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Abstract

In this work, we propose a novel Weakly Supervised
Learning (WSL) framework dedicated to learn discrimina-
tive part detectors from images annotated with a global
label. Our WSL method encompasses three main contri-
butions. Firstly, we introduce a new structured output la-
tent variable model, Minimum mAximum lateNt sTRucturAl
SVM (MANTRA), which prediction relies on a pair of latent
variables: h+ (resp. h−) provides positive (resp. nega-
tive) evidence for a given output y. Secondly, we instantiate
MANTRA for two different visual recognition tasks: multi-
class classification and ranking. For ranking, we propose
efficient solutions to exactly solve the inference and the loss-
augmented problems. Finally, extensive experiments high-
light the relevance of the proposed method: MANTRA out-
performs state-of-the art results on five different datasets.

1. Introduction
Deep learning with Convolutional Neural Networks

(CNN) [17] are becoming a key ingredient of visual recog-
nition systems. Internal CNN representations trained on
large scale datasets [17] currently provide state-of-the-art
features for various tasks, e.g., image classification or ob-
ject detection [24, 10]. To overcome the limited invariance
capacity of CNN, bounding box annotations are often used.

However, collecting full annotations for all images in a
large dataset is an expensive task: whereas several millions
of images annotated with a global label are nowadays avail-
able, while only thousands of accurate bounding box anno-
tations exist [4]. This observation makes the development
of Weakly Supervised Learning (WSL) models appealing.

Regarding WSL models, one of the most famous ap-
proach is the Deformable Part Model (DPM) [9], or its
extension to structured output prediction, Latent Structural
SVM (LSSVM) [38]. Recently, several attempts have been
devoted to applying the LSSVM framework for object or
scene recognition problems [18, 25, 29, 26, 3, 33, 32, 8].

a) sl(h+) = 1.8 ; sl(h−) = 0.1 b) sc(h+) = 1.5 ; sc(h−) = −0.8

Figure 1. MANTRA prediction maps for library classifier sl a)
and cloister classifier sc b), for an image of class library. For each
class, MANTRA score is s(h+)+s(h−): h+ (red) provides local-
ized evidence for the class, whereas h− (blue) reveals its absence.

In this paper, we tackle the WSL problem of learning
part detectors from images annotated with a global label.
To this end, we introduce a novel structured output latent
variable framework, MANTRA (Minimum mAximum la-
teNt sTRucturAl SVM), which incorporates a pair of latent
variables (h+,h−), and sum their prediction scores.

To illustrate the rationale of the approach, let us con-
sider a multi-class classification instantiation of MANTRA,
where latent variables h correspond to part localizations.
h+ is the max scoring latent value for each class y, i.e. the
region which best represents class y. h− is the min scoring
latent value, and can thus be regarded as an indicator of the
absence of class y in the image.

To highlight the importance of the pair (h+,h−), we
show in Figure 1, for an image of the class library, clas-
sification scores for each latent location using (on the left)
the library classifier sl (the correct one) and (on the right)
the cloister classifier sc (a wrong one). h+ (resp. h−)
regions are boxed in red (resp. blue). As we can see,
the prediction score sl(h+) = 1.8 for the correct library
classifier is large, since the model finds strong local evi-
dence h+ of its presence (bookcase), and no clear evidence
of its absence (medium score sl(h−) = 0.1). Contrarily,
the prediction score for the cloister classifier sc is substan-

1



tially smaller: although the model heavily fires on the vault
(sc(h+) = 1.5), it also finds clear evidence of the absence
of cloister, here books (sc(h−) = −0.8). As a conse-
quence, MANTRA correctly predicts the class library1.

From the intuition given in Figure 1, we provide in Sec-
tion 3 a formal definition of MANTRA, and propose a
generic and efficient optimization scheme to train it. In ad-
dition, we propose two instantiations of our model: multi-
class classification (Section 4.1) and ranking, for which
specific solutions must be designed to handle the large
output space (Section 4.2). In the experiments (Section
5), we show that MANTRA trained upon deep features
outperforms state-of-the-art performances on five different
datasets. We now detail state-of-the-art methods which are
the most connected to ours.

2. Related Works & Contributions

The computer vision community is currently witnessing
a revolutionary change, essentially caused by Convolutional
Neural Networks (CNN) and deep learning. CNN reached
an outstanding success in the context of large scale image
classification (ImageNet) [17], significantly outperforming
handcrafted features based on Bag of Words (BoW) mod-
els [20, 27, 1, 11], or biologically-inspired networks [31, 35,
34]. Deep features also prove their efficiency for transfer
learning: state-of-the-art performances on standard bench-
marks (PASCAL VOC, 15-Scenes, MIT67, etc) are nowa-
days obtained with deep features as input. Recent studies
reveal that performances can further be improved by col-
lecting large datasets that are semantically closer to the tar-
get domain [42], or by fine-tuning the network with data
augmentation [5].

