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ON THE MIT BAG MODEL:

SELF-ADJOINTNESS AND NON-RELATIVISTIC LIMIT

N. ARRIZABALAGA, L. LE TREUST, AND N. RAYMOND

Abstract. This paper is devoted to the mathematical investigation of the MIT
bag model, that is the Dirac operator on a smooth and bounded domain of R3 with
certain boundary conditions. We prove that the operator is self-adjoint and, when
the mass m goes to ˘8, we provide spectral asymptotic results.
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1. Introduction

1.1. The physical context. In elementary particles physics [9], the strong force

is one of the four known fundamental interaction forces along with the electromag-
netism, the weak interaction and the gravitation. It is responsible for the confinement
of the quarks inside composite particles called hadrons such as protons, neutrons or
mesons. Its force-carrying (gauge bosons) particles are called the gluons (the force-
carrying particles of the electromagnetism are the photons) and they carry together
with the quarks, a type of charges called the color charges. Their interactions are
detailed in the theory of quantum chromodynamics (the theory of electromagnetism
is called quantum electrodynamics).

1.1.1. The standard model. Following the work of Gell-Mann and Zweig and the deep
inelastic scattering experiments held at the Stanford Linear Accelerator Center in
the 160, physicists introduced in the mid-170, the standard model [13] in an attempt
to give a unified framework for the elementary particle physics. It turned out that
this model has been very fruitful for it allowed to predict the existence of many parti-
cles. Despite of its success, the confinement of the quarks remains badly understood
because of the complexity of the associated equations.

1.1.2. An attempt to better understand the quarks confinement. In parallel to the
introduction of the standard model, Chodos, Jaffe, Johnson, Thorn, and Weisskopf
[7, 6, 5, 14, 13], physicists at the MIT, developped a simplified phenomenological
model to get a better understanding of the phenomenons involved in the quark-
gluon confinement. Following the results of the experimentations held at that time,
they chose to include several qualitative properties of the quarks:

- the perfect confinement of the quarks inside the hadrons1,
- the relativistic nature of the quarks2.

The region of space Ω where the quarks live is called the bag and the model is the
MIT bag model. Let us remark that the MIT bag model can also be viewed as a

1No isolated quark has been observed yet.
2For light quarks, the non-relativistic approximation E “ mc2 is not valid and the Schrödinger

operator ´∆ has to be replaced by the Dirac one to describe the kinetic energy.
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model for a relativistic particle confined in a box. In the non-relativistic setting,
the Dirac operator is replaced by the Dirichlet Laplacian and the associated model
appears in many introduction courses of quantum physics [18].
Let us also mention that the two dimensional equivalent of the MIT bag model
appears in the study of graphene and is referred to as the infinite mass boundary
condition (see [2, 21] and the references therein).

1.2. TheMIT bag Dirac operator. In the whole paper, Ω denotes a fixed bounded
domain of R3 with regular boundary and m is a real number. The Planck constant
and the velocity of light are assumed to be equal to 1.

Let us recall the definition of the Dirac operator associated with the energy of a
relativistic particle of mass m and spin 1

2
(see [22]). The Dirac operator is a first

order differential operator, acting on L2pΩ,C4q in the sense of distributions, defined
by

(1.1) H “ α ¨D ` mβ , D “ ´i∇ ,

where α “ pα1, α2, α3q, β and γ5 are the 4 ˆ 4 Hermitian and unitary matrices given
by

β “
ˆ

12 0
0 ´12

˙
, γ5 “

ˆ
0 12
12 0

˙
, αk “

ˆ
0 σk
σk 0

˙
for k “ 1, 2, 3 .

Here, the Pauli matrices σ1, σ2 and σ3 are defined by

σ1 “
ˆ

0 1
1 0

˙
, σ2 “

ˆ
0 ´i
i 0

˙
, σ3 “

ˆ
1 0
0 ´1

˙
,

and α ¨ X denotes
ř3

j“1 αjXj for any X “ pX1, X2, X3q. Let us now impose the
boundary conditions under consideration in this paper and define the associated
unbounded operator.

Notation 1.1. In the following , Γ :“ BΩ and for all x P Γ, npxq is the outward-
pointing unit normal to the boundary.

Definition 1.2. The MIT bag Dirac operator pHΩ
m,DpHΩ

mqq is defined on the domain

DompHΩ
mq “ tψ P H1pΩ,C4q : Bψ “ ψ on Γu , with B “ ´iβpα ¨ nq ,

by HΩ
mψ “ Hψ for all ψ P DompHΩ

mq. Note that the trace is well-defined by a classical
trace theorem.

Notation 1.3. We will denote H “ HΩ
m when there is no risk of confusion. We

denote x¨, ¨y the C4 scalar product (antilinear w.r.t. the left argument) and x¨, ¨yU
the L2 scalar product on the set U .
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Remark 1.4. The operator B defined for all x P Γ is a Hermitian matrix which
satisfies B2 “ 14 so that its spectrum is t˘1u. Both eigenvalues have multiplicity
two. Thus, the MIT bag boundary condition imposes the wavefunctions ψ to be
eigenvectors of B associated with the eigenvalues `1 . This boundary condition is
chosen by the physicists [14] so as to get a vanishing normal flow at the bag surface
´in ¨ j “ 0 at the boundary Γ where the current density j is defined by

j “ xψ, αψy .
The opposite boundary condition ψ P kerp14 ` Bq is discussed in Section 1.3.3.

Let us now describe our results.

1.3. Results.

1.3.1. Self-adjointness. The following theorem gathers some fundamental spectral
properties of the MIT bag Dirac operator that we establish in this paper and that
are related to its self-adjointness.

Theorem 1.5. Let Ω be a nonempty, bounded and regular open set in R3 and m P R.

The following properties hold true.

i. The operator pH,DompHqq is a self-adjoint operator with compact resolvent.

ii. There is a non-decreasing sequence pµnpmqqně1 Ă R˚
` such that the spectrum of

H, denoted by sppHq, is
sppHq “ t˘µnpmq, n ě 1u .

iii. Each eigenvalue µnpmq has pair multiplicity.

iv. For each ψ P DompHq, we have

(1.2) }Hψ}2L2pΩq “ }α ¨ ∇ψ}2L2pΩq ` m}ψ}2L2pBΩq ` m2}ψ}2L2pΩq

and

(1.3) }α ¨ ∇ψ}2L2pΩq “ }∇ψ}2L2pΩq ` 1

2

ż

BΩ
κ|ψ|2 ds

where κ is the trace of the Weingarten map:

dns : TsBΩ ÝÑ R
3

v ÞÝÑ Bvnpsq .
Self-adjointness results have already been obtained in the case of C8-boundaries

in [3] through Calderón projections and sophisticated pseudo-differential techniques,
and, in two dimensions, with C2 boundaries [2] (see also [21]), using Cauchy kernels
and Riemann mapping theorem. The proof that we present here relies on simple
PDE techniques and the introduction of an extension operator for Sobolev spaces
(see [4, Section 9.2]) and can be generalized to any dimension. Let us also mention
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that more general local boundary conditions are considered in [3, 2].
Our other results are of asymptotic nature. They describe the limiting behavior of
the eigenvalues of the MIT bag Dirac operator as m tends to ˘8.

1.3.2. The MIT bag model with positive mass. As we can guess from the expressions
(1.2) and (1.3), when m Ñ `8, the operator H2 ´m2 tends, in some sense, towards
the Dirichlet Laplacian on Ω. From the physical point of view, this limit is called
the non-relativistic limit since it relates the MIT bag model (relativistic particles in
a box) to the model for non-relativistic particles in a box.

From the spectral point of view, we have the following asymptotic result.

Theorem 1.6. Let ´∆Dir be the Laplacian with domain H2pΩ,Cq X H1
0 pΩ,Cq, and

let pµDir
n qně1 be the non-decreasing sequence of its eigenvalues. For all n ě 1, we have

µnpmq ´
ˆ
m ` 1

2m
µDir
n

˙
“

mÑ`8
o

ˆ
1

m

˙
.

It is actually possible to describe the next term in the expansion of the first positive
eigenvalue.

Theorem 1.7. Let u1 P H1
0 pΩ,Cq be a L2-normalized eigenfunction of the Dirichlet

Laplacian associated with its lowest eigenvalue µDir
1 . We have

µ1pmq ´
ˆ
m ` 1

2m
µDir
1 ´ 1

2m2

ż

Γ

|B
n
u1|2 dΓ

˙
“

mÑ`8
o

ˆ
1

m2

˙
.

Remark 1.8. This asymptotic expansion of µ1pmq coincides with the one of the first

eigenvalue of the operator
a
m2 ´ ∆Rob

2m where ´∆Rob
2m is the Robin Laplacian of mass

2m, i.e. the operator of L2pΩ,Cq whose quadratic form is defined for u P H1pΩ,Cq
by

u ÞÝÑ
ż

Ω

|∇u|2 dx ` 2m

ż

Γ

|u|2 dΓ.

1.3.3. The MIT bag model with negative mass. Let us now describe our result re-
lated to the MIT bag model with “negative mass”. This “negative mass” may be
understood in two equivalent ways.

i. When we investigate the case Ω “ R3, the Dirac operators α ¨ D ` mβ and
α ¨ D ´ mβ are unitarily equivalent. Thus, in the case of a general Ω, one may
be tempted to consider α ¨D ´ mβ with the MIT bag condition B.

ii. Since we have

γ5 pα ¨D ` mβq γ5 “ α ¨ D ´ mβ , γ5Bγ5 “ ´B ,

we notice that α ¨ D ´ mβ with boundary condition B is unitarily equivalent
to α ¨ D ` mβ with boundary condition ´B. In this case, the flux ´in ¨ j also
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vanishes at the boundary and the justification given by the physicists [14] of the
MIT bag boundary condition can also be applied here (see Remark 1.4).

Of course, these changes of signs have no effect on the self-adjointness.

Remark 1.9. From the physical point of view, the fact that HΩ
0 does not commutes

with the chirality matrix γ5 (see [22]) is called the chiral symmetry violation [23, 13].
The chiral symmetry is supposed to be a property approximately satisfied by light
quarks and exactly satisfied for quarks of mass 0.

In this paper, we will show that the limit m Ñ ´8 for the operator HΩ
m turns

out to be a semiclassical limit and not of perturbative nature as when m Ñ `8. It
will be shown that the boundary is attractive for the eigenfunctions with eigenvalues
lying essentially in the Dirac gap r´|m|, |m|s and that their distribution is governed
by the operator

(1.4) LΓ ´ κ2

4
` K ,

where κ and K are the trace and the determinant of the Weingarten map, respec-
tively, and where LΓ is defined as follows.

Definition 1.10. The operator pLΓ,DpLΓqq is the operator associated with the qua-
dratic form

QΓpψq “
ż

Γ

}∇sψ}2 dΓ , @ψ P H1pΓ,Cq4 X kerpB ´ 14q .

As a consequence of our investigation, we will get the following lower bound of the
quadratic form QΓ.

Proposition 1.11. We have

@ψ P H1pΓ,Cq4 X kerpB ´ 14q , QΓpψq ě
ż

Γ

ˆ
κ2

4
´ K

˙
|ψ|2 dΓ .

