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Abstract  

Selective deposition of peptides from liquid solutions to n- and p-doped silicon has been 

demonstrated. The selectivity is governed by peptide/silicon adhesion differences. A non-

invasive, fast characterization of the obtained peptide layers is required to promote their 

application for interfacing silicon-based devices with biological material. In this study we show 

that spectroscopic ellipsometry – a method increasingly used for the investigation of bio-

interfaces – can provide essential information about the amount of adsorbed peptide material and 

the degree of coverage on silicon surfaces. We observed the formation of peptide multilayers for 

a strongly binding adhesion peptide on p-doped silicon. Application of the patterned layer 

ellipsometric evaluation method combined with Sellmeier-dispersion led to physically consistent 

results, which describe well the optical properties of peptide layers in the visible spectral range. 

This evaluation allowed the estimation of surface coverage, which is an important indicator of 

adsorption quality. The ellipsometric findings were well supported by atomic force microscopy 

results.  
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1. Introduction 

 

Hybrid systems constituted by inorganic materials interfaced with peptides or proteins resulted in 

the emergence of new, promising applications for directed materials engineering, nanophotonics 

and bionanotechnology.
1-3

 Due to their technological versatility, silicon (Si) containing materials 

and nanostructured silicon materials such as nanocrystals, nanorods, nanowires, and porous 

silicon have become increasingly popular for applications in storage, batteries and sensing 

devices.
4-6

 Control of Si surface chemistry is crucial either for fabricating electronic devices or to 

couple organic molecules for sensing. However, device functionality can be seriously limited by 

complex phenomena at the solid/liquid interface often resulting in a loss of activity of biological 

molecules due to their unfolding upon immobilization. Therefore, various surface modification 

strategies are employed to avoid unwanted denaturation of biomolecules when adsorbed on Si. 

Classical chemical methods of functionalization raise concerns related to toxic effects, loss of 

biomolecule activity or binding affinities.
7
 Bio-inspired routes for controlling surface chemistry 

and morphology overcome these drawbacks and provide high level of integration and 

miniaturization from nano to millimetric scale. Peptide-route functionalization of Si with small 

peptides by simple adsorption provides a satisfying solution in terms of control of the extent of 

surface modification, of selectivity and ease of implementation compared to other surface 

modification strategies.
8-11

 Combinatorial phage libraries are widely used to isolate high affinity 

peptides against a given target material.
12, 13

 Selective recognition mechanisms of the isolated 

peptides are well exploited to engineer functional hybrid materials, but the underlying molecular 

mechanism remains unknown.  

Numerous theoretical studies addressed the mechanism of adhesion between peptide and 

inorganic substrate.
14-17

 In a recent work of our group,
18

 we investigated the adsorption on the n-

type silicon of three 12-mer peptides that were previously elaborated by phage display 

technology (P1, P2 and P3, see Table 1).
8
 Molecular dynamics simulations have been performed 

to reveal the organization of the peptides on the surface and to identify the amino acids 

Page 3 of 25

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

4 

responsible for stronger binding based on the distance to the surface. We have shown that both 

the amino acid sequence and the molecular architecture of the peptide are key determinants for 

the selective binding of peptides onto Si. According to the calculations, in the case of n
+
-type Si, 

P2 showed better adhesion than P1, whereas in the case of p
+
-type Si, the best binding properties 

could be predicted for the P3 peptide.  

Although theoretical studies can provide the understanding of the molecular assembly processes 

and dynamics at the level of single amino acid or peptide, the reliability of simulation models is 

dependent on the accuracy of the force field parameters used. Silicon is a very challenging 

material to model due to its heterogeneity and tendency of forming oxide upon immediate 

exposure to air or water. Available force fields are entirely dependent on parameterization based 

on the bulk properties of silicon and have not been validated to study biomolecule-inorganic 

interface.
19-21

 Significant developments were made in the past,
22

 but a reliable force field is yet to 

be developed based on experimental evidence. The challenge is to validate the calculated peptide 

structure, its surface recognition efficiency and the percentage of coverage, as yet there are no 

published experimental data available to test the accuracy of the theoretical results. Techniques 

such as ellipsometry, atomic force microscopy (AFM) or Fourier transform infrared spectroscopy 

in attenuated total reflection mode (ATR-FTIR) can provide meaningful data for surface 

coverage, which can be used in theoretical calculations. Ellipsometry is increasingly employed to 

investigate protein layers in both the visible and the infrared spectral range due to its detection 

sensitivity and flexibility.
23, 24

 Ellipsometric evaluation provided a wealth of information such as 

thickness and structure of the layers, and their optical properties.
25-27

 On the other hand, AFM 

was previously employed to calculate the peptide adhesion coefficient on silica surface and 

subsequently validated with theoretical simulations.
28

 Merging information from several 

experimental methods facilitates the development of accurate and reliable force fields for 

theoretical calculations.  