Despite their excellent performances, current CNN ar-
chitectures only carry limited invariance properties. Re-
cently, attempts have been made to overcome this limita-
tion. Some methods revisit the BoW model with deep fea-
tures as local region activations [13, 12]. The drawback
is that background regions are encoded into the final rep-
resentation, decreasing its discriminative power. In [41], it
is shown that aligning parts with poselet detectors makes
human attribute recognition with deep features much more
efficient. Although we share with [41] the motivation for
part alignment, [41] focuses on specific pre-trained poselet
detectors, which do not generalize to other tasks. In this
paper, we tackle the problem of learning part detectors that
are optimal for the task, in a weakly supervised manner.

The DPM model [9] is extremely popular for WSL, due
to its excellent performances for weakly supervised object
detection. Several attempts have been devoted to using
DPM and its generalization to structured output prediction,

1Many additional visualizations highlighting the relevance of training
MANTRA with (h+,h−) are shown in Supplementary, Figures 2,3,4.

LSSVM [38], for weakly supervised scene recognition and
object localization. Some approaches learn single part de-
tectors [18, 25, 29, 3], whereas other methods enrich the
model with multiple parts [30, 26], optionally incorporating
priors, e.g. sparsity or diversity, in order to learn sensible
models [16, 33]. Due to the non-convexity of LSSVM ob-
jective, other approaches attempt to improve LSSVM train-
ing. In [18, 29, 3], different solutions are explored to apply
the curriculum learning idea, i.e. how to find easy samples
to incrementally solve the non-convex optimization prob-
lem and reach better local optima. However, it should be
noted that all these methods still use the LSSVM predic-
tion rule. We follow a different route with MANTRA, by
proposing a new prediction function which combines a max
and min scoring.

In this paper, we also tackle the important problem of
learning to rank, since many computer vision tasks are eval-
uated with ranking metrics, e.g. Average Precision (AP)
in PASCAL VOC. Optimizing ranking models with AP is
challenging. In the fully supervised case, an elegant instan-
tiation of structural SVM is introduced in [39], making it
possible to optimize a convex upper bound over AP. On
the contrary, few works tackle the problem of weakly su-
pervised ranking from the latent structured output perspec-
tive, with the exception of [2]. In [2], the authors introduce
LAPSVM, and point out that directly using LSSVM [38]
for this purpose is not practical, mainly because no algo-
rithm for solving the loss-augmented inference problem ex-
ists. LAPSVM introduces a tractable optimization by defin-
ing an ad-hoc prediction rule dedicated to ranking: first the
latent variables are fixed, and then an optimal ranking with
fixed latent variables is found. Our WSL method is appli-
cable to any structured output space, and we show its rele-
vance for weakly supervised AP ranking.

This paper presents a weakly supervised learning
scheme, which encompasses the following contributions:

• We introduce a new latent structured output learning
framework, MANTRA, which prediction function is
based on a pair of latent variables (h+,h−). In ad-
dition, we propose a direct cutting plane optimization
procedure for training the model, which is efficient.

• We propose two instantiations of MANTRA: multi-
class classification and ranking. We show that both
inference and loss-augmented inference problems can
be solved exactly and efficiently in the ranking case.

• We report excellent results in different visual recogni-
tion tasks: MANTRA outperforms state-of-the-art per-
formances on five challenging visual datasets. In par-
ticular, we highlight that the model is able to detect
parts witnessing the absence of a class, and show that
the proposed ranking instantiation is able to further im-
prove performances by a large margin.



3. Proposed Weakly Supervised Model
We present here the proposed WSL model: Minimum

mAximum lateNt sTRucturAl SVM (MANTRA).
Notations We first give some basic notations used in the
(latent) structured output learning framework. We consider
an input space X , that can be arbitrary, and a structured out-
put space Y . For (x,y) ∈ (X ×Y), we are interested in the
problem of learning a discriminant function of the form: f :
X → Y . In order to incorporate hidden parameters that are
not available at training time, we augment the description
between an input/output pair with a latent variable h ∈ H.
We assume that a joint feature map Ψ(x,y,h) ∈ Rd, de-
scribing the relation between input x, output y, and latent
variable h, is designed. Our goal is to learn a prediction
function fw, parametrized by w ∈ Rd, so that the predicted
output ŷ depends on 〈w,Ψ(x,y,h)〉 ∈ R. During train-
ing, we assume that we are given a set of N training pairs
(xi,yi) ∈ (X × Y), i ∈ {1;N}. Our goal is to optimize w
in order to minimize a user-supplied loss function ∆(yi, ŷ)
over the training set.