Taking advantage of semiclassical technics, we will establish the following uniform

eigenvalues estimate.

Theorem 1.12. Let ε0 P p0, 1q and

Nε0,m :“ tn P N
˚ : µnp´mq ď m

?
1 ´ ε0u .

There exist positive constants C´, C`, m0 such that, for all m ě m0 and n P Nε0,m,

µ´
n pmq ď µnp´mq ď µ`

n pmq ,
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with µ˘
n pmqbeing the n-th eigenvalue of the operators LΓ,˘

m of L2pΓ,Cq4 defined by

LΓ,´
m “

ˆ
r1 ´ C´m

´ 1

2 sLΓ ´ κ2

4
` K ´ C´m

´1

˙ 1

2

`
,

LΓ,`
m “

ˆ
r1 ` C`m

´ 1

2 sLΓ ´ κ2

4
` K ` C`m

´1

˙ 1

2

.

Remark 1.13. By Proposition 1.11,

r1 ` C`m
´ 1

2 sLΓ ´ κ2

4
` K ` C`m

´1 ě 0 ,

so that the square root is well-defined. In the expression of LΓ,´
m , we are obliged to

take the non-negative part.

Rewriting the previous theorem in term of asymptotic expansions of the eigenval-
ues, we get the following result (see for instance [15, Corollary 3.2]).

Corollary 1.14. For all n P N˚, we have that

µnp´mq “
mÑ`8

rµ
1

2

n ` Opm´ 1

2 q,

where prµnqnPN˚ is the non-decreasing sequence of the eigenvalues of the following

non-negative operator on L2pΓ,Cq4 X kerp14 ´ Bq:

LΓ ´ κ2

4
` K .

Let us describe the spectrum of the effective operator on the boundary in the case
where Ω is a ball (see [22, Section 4.6]).The proof of the following proposition just
follows from straightforward computations.

Proposition 1.15. Assume that Ω “ Bp0, Rq with R ą 0. Let A “ βp1` 2S ¨Lq be

the ”spin-orbit” operator where S “ 1
2
γ5pα1, α2, α3q and L “ x ˆ D. We have

AB “ BA ,

LΓ ´ κ2

4
` K “ R´2A2 ,

and its spectrum is tn2{R2, n P N˚u.

1.4. Remarks. Let us conclude this introduction with some comments related to
Robin Laplacians, δ-interactions and shell-interactions.
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1.4.1. Comparison to Robin Laplacians. Theorem 1.12 shares common features with
the known results about the Robin Laplacian in the strong coupling limit (see [19]
for the asymptotic of individual eigenvalues and [15] in relation with the spectral
uniformity and the semiclassical point of view). But two major differences have to
be emphasized. Firstly, the effective operator is not semiclassical in our case (it
looks like the effective operator in the case of a Schrödinger operator with a strong
attractive δ-interaction on Γ, see [8]). Secondly, the effective operator in our case is
a quadratic function of the principal curvatures (and not a linear one as in the Robin
case). These differences are crucially related to the vectorial nature of the Dirac
operator with the MIT conditions: they lead to a kind of semiclassical degeneracy.
It is also rather surprising that the order of this degeneracy is still less than the
order of the famous Born-Oppenheimer correction. Here, by the Born-Oppenheimer
method, we mean a semiclassical method of reduction to the boundary explained in
Sections 4 and 5.

1.4.2. Shell interactions. There is a close relation between the MIT bag model that
we study in this work and the shell interactions for Dirac operators studied in [1]. In
[1, Theorem 5.5], the authors prove that H `Ves generates confinement with respect
to Γ for λ2e ´ λ2s “ ´4, where

Vesψ “ 1

2
pλe ` λsβqpψ` ` ψ´qdΓ ,

λe, λs P R, ψ˘ are the non-tangential boundary values of ψ on Γ and dΓ is the surface
measure on Γ. By using [1, Proposition 3.1], it is possible to see that the existence of
eigenvalues forH`Ves is equivalent to a spectral property of some bounded operators
on Γ. More precisely,

(1.5) kerpH ` Ves ´ µq ‰ 0 ðñ kerpλsβ ´ λe ` 4Cσ,µq ‰ 0 ,

where Cσ,µ is a Cauchy-type operator defined on Γ in the principal value sense. In the
regime λ2e ´ λ2s “ ´4, the right hand side of p1.5q is also equivalent to the existence
of a solution ψ P H1pΩ,C4q of the boundary value problem pH ´ µqψ “ 0 in Ω and
ψ “ i

2
pλe ´ λsβqpα ¨nqψ on Γ. Observe that when λe “ 0 and λs “ 2 we recover the

MIT bag model given in Definition 1.2. It is worth pointing out that the right hand
side of p1.5q does not hold for λs ą 0 if µ P r´m,ms. So the eigenvalues must belong
to Rzr´m,ms for λs ą 0, as we already know from [17, Section 5] in the case λe “ 0
and λs “ 2.

1.5. Organization of the paper. The paper is organized as follows. In Section
2, we prove Theorem 1.5 by constructing extension operators adapted to the Dirac
operator. Section 3 is devoted to the proofs of Theorems 1.6 and 1.7. The remaining
sections are concerned with the case of the large negative mass. In Section 4, we
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explain the main steps towards the proof of Theorem 1.12. In Section 5, we prove
the propositions and theorems stated in Section 4.

2. Proof of Theorem 1.5

2.1. Preliminaries. This section is devoted to establish elementary algebraic prop-
erties.

Lemma 2.1. For all x,y P R3, we have

pα ¨ xqpα ¨ yq “ px ¨ yq14 ` iγ5α ¨ px ˆ yq ,
βpα ¨ xq “ ´pα ¨ xqβ , βγ5 “ ´γ5β ,
γ5pα ¨ xq “ pα ¨ xqγ5 .

Proof. We refer to [22, Appendix 1.B]. �

Points ii and iii of Theorem 1.5 are immediate consequences of the following lemma
(see [22, Section 1.4.6] and [20, Section 10.4.5]).

Lemma 2.2 (Discrete symmetries). Let us introduce three operators defined for ψ P
C4 by

Cψ “ iβα2ψ, Charge conjugation operator,

Tψ “ ´iγ5α2ψ, Time reversal-symmetry operator,

CTψ “ βγ5ψ, CT-symmetry operator.

The operators C and T , resp. CT are anti-unitary, resp. unitary transformations

that leave DompHq invariant and satisfy C2 “ ´T 2 “ 14, CT “ TC,

HC “ ´CH, HT “ TH and H pCT q “ ´ pCT qH .

Moreover, we have for any ψ P C
4 that xψ, Tψy “ 0.

We can relate the mean curvature to the commutator between the boundary con-
dition and a Dirac derivative parallel to the boundary.

Lemma 2.3 (Mean curvature as commutator). We have

rα ¨ pn ˆ Dq,Bs “ ´κγ5B .
Proof. Let s P BΩ. First we have, by anticommutation between α and β,

α ¨ pn ˆ DqBψ “ β α ¨ pn ˆ ∇qpα ¨ nψq .
Let n1 and n2 be two eigenvectors of the Weingarten map dns whose respective
eigenvalues are denoted by pλ1, λ2q and such that pn,n1,n2q is an orthonormal basis
of R3. We have

α ¨ pn ˆ ∇q “ α ¨ n2B
n

1 ´ α ¨ n1B
n

2 .
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Then, by the Leibniz formula and Lemma 2.1, it follows that

pα ¨ n ˆ ∇qpα ¨ nψq “ ´α ¨ n pα ¨ n2B
n

1 ´ α ¨ n1B
n

2qψ
` ppα ¨ n2qpα ¨ B

n
1nq ´ pα ¨ n1qpα ¨ B

n
2nqqψ ,

and thus, again by Lemma 2.1,

pα ¨ n ˆ ∇qpα ¨ nψq “ ´α ¨ n pα ¨ n2B
n

1 ´ α ¨ n1B
n

2qψ ´ ipλ1 ` λ2qγ5α ¨ n .
We deduce that

α ¨ pn ˆ DqBψ “ Bpα ¨ n ˆ Dqψ ´ ipλ1 ` λ2qβγ5α ¨ n ,
and the conclusion follows. �

2.2. Symmetry of H. Let us start by proving the symmetry of H .

Lemma 2.4. pH,DompHqq is a symmetric operator.

Proof. Since the α-matrices are Hermitian, we have, thanks to the Green-Riemann
formula:

(2.1) @ϕ, ψ P H1pΩ,C4q , xα ¨ Dϕ, ψyΩ “ xϕ, α ¨DψyΩ ` xp´iα ¨ nqϕ, ψyBΩ .

Now we consider ψ, ϕ P DompHq. By using β2 “ 14 and the boundary condition, we
get

xp´iα ¨ nqϕ, ψyBΩ “ xβϕ, ψyBΩ ,

so that, we deduce

(2.2) @ϕ, ψ P DpHq , xα ¨Dϕ, ψyΩ ´ xϕ, α ¨ DψyΩ “ xβϕ, ψyBΩ .

The right hand side of (2.2) is a skew-symmetric expression of pϕ, ψq and the left
hand side is symmetric in pϕ, ψq since β is Hermitian. Thus both sides must be
zero. �

2.3. Self-adjointness of H. This subsection is devoted to the proof of Point i of
Theorem 1.5. We denote by L pE, F q the set of continuous linear applications from
E to F where E and F are Banach spaces. We recall that the domain of H is
independent of m:

DompHq “ tψ P H1pΩq4, Bψ “ ψ on BΩu ,
and that the domain of the adjoint H‹ is defined by

DompH‹q “ tψ P L2pΩq4, Lψ P L pL2pΩq4,Cqu ,
where

Lψ : ϕ P DompHq ÞÑ xψ,HϕyΩ P C .

By Lemma 2.4, we get that

DompHq Ă DompH‹q .



ON THE MIT BAG MODEL 11

Let us remark that, without loss of generality, we can assume in the proof that m “ 0
since the operator βm is bounded (and self-adjoint) from L2pΩq4 into itself. The aim
of this section is to establish that

(2.3) DompH‹q Ă DompHq .
2.3.1. Extension operator on the half-space case. In this section, we consider the case
when Ω “ R3

` and we establish the existence of an extension operator.

Lemma 2.5. There exists an operator

P : DompH‹q Ñ tψ P L2pR3q4, α ¨Dψ P L2pR3q4u “ H1pR3q4

such that Pψ|R3

`
“ ψ and

}Pψ}2H1pR3q “ }Pψ}2L2pR3q ` }∇Pψ}2L2pR3q “ 2
´

}ψ}2L2pR3

`q ` }α ¨Dψ}2L2pR3

`q

¯
.

Proof. The outward-pointing normal n is equal to ´e3 “ p0, 0,´1qT so that the
boundary condition is

iβα3ψ “ ψ ,

on BR3
`. Let us diagonalize the matrix iβα3 appearing in the boundary condition.

We introduce the matrix

T “ 1?
2

ˆ
12 i12
i12 12

˙
.