Our previous theoretical and experimental findings revealed specific adhesion trends for some 

peptides against n
+
 and p

+
-Si substrates. The sequences of the investigated peptides presenting 

different levels of affinity for these substrates are listed in Table 1. While the P1 peptide 

displayed similar adherence to both types of Si, P2 and P3 peptides showed higher affinity for n
+
 

and p
+
-Si, respectively. The PC4 peptide was also studied as a truncated variant of P3 exhibiting 
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enhanced adhesion for p
+
-Si.

29
 The biotinylated forms (using a GGSK linker) of the P1 and P3 

peptides were also considered as these molecules can be used to detect various streptavidin-

associated species.
8
 With the aim to comprehend and control the design of peptide-silicon 

interfaces, we now performed spectroscopic ellipsometry and AFM experiments providing 

information on the refractive index, thickness, and surface coverage of peptide layers on n-type 

and p-type silicon. 

 

Table 1. Sequence of peptides exhibiting high affinity for n
+
, or p

+
- type silicon as obtained by 

the phage display technique
8
 and/or synthesized according to the notations in references 18 (P1, 

P2, P3) and 27 (PC4). 
a
The isoelectric point values were calculated using the pI/Mw tool at 

http://expasy.org. 

 

 

2. Materials and Methods 

 

2.1 Peptides 

Prior to this work, a phage display 12mer peptide library was used to isolate the specific peptides 

against n
+
 and p

+
 silicon surfaces.

8
 Based on their obtained sequences, peptides were synthesized 

by the standard solid phase peptide synthesis (SPPS) method using Fmoc chemistry on Fmoc 

Peptides Surface pI
a
 

SVSVGMKPSPRP (P1) n
+
, p

+
-Si 11 

LLADTTHHRPWT (P2) n
+
-Si 6.92 

SPGLSLVSHMQT (P3) p
+
-Si 6.46 

SLVSHMQT  (PC4)  p
+
-Si 6.46 

SVSVGMKPSPRP-GGSK- biotin (P1-B) n
+
, p

+
-Si 11.17 

SPGLSLVSHMQT-GGSK-biotin (P3-B) p
+
-Si 8.49 
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Rink amide PS resin. The synthesis of biotinylated peptides, P1B and P3B, was reported in our  

previous work.
29

 The synthesized crude peptides were purified by high performance liquid 

chromatography and analyzed by LC/MS, 1H, and 13C NMR and used without further 

purification. Absorbance of the peptides diluted in phosphate-buffered saline solution containing 

0.1% Tween-20 (130 mM PBST/10) at 20 M concentration was measured with a UV/vis 

(UNICAM UV4) spectrophotometer in the 2.5-6.5 eV range using a 1 cm cuvette.  

2.2 Peptide adsorption on silicon  

Silicon (100) wafers, highly doped by either boron (p
+
) or phosphorous (n

+
), were first exposed 

to HF for 10 min to remove native oxide, then rinsed with deionized water for one minute. The 

surfaces were then incubated with the synthesized peptides at 20 M concentration diluted in 

130 mM PBS solution containing 0.1% Tween-20 (PBST/10) in presence of 0.1% bovine serum 

albumin (BSA) for 2 hours. The role of Tween and BSA was to prevent nonspecific interactions 

on the surface. Then a thorough rinsing step in PBST/10 and distilled water was performed to 

remove unbound peptides. The samples were then gently dried with N2 before recording their 

reflectivity spectra. 