3.1. MANTRA Model

As mentioned in the introduction, the main intuition of
the proposed MANTRA model is to equip each possible
output y ∈ Y with a pair of latent variables (h+

i,y,h
−
i,y).

h+
i,y (resp. h−i,y) corresponds to the max (resp. min) scor-

ing latent value, for input xi and output y:

h+
i,y =arg max

h∈H
〈w,Ψ(xi,y,h)〉

h−i,y =arg min
h∈H

〈w,Ψ(xi,y,h)〉

For an input/output pair (xi,y), the scoring of the model,
Dw(xi,y), sums h+

i,y and h−i,y scores, as follows:

Dw(xi,y)=〈w,Ψ(xi,y,h
+
i,y)〉+〈w,Ψ(xi,y,h

−
i,y)〉 (1)

Finally, MANTRA prediction outputs ŷ = fw(xi)
which maximizes Dw(xi,y) with respect to y:

ŷ = fw(xi) = arg max
y∈Y

Dw(xi,y) (2)

3.2. Learning Formulation

During training, we enforce the following constraints:

∀y 6= yi, Dw(xi,yi) ≥ ∆(yi,y) +Dw(xi,y) (3)

Each constraint in Eq. (3) requires the scoring value
Dw(xi,yi) for the correct output yi to be larger than the
scoring value Dw(xi,y) for each incorrect output y 6= yi,
plus a margin of ∆(yi,y). ∆(yi,y), a user-specified loss,
makes it possible to incorporate domain knowledge into the
penalization. To give some insights of how the model pa-
rameters can be adjusted to fulfill constraints in Eq. (3), let
us notice that:

• Dw(xi,yi), i.e. the score for the correct output yi,
can be increased if we find statistically high scoring
variables h+

i,yi
, which represent strong evidence for

the presence of yi, while enforcing h−i,yi
variables not

having large negative scores.

• Dw(xi,y), i.e. the score for an incorrect output y, can
be decreased if we find low scoring variables h+

i,y, lim-
iting evidence of the presence of y, while seeking h−i,y
variables with large negatives scores, supporting the
absence of output y.

To allow some constraints in Eq. (3) to be violated, we
introduce the following loss function:

`w(xi,yi)=max
y∈Y

[∆(yi,y)+Dw(xi,y)−Dw(xi,yi)] (4)

We show in supplementary material A.1 that `w(xi,yi) in
Eq. (4) is an upper bound of ∆(ŷ,yi).

Using the standard max margin regularization term
‖w‖2, our primal objective function is defined as follows:

P(w) =
1

2
‖w‖2 +

C

N

N∑
i=1

`w(xi,yi) (5)

3.3. Optimization

The problem in Eq. (5) is not convex with respect to w.
To solve it, we propose an efficient optimization scheme
based on a cutting plane algorithm with the one-slack for-
mulation [15]. Our objective function in Eq. (5) can thus be
rewritten as follows:

min
w,ξ

1

2
‖w‖2 + Cξ s.t. ∀(ŷ1, . . . , ŷN ) ∈ YN (6)

1

N

N∑
i=1

∆(yi, ŷi) +Dw(xi, ŷi)−Dw(xi,yi) ≤ ξ

The key idea of the 1-slack formulation in Eq. (6) is to
replace the N slack variables (weak constraints) by a sin-
gle shared slack variable ξ (strong constraint). It is shown
in [15] that this formulation helps speeding up the train-
ing of structural SVMs, reducing the complexity from being
super-linear to linear in the number of training examples.

Cutting Plane Algorithm Based on the 1-slack formula-
tion, we use a cutting plane strategy to optimize Eq. (6).
Compared to sub-gradient methods, the cutting plane ap-
proach takes an optimal step in the current cutting plane
model, leading to faster convergence [36].

For convex optimization problems, the idea of the cutting
plane method is to build an accurate approximation, under-
estimating the objective function. However, it cannot be



directly applied for solving non-convex optimization prob-
lems, because the cutting plane approximation might not be
underestimating the objective at all points, with the risk of
missing good local minima [6]. Based on [6], we derive a
non-convex cutting plane algorithm to solve Eq. (6). In par-
ticular, we use a method to detect and solve conflicts when
adding a new cutting plane, as in [6], in order to avoid over-
estimating the objective function. It is important to stress
that the proposed approach consists in a direct optimization,
contrarily to iterative methods, which usually solve a set of
approximate problems, e.g. CCCP [40].