We have

TβT ‹ “
ˆ

0 ´i12
i12 0

˙
, TαkT

‹ “ αk , T piβα3qT ‹ “
ˆ
σ3 0
0 ´σ3

˙
“: B0 .

Thus we consider rH “ THT ‹. The operator rH is defined by rHψ “ α ¨ Dψ for any

ψ P Domp rHq where

Domp rHq “
 
ψ P H1pR3

`q, B0ψ “ ψ, on BR3
`
(

“
 
ψ P H1pR3

`q, ψ2 “ ψ3 “ 0 on BR3
`
((2.4)

and ψ “ pψ1, ψ2, ψ3, ψ4qT . This unitarily equivalent representation of the Dirac
operator is called the supersymmetric representation (see [22, Appendix 1.A]). This
expression of the domain makes more apparent the fact that the MIT bag boundary
condition is intermediary between the Dirichlet and Neumann boundary conditions.

Let us denote by S : R3 Ñ R3 and Π : R3 Ñ R3 the orthogonal symmetry with
respect to BR3

` and the orthogonal projection on BR3
`. Based on (2.4), we define the

extension operator rP for ψ P Domp rH‹q as follows:

rPψpx, y, zq “
"
ψpx, y, zq, if z ą 0
pψ1,´ψ2,´ψ3, ψ4qT px, y,´zq “ B0 pψ ˝ Sq px, y, zq, if z ă 0
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for px, y, zq P R3. In other words, we extend ψ1, ψ4 by symmetry and ψ2, ψ3 by
antisymmetry.

Let us get back to the standard representation and define the extention operator
P for ψ P DpH‹q and px, y, zq P R3 as follows :

Pψpx, y, zq “ T ‹ rPTψpx, y, zq “
#
ψpx, y, zq, if z ą 0,

pB ˝ Πq pψ ˝ Sq px, y, zq, if z ă 0.

Since Bpsq is a unitary transformation of C4 for any s P BR3
`, we get that

}Pψ}2L2pR3q “ 2}ψ}2L2pR3

`q.

Let us study α ¨DPψ in the distributional sense. We have for ϕ P D “ C8
0 pR3q that

xα ¨ DPψ, ϕy
D1ˆD

“ xPψ, α ¨Dϕy
R3 “ xψ, α ¨Dϕy

R3

`
` xpB ˝ Πqψ ˝ S, α ¨Dϕy

R3

´

where x¨, ¨y
D1ˆD

is the distributional bracket on R3. Since B is Hermitian, we obtain
by a change of variables, that

xpB ˝ Πqψ ˝ S, α ¨ Dϕy
R3

´
“ xψ ˝ S, pB ˝ Πqα ¨Dϕy

R3

´

“ xψ,´i pB ˝ Πq pα1Bx ` α2By ´ α3Bzqϕ ˝ Sy
R3

`
“ xψ, α ¨ D ppB ˝ Πqϕ ˝ Sqy

R3

`
.

Hence, we get

xα ¨DPψ, ϕy
D1ˆD

“ xψ, α ¨D pϕ ` pB ˝ Πqϕ ˝ Sqy
R3

`
.

Let us remark that the function ϕ ` pB ˝ Πqϕ ˝ S belongs to DompHq. Indeed, we
have that

pB ˝ Πq pϕ ` pB ˝ Πqϕ ˝ Sq px, y, 0q “ pϕ ` pB ˝ Πqϕ ˝ Sq px, y, 0q
for all px, yq P R2. Since ψ P DompH‹q, by the Riesz theorem and a change of
variable, we have that

xα ¨DPψ, ϕy
D1ˆD

“ xα ¨ Dψ, pϕ ` pB ˝ Πqϕ ˝ Sqy
R3

`

“ xα ¨ Dψ,ϕy
R3

`
` xpB ˝ Πq pα ¨Dψq ˝ S, ϕy

R3

´
.

Thus, we obtain that in the distributional sense

α ¨DPψ “ χR3

`
pα ¨ Dψq ` χR3

´
pB ˝ Πq pα ¨Dψq ˝ S P L2pR3q

so that

}∇Pψ}2L2pR3q “ }α ¨DPψ}2L2pR3q “ 2}α ¨Dψ}2L2pR3

`q.

�
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2.3.2. Proof of Point i of Theorem 1.5. Let us now consider the case of our general Ω.
Let us remark that the understanding of the case of the half-space is not sufficient to
conclude since curvature effects have to be taken into account. The proof of Lemma
2.5 is just used here as a guideline for the proof of the next proposition.

Proposition 2.6. There exist a constant C ą 0 and an operator

P : DompH‹q Ñ H1pR3q4

such that Pψ|Ω “ ψ and

}Pψ}2H1pR3q ď C
´

}ψ}2L2pΩq ` }α ¨Dψ}2L2pΩq

¯
,

for all ψ P DompH‹q.
Proof. Using a partition of unity and the fact that

tu P L2pR3q4 : α ¨Du P L2pR3q4u “ H1pR3q4,
we are reduced to study the case of a deformed half-space. Let us recall the standard
tubular coordinates near the boundary of Ω :

η : pU X BΩq ˆ p´T, T q ÝÑ U,

px0, tq ÞÑ x0 ´ tnpx0q
where T ą 0 and U is a bounded open set of R3. Without loss of generality, we can
assume that η is a diffeomorphism such that

ηppU X BΩq ˆ p0, T qq “ Ω X U, ηppU X BΩq ˆ t0uq “ BΩ X U.

The rest of the proof is divided into four steps:

(a) we introduce a bounded extension operator P : L2pU X Ωq Ñ L2pUq,
(b) we introduce a map α̃ which extends the α-matrices on U so that, we have

}α̃ ¨DPψ}L2pUq ď C
´

}ψ}2L2pΩXUq ` }α ¨Dψ}2L2pΩXUq

¯
,

for any function ψ P DompH‹q whose support is a compact subset of U X Ω,
(c) we show that the norm } ¨ }V defined on

V “ tv P L2pUq, α̃ ¨ Dv P L2pUq, supp v ĂĂ Uu
by

}v}2V “ }v}2L2 ` }α̃ ¨Dv}2L2

is equivalent to the H1 norm on C8
0 pUq.

(d) we deduce by a density argument that V Ă H1
0 pUq,
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and the conclusion follows.
Step (a). The following tubular projection and symmetry defined by

φs : U Ñ Ω X U

x0 ´ tnpx0q ÞÑ x0 ` tnpx0q
φp : U Ñ BΩ X U

x0 ´ tnpx0q ÞÑ x0

are well-defined and regular functions.
Let us denote by P px0q the matrix of the identity map of R3 from the canonical

basis pe1, e2, e3q to the orthonormal basis pǫ1px0q, ǫ2px0q,npx0qq defined by

P px0q “ MatpId, pe1, e2, e3q, pǫ1px0q, ǫ2px0q,npx0qqq ,
for any x0 P BΩXU where pǫ1px0q, ǫ2px0qq is a basis of the tangent space T

x0
BΩ. Up

to taking a smaller T , we have that, for any x0 P BΩ X U ,

Jac φspx0q “ P px0q´1

¨
˝

1 0 0
0 1 0
0 0 ´1

˛
‚P px0q ,

and, for any x P U ,

(2.5)
3

2
ě |Jac φspxq| :“ | det Jac φspxq| ě 1

2
.

Following the idea of the proof of Lemma 2.5, we define the extension operator

P : L2pU X Ωq Ñ L2pUq
for ψ P L2pU X Ωq and x P U as follows:

Pψpxq “
#
ψpxq, if x P U X Ω ,

pB ˝ φppxqqψ ˝ φspxq, if x P U X Ωc.

By (2.5), we get that

}Pψ}L2pUq ď C}ψ}L2pUXΩq .

Step (b). Let us extend the α-matrices for x P U as follows:

rαpxq “
#

pα1, α2, α3qT , if x P U X Ω,

|Jacφspxq|B ˝ φppxq
`
pJacφspxqq´1 pα1, α2, α3qT

˘
B ˝ φppxq , if x P U X Ωc .

Let us remark that rαpxq is a column-vector of three matrices and the above matrix
product makes sense as a product in the modulus on the ring of the 4ˆ 4 Hermitian
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matrices. In particular, we get for x0 P BΩ X U that

|Jacφspx0q|B ˝ φppx0q
`
pJacφspx0qq´1 pα1, α2, α3qT

˘
B ˝ φppx0q

“ Bpx0q

¨
˝P px0q´1

¨
˝

1 0 0
0 1 0
0 0 ´1

˛
‚P px0q

¨
˝

α1

α2

α3

˛
‚
˛
‚Bpx0q

“ Bpx0q

¨
˝P px0q´1

¨
˝

1 0 0
0 1 0
0 0 ´1

˛
‚
¨
˝

α ¨ ǫ1px0q
α ¨ ǫ2px0q
α ¨ npx0q

˛
‚
˛
‚Bpx0q

“ P px0q´1Bpx0q

¨
˝

α ¨ ǫ1px0q
α ¨ ǫ2px0q

´α ¨ npx0q

˛
‚Bpx0q

“ P px0q´1

¨
˝

α ¨ ǫ1px0q
α ¨ ǫ2px0q
α ¨ npx0q

˛
‚“

¨
˝

α1

α2

α3

˛
‚.

Hence, the application α̃ is continuous on U . Since it is also a C1-map on both Ω X U

and Ωc X U , we get that α̃ is a Lipschitz map. This choice for the extension of α is
made in order to get

rα ¨DPψ P L2pUq ,
in the sense of distributions. Indeed, since α̃ is Lipschitz, we get that, for ϕ P H1

0 pUq,
xrα ¨DPψ, ϕyH´1pUqˆH1

0
pUq :“ xPψ, rα ¨ DϕyU ` xPψ,´idivprαqϕyUXΩc .

For x P U X Ω, we also have that

prα ¨ ∇ϕqpφ´1
s pxqq “ |Jacφspφ´1

s pxqq| pB ˝ φpαB ˝ φpq ¨ ∇
`
ϕ ˝ φ´1

s

˘
pxq

and thus

prα ¨ ∇ϕqpφ´1
s pxqq “ |Jacφspφ´1

s pxqq|B ˝ φp
`
α ¨ ∇

`
pB ˝ φpqϕ ˝ φ´1

s

˘˘
pxq

´ |Jacφspφ´1
s pxqq|B ˝ φp pα ¨ ∇pB ˝ φpqqϕ ˝ φ´1

s pxq .
We deduce that

xPψ, rα ¨DϕyUXΩc “ xψ, α ¨D
`
pB ˝ φpqϕ ˝ φ´1

s

˘
y
UXΩ

´ xψ, pα ¨ D pB ˝ φpqqϕ ˝ φ´1
s y

UXΩ
.

Since ψ P DompH‹q and the function ϕ ` pB ˝ φpqϕ ˝ φ´1
s : Ω X U Ñ C4 belongs to

DompHq, we get that

xrα ¨DPψ, ϕyH´1pUqˆH1

0
pUq “ xα ¨Dψ,ϕ` pB ˝ φpqϕ ˝ φ´1

s y
UXΩ

` xψ,RϕyUXΩ ,
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where R is a bounded operator from L2pUq in L2pU X Ωq defined for all ϕ P L2pUq
by

Rϕ “ ´i divprαqϕ ` i pα ¨ ∇ pB ˝ φpqqϕ ˝ φ´1
s .