2.3 Spectroscopic ellipsometry 

Spectroscopic ellipsometry measures the complex reflectance ratio, , as a function of photon 

energy (wavelength), which is described by two angles ( and ) according to the following 

equation: 

 i

s

p etg
r

r
)( , 

where rp and rs are the reflectance of the light polarized parallel and perpendicular to the plane of 

incidence, respectively, tg( is the amplitude of , while  is its phase.  is in correlation with 

the optical properties of bulk materials, which are characterized by the refractive index - n, and 

the extinction coefficient - k or, equivalently, by the real and imaginary parts of the complex 

dielectric function (1 and 2, respectively). In case of single- or multilayers on a bulk substrate, 

the polarization state of reflected light depends on the structure and the thickness(es) of the 

layer(s) besides their optical properties. To obtain the characteristics of the investigated samples, 

their structural and optical properties have to be modeled. During an indirect fitting procedure 
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the n, k and thickness values in the model are varied until an appropriate fit of the measured  

and  spectra is found based on the Mean Square Error (MSE) value.
30

 If appropriate MSE 

values are reached, the actual n, k and thickness values of the model are considered as the ones of 

the investigated sample. 

In this study,  and  values were measured as a function of the photon energy using a Woollam 

M2000 rotating compensator ellipsometer in the range of 1.24-5 eV (1000–248 nm). Angles of 

incidences were chosen close to the Brewster angle of silicon; 65°, 70° and 75°. The samples 

were gently dried and then measured at three different positions (size of the illuminated spot was 

in the range of a few mm
2
). Measurement errors arise from the standard deviations of the 

evaluation results of these different measurement positions for a given sample. Analysis of the 

spectra was performed using the WVASE32 software. 

 

2.4 Atomic force microscopy  

AFM images on samples prepared in the same way as for ellipsometry were recorded in air using 

an Asylum MFP-3D head equipped with a Molecular Force Probe 3D controller (Asylum 

Research, Santa Barbara, CA, USA). Tapping (AC) mode was selected as the imaging mode, and 

rectangular silicon nitride cantilevers from Olympus (OMCL-AC160TM, Tokyo, Japan) with a 

spring constant of 4nN/nm were employed. The spring constant was determined using the 

thermal noise method within the software supplied. Height, amplitude, and phase images were 

recorded. In the last mode, compositional variations were measured by the phase lag of the 

vibrating probe with respect to the external excitation. Phase lag of the oscillation allows us to 

explore tip–surface elastic and inelastic interactions, giving a qualitative measure of the energy 

dissipation involved in the contact between the tip and the sample, which depends on a number 

of factors, including viscoelasticity, adhesion, variations in composition, hardness and the 

chemical nature of the sample. Several trace and retrace scans were performed over a given 

surface area to ensure reproducible images. The images were typically taken at 1 Hz scan rate 

and digitized in 512×512 pixels. They were first recorded at 80×80 m
2
, and then at 20×20 m

2 

to achieve better resolution. At least three 20×20 m
2 

images of different zones were recorded 

and used for the statistical analysis for each sample. Covered surface ratios were also calculated 

using the supplied software. 
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8 

 

3. Results and discussion  

 

3.1 Absorbance measurements 

Since ellipsometry is an indirect measurement technique, the final results strongly depend on the 

applied model. In order to find the appropriate ellipsometric model it is useful to perform some 

independent measurements on the investigated samples. First, the absorbance of the peptide 

solutions was determined (Fig. 1).  
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Fig. 1: Absorbance spectra of the peptide solutions. Strong absorption peaks are only present in the UV region, 

outside the spectral range covered by ellipsometry. For the abbreviations in the legend, see table 1.  

 

According to the absorbance measurements, the peptide solutions can be considered transparent 

under 5 eV, i.e. in the spectral range of ellipsometric measurements. Based on these results, a 

transparent layer can be assumed in the ellipsometric model, which is a good starting point for 

modeling.   
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3.2 Ellipsometry 

 and  curves 

In Fig. 2 (a) and (b),  and  curves are shown as measured on n-type and p-type silicon 

surfaces before and after coating (as for example) with P3 peptide. The same measurements were 

performed for all the peptides listed in table 1. It was emphasized earlier that to get exact 

information from ellipsometric measurements, an optical model needs to be built. However, the 

difference between the curves measured before and after peptide deposition can already provide 

certain useful information.  
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Fig. 2:  and  curves related to P3 peptide deposited onto p-type (a) and n-type silicon (b). Data of uncoated 

silicon are also presented in both cases. 