The overall training scheme of MANTRA is shown in
Algorithm 1. Starting from an initial cutting plane (Line 1),
each cutting plane iteration consists in solving the resulting
Quadratic Problem (QP) problem with the working set of
cutting planes H (Line 5). As in [15], we solve the QP in
the dual, because |H| is generally much smaller than the in-
put dimension. The dual formulation of Eq. (6) (Line 5) is
derived in supplementary material A.2.1. Then, the current
w solution (Line 7) is used to find the most violated con-
straint ŷ for each example (Line 10). The ŷ’s are used to
compute g(t) from the subgradient ∇w`w (Line 13), which
computation is given in supplementary material A.2.2. g(t)

serves to update the working set H at the next iteration. Fi-
nally, when adding a new cutting plane, we detect and solve
conflicts (Line 15) using the method detailed in [6]. The al-
gorithm stops as soon as no constraint can be found that is
violated by more than the desired precision ε (Line 16).

Algorithm 1 Cutting Plane Algorithm for training MANTRA

Input: Training set {(xi,yi)}i=1,...,N , precision ε, C.
1: Initialize t← 1, {ŷi,h+

i,ŷi
,h−i,ŷi

}i=1,...,N and compute
initial cutting plane (g(1), c(1))

2: repeat
3: // Update working set and solve QP
4: H ← (Hij)1≤i,j≤t where Hij = 〈g(i), g(j)〉
5: α← arg max

α≥0
αT c− 1

2α
THα s.t. αT 1 ≤ C

6: ξ ← 1
C (αT c− αTHα)

7: w←
∑t
i=1 αig

(i)

8: t← t+ 1
9: for i=1 to N do

10: ŷi=arg max
y∈Y

`w(xi,yi)// Loss-augmented inference

11: end for
12: // Compute new cutting plane and solve conflict
13: g(t) ← 1

N

∑N
i=1−∇w`w(xi,yi)

14: c(t) ← 1
N

∑N
i=1 ∆(yi, ŷi)

15: (g(t), c(t))← SolveConflict(w, g(t), c(t))
16: until 〈w, g(t)〉 ≥ c(t) − ξ − ε
Output: w

4. MANTRA Instantiation
MANTRA instantiation consists in specifying a partic-

ular joint feature Ψ and loss function ∆. For each instan-
tiation, training the model requires solving two problems:
inference (Eq. (2)), and loss-augmented inference (Eq. (7)):

ŷ = arg max
y∈Y

∆(yi,y) +Dw(xi,y) (7)

In this section, we instantiate MANTRA for two WSL
detection tasks: multi-class classification and ranking.

4.1. Multi-class Instantiation

For multi-class classification, the input x is an image,
and the latent variable h is the location of a region (bound-
ing box) in the image. The output space is the set of classes
Y = {1, . . . ,K}, where K is the number of classes. We
use the standard joint feature map Ψ(x,y,h) = {I(y =
1)Φ(x,h), . . . , I(y = K)Φ(x,h)}, where Φ(x,h) ∈ Rd
is a vectorial representation of image x at location h, and
I(y = k) = 1 if y = k and I(y = k) = 0 if y 6= k.
Ψ(x,y,h) is then a (K × d)-dimensional vector. The loss
function ∆ is the 0/1 loss. The inference and the loss-
augmented inference are exhaustively solved.

4.2. Ranking Instantiation

Notations Following [39], our input for ranking is a set
of N images xi: x = {xi, i = 1, . . . , N}. During train-
ing, each image is given its class information: xi ∈ P if
it is labeled as positive, xi ∈ N otherwise. The structured
output is a ranking matrix y of size N × N providing an
ordering of the training examples, such that (a) yij = 1 if
xi ≺y xj

2; (b) yij = −1 if xj ≺y xi ; (c) yij = 0 if xi
and xj are assigned the same rank. y∗ is the ground-truth
ranking matrix, i.e. y∗ij = 1 for (xi, xj) ∈ P ×N , y∗ii′ = 0
and y∗jj′ = 0 for (xi, xi′) ∈ P ×P and (xj , xj′) ∈ N ×N .

Joint Feature Map Ψ(x,y,h) is defined as follows:

Ψ(x,y,h)=
1

|P||N |
∑
xi∈P

∑
xj∈N

yij [Φ(xi, hi,j)−Φ(xj , hj,i)]

(8)
The latent space H corresponds to the set of latent vari-

ables for each pair of positive-negative examples: h =
{(hi,j , hj,i) ∈ Hi × Hj , (xi, xj) ∈ P × N}, where Hi
(resp. Hj) is the set of locations in image xi (resp. xj).
Φ(xi, hi,j) ∈ Rd is thus a vectorial representation of im-
age xi at location hi,j . Note that Ψ(x,y,h) in Eq. (8) is
a generalization of the feature map used in [2], where the
selection of bounding boxes is specific to each image pair.