Then, we obtain by Riesz’s theorem that rα ¨DPψ P L2pUq and that

}α̃ ¨DPψ}L2pUq ď C
´

}ψ}2L2pΩq ` }α ¨ Dψ}2L2pΩq

¯
,

where C ą 0 does not depend on ψ.
Step (c). Let ϕ P C8

0 pUq, we have

} ´ irα ¨ ∇ϕ}2L2pUq “ xϕ, p´irα ¨ ∇q2ϕyU ´ xϕ, divprαq prα ¨ ∇ϕqyUXΩc

and

p´irα ¨ ∇q2 “ ´
3ÿ

j,k“1

rαjrαkB2
jk ` prαjBjrαkq Bk .

Let us define the matrix-valued function A for all x P U by

Apxq “ |Jacφspxq|pJacφspxqq´1χUXΩcpxq ` 13χUXΩpxq “ pajkpxqqjk
and denote by Ajpxq the j-th line of Apxq. We get that, for all x P U ,

rαjpxqrαkpxq “ B ˝ φp paj1α1 ` aj2α2 ` aj3α3q pak1α1 ` ak2α2 ` ak3α3qB ˝ φp

“
˜

3ÿ

l“1

ajlakl

¸
14 ` B ˝ φp

˜ ÿ

1ďlăsď3

αlαs pajlaks ´ ajsaklq
¸
B ˝ φp

and
3ÿ

j,k“1

rαjrαkB2
jk “ 14

3ÿ

j,k“1

AjA
T
k B2

jk .

Since, AAT pxq “ 13 for all x P U X BΩ, we get that x ÞÑ AAT pxq is a Lipschitzian
application on U and

3ÿ

j,k“1

rαjrαkB2
jk “ 14 div

`
AAT∇

˘
´ 14

3ÿ

j,k“1

`
BjAAT

˘
Bk.

Integrating by parts yields

} ´ irα ¨ ∇ϕ}2L2pUq ě }AT∇ϕ}2L2pUq ´ C}ϕ}L2pUq}∇ϕ}L2pUq

ě c}∇ϕ}2L2pUq ´ C}ϕ}L2pUq}∇ϕ}L2pUq ,

where

c “ mintinf sppAAT pxqq, x P Uu .
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Note that c ą 0 by (2.5). This ensures that the H1-norm and the } ¨ }V-norm are
equivalent on C8

0 pUq.
Step (d). Let v P V and pρεqε a mollifier defined for x P R3 by

ρεpxq “ 1

ε3
ρ1

´
x

ε

¯
,

where ρ1 P C8
0 pR3q, supp ρ1 Ă Bp0, 1q, ρ1 ě 0 and }ρ1}L1 “ 1. Let us define

vε “ v ˚ρε for any ε ą 0. There exists ε0 ą 0 such that for all ε P p0, ε0s, the function
vε belongs to C

8
0 pUq. Let us temporarily admit that there exists C independent of

v and ε such that

}vε}V ď C}v}V .(2.6)

Then, Step (c) and the fact that vε converges to v in L2pUq ensure that V Ă H1
0pUq

and the result follows.
It remains to prove (2.6). There exists a constant C ą 0 such that

}vε}L2 ď C}v}L2

and

}rα ¨Dvε}L2 ď }rα ¨ ∇vε ´ prα ¨ ∇vq ˚ ρε}L2 ` } prα ¨ ∇vq ˚ ρε}L2

ď }rα ¨ ∇vε ´ prα ¨ ∇vq ˚ ρε}L2 ` C}rα ¨ ∇v}L2 .

By integration by parts, we get, for x P U ,
rα ¨ ∇vεpxq ´ prα ¨ ∇vq ˚ ρεpxq

“
ż

R3

rαpxq ¨ pvpyq∇ρεpx ´ yqq dy ´
ż

R3

rαpyq ¨ ∇vpyqρεpx ´ yq dy

“
ż

R3

prαpxq ´ rαpyqq ¨ pvpyq∇ρεpx ´ yqq dy `
ż

R3

pdiv rαpyqq vpyqρεpx ´ yq dy ,

and by a change of variableż

R3

prαpxq ´ rαpyqq ¨ pvpyq∇ρεpx ´ yqq dy

“
ż

R3

rαpxq ´ rαpx ´ εzq
ε

¨ pvpx ´ εzq∇ρ1pzqq dz .

Since rα is Lipschitzian, we get that››››
ż

R3

rαp¨q ´ rαp¨ ´ εzq
ε

¨ pvp¨ ´ εzq∇ρ1pzqq dz

››››
L2

ď C}v}L2}| ¨ ||∇ρ1p¨q|}L1 ,

and ››››
ż

R3

pdiv rαpyqq vpyqρεp¨ ´ yq dy
››››
L2

ď C}v}L2 ,
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so that (2.6) follows. �

Now we can end the proof of (2.3). Thanks to Proposition 2.6, the set DompH‹q is
included in H1pΩq. Hence, for any ψ P DompH‹q, the trace of ψ on the set BΩ is well-
defined and belongs to H1{2pBΩq. By the definition of DompH‹q and an integration
by parts, we obtain that, for any ϕ P DompHq,

0 “ xψ,HϕyΩ ´ xHψ,ϕyΩ “ xψ,´iα ¨ nϕyBΩ “ xβψ, ϕyBΩ .

Hence, we have, for almost any s P BΩ,
βψpsq P kerpB ´ 14qK “ kerpB ` 14q ,

so that
ψpsq P kerpB ´ 14q ,

and we get (2.3).

2.4. Proof of Point iv in Theorem 1.5. In the following lines, we assume that
ψ P DompHq. First we expand the square to get

}Hψ}2L2pΩq “ xα ¨Dψ, α ¨ DψyΩ ` m2 xβψ, βψyΩ ` 2mRe xβψ, α ¨DψyΩ .

Then we use (2.1) with ϕ “ βψ and we find, by using that α anticommutes with β,

2 Re xβψ, α ¨ DψyΩ “ xiα ¨ nβψ, ψ,yBΩ “ x´iβα ¨ nψ, ψyBΩ “ }ψ}2L2pBΩq .

It remains to use that β is unitary to deduce

(2.7) }Hψ}2L2pΩq “ }α ¨ Dψ}2L2pΩq ` m2}ψ}2L2pΩq ` m}ψ}2L2pBΩq .

Assume moreover that ψ P H2pΩq. Then, we again use the Green-Riemann formula
(2.1) and we have

xα ¨ Dψ, α ¨DψyΩ “ xψ, pα ¨Dq2ψyΩ ` xp´iα ¨ nqψ, α ¨ DψyBΩ ,

and thus, by noticing that pα ¨Dq2 “ 14D
2, we find, by another integration by parts:

xα ¨Dψ, α ¨Dψy
Ω

“ xDψ,Dψy
Ω

` i xψ, ppα ¨ nqpα ¨Dq ´ pn ¨ DqqψyBΩ .

Since H2pΩq is dense in H1pΩq, we get that this formula holds for any u P DompHq.
We shall now investigate the boundary term by using the first algebraic relation in
(2.1):

i xψ, ppα ¨ nqpα ¨Dq ´ pn ¨DqqψyBΩ “ ´ xψ, γ5α ¨ pn ˆ DqψyBΩ
“ ´ xγ5ψ, α ¨ pn ˆ DqψyBΩ .

It remains to investigate the term xγ5ψ, α ¨ pn ˆ DqψyBΩ. Since ψ belongs to DompHq,
we have

xγ5ψ, α ¨ pn ˆ DqψyBΩ “ xγ5ψ, rα ¨ pn ˆ Dq,BsψyBΩ ` xγ5ψ,Bα ¨ pn ˆDqψyBΩ ,
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and, since B is a symmetric operator, we get

xγ5ψ,Bα ¨ pn ˆ DqψyBΩ “ xBγ5ψ, α ¨ pn ˆ DqψyBΩ “ ´ xγ5Bψ, α ¨ pn ˆ DqψyBΩ .

We deduce that

xγ5ψ, α ¨ pn ˆ DqψyBΩ “ 1

2
xγ5ψ, rα ¨ pn ˆ Dq,BsψyBΩ ,

and, with Lemma 2.3, we get

i xψ, ppα ¨ nqpα ¨ Dq ´ pn ¨DqqψyBΩ “ ´1

2
xγ5ψ,´κγ5ψyBΩ ,

and the conclusion follows.

3. Large positive mass

This section is devoted to the proofs of Theorems 1.6 and 1.7. For that purpose,
one will work with the square of the Dirac operator H2 appearing in Theorem 1.5
and determine the asymptotic expansions of its lowest eigenvalues.

For m ą 0 and ψ P D “ tψ P H1pΩ,C4q, ψ P ker pB ´ 14q on Γu, we let

Qmpψq “ }∇ψ}2 `
ż

Γ

´
m` κ

2

¯
|ψ|2 dΓ .

In addition, we also define, for ψ P H1
0 pΩ,C4q,

Q8pψq “ }∇ψ}2 .
Let us denote by pλjpQmqqjě1 and pλjpQ8qqjě1, the ordered sequence of eigenvalues
related to the operators associated with the quadratic forms Qm and Q8. There
respective L2-normalized eigenfunctions are denoted by that ψj,m and ψj,8.

3.1. First non-trivial term in the asymptotic expansion. Theorem 1.6 is a
consequence of the following proposition and of Theorem 1.5.

Proposition 3.1. For all j ě 1, we have

lim
mÑ`8

λjpQmq “ λjpQ8q .

Proof. Since H1
0 pΩ,C4q Ă D, we have, for all n ě 1,

λn pQmq ď λn pQ8q .
Let us fix N ě 1 and consider an orthonormal family pψj,mq1ďjďN such that ψj,m is an
eigenfunction of the operator related to Qm and associated with its j-th eigenvalue.
We set

ENpmq “ span pψj,mq1ďjďN .
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We easily get that, for all ψ P EN pmq,

Qmpψq ď λNpQmq}ψ}2 ď λNpQ8q}ψ}2 .

Let us first prove that λ1pQmq converges towards λ1pQ8q. For that purpose, let us
establish that the only accumulation point of pλ1pQmqqmě0 is λ1pQ8q. Since pψ1,mq
is bounded in H1pΩq, we may assume, up to a subsequence extraction, that ψ1,m

converges weakly to ψ1,8 P H1pΩq. But, we have
ż

Γ

|ψ1,m|2 dΓ “ Opm´1q ,

and by the Fatou lemma, ψ1,8 “ 0 on Γ so that ψ1,8 P H1
0 pΩq. Then, we get

λ1pQ8q ě lim
mÑ`8

λ1pQmq ě lim inf
mÑ`8

}∇ψ1,m}2 ě }∇ψ1,8}2 ě λ1pQ8q .

We deduce that ψ1,8 is an eigenfunction of the Dirichlet Laplacian associated with
λ1pQ8q. Therefore, we have the convergence result for the first eigenvalue. We also
get that pψ1,mq converges to ψ1,8 strongly in H1pΩq.