 

Clear differences versus  and  of uncoated silicon are observable in the case of the P3 peptide 

deposited onto the p-type substrate. Much smaller differences between the curves correspond to 

smaller polarization changes caused by the peptide layer on n-type Si. This can be related to the 

optical properties and the amount of the deposited material. Assuming that peptides have similar 

optical properties on the p and n-type Si surfaces, the observed changes indicate different 

amounts of material deposited onto p-type or n-type Si surfaces. Note that  values follow more 

sensitively the changes on the sample surface, as has been shown earlier for rough Si surfaces 

and even for proteins as well.
31, 32
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If the difference between the data of uncoated silicon and the data measured on peptide layers are 

plotted for each peptide (table 1) deposited onto p- and n-type substrates, one can have a first 

insight into the binding affinity of the peptides (Fig. 3). 
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Fig. 3: Difference between the  and  spectra of uncoated silicon and samples coated with peptide layers. Graphs 

(a) and (b) show  and  differences measured on p-type silicon samples, and graphs (c) and (d) relate to n-type 

silicon samples. For easier comparison, the differences of  curves and differences of  curves are plotted using the 

same scale for all the substrates. 

 

In the case of p-type substrates, the changes are much larger than in the case of n-type substrates, 

which indicate a more efficient binding of the investigated peptides to p-type silicon. By 

considering only the differences measured on p-type samples, it can be stated that the largest 

effect relates to P3 peptide, and the weakest adhesion can be observed in the case of P1-B 

peptide.  
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Ellipsometric evaluation of peptide layers 

During sample preparation, silicon substrates were treated with hydrofluoric acid in order to 

remove the native oxide layer. After oxide removal, two differently doped control samples (a p-

type and an n-type) were measured with ellipsometry, and the others were coated with peptides. 

The native oxide layer builds up very rapidly on the surface so its thickness cannot be considered 

as zero. Oxide thickness measurements on both p- and n-type control samples resulted close to 1 

nm (p-type: 0.913 nm, n-type: 1.064 nm), so the thickness of the native oxide layer was fixed at 

1 nm during the evaluation process. 

The applied ellipsometric model consisted of the silicon substrate (optical data from
33

), the 

native oxide layer and the peptide layer.  

Based on the results of the absorbance measurements, a dispersion law suitable for transparent 

materials was used to describe the optical behavior of peptide layers.  The Sellmeier-dispersion 

relation is defined by the following formulas
34

 

 

 






2

1
22

2

1 )()(
n n

n

EE

A
EnE   

 

It describes the refractive index dispersion, as a function of photon energy (E) of transparent 

materials by using absorption peaks (poles) outside the investigated spectral range. The curvature 

of 1 is determined by the amplitude (An) and by the position (En) of the absorption peak while 

the absolute value can be tuned by adding an offset (∞). In case of application of Sellmeier-

dispersion, the Kramers-Kroenig relations, which ensure that the resulting optical properties do 

not lead to unphysical results, are fulfilled automatically. However, by modeling the optical 

properties of the peptide layers with Sellmeier dispersion relations, the MSE values remained 

high, and the measured and fitted curves did not overlap properly (see Supplementary 

information). This model deals with perfect layers (i.e. layers defined by parallel interfaces and 

not showing any discontinuity), while proteins, for instance, often aggregate and do not form a 

continuous layer.
35

 Therefore, the ellipsometric model was extended with an island-like 

(patterned) character of the peptide layer. This second model contains again a non-absorbing 

layer, but it is assumed that the layer does not cover perfectly the substrate. The optical 

properties of the peptides were modeled in the framework of this patterned layer model again 

0)(2 E
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with Sellmeier dispersion relations. Concerns might arise on the eventual optical anisotropy 

inside organic multilayers as reported for protein (flagellin) films
36

 containing chain-like 

domains, positioned perpendicular to the surface.  In our case, the investigated peptides are very 

small, containing only 12 aminoacids so the formation of fibrous, chain-like structures can be 

excluded and anisotropy can be neglected during modeling.  