2i.e. xi is is ranked ahead of xj .



Loss Function During training, the goal is to minimize
a given ranking loss function. In this paper, we especially
focus on AP, with ∆ap(y

∗,y) = 1 − AP (y∗,y). As
mentioned in Section 2, optimizing over ∆ap is difficult,
because ∆ap does not decompose linearly in the exam-
ples [39]. In the WSL setting, the problem is exacerbated:
for example, no efficient algorithm currently exists for solv-
ing the loss-augmented inference problem in the LSSVM
case [38], as pointed out in [2].

We show here that inference and loss-augmented infer-
ence can be solved exactly and efficiently with MANTRA.
Firstly, we show (Lemma 1) that in our ranking instantia-
tion, Dw in Eq. (1) can be computed a standard fully su-
pervised feature map. This result has major consequences,
which enables to decouple the optimization over y and h.

Lemma 1. ∀(x,y), Dw(x,y) in Eq. (1), for the ranking
instantiation of Ψ given in Eq. (8), rewrites as A(x,y):

A(x,y)=
1

|P||N |
∑
xi∈P

∑
xj∈N

yij(〈w,Φ+
−(xi)〉−〈w,Φ+

−(xj)〉

〈w,Φ+
−(xi)〉 = max

h∈Hi

〈w,Φ(xi, h)〉+ min
h∈Hi

〈w,Φ(xi, h)〉

The proof of Lemma 1 is given in supplementary B.1,
and comes from an elegant symmetrization of the prob-
lem due to the max + min operation. The supervised fea-
ture map Φ+

−(xi) is the solution of the optimization over h,
whatever y value.

We now explain how inference and loss-augmented in-
ference can be efficiently solved with MANTRA.

Proposition 1. Inference for the MANTRA ranking instan-
tiation is solved exactly by sorting the examples in descend-
ing order of score s(i) = 〈w,Φ+

−(xi)〉
Proof. Since the inference consists in solving
maxy A(x,y), this is a direct consequence of Lemma 1:
the problem reduces to solving a fully supervised ranking
inference problem, where each example xi is represented
by Φ+

−(xi). This is solved by sorting the example in
descending order of score s(i) = 〈w,Φ+

−(xi)〉 [39].

Proposition 2. Loss-augmented inference for MANTRA
(Eq. (7)), with the instantiation of Eq. (8), is equivalent to:

ŷ = arg max
y∈Y

[∆(y∗,y) +A(x,y)] (9)

Proposition 2 directly follows from Lemma 1. This is
a key result, since it allows to use MANTRA with differ-
ent loss functions, as soon as there is an algorithm to solve
the loss-augmented inference in the fully supervised setting.
To solve it with ∆ap, we use the greedy algorithm proposed
by [39], which finds a globally optimal solution (see com-
plexity analysis in supplementary B.2). Note that it is pos-
sible to use faster methods [23] to address large-scale prob-
lem if required.

5. Experiments
In this section, we present an evaluation and analy-

sis of MANTRA for multi-class classification and ranking
tasks. In our implementation, we use MOSEK3 to solve
the Quadratic Problem (QP) at each cutting plane iteration
(Line 5 of Algorithm 1 for MANTRA). The regularization
parameter C is fixed to a large value, e.g. 1054.

5.1. Multi-class Classification

In this section, we analyze our multi-class model (sec-
tion 4.1) for different bounding box scales (from 30% to
90% of the image size, with a step of 10%).

Datasets We evaluate our multi-class model for 4 differ-
ent visual recognition tasks: scene categorization [20] (15-
Scene dataset), cluttered indoor scenes [28] (MIT 67 Indoor
Scenes), fine-grained recognition [37] (People Playing Mu-
sical Instrument, PPMI) and complex event and activity im-
ages [21] (UIUC-Sports dataset). Performances are evalu-
ated with multi-class accuracy and follow the standard pro-
tocol for all databases (more details in supplementary C.1).

Features Each image region is described using deep fea-
tures computed with Caffe CNN library [14]. We use the
output of the sixth layer (after the rectified linear unit trans-
formation (ReLU)), so that each region is represented by
a 4096-dimensional vector. For UIUC-Sports and PPMI
(resp. 15 Scene and MIT67), we use deep features based
on a model pre-trained on ImageNet (resp. Places [42]).