Let us now proceed by induction. Let N ě 1. Assume that, for all j P t1, . . . , Nu,
pλjpQmqq converges to λjpQ8q and that, up to a subsequence extraction, pψj,mq
converges to ψj,8, an eigenfunction associated with λjpQ8q. As above, we may
assume that pψN`1,mq weakly converges to some ψN`1,8 P H1pΩq and that its trace
on Γ is zero. We also get, by convergence in L2pΩq, that

ψN`1,8 P
ˆ

span
1ďjďN

ψj,8

˙K
.

By the min-max principle, it follows that

λN`1pQ8q ě lim
mÑ`8

λN`1pQmq ě lim inf
mÑ`8

}∇ψN`1,m}2 ě }∇ψN`1,8}2 ě λN`1pQ8q .

From these last inequalities, we infer that ψN`1,8 is an eigenfunction of the Dirichlet
Laplacian associated with λN`1pQ8q, that pλN`1pQmqq converges to pλN`1pQ8qq and
pψN`1,mq converges strongly in H1pΩq to ψN`1,8. �

3.2. Asymptotic expansion of the first eigenvalue. The following lemma will
be used in the proof of Theorem 1.5.

Lemma 3.2. Let u P H1
0 pΩ,Cq be an L2-normalized eigenfunction of the Dirichlet

Laplacian on Ω. Then ż

Γ

|B
n
u|2n dΓ “ 0 .
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Proof. We have ∇u “ pB
n
uqn so that by integration by parts, we get

ż

Γ

|B
n
u|2n dΓ “

ż

Γ

|∇u|2n dΓ “
ż

Ω

∇|∇u|2 dx “
ˆż

Ω

2∇u ¨ ∇Bku dx
˙

k“1,2,3

“ 2

ˆż

Ω

p´∆uqBku dx `
ż

Γ

B
n
uBku dΓ

˙

k“1,2,3

“ 2

ˆ
λjpQ8q{2

ż

Ω

Bk|u|2 dx `
ż

Γ

B
n
uBku dΓ

˙

k“1,2,3

“ 2

ż

Γ

B
n
u∇u dΓ “ 2

ż

Γ

|B
n
u|2n dΓ ,

and the conclusion follows. �

Theorem 1.7 is a consequence of the following proposition and of Theorem 1.5.

Proposition 3.3. Let u1 P H1
0 pΩq be an L2-normalized eigenfunction of the Dirichlet

Laplacian associated with its lowest eigenvalue λ1pQ8q. We have that

λ1pQmq “ λ1pQ8q ´ 1

2m

ż

Γ

|B
n
u1|2 dΓ ` Opm´2q .

Remark 3.4. In the case of the Robin Laplacian, we obtain

λRob1 pQmq “ λ1pQ8q ´ 1

m

ż

Γ

|B
n
u1|2 dΓ ` Opm´2q

and we recover asymptotically the fact that λRob1 pQmq ď λ1pQmq.
Proof. The proof of this result is divided into three steps:

(a) we perform a formal study of the asymptotic expansion of λ1pQmq,
(b) we build rigorously a test function based on Step (a) to get the upper bound,
(c) we study the lower bound.

Step (a). We look for quasi-eigenvalues and quasi-eigenfunctions in the form

λ
app
1 pQmq “ λ1pQ8q ` λ

m
` Opm´2q ,

ψ
app
1,m “ ψ1,8 ` m´1ϕ ` Opm´2q ,

where λ and ϕ are unknown.
We recall that ψ1,m and ψ1,8 satisfy

´ ∆ψ1,m “ λ1pQmqψ1,m, on Ω ,

ψ1,m P kerpB ´ 14q, on Γ ,

pB
n

` κ{2 ` mqψ1,m P kerpB ` 14q , on Γ .
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and

´ ∆ψ1,8 “ λ1pQ8qψ1,8 , on Ω,

ψ1,8 “ 0 , on Γ .

Then, we want that

p´∆ ´ λ1pQ8qqϕ “ λψ1,8, on Ω ,

ϕ P kerpB ´ 14q, on Γ ,

B
n
ψ1,8 ` ϕ P kerpB ` 14q, on Γ .

(3.1)

Denoting for all s P Γ, P`psq “ 1´Bpsq
2

, the orthogonal projection on kerpB ´ 14q, we
get that

0 “ P` pB
n
ψ1,8 ` ϕq “ P`B

n
ψ1,8 ` ϕ .

Taking the scalar product of equation (3.1) with ψ1,8 and integrating by parts twice,
we obtain that

λ “ ´}P`B
n
ψ1,8}2L2pΓq

and

p´∆ ´ λ1pQ8qqϕ “ λψ1,8, on Ω ,

ϕ “ ´P`B
n
ψ1,8, on Γ .

(3.2)

Let us now consider λ. Note, that for all eigenfunction ψ1,8 of the Dirichlet Laplacian
in L2pΩ,C4q associated with its lowest eigenvalue λ1pQ8q, there exists a P C

4 such
that |a| “ 1 and ψ1,8 “ au1. Then, we have

λ “ ´1

2

ż

Γ

|B
n
u1|2 p1 ` xa,Bayq dΓ

“ ´1

2

ż

Γ

|B
n
u1|2 dΓ ´ 1

2
xa,´iβα ¨

ˆż

Γ

|B
n
u1|2n dΓ

˙
ay .

With Lemma 3.2, we obtain that

λ “ ´1

2

ż

Γ

|B
n
u1|2 dΓ.

Step (b). Let ψ1,8 “ au1 be an eigenfunction of the Dirichlet Laplacian associated
with λ1pQ8q and w P H2pΩq be such that w “ ´P`B

n
ψ1,8. Let us study the

existence of a solution ϕ1 of equation (3.2). We denote by p´∆q´1 the inverse of the
Dirichlet Laplacian and v “ ϕ1 ´ w so that

`
Id ´ λ1pQ8qp´∆q´1

˘
v “ p´∆q´1λψ1,8 ´ p´∆q´1 p´∆ ´ λ1pQ8qqw .
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By the Fredholm alternative, there exists such a function v if and only if

p´∆q´1 pλψ1,8 ´ p´∆ ´ λ1pQ8qqwq P ker
`
Id ´ λ1pQ8qp´∆q´1

˘K
.

Let ψ P ker pId ´ λ1pQ8qp´∆q´1qK
. We have by integrations by parts that

xψ, p´∆q´1 pλψ1,8 ´ p´∆ ´ λ1pQ8qqwqy
Ω

“ λ1pQ8q´1
`
xψ, λ1ψ1,8y

Ω
´ xp´∆ ´ λ1pQ8qqψ,wyΩ ´ xB

n
ψ,wyΓ

˘

“ λ1pQ8q´1
`
xψ, λ1ψ1,8y

Ω
` xB

n
ψ, P`B

n
ψ1,8y

Γ

˘
.

Hence, we get

0 “ xψ1,8, p´∆q´1 pλψ1,8 ´ p´∆ ´ λ1,8qwqy
Ω

provided that

(3.3) λ “ ´
ż

Γ

|P` pB
n
ψ1,8q |2 dΓ .

Let a, b P C4 be such that xa, by “ 0, |a| “ |b| “ 1, ψ1,8 “ au1 and ψ “ bu1. We have

0 “ xψ, p´∆q´1 pλ1ψ1,8 ´ p´∆ ´ λ1pQ8qqwqy
Ω

since

0 “ xB
n
ψ, P`B

n
ψ1,8y

Γ
“ 1

2
xb,´iβα ¨

ˆż

Γ

|B
n
u0|2n dΓ

˙
ay .

Hence, assuming that (3.3) is true, we get that system (3.2) has a solution ϕ1.
ψ1,8 ` m´1ϕ1 can be used as a test function and we have

Qmpψ1,8 ` m´1ϕ1q “ λ1pQ8q ` m´1

ˆ
2Re x∇ψ1,8,∇ϕ1yΩ `

ż

Γ

|ϕ1|2 dΓ
˙

` Opm´2q

“ λ1pQ8q}ψ1,m}2L2 ´ m´1

ż

Γ

|P` pB
n
ψ1,8q |2 dΓ ` Opm´2q

so that

(3.4) λ1pQmq ď λ1pQ8q ´ m´1

ż

Γ

|P` pB
n
ψ1,8q |2 dΓ ` Opm´2q .

Step (c). Let us now study the lower bound. The sequence pψ1,mq is uniformly
bounded in H1pΩq. We extract a subsequence pmkqkPN such that

lim inf
mÑ`8

m pλ1,m ´ λ1,8q “ lim
kÑ`8

mk pλ1,mk
´ λ1,8q

and pψ1,mk
qkPN converges strongly in H1pΩq to ψ1,8 P H1

0 pΩq and pB
n
ψ1,mk

q converges
to pB

n
ψ1,8q in H´1{2pΓq. Integrating by parts yields

pλ1,mk
´ λ1,8q xψ1,mk

, ψ1,8y
Ω

“ ´mk
´1 xpκ{2mk ` 1q´1B

n
ψmk,8, P`B

n
ψ1,8y

Γ
,(3.5)
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so that by Step (a),

lim inf
mÑ`8

m pλ1,m ´ λ1,8q “ ´}P`B
n
ψ1,8}2L2pΓq ě ´1

2

ż

Γ

|B
n
u1|2 dΓ

and the result follows. �

4. Large negative mass: main steps in the proof of Theorem 1.12

In this section, we study the non-relativistic limit m Ñ `8 of the nonnegative
eigenvalues of the MIT bag Dirac operator HΩ

´m. For the sake of readability, we
present the main ingredients used in the proof of Theorem 1.12. Part of the ideas
are related to recent results about the semiclassical Robin Laplacians (see [12, Section
7], [11] and [15]). The detailed proofs will be given in Section 5.

4.1. Semiclassical reformulation and boundary localization. The main ob-
jective of this section is to get boundary localization results of Agmon type. For that

purpose, we will rather consider
`
HΩ

´m
˘2

and introduce the semiclassical parameter

h “ m´2 Ñ 0 .

4.1.1. The semiclassical operator. In order to lighten the presentation, it will also be
more convenient to work with the following operator

(4.1) Lh “ h2ppHΩ
´mq2 ´ m214q ,

whose domain is given by

DompLhq “ DomppHΩ
´mq2q

“
!
ψ P H2pΩq : ψ P kerpB ´ 14q,

´
B
n

` κ

2
´ h´ 1

2

¯
ψ P kerpB ` 14q, on Γ

)
.

The associated quadratic Qh form is defined by

(4.2) @ψ P DompQhq , Qhpψq “ h2}∇ψ}2L2pΩq `
ż

Γ

´κ
2
h2 ´ h

3

2

¯
|ψ|2 dΓ ,

where

DompQhq “ DompHΩ
´mq “

 
ψ P H1pΩq : ψ P kerpB ´ 14q on Γ

(
.

In other words, the operator Lh is the semiclassical Laplacian with combined MIT
bag condition and Robin condition on the boundary.
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4.1.2. Relations between the eigenvalues of Lh and HΩ
´m. Let us describe the rela-

tions between the spectra of our operators. Let us recall that the spectrum of HΩ
´m

is discrete, symmetric with respect to 0 and with pair multiplicity. The spectrum of
HΩ

´m lying in r´m,ms is given by
!

