting in jointly
updating all network parameters. Performances drop
with this parallel procedure, e.g. 73.5% on MIT67.

To further evaluate the impact of the number k top andm
low instances, we show in Figure 3 the performance varia-
tion (k = m) on MIT67 and 15 Scene. We can see that
performances can still be significantly improved on these
datasets when k andm increase, although performances de-
crease for k ≥ 8 on MIT67 (see results in other datasets on
supplementary 4).

Figure 3. Multi-class accuracy with respect to the number of
top/low instances for MIT67 and 15 Scene at scale α = 30%.

Finally, we show in Figure 4 the performance in differ-
ent configurations, corresponding to sequentially adding the
previous improvements in the following order: a), a)+b),
b)+c), and b)+c)+d) for VOC 2007 / VOC 2012 / VOC
2012 Action and c)+c)+e) for MIT67 and 15 Scene. On all
dataset, we can see the very large improvement from config-
uration a) to configuration b)+c)+d)/e). The behavior can,
however, be different among datasets: for example, the per-
formance boost is sharp from a) to a)+b) on MIT67 (the
following improvements being less pronounced), whereas
there is a linear increase from a) b)+c)+d) on VOC 2007
and VOC 2012.

Figure 4. Performance variations when the different improvements
are incorporated: from the baseline model a) to b), a)+b), b)+c),
and b)+c)+d)/e).



Aeroplane image Car image

Aeroplane model (1.8) Bus model (-0.4) Car model (1.4) Train model (-0.3)
Sofa image Motorbike image

Sofa model (1.2) Horse model (-0.6) Motorbike model (1.1) Sofa model (-0.8)
Potted-plant image Horse image

Potted-plant model (0.9) Dining table model (-0.4) Horse model (1.4) Train model (-0.2)

Figure 5. Visual results of WELDON on VOC 2007 with k =m= 3 instances. The green (resp. red) boxes are the 3 top (resp. 3 low)
instances. For each image, the first column represents WELDON prediction for the ground truth classifier (with its corresponding score),
and the second column shows prediction and score for an incorrect classifier.

Qualititative analysis of region selection To illustrate
the region selection policy performed by WELDON, we
show in Figure 5 the top 3 positive (resp. top 3 negative)
regions selected by the model in green (resp. red), on the
VOC 2007 dataset. We show the results for the ground truth
classification model in the first column, with its associated
prediction score. We can notice that top positive green re-
gions detect several discriminant parts related to the object
class, potentially capturing several instances or modalities
(e.g. wheels or airfoil for the car model), whereas negative
evidence on red regions, which should remain small, encode
contextual information (e.g. road or sky for airplane, or trees
for horse). The region selection results are shown for incor-
rect classification models in the second column, again with
the prediction score. We can notice that red regions corre-
spond to multiple negative evidence for the class, e.g. parts
of coach strongly penalizes the prediction of the class horse,
or seat or handlebar negatively supports the prediction of the
sofa category.

6. Conclusion

In this paper, we introduce WELDON, a new method
for training deep CNNs in a weakly supervised manner.
Our method exploits to the full extend deep CNN strategy
in multiple instance learning framework to efficiently deal
with weak supervision. The whole architecture is carefully
designed for fast processing by sharing region feature com-
putations, and robust training.

We show the excellent performances of WELDON for
WSL prediction on very different visual recognition tasks:
object class recognition, scene classification, and images
with a strong context, outperforming state-of-the-art results
on six challenging datasets. Future works include adapt-
ing WELDON for other structured visual applications, e.g.
metric learning [25], semantic segmentation.

Acknowledgments This research was supported by a
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