5.1.1 MANTRA Results

Firstly, we report MANTRA results with respect to the scale
in Figure 2. It is worth pointing out that parts learned with
a single region by MANTRA are able to improve perfor-
mances over deep features computed on the whole image
(s = 100%), e.g. 5 pt for PPMI. It confirms that using re-
gions allows to find more discriminant representations. We
observe that the performances on small scales remain very
good: for example, results for scale s = 40% are as good as
for s = 100% in PPMI and UIUC; although performances
slightly decrease for 15-Scene and MIT67, they remain very
competitive (see Table 1).

The previous results suggest the idea of combining sev-
eral scales, which are expected to convey complementary
informations. To perform scale combination, we use an
Object-Bank (OB) [22] strategy, which is often used in
WSL works [30, 16, 33]. Our OB is simple, using max-
pooling over P parts models and K classes, without SPM.
Our final representation is thus compact (P × K). Ulti-
mately, we use a linear SVM classifier for classification.

3www.mosek.com
4MANTRA performances remain steady once C is sufficiently large.

http://www.mosek.com


UIUC-Sports 15-Scene PPMI MIT67

Figure 2. Predictive (multi-class) accuracy (%) (values are reported in Table 1 of supplementary material C.1)

Results for our multi-scale method are shown in Table 1:
we can notice that performances improve compared to the
best mono-scale results (4 pt for MIT67, 7 pt for PPMI), val-
idating the fact that taking into account different scales en-
able catching complementary and discriminative localized
information.

PPMI UIUC 15Sc MIT67
Deep features
ImageNet [14] 54.5∗ 94 88 58.5
Places [42] 38.6∗ 94.1 90.2 68.2
MOP-CNN [12] - - - 68.9
Part-based
SPM [20] 39.1 71.6 81.4 34.4
Object Bank [22] - 77.9 80.9 37.6
RBoW [26] - - 78.6 37.9
DSS [32] 49.4 - 85.5 -
LPR [30] - 86.3 85.8 44.8
IFV + BoP [16] - - - 63.1
MLrep+IFV [7] - - - 66.9
[33] - 86.4 86.0 51.4
MANTRA 66.2 97.3 93.4 76.6

Table 1. Performances of MANTRA and comparison to state-of-
the art works (∗ is our re-implementation).

We also compare MANTRA to state-of-the-art works in
Table 1. We can notice that the improvement over part-
based models, which use weaker features and essentially
based on LSSVM [38], e.g. HoG, is huge. We also provide
comparisons to recent methods based on deep features: we
report performances with models pre-trained on ImageNet,
but also using Places, a large-scale scene dataset recently
introduced in [42]. As we can verify, Places is better-
suited for scene recognition (performance boost in 15-Scene
and MIT67), whereas ImagetNet has an edge over Places
for object classification (PPMI). For UIUC, both models
present similar performances. In Table 1, we can see that
MANTRA can further improve performances over the best
deep features (ImageNet or Places) by a large margin on the
4 databases, e.g. 8.5 pt on the challenging MIT67 dataset, or
11 pt on PPMI. As mentionned in Section 2, internal repre-
sentations learned by ConvNets present limited invariance
power: learning strong invariance is therefore challeng-

ing [41]. We show here that the proposed WSL scheme is
able to efficiently learn strong invariance by aligning image
regions, increasing performances when built upon strong
deep features. MANTRA also significantly outperforms
MOP-CNN [12] which uses VLAD pooling with deep fea-
tures extracted at different scales. This shows the capacity
of our model to seek discriminative part regions, whereas
background and non-informative parts are incorporated into
image representation in [12].

5.1.2 MANTRA Analysis

In this section, we provide an analysis of our method. We
study the training time with respect to the number of re-
gions, we show visual results, and compare MANTRA to
LSSVM [38].

Time analysis The Figure 3 shows the training time re-
quired on 1 CPU (2.7 Ghz, 32 Go RAM) to train mod-
els on UIUC-Sports and MIT67. Results for 15 Scene and
PPMI are reported in supplementary material C.1. Training
MANTRA is fast: for example, it takes 1 minute at scale
30% of UIUC, where the training set is composed of 540
images and ∼ 36 000 regions. The training time increases
linearly with respect to the number of regions per image.
It is the expected behavior, because the most time consum-
ing step of Algorithm 1 is the loss-augmented inference,
which is proportional to the size of the latent space when it
is solved exhaustively. This confirms that the proposed 1-
slack cutting plane strategy to solve the optimization prob-
lem (section 3.3) is efficient.