˘
a
h´2λnphq ` h´1 : n P Nzt0u ,´h ď λnphq ď 0

)
,

where λnphq denotes the n-th eigenvalue of Lh. Therefore, we shall focus on the
study of the negative eigenvalues of Lh.

4.1.3. Localization estimates à la Agmon. The estimates given in Proposition 4.1 are
a consequence of the fact that the Laplacian is a non-negative operator.

Proposition 4.1. Let ǫ0 P p0, 1q and γ P p0,?ε0q. There exists C ą 0 such that

for any h P p0, 1s, any eigenvalue λ ď ´ε0h of Lh and any eigenfunction ψh of Lh

associated with λ, we have
››››ψh exp

ˆ
γdp¨,Γq
h1{2

˙››››
2

L2pΩq
` h´1

ˇ̌
ˇ̌Qh

ˆ
ψh exp

ˆ
γdp¨,Γq
h1{2

˙˙ˇ̌
ˇ̌ ď C}ψh}2L2pΩq.

4.2. The operator near the boundary. Relying on Proposition 4.1, we introduce
the operator near the boundary. Given δ P p0, δ0q (with δ0 ą 0 small enough), we
introduce the δ-neighborhood of the boundary

(4.3) Vδ “ tx P Ω : distpx,Γq ă δu ,
and the quadratic form, defined on the variational space

Vδ “
!
u P H1pVδq : upxq “ 0 for all x P Ω such that distpx,Γq “ δ

and Bu “ u on Γ
)
,

by the formula

@u P Vδ , Q
tδu
h puq “

ż

Vδ

|h∇u|2 dx `
ż

Γ

´κ
2
h2 ´ h

3

2

¯
|u|2 dΓ .

We denote by L
tδu
h the corresponding operator.

4.2.1. The operator near the boundary in tubular coordinates. Let ι be the canonical
embedding of Γ in R3 and g the induced metrics on Γ. pΓ, gq is a C3 Riemannian
manifold, which we orientate according to the ambient space. Let us introduce the
map Φ : Γ ˆ p0, δq Ñ Vδ defined by the formula

Φps, tq “ ιpsq ´ tnpsq .
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The transformation Φ is a C3 diffeomorphism for any δ P p0, δ0q provided that δ0 is
sufficiently small. The induced metrics on Γ ˆ p0, δq is given by

G “ g ˝ pId ´ tLpsqq2 ` dt2 ,

where Lpsq “ dns is the second fundamental form of the boundary at s. Let us now
describe how our MIT bag - Robin Laplacian is transformed under the change of
coordinates. For all u P L2pVδq, we define the pull-back function

(4.4) rups, tq :“ upΦps, tqq.
For all u P H1pVδq, we have

(4.5)

ż

Vδ

|u|2 dx “
ż

Γˆp0,δq
|rups, tq|2 ã dΓ dt ,

(4.6)

ż

Vδ

|∇u|2 dx “
ż

Γˆp0,δq

”
x∇sru, g̃´1∇sruy ` |Btru|2

ı
ãdΓ dt .

where
g̃ “

`
Id ´ tLpsq

˘2
,

and ãps, tq “ |g̃ps, tq| 12 . Here x¨, ¨y is the Euclidean scalar product and ∇s is the
differential on Γ seen through the metrics g. Since Lpsq P C2ˆ2, we have the exact
formula

(4.7) ãps, tq “ 1 ´ tκpsq ` t2Kpsq
where

κpsq “ TrLpsq and Kpsq “ det Lpsq.
The operator L

tδu
h is expressed in ps, tq coordinates as

ĂL tδu
h “ ´h2ã´1∇spãg̃´1∇sq ´ h2ã´1BtpãBtq .

In these coordinates, the Robin condition becomes

h2Btu “
´κ
2
h2 ´ h

3

2

¯
u on t “ 0 .

We introduce, for δ P p0, δ0q,
(4.8)
rVδ “ tps, tq : s P Γ and 0 ă t ă δu ,
rVδ “ tu P H1p rVδq, up¨, 0q P ker pB ´ 14q , up¨, δq “ 0u ,
rDδ “ tu P H2p rVδq X rVδ : Btup¨, 0q ´

´κ
2

´ h´ 1

2

¯
up¨, 0q P kerpB ` 14qu ,

rQtδu
h puq “

ż

ĂVδ

´
h2x∇su, g̃

´1∇suy ` |hBtu|2
¯
ã dΓ dt`

ż

Γ

´κ
2
h2 ´ h

3

2

¯
|ups, 0q|2 dΓ .
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The operator ĂL tδu
h acts on L2prVδ, ãdt dΓq.

Let us denote by λ
tδu
n phq the n-th eigenvalue of the corresponding operator ĂL tδu

h .
Using smooth cut-off functions, the min-max principle and the Agmon estimates of
Proposition 4.1, it is then standard to deduce the following proposition (see [10]).

Proposition 4.2. Let ǫ0 P p0, 1q and γ P p0,?ǫ0q. There exist constants C ą 0,
h0 P p0, 1q such that, for all h P p0, h0q, δ P p0, δ0q, n ě 1 such that λnphq ď ´ǫ0h,

(4.9) λnphq ď λtδu
n phq ď λnphq ` C exp

´
´γδh´ 1

2

¯
.

In the following, it is sufficient to choose

(4.10) δ “ h
1

4 .

4.3. The rescaled MIT bag operator in boundary coordinates. Looking at
the rate of convergence obtained in Proposition 4.1, we perform a change of scale in
the normal direction that allows us to see something at the limit. We introduce the
rescaling

ps, τq “ ps, h´ 1

2 tq ,
the new semiclassical parameter ~ “ h

1

4 and the new weights

(4.11) pa~ps, τq “ ãps, h 1

2 τq , pg~ps, τq “ g̃ps, h 1

2 τq .
We also introduce the parameter

(4.12) T~ “ δh´ 1

2 “ h´ 1

4 “ ~
´1

(see (4.10)). We consider rather the operator

(4.13) xL~ “ h´1 ĂLh ,

acting on L2ppV~,pa~ dΓ dτq and expressed in the rescaled coordinates ps, τq.
As in (4.8), we let

(4.14)
pV~ “ tps, τq : s P Γ and 0 ă τ ă ~

´1u ,
pV~ “ tu P H1ppV~;pa~ dΓ dτq, up¨, 0q P ker pB ´ 14q , up¨, ~´1q “ 0u ,
pD~ “ tu P H2ppV~;pa~ dΓ dτq X pV~ : Bτup¨, 0q ´

´κ
2
~
2 ´ 1

¯
up¨, 0q P kerpB ` 14qu ,

pQ~puq “
ż

pV~

´
~
4x∇su, pg´1

~
∇suy ` |Bτu|2

¯
pa~ dΓ dτ `

ż

Γ

´κ
2
~
2 ´ 1

¯
|ups, 0q|2 dΓ ,

xL~ “ ´~
4pa´1

~
∇sppa~pg´1

~
∇sq ´ pa´1

~
Bτpa~Bτ .
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4.4. Contribution of the normal variable. Let us notice that the first order
terms in (4.14) are related to the normal variable. Hence, we are naturally led to
introduce the following quadratic form gathering all the terms acting in the normal
direction:

(4.15)

pV 1
~

“ tu P L2ppV~;pa~ dΓ dτq, Bτu P L2ppV~;pa~ dΓ dτq,
up¨, 0q P ker pB ´ 14q , up¨, ~´1q “ 0u ,

xQ1
~
puq “

ż

Γ

´ ż ~´1

0

|Bτu|2pa~ dτ `
´κ
2
~
2 ´ 1

¯
|ups, 0q|2

¯
dΓ .

The goal of this section is to study the lowest part of the spectrum of the operator
xL 1
~
associated with the quadratic form xQ1

~
.

4.4.1. Diagonalization of the boundary condition. Without the gradient term in the

s-direction appearing in pQ~puq, the MIT bag boundary condition can be diagonalized
for every s P Γ. Let us introduce for all s P Γ, the unitary 4 ˆ 4 matrix

P
n
:“ 1?

2

ˆ
12 iσ ¨ n

iσ ¨ n 12

˙
.

We have

P´1
n

BP
n

“ β ,

so that for all ψ P pV 1
~
,

ϕ “ P ˚
n
ψ P tu P L2ppV~;pa~ dΓ dτq, Bτu P L2ppV~;pa~ dΓ dτq,

xup¨, 0q, e3y “ xup¨, 0q, e4y “ 0, up¨, ~´1q “ 0u ,

where xu, eky is the k-th component of the vector u P C
4. Since P

n
is unitary and

does not depend on the variable τ , we get that

pQ1
~
puq “ pQ1

~
pP ˚

n
uq .

Up to this change of variable, the first two components satisfy the following Robin
boundary condition

ˆ
Bτ ` 1 ´ κ~2

2

˙
up¨, 0q “ 0 ,

whereas the last two ones satisfy the Dirichlet boundary condition.
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4.4.2. The Robin Laplacian on the half-line. Let C0 ą 0, κ,K P p´C0, C0q and ~0 ą 0
such that for all ~ P p0, ~0q,

a~,κ,Kpτq “ 1 ´ ~
2κτ ` ~

4Kτ 2 P p´1{2, 1{2q .
We introduce the following operator in one dimension (and valued in C), defined on
the Hilbert space L2pp0, ~´1q; a~,κ,K dτq by

(4.16) HRob
~,κ,K “ ´a´1

~,κ,KpτqBτ pa~,κ,KpτqBτ q “ ´B2
τ ` ~2κ ´ 2~4Kτ

a~,κ,Kpτq Bτ ,

with domain

DompHRob
~,κ,Kq “ tψ P H2pp0, ~´1q,Cq : ψp~´1q “

ˆ
Bτ ` 1 ´ ~2κ

2

˙
ψp0q “ 0u .

For the associated quadratic form QRob
~,κ,K, we have,

DompQRob
~,κ,Kq “ tψ P H1pp0, ~´1q,Cq , ψp~´1q “ 0u ,

QRob
~,κ,Kpψq “

ż
~´1

0

|Bτψ|2a~,κ,K dτ `
ˆ

´1 ` ~2κ

2

˙
|ψp0q|2 .

Let us notice that our Robin Laplacian HRob
~,κ,K on a weighted space looks like the one

introduced by Helffer and Kachmar in [11]. But, here, we have an additional term
κ~2

2
in the boundary condition which will have an important impact on the spectrum

in the limit ~ Ñ 0. We can also notice that
`
HRob

~,κ,K

˘
κ,K

is an analytic family of type

(B) in the sense of Kato (see [16]).

Notation 4.3. The function u~,κ,K denotes the first positive eigenfunction of HRob
~,κ,K

normalized in L2pp0, ~´1q, a~,κ,K dτq.
Let us now describe the bottom of the spectrum of HRob

~,κ,K when ~ goes to 0.