To model the partial coverage of the films, the so-called patterned layer tool was applied in the 

WVASE32 software. In case of a patterned layer the observed polarization change is partially 

originating from areas where both the top peptide layer and the native oxide underlayer are 

present, and from areas where there is no peptide. Reflection from different layer structures 

causes different polarization changes that are averaged within the model. The percentage of the 

coverage was a fitting parameter during evaluation (the “covered surf.” parameter gives the 

fraction of the illuminated area where the peptide layer is present). This means that besides 

thickness and optical properties of the layer the percentage of coverage was also adjusted during 

the fitting, and after finding the minimal MSE, the model provided these parameters. Since the 

binding of the peptide layer is weak in the case of n-type substrates, the amount of peptide 

deposited onto this surface is small as already reported by the  and  ellipsometric curves. 

Therefore, the optical dispersion properties of the peptide layers were fixed at the values 

observed for the p-type samples during the evaluation of n-type samples, too. The results of the 

ellipsometric evaluation with the not perfectly covering layer for p- and n-type samples are 

presented in Table 2 and Figs. 4 and 5. As n and k values were not fitted in the case of n-type 

samples these are not indicated in the table. 

 

Sample n @ 532 

nm 

k @ 532 

nm  

covered 

surf. (%) 

MSE effective 

thickness (nm) 

covered surf. 

(%) 

MSE effective thickness 

(nm) 

P1 1.52 (0.10) 0.0 30.9 

(7.1) 

10.3 

(5.2) 

5.7 (3.5) 2.5 (0.4) 6.2 (0.4) 0.6 (0.1) 

P2 1.65 (0.10) 0.0 25.7 
(2.4) 

14.9 
(5.0) 

5.8 (1.3) 11.0 (10.4) 9.8 (6.2) 2.1 (2.6) 

P3 1.54 (0.02) 0.0 44.7 

(3.6) 

17.4 

(0.7) 

10.6 (1.2) 5.1 (0.5) 5.5 (0.5) 1.1 (0.1) 

P1-B 1.66 (0.12) 0.0 22.2 

(7.4) 

5.6 (1.7) 2.8 (1.5) 8.2 (4.9) 4.7 (0. 9) 1.3 (1.1) 

P3-B 1.63 (0.12) 0.0 36.7 

(3.6) 

11.4 

(4.8) 

6.5 (1.2) 4.2 (1.1) 5.7 (0.8) 1.0 (0.4) 

PC4 1.56 (0.02) 0.0 36.0 

(3.3) 

7.0 (0.8) 5.7 (0.6) 5.2 (0.2) 9.9 (5.3) 1.1 (0.1) 

  p-type Si n-type Si 
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Table 2: Optical properties, thicknesses of peptide layers and surface coverage obtained from the ellipsometric 

model. Standard deviation is given in brackets. 

 

By applying the patterned layer model, the mean square error drop to half compared to the 

previous model (see Supplementary information). The obtained MSE values are reasonable and 

indicate that the patterned character of the layer improved the modeling significantly. The 

refractive index dispersion of a typical Sellmeier-layer (for P3 peptide) resulting from this model 

is presented in Fig. 4. The extinction coefficient is zero by definition. The obtained optical 

properties are in accordance with literature data, further supporting that the patterned model 

describes properly the samples.
32
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Fig. 4: Refractive index dispersion of the Sellmeier-patterned layer describing P3 peptide. Extinction coefficient is 

zero by definition. 

 

 

Taking into consideration the surface coverages that are much lower for n-Si (see table 2.)  we 

can state that peptides generally adsorbed better onto p-type Si. The thicknesses were also 

obtained on the measured peptide layer patches (data not shown). While in case of a continuous 

thin film, the film thickness characterizes the amount of the deposited material, in case of the 

patterned model, a new quantity, the effective film thickness had to be introduced by multiplying 

the percentage of the covered area by the layer thickness. Naturally, the effective thickness 

would coincide with the thickness when the percentage of the covered area is 100. These 
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effective film thicknesses calculated for the different peptides on p-type and n-type silicon 

substrates are listed in Table 2 and can be seen in Fig. 5. The obtained values indicate also that 

peptides prefer p-type silicon. In our previous theoretical simulation, we observed the exactly 

same phenomenon from the perspective of binding affinity in the order from p
+
-specific peptide 

to n
+
-specific peptide; SPGLSLVSHMQT (P3)> SVSVGMKPSPRP (P1) >LLADTTHHRPWT 

(P2).
18

 This indicates that the simulation can be well adopted in studying organic-inorganic 

interfaces for better designing of high affinity peptides. 
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Fig. 5: Effective film thickness of peptide layers adsorbed on p-type (black squares) and n-type silicon substrates 