UIUC-Sports MIT67

Figure 3. MANTRA training time (seconds) vs number of regions
per image (values are reported in Tab 2 of supp. mat. C.1)



Comparison to LSSVM As previously mentioned, most
of state-of-the-art WSL works are based on DPM [9] or
LSSVM [38]. To highlight model differences between
MANTRA and LSSVM, we carry out experiments with
the same (deep) features, and evaluate performances on the
same splits. For small scales, the choice of a proper region
for classification is crucial. In Table 2, we report classifi-
cation performances for both methods at scale 30%. Re-
sults clearly show the superiority of our model: MANTRA
outperforms LSSVM by a very large margin, e.g. ∼ 30
pt increase on PPMI and MIT67. In Table 2, we also re-
port the training time. MANTRA training is much faster
than LSSVM’s: for example, MANTRA is 30 times faster
for UIUC Sports. The significant speedup for training
MANTRA can be explained by the fact that LSSVM uses
CCCP [40] to solve the non-convex optimization problem.

To further analyze the performance gain of MANTRA
vs LSSVM, we isolate in Table 2 the impact of the new pre-
diction function (section 3.1) by training MANTRA with
CCCP (MANTRA-C), and the non-convex cutting-plane
(NCCP) optimization (section 3.3), by training LSSVM
with NCCP (LSSVM-N). CCCP leads to slightly better
results for LSSVM, because the decomposition proposed
by [38] exploits the structure of the optimization problem.
In contrast, MANTRA objective (Eq. (5)) does not directly
rewrites as a difference of convex (DC) functions. We can
still use the generic DC decomposition of an arbitrary func-
tion f 5 (Theorem 1 of [40]) to use CCCP for MANTRA:
results in Table 2 show that both optimizations give similar
performances, because the decomposition is not driven by
the structure of the problem, while MANTRA CCCP be-
ing significantly slower. The conclusion of this study is that
the superiority of MANTRA vs LSSVM is due to the new
prediction function.

UIUC 15-Scene PPMI MIT67
Multi-class accuracy (%)
LSSVM 73.3±0.3 65 ± 1.5 13.3 26.6
MANTRA 93.2 ± 1 80.7±0.7 51.0 56.4
LSSVM-N 71.6 ± 1.3 64.3±0.9 13.6 25.2
MANTRA-C 93.2 ± 0.9 80.4±0.6 50.9 56.5
Average training time (seconds)
LSSVM 1863 14179 21327 156360
MANTRA 61 843 2593 41805

Table 2. Performances comparison and training time between
MANTRA and LSSVM for scale 30%. MANTRA-C is
MANTRA with CCCP, and LSSVM-N is LSSVM with NCCP.

Visual analysis We illustrate in Figure 4 the form of the
regions corresponding to h+

b and h−b templates for the bad-
minton classifier in the UIUC-Sports dataset. On top row,

5f(w) = fvex(w) + fcave(w) = f(w) + λg(w)− λg(w) where
g is a convex function, and λ a positive constant.

sb(h
−
b ) = 0.1 sb(h

−
b ) = 0.3 sb(h

−
b ) = 0.2

sb(h
−
b ) = −0.7 sb(h

−
b ) = −0.6 sb(h

−
b ) = −0.6

Figure 4. Examples of predicted regions for badminton classifier
(sb) on images from badminton class (top) and other classes (bot-
tom). We also report the corresponding scores of each region h−

b .

we show regions for images of the badminton class: we
can notice that h+

b regions are semantically correlated to
the badminton class, most often showing a person playing
the game. It should be noted that h−b scores are positive,
meaning that the model does not find strong evidence for
the absence of the class. On bottom row, we show the parts
h−b for non-badminton images. These regions focus on rep-
resentative elements of outdoor scenes, whereas badminton
is an indoor sport. In addition, h−b scores are negative and
often below−0.5, clearly indicating the absence of the bad-
minton class. Other visual results are shown in Supplemen-
tary C.1.

5.2. Ranking

We evaluate our ranking model (section 4.2) for 2 dif-
ferent applications: action classification (VOC 2011), and
object recognition (VOC 2007). The performances on the 2
datasets are evaluated with a ranking measure (MAP).

5.2.1 Action Classification

Setup The VOC 2011 Action Classification dataset in-
cludes 10 different action classes. We use standard
(∼2400-dim) poselets as region features [2]. We compare
WSL models optimizing accuracy, i.e. LSSVM-Acc and
MANTRA-Acc, and models explicitly optimizing AP, i.e.
MANTRA-AP and LAPSVM [2]. Since the dataset con-
tains Bounding Box (BB) annotations, we evaluate both
ranking (MAP) and detection (average overlap between pre-
dicted and ground truth BB) performances. Experiments are
carried out on the trainval set in a weakly supervised setup,
i.e. without bounding box for training and testing, for 5
random splits (with 80% for training, 20% for testing).