Proposition 4.4. The lowest eigenpair pλ1
`
HRob

~,κ,K

˘
, u~,κ,Kq of HRob

~,κ,K satisfies the

following. Let ε0 P p0, 1q. There exist ~0, C ą 0 such that for all ~ P p0, ~q, there
holds ˇ̌

ˇ̌λ1
`
HRob

~,κ,K

˘
´
ˆ

´1 ` ~
4

ˆ
K ´ κ2

4

˙˙ˇ̌
ˇ̌ ď C~6 , λ2

`
HRob

~,κ,K

˘
ě ´ε0{2 ,

and

}u~,κ,K ´ ψ0}H1pp0,~´1q;a~,κ,K dτq ď C~2 , where ψ0pτq “
?
2e´τ .

The constants ~0, C ą 0 do not depend on κ,K but depend on C0.

Notation 4.5. In the following, we use κ “ κpsq and K “ Kpsq and we let

u~,κpsq,Kpsqpτq “ v~ps, τq , λj
`
HRob

~,κpsq,Kpsq
˘

“ λRj ps, ~q .
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Considering the asymptotic expansion of the eigenfunction in Proposition 4.4 leads
to the following remark (v~ps, τq does not depend very much on s in the semiclassical
limit).

Remark 4.6. We introduce the “Born-Oppenheimer correction”:

R~psq “ }∇sv~}2L2pp0,~´1q;pa~ dτq .

It can be shown that

(4.17) }R~}L8pΓq “ Op~4q ,

by using straightforward adaptations of [12, Lemma 7.3]. By using (4.17) and an
induction procedure, it is also possible to show the same estimate for the second
order derivatives:

sup
sPΓ

}∇2
sv~}L2pp0,~´1q;pa~ dτq “ Op~2q .

4.4.3. Spectrum of xL 1
~
. Since the spectrum of the Dirichlet Laplacian is non-negative,

Proposition 4.4 gives us immediately the following result.

Proposition 4.7. Let ε0 P p0, 1q. There exist C, ~0 ą 0 such that for any ~ P p0, ~0q,
we have

spp xL 1
~ q Ă p´1 ´ C~4,´1 ` C~4q Y r´ε0,`8q.

The L2ppV~;pa~ dΓ dτq4- spectral projection Π~ :“ χp´1´C~4,´1`C~4qp xL 1
~

q satisfies

RanΠ~ “ tps, τq P pV~ ÞÑ fpsqv~ps, τq, f P L2pΓ; dΓq4 X kerp14 ´ Bqu .

Remark 4.8. Since, s ÞÑ v~ps, ¨q is regular, we also have

Π~ψ P H1ppV~;pa~ dΓ dτq4

for any ψ P pV~. Actually, we can give an explicit expression of Π~ by using the
diagonalization of the MIT condition of Section 4.4.1:

(4.18) Π~ψ “ v~Pn

ˆ
12 0
0 0

˙
P ˚
n

xψ, v~yL2pp0,~´1q,pa~ dτq ,

where xψ, v~yL2pp0,~´1q,pa~ dτq “ pxψj, v~yL2pp0,~´1q,pa~ dτqqjPt1,...,4u. By taking the derivative
of (4.18) with respect to s, by using the Leibniz formula and (4.17), we have the

commutator estimate, for ψ P pV~,

}r∇s,Π~sψ}L2ppV~,padτ dΓq ď C}ψ}L2ppV~,padτ dΓq .
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4.5. Effective operator on RanΠ~. In this section, we compare the lower part of

the spectrum of the operator xL~ with the one of the operator xL eff
~

acting on RanΠ~ ,

whose quadratic form gathers all the terms of orders lower or equal to 4 and which
is defined by
(4.19)

pV eff
~

“ tu P H1ppV~;pa~ dΓ dτq4, up¨, 0q P ker pB ´ 14q , up¨, ~´1q “ 0u X RanΠ~ ,

y
Qeff

~
puq “ pQ1

~
puq ` ~

4

ż

pV~

|∇su|2pa~ dΓ dτ .

We get the following result.

Theorem 4.9. For ε0 P p0, 1q, ~ ą 0, we let

pNǫ0,~ “ tn P N
˚ : pλnp~q ď ´ε0u .

There exist positive constants ~0, C such that, for all ~ P p0, ~0q and n P pNε0,~,

(4.20) pλ´
n p~q ď pλnp~q ď pλ`

n p~q ,

where pλ˘
n p~q is the n-th eigenvalue of xL eff,˘

~
whose quadratic form is defined for all

u P pV eff,˘
~

“ pV eff
~

by

pQeff,˘
~

puq “ pQ1
~
puq ` ~

4

ż

pV~

p1 ˘ C~q|∇su|2pa~ dΓ dτ ˘ C~6

ż

pV~

|u|2pa~ dΓ dτ .

4.6. Effective operator on the boundary. The aim of this section is to exhibit
an effective operator on the boundary Γ. To do so, we will have to study the Born-
Oppenheimer correction terms. The effective operator up to the order 4 on the
boundary has the following quadratic form:

(4.21)

pV Γ,eff “ H1pΓq X kerp14 ´ Bq ,

pQΓ,eff
~

pfq “ ´}f}2L2pΓq ` ~
4

ż

Γ

´
|∇sf |2 `

´
´ κpsq2

4
` Kpsq

¯
|f |2

¯
dΓ .

More precisely, we obtain the following result.

Theorem 4.10. For ε0 P p0, 1q, ~ ą 0, we let

pNǫ0,~ “ tn P N
˚ : pλnp~q ď ´ε0u .

There exist positive constants ~0, C such that, for all ~ P p0, ~0q and n P pNε0,~,

(4.22) pλΓ,´n p~q ď pλnp~q ď pλΓ,`n p~q ,
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where pλΓ,˘n p~q is the n-th eigenvalue of xL Γ,eff,˘
~

whose quadratic form is defined by:

pV Γ,eff,˘ “ pV Γ,eff ,

pQΓ,eff,˘
~

pfq “ ´}f}2L2pΓq ` ~
4

ż

Γ

´
p1 ˘ C~q|∇sf |2 `

´
´ κpsq2

4
` Kpsq ˘ C~

¯
|f |2

¯
dΓ .

Theorem 1.12 is a consequence of the semiclassical reformulation in Section 4.1, of
Proposition 4.2, of the rescaling of Section 4.3, and of Theorem 4.10.

5. Proof of the results stated in Section 4

5.1. Proof of the Agmon estimates of Proposition 4.1. Before stating the
proof, let us recall the following lemma.

Lemma 5.1. Let χ and ψ be Lipschitzian functions on Ω, we have

Re x∇ψ,∇pχ2ψqy “ }∇pχψq}2 ´ }ψ∇χ}2.
Let us now give the proof of Proposition 4.1.

Proof. We notice first that by (4.2),

(5.1) Lh ě ´h.
Let us denote by ahp¨, ¨q the sesquilinear form associated with Qh defined in (4.2).

Let us define the following Lipschitzian functions

x P Ω ÞÑ Φpxq “ γdistpx, BΩq P R

and
x P Ω ÞÑ χhpxq “ eΦpxqh´1{2 P R .

Since χh is real-valued and Lipschitzian, we get that χ2
hψh belongs to DpQhq. We

have that

ahpψh, χ2
hψhq “ Re xLhψh, χ

2
hψhyΩ

“ Re

"
h2 x∇ψh,∇pχ2

hψhqyΩ `
ż

Γ

´κ
2
h2 ´ h

3

2

¯
|χhψh|2 dΓ

*
.

By Lemma 5.1, we get that

ahpψh, χ2
hψhq “ Qhpχhψhq ´ h2}ψh∇χh}2L2pΩq .

Recall that ψh is an eigenfunction of Lh associated with the eigenvalue λ, so that

(5.2) Qhpχhψhq ´ h2}ψh∇χh}2L2pΩq “ λ}χhψh}2L2pΩq .

Let R ě 1 and c̃ ą 1. Let us introduce a quadratic partition of unity of Ω

χ2
1,h,R ` χ2

2,h,R “ 1 ,
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in order to study the asymptotic behavior of ψh in the interior and near the boundary
Γ separately. We assume that χ1,h,R satisfies

χ1,h,Rpxq “
#
1 if distpx,Γq ě h1{2R

0 if distpx,Γq ď h1{2R{2
and that

maxp|∇χ1,h,Rpxq|, |∇χ2,h,Rpxq|q ď 2c̃h´1{2{R ,
for all x P Ω. Using again Lemma 5.1, we get

Qhpχhψhq “
ÿ

k“1,2

Qhpχk,h,Rχhψhq ´ h2}χhψh∇χk,h,R}2L2pΩq .

We have Qhpχ1,h,Rχhψhq ě 0 because of a support consideration. Let us also remark
that

h2}χhψh∇χk,h,R}2L2pΩq ď h4c̃2{R2}χhψh}2L2pΩq
and

h2}ψh∇χh}2L2pΩq ď hγ2}χhψh}2L2pΩq .

We deduce from (5.2) that

λ}χhψh}2L2pΩq ě Qhpχ2,h,Rχhψhq ´ h}ψhχh}2L2pΩq
`
γ2 ` 8rc2R´2

˘
,

so that

(5.3) hpε0 ´ γ2 ´ 8rc2R´2q}χhψh}2L2pΩq ď ´Qhpχ2,h,Rχhψhq .
By Lemma 5.1, we get that

Qhpχ2,h,Rχhψhq “ ahpψh, pχ2,h,Rχhq2ψhq ` h2}ψh∇pχ2,h,Rχhq}2L2pΩq

“ λ}χ2,h,Rχhψh}2L2pΩq ` h2}ψhχh∇χ2,h,R}2L2pΩq ` h}ψhχ2,h,Rχh∇Φ}2L2pΩq

` h3{22Re xψhe2Φh
´1{2

∇χ2,h,R, ψhχ2,h,R∇Φy
L2pΩq

ě λ}χ2,h,Rχhψh}2L2pΩq ´ h4c̃{Rγ}χhψh}2L2pΩq .

Hence, we obtain by (5.3) and (5.1) that
`
ε0 ´ γ2 ´ 8rc2R´2 ´ 4c̃R´1γ

˘
}χhψh}2L2pΩq ď }χ2,h,Rχhψh}2L2pΩq

ď }ψh}2L2pΩqe
2Rγ .

Let us fix R ą 0 so that
`
ε0 ´ γ2 ´ 8rc2R´2 ´ 4c̃R´1γ

˘
ě pε0 ´ γ2q{2 ą 0 .

We get that
}χhψh}L2pΩq ď C}ψh}L2pΩq ,

and the conclusion follows by (5.2). �
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5.2. Proof of Proposition 4.4.

Proof. The proof follows from the method by Helffer and Kachmar used in [11]. Let
us recall the strategy. The operator is

HRob
~,κ,K “ ´a´1

~,κ,KpτqBτ pa~,κ,KpτqBτ q “ ´B2
τ ` ~

2κ´ 2~4Kτ

a~,κ,Kpτq Bτ ,
ˆ

Bτ ` 1 ´ κ~2

2

˙
up¨, 0q “ 0 .

We look for quasi-eigenvalues and quasi-eigenfunctions expressed as formal series:

λ “ λ0 ` ~
2λ1 ` ~

4λ2 , ψ “ ψ0 ` ~
2ψ1 ` ~

4ψ2 .