(red circles) as determined by ellipsometry 

 

3.3 Atomic force microscopic investigation of the peptide layers 

To complement our ellipsometry investigations with morphological information on the peptide 

layers atomic force microscopy (AFM) was employed. In particular, we used AFM in tapping 

mode to map simultaneously the shape, height and compositional variations of the adsorbed 

specific peptides on n-type and p-type Si surfaces. Fig. 6 presents AFM height (panels A, B, C 

and D), amplitude (panels E, F, G and H) and phase images (panels I, J, K and L) of P1, P2, P3 

and PC4 peptides adsorbed on p-type Si surfaces. (For P1-B, P3-B adsorbed on p-type Si 

surfaces and P1, P2, P3 and PC4 peptides adsorbed on n-type Si surfaces, see supplementary 

information). Height or topography images enable to estimate both height (z) and lateral (xy) 

dimensions, thus to estimate peptide coverage of the Si surface. Amplitude images are similar to 

height images, but they display the shape of the specimen more clearly. They depict the map of 
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the slope of the sample, showing how the tip is deflected as it encounters sample topography. 

Finally, phase images represent maps of how the phase of the cantilever oscillation is affected by 

its interaction with the surface, enabling compositional variations to be detected, which are 

otherwise unnoticeable in the height or amplitude images. The features depicted in the phase 

images exhibit the compositional variations within the explored area, evidencing the 

corresponding peptide and the Si substrate.  

From these three types of images there is much information to be derived even without 

processing any quantitative analysis. First, it can be clearly seen that peptides do not form a 

homogeneous layer on the Si surfaces, supporting the applied ellipsometric model. Peptides form 

island-like structures with different lateral dimensions and heights. Phase images clearly 

demonstrate that the areas of larger heights in the topography images correspond to material 

having different composition than the Si surface.   
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Fig. 6: AFM images: height (panels A, B, C and D), amplitude (panels E, F, G and H) and phase images (panels I, J, 

K and L) of P1, P2, P3 and PC4 peptides adsorbed on p-type Si surfaces, respectively. Height images enable to 

estimate both height and peptide coverage of the Si surface. Phase images give qualitative evidence of the 

compositional variations within the explored area of each sample. Color bars for height images range from 0 to 10 

m, for amplitude images from 0 to 5 nm and for phase images from 0 to 5°. (Scale bars = 5 m). 
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Further we performed a detailed and quantitative analysis of height and surface coverage of the 

peptide films. Fig. 7 depicts corresponding height histograms to Fig. 6 A, B, C and D images. All 

histograms were fitted using one Gaussian distribution (R
2
 ≥ 0.97), providing the height of the 

layers formed by P1, P2, P3 and PC4 peptides on p-type Si. 

 

Fig. 7: Peptide layer height distributions on p-Si for P1 (A), P2 (C), P3 (B) and PC4 (D) petides. Histograms were 

fitted using one Gaussian distribution. Mean height values are also shown. 

 

Covered surface ratios were also calculated when possible. These values were determined for 

peptides on p-type surfaces using height images shown in Fig. 6 and for peptides on n-type 

surfaces using images presented in the supplementary information. As height values were 

derived by averaging heights obtained on at least three different surfaces, these data indicate the 

effective thickness (modulated by the surface coverage) of the peptide layers. The results are 

gathered in Table 3 and the effective thicknesses are also presented in Fig. 8.  
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Sample 
effective 

thickness (nm) 
covered surf. (%) 

effective  

thickness (nm) 
covered surf. (%) 

P1 8.2 (0.8) 33.5 1.9 (0.2) 0.12 

P2 3.5 (0.6) 13.1 2.5 (0.4) 0.09 

P3 12.0 (1.0) 70.2 2.5 (0.1) 0.8 

P1-B 3.3 (0.5) 18.7 2.0 (0.1) 0.32 

P3-B 6.6 (0.6) 37.4 2.4 (0.3) 7.3 

PC4 5.3 (0.4) 28.6 2.1 (0.3) 1.63 

 p-type Si n-type Si 

Control thickness (nm) 0.74 (0.07) 

 

 

Table 3: Effective thickness of peptide layers and percentage of surface coverage values obtained by AFM. 