Results As shown in Table 3, MANTRA-Acc outper-
forms LSSVM-Acc by ∼ 6 pt, again validating the



relevance of the new model introduced in this paper.
MANTRA-Acc also performs similarly to LAPSVM [2],
which is, to the best of our knowledge, the only method
that optimizes an AP-based loss function over weakly su-
pervised data. MANTRA-AP can further improve perfor-
mances over MANTRA-Acc by 7 pt, which confirms the
relevance of optimizing AP during training. T-test shows
that MANTRA-AP is significantly better than LAPSVM
with a risk of 0.1% (see supplementary C.2).

As we can see in Table 3, detection results are strongly
correlated to ranking performances: MANTRA-AP also
outperforms LAPSVM in terms of detection metric. T-
test also reveals that the difference is significant with a risk
of 0.1% (see supplementary C.2). Detection performances
also give a quantitative validation that MANTRA is able to
localize semantic parts, here people performing the action.
We can interpret the use of the max + min operation as a
regularizer of the latent space, which exploits the capacity
of h− to witness the absence of a class to find more seman-
tic part predictions h+.

Method Ranking MAP (%) Detect. ov. (%)
LSSVM-Acc 29.5 ± 1.3 12.7 ± 0.3
MANTRA-Acc 35.2 ± 1.2 18.9 ± 0.9
LAPSVM 36.7 ± 0.8 20.1 ± 0.7
MANTRA-AP 42.2 ± 1.3 26.5 ± 1.4

Table 3. Ranking and detection results on VOC 2011 Action. Per-
formances per split are given in supplementary material C.2

Note that our protocol differs from [2], which evaluates
on the test set and uses bounding box annotations. When us-
ing the same protocol as in [2], LAPSVM reaches 44.3% vs
47.1% for MANTRA-AP. Note that with this protocol, the
prediction function used in test is the same for both models.

Impact of hyperparameter C: we show in Figure 5 per-
formance variations vs C. We can observe that all methods
reach optimal scores for large values: cross-validation on
the train set always leads to C = 104 or 105 optimal val-
ues. We show in Figure 5b) the results of LAPSVM with
NCCP and MANTRA-AP with CCCP. As in Table 2, the
superiority of MANTRA is due to the prediction function.

a) impact of hyperparameter C b) optimization vs prediction
function

Figure 5. Analysis of ranking performances

5.2.2 Object Recognition

Finally, we perform experiment on the VOC 2007 database,
which is the most famous object recognition bench-
mark used in the last decade. We extract deep features
pre-trained on ImageNet using MatConvNet library [5].
As in [5], we take the output of the seventh layer of
imagenet-vgg-m-2048, after the ReLU. As done for
the multi-class classification (section 5.1.1), we extract deep
features at different scales, and combine them with Object-
Bank (OB) [22] to have a multi-scale model. We com-
pare our model instantiated for multi-class classification
(MANTRA-Acc) and ranking (MANTRA-AP) to state-of-
the-art results.

Results The performance obtained with deep features
computed on the whole image is 77%, which is conform
to what is reported in [5]. As shown in Table 4, MANTRA-
Acc based on these features can improve performances by
more than 5 pt, reaching 82.6%. MANTRA-AP further sig-
nificantly improves performances by more than 3 pt, reach-
ing 85.8%, again supporting the relevance of optimizing AP
during training. Compared to recent methods, our model
also outperforms [24] and SPP-net [13], which used a spa-
tial pyramid pooling layer. To the best of our knowledge,
the best published score on VOC 2007 is 82.4% [5], where
fine-tuning with a ranking-based objective function is used.
MANTRA-AP outperforms this method by more than 3 pt,
without fine-tuning and data augmentation.

[24] [13] [5] MANTRA-Acc MANTRA-AP
MAP(%) 77.7 80.1 82.4 82.6 85.8

Table 4. Ranking performances on VOC 2007.

6. Conclusion
This paper introduces a new latent structured output

model, MANTRA, which prediction function is based on
two latent variables (h+,h−). The intuition behind h− is
as follows: for an incorrect output, it seeks negative evi-
dence against it. For a correct output, it prevents from hav-
ing large negative values for any region, thus h− acts as a
latent space regularizer exploiting contextual information.
Another important contribution is the MANTRA ranking
instantiation, for which efficient solutions are introduced to
solve the challenging (loss-augmented) inference problem.

The experiments show that MANTRA outperforms
state-of-the art performances on five datasets. We can es-
pecially point out the large improvement of the AP ranking
optimization. Future works include adapting MANTRA for
other structured visual applications, e.g. semantic segmen-
tation or metric learning [19].
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