By writing the formal eigenvalue equation, expanding the operator and the bound-
ary condition in powers of ~2, we get the following succession of equations. In the
following, the integration interval is p0,`8q. The first one is

´B2
τψ0 “ λ0ψ0 , pBτ ` 1qψ0p0q “ 0 .

We get that λ0 “ ´1 and ψ0pτq “
?
2e´τ . Then, we must solve the equation:

`
´B2

τ ` 1
˘
ψ1 “ pλ1 ´ κBτ qψ0 , pBτ ` 1qψ1p0q ´ κ

2
ψ0p0q “ 0 .

By taking the scalar product with ψ0, we find (by the Fredholm alternative) that
there is a solution if and only if there holds

x
`
´B2

τ ` 1
˘
ψ1, ψ0yL2p0,`8q “ xpλ1 ´ κBτ qψ0, ψ0yL2p0,`8q .

Note that xBτψ0, ψ0yL2p0,`8q “ ´1 and that, by integration by parts,

x
`
´B2

τ ` 1
˘
ψ1, ψ0yL2p0,`8q “ xpBτ ` 1qψ1p0q, ψ0p0qy ` xψ1,

`
´B2

τ ` 1
˘
ψ0yL2p0,`8q

“ κ

2
|ψ0p0q|2 “ κ ,

so that λ1 “ 0. We may actually give an explicit expression for a function ψ1

satisfying `
´B2

τ ` 1
˘
ψ1 “ κψ0 , pBτ ` 1qψ1p0q ´ κ

2
ψ0p0q “ 0 .

The functions κ
´

τ?
2

` c
¯
e´τ are a solution for all c P R. We choose c “ 0 so that

ψ1pτq “ κτ?
2
e´τ . We can now consider the crucial step. We write

`
´B2

τ ` 1
˘
ψ2 “ λ2ψ0 ´ κBτψ1 ´ τp´2K ` κ2qBτψ0 , pBτ ` 1qψ2p0q ´ κ

2
ψ1p0q “ 0 .

As previously, it is sufficient to find λ2 such that there holds

x
`
´B2

τ ` 1
˘
ψ2, ψ0yL2p0,`8q “ xλ2ψ0 ´ κBτψ1 ´ τp´2K ` κ2qBτψ0, ψ0yL2p0,`8q .
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We have

x
`
´B2

τ ` 1
˘
ψ2, ψ0yL2p0,`8q “ xpBτ ` 1qψ2p0q, ψ0p0qy “ κ

2
xψ1p0q, ψ0p0qy “ 0 ,

and

x´κBτψ1, ψ0yL2p0,`8q “ κ xψ1, Bτψ0yL2p0,`8q ` κ xψ1p0q, ψ0p0qy “ ´κ xψ1, ψ0yL2p0,`8q ,

“ ´κ2
ż `8

0

τe´2τ dτ “ ´κ2

4
,

x´τp´2K ` κ2qBτψ0, ψ0yL2p0,`8q “ 2p´2K ` κ2q
ż `8

0

τe´2τ dτ “ ´K ` κ2

2
.

It follows that

λ2 “ K ´ κ2

4
.

By using convenient cutoff functions (to satisfy the Dirichlet condition near ~´1) and
the spectral theorem, we easily get that

dist

ˆ
´1 ` ~

4

ˆ
K ´ κ2

4

˙
, sp

`
HRob

~,κ,K

˘˙
ď C~6 .

Then, by using straightforward adaptations of the results in [15, Appendix] (we deal
with the additional term in the boundary condition as a perturbation), we get the
lower bound for λ2

`
HRob

~,κ,K

˘
.

Therefore, the only eigenvalue in the spectrum of HRob
~,κ,K that is close to ´1 `

~4

´
K ´ κ2

4

¯
is the first one. The approximation of u~,κ,K follows from elementary

arguments and the Agmon estimates (to deal with the cutoff functions). �

5.3. Proof of Theorem 4.9. Let us denote

ΠK
~ “ Id ´ Π~ .

5.3.1. Main Lemma. The proof of the theorem relies on the following lemma (see
also [15]).

Lemma 5.2. There exist C, ~0 ą 0 such that the following holds for all ~ P p0, ~0q
and all u P pV~,

xQ~pΠ~uq ď pQ1
~
pΠ~uq ` ~

4p1 ` C~q
ż

pV~

|∇sΠ~u|2pa~ dΓ dτ
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and

xQ~puq ě pQ1
~
pΠ~uq ` ~

4p1 ´ C~q
ż

pV~

|∇sΠ~u|2pa~ dΓ dτ ´ C~6}Π~u}2
L2ppV~;pa~ dΓdτq

` pQ1
~
pΠK

~
uq ` ~

4p1 ´ C~q
ż

pV~

|∇sΠ
K
~
u|2pa~ dΓ dτ ´ C~2}ΠK

~
u}2

L2ppV~;pa~ dΓdτq ,

Proof. Let us remark first that there exist C, ~0 ą 0 such that for all ~ P p0, ~0q,
ˇ̌
ˇ
ż

pV~

´
|∇su|2pa~ ´ x∇su,pa~pg´1

~
∇suy

¯
dΓ dτ

ˇ̌
ˇ ď C~

ż

pV~

|∇su|2pa~ dΓ dτ ,

since 0 ă τ ă ~´1. The upper bound follows. Let us now focus on the lower bound.

Since Πh is a spectral projection of xL 1
~
, we get that for all u P pV~,

xQ1
~
puq “ xQ1

~
pΠ~uq ` xQ1

~
pΠK

~
uq .

We also haveż

pV~

|∇su|2pa~ dΓ dτ “
ż

pV~

|∇s

`
Π~u` ΠK

~ u
˘

|2pa~ dΓ dτ “
ż

pV~

|∇spΠ~uq|2pa~ dΓ dτ

`
ż

pV~

|∇spΠK
~ uq|2pa~ dΓ dτ ` 2Re

ż

pV~

x∇spΠ~uq,∇spΠK
~ uqypa~ dΓ dτ .

Let us analyze the double product. We have
ż

pV~

x∇spΠ~uq,∇spΠK
~
uqypa~ dΓ dτ “

ż

pV~

x∇sppΠ~q2 uq,∇sp
`
ΠK

~

˘2
uqypa~ dΓ dτ

“
ż

pV~

xΠ~∇spΠ~uq,ΠK
~∇spΠK

~ uqypa~ dΓ dτ `
ż

pV~

xΠ~∇spΠ~uq,
“
∇s,Π

K
~

‰
ΠK

~ uypa~ dΓ dτ

`
ż

pV~

xr∇s,Π~sΠ~u,Π
K
~
∇spΠK

~
uqypa~ dΓ dτ `

ż

pV~

xr∇s,Π~sΠ~u,
“
∇s,Π

K
~

‰
ΠK

~
uypa~ dΓ dτ .

Since Π~ is an orthogonal projection of L2ppV~,pa~ dΓ dτq, we get that

Re

ż

pV~

xΠ~∇spΠ~uq,ΠK
~∇spΠK

~ uqypa~ dΓ dτ “ 0 .

Moreover, by commuting ΠK
~
and ∇s, by using an integration by parts and Remark

4.6 (see also Remark 4.8), we have
ˇ̌
ˇ
ż

pV~

xr∇s,Π~sΠ~u,Π
K
~∇spΠK

~ uqypa~ dΓ dτ
ˇ̌
ˇ

ď C
´

}Π~u}2
L2ppV~;pa~ dΓdτq ` }∇sΠ~u}2

L2ppV~;pa~ dΓdτq

¯1{2
}ΠK

~
u}

L2ppV~;pa~ dΓdτq .
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Using the inequality |2ab| ď ~2a2 ` ~´2b2, we obtain that
ż

pV~

|∇su|2pa~ dΓ dτ

ě
ż

pV~

|∇spΠ~uq|2pa~ dΓ dτ `
ż

pV~

|∇spΠK
~
uq|2pa~ dΓ dτ

´ C
´

}Π~u}2
L2ppV~;pa~ dΓdτq ` }∇sΠ~u}2

L2ppV~;pa~ dΓdτq

¯1{2
}ΠK

~ u}L2ppV~;pa~ dΓdτq

ě p1 ´ C~2q
ż

pV~

|∇spΠ~uq|2pa~ dΓ dτ ´ C~2}Π~u}2
L2ppV~;pa~ dΓdτq

`
ż

pV~

|∇spΠK
~
uq|2pa~ dΓ dτ ´ C~´2}ΠK

~
u}2

L2ppV~;pa~ dΓdτq

and the result follows. �

5.3.2. Proof of Theorem 4.9. The upper bound of Theorem 4.9 follows immediately
from the min-max principle. Let us focus on the lower bound. We have by Proposi-

tion 4.4 that there exist ~0, C ą 0 such that for all ~ P p0, ~0q and all u P pV~,
pQ1
~
pΠK

~
uq ` ~

4p1 ´ C~q
ż

pV~

|∇sΠ
K
~
u|2pa~ dΓ dτ ´ C~2}ΠK

~
u}2

L2ppV~;pa~ dΓdτq

ě ´3

4
ε0}ΠK

~ u}2
L2ppV~;pa~ dΓdτq

Hence, Lemma 5.2 ensures that

xQ~puq ě pQeff,´
~

pΠ~uq ´ 3

4
ε0}ΠK

~
u}2

L2ppV~;pa~ dΓdτq .

Since Π~ is an orthogonal projection of L2ppV~;pa~ dΓ dτq, we get that the spectrum

of xL~ lying below ´ε0 is discrete and coincides with the one of xL eff ,´
~

.

5.4. Proof of Theorem 4.10.

Proof. We first notice that, by definition of v~ (see Propositions 4.4 and 4.7),

pQ1
~pfv~q “

ż

Γ

λR1 ps, ~q|fpσq|2 dΓ .

Then we haveż

pV~

|∇spfv~q|2pa~ dΓ dτ “
ż

pV~

|∇sf |2|v~|2pa~ dΓ dτ `
ż

pV~

|∇sv~|2|f |2pa~ dΓ dτ

` 2Re

ż

pV~

xv~∇sf, f∇sv~ypa~ dΓ dτ .
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By Proposition 4.4, we get that }v~ps, ¨q}2
L2pp0,~´1q,pa~psq dτq “ 1, for all s P Γ so that

ż

pV~

|∇sf |2|v~|2pa~ dΓ dτ “
ż

Γ

|∇sf |2 dΓ ,
ż

pV~

|∇sv~|2|f |2pa~ dΓ dτ “
ż

Γ

R~|f |2 dΓ ,

and
ˇ̌
ˇ2Re

ż

pV~

xv~∇sf, f∇sv~ypa~ dΓ dτ
ˇ̌
ˇ ď 2

ˆż

Γ

R~|f |2 dΓ
˙1{2ˆż

Γ

|∇sf |2 dΓ
˙1{2

ď ~
´2

ż

Γ

R~|f |2 dΓ ` ~
2

ż

Γ

|∇sf |2 dΓ ,

where R~ is defined in Remark 4.6. The result follows. �
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