P1 P2 P3 P1-B P3-B PC4

0

2

4

6

8

10

12

14

 

 

M
e

a
n

 h
e

ig
h

t 
o

f 
th

e
 c

o
v

e
re

d
 s

u
rf

a
c

e
 (

n
m

)

Sample

 p-type substrate

 n-type substrate

 

Fig. 8: Effective film thickness of peptide layers formed on p-type (black squares) and n-type silicon substrates (red 

circles), as obtained from AFM measurements. 

 

The AFM results corroborate the ellipsometric conclusions, i.e. that the investigated peptides 

bind more effectively to p-type Si than to n-type. The observed surface coverage and film 
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thickness correlate well with the results of the ellipsometry studies employing the patterned layer 

model 

The effective film thicknesses follow the same tendency as observed in the case of ellipsometry 

investigations for both substrates (c.f. Figs. 5 and 8). Even though in case of p-type substrate the 

trends observed in thickness and coverage are similar for both AFM and ellipsometry results (c.f. 

Tables 2 and 3), the strict comparison of the results is not trivial as the ellipsometer measures 

regions much larger than those scanned by the AFM. In case of n-type substrates, such direct 

comparison of thickness and coverage does not reveal similarities since the amount of deposited 

material is so small that the optical data had to be fixed accompanied by increased uncertainty in 

the results. However, the effective thickness values in these cases can still be used to compare 

the results of the two measurement techniques. The peptides adsorb in very thin layers on n-type 

Si with a maximum of about 2.5 nm for P2 peptide, whereas they form thick layers on p-type Si 

up to about 12 nm for the P3 peptide, suggesting a multilayer assembling of these very small, 

sub-nanometric sized 12-mer peptides on the surface. Similar multilayer formation has been 

reported for peptide-mineral systems.
37

 Authors proposed that the formation of a monolayer of 

peptide requires the peptide concentration ranging from 0.05 to 0.2 μM depending on peptide 

orientation. We have used higher, 20 µM peptide concentration solutions for our experiment, the 

same as in our previous studies to get good detection limit for biosensing applications. The 

formation of the patched peptide islands indicates the different affinity of the studied peptides 

towards the p-type Si surface.  

 

 

Conclusions 

In this work, the adhesion differences of specific peptides to n- and p-type silicon have been 

investigated using spectroscopic ellipsometry. Since ellipsometry is an indirect characterization 

technique, AFM was also applied to support our findings. It was shown experimentally that 

binding of the investigated peptides is more effective in the case of p-type Si substrates, as 

expected from previous theoretical findings.
18

 We’ve proved that in cases when only the 

differences between the binding properties of several peptides are addressed, ellipsometry can 

provide valuable information even without evaluating the recorded data, just by comparing the  

and  difference curves. It was presented that, if the amount of the deposited material is large 
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enough (effective thickness exceeding ~5 nm), ellipsometry combined with patterned modeling 

can provide the optical properties, thickness and surface coverage of peptide layers. Furthermore, 

in cases when there is just a little adsorbed material, as for the n-type substrates, where the 

optical properties cannot be deduced, ellipsometry can still be used to determine the effective 

thickness of the films. 

The presented results corroborate our previous theoretical findings
18

 and also the the 

experimentally determined binding efficiency of Si adhering peptides.
29

 Collectively, these 

results provide several meaningful parameters that play a critical role in peptide binding to Si. 

These data can be valuable when accurate hybrid force fields need to be developed for molecular 

dynamics studies of silicon-peptide hybrid materials.   

 

Our work presents an evidence for spontaneous peptide multilayer assembly. Numerous are the 

papers reporting characterization of peptide self-assembly in the bulk solution, but much less 

work has been published on the interfacial self-assembly of short peptides in the vicinity of a 

planar surface. The advantage of short peptides is their ability to self-assembly to form various 

nanostructures that are attractive to many technological applications. Due to their structural 

complementarities, peptides adsorb and self-assemble at planar interfaces via electrostatic 

interactions, hydrogen bonding and hydrophobic effects.
14

 Anchoring various biomolecules 

through self-assembled peptides onto silicon might found promising applications when devices 

incorporating biological functionality are engineered.  
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