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ON THE MIT BAG MODEL:
SELF-ADJOINTNESS AND NON-RELATIVISTIC LIMIT

N. ARRIZABALAGA, L. LE TREUST, AND N. RAYMOND

ABSTRACT. This paper is devoted to the mathematical investigation of the MIT
bag model, that is the Dirac operator on a smooth and bounded domain of R? with
certain boundary conditions. We prove that the operator is self-adjoint and, when
the mass m goes to +00, we provide spectral asymptotic results.
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1. INTRODUCTION

1.1. The physical context. In elementary particles physics [9], the strong force
is one of the four known fundamental interaction forces along with the electromag-
netism, the weak interaction and the gravitation. It is responsible for the confinement
of the quarks inside composite particles called hadrons such as protons, neutrons or
mesons. Its force-carrying (gauge bosons) particles are called the gluons (the force-
carrying particles of the electromagnetism are the photons) and they carry together
with the quarks, a type of charges called the color charges. Their interactions are
detailed in the theory of quantum chromodynamics (the theory of electromagnetism
is called quantum electrodynamics).

1.1.1. The standard model. Following the work of Gell-Mann and Zweig and the deep
inelastic scattering experiments held at the Stanford Linear Accelerator Center in
the '60, physicists introduced in the mid-'70, the standard model [13] in an attempt
to give a unified framework for the elementary particle physics. It turned out that
this model has been very fruitful for it allowed to predict the existence of many parti-
cles. Despite of its success, the confinement of the quarks remains badly understood
because of the complexity of the associated equations.

1.1.2. An attempt to better understand the quarks confinement. In parallel to the
introduction of the standard model, Chodos, Jaffe, Johnson, Thorn, and Weisskopf
[7, 6, B, [14] 13], physicists at the MIT, developped a simplified phenomenological
model to get a better understanding of the phenomenons involved in the quark-
gluon confinement. Following the results of the experimentations held at that time,
they chose to include several qualitative properties of the quarks:

- the perfect confinement of the quarks inside the hadronsﬂ,
- the relativistic nature of the quarksE.

The region of space 2 where the quarks live is called the bag and the model is the
MIT bag model. Let us remark that the MIT bag model can also be viewed as a

INo isolated quark has been observed yet.
2For light quarks, the non-relativistic approximation E = mc? is not valid and the Schrédinger
operator —A has to be replaced by the Dirac one to describe the kinetic energy.
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model for a relativistic particle confined in a box. In the non-relativistic setting,
the Dirac operator is replaced by the Dirichlet Laplacian and the associated model
appears in many introduction courses of quantum physics [18].

Let us also mention that the two dimensional equivalent of the MIT bag model
appears in the study of graphene and is referred to as the infinite mass boundary
condition (see [2, 2I] and the references therein).

1.2. The MIT bag Dirac operator. In the whole paper, € denotes a fixed bounded
domain of R? with regular boundary and m is a real number. The Planck constant
and the velocity of light are assumed to be equal to 1.

Let us recall the definition of the Dirac operator associated with the energy of a

relativistic particle of mass m and spin % (see [22]). The Dirac operator is a first

order differential operator, acting on L?(€2, C?) in the sense of distributions, defined
by

(1.1) H=a-D+mg, D = —iV,

where a = (ay, an, ), 5 and 5 are the 4 x 4 Hermitian and unitary matrices given

by
(12 0 (0 I (0 o B
ﬁ_(O _12)>75—<12 0)’ak_(ak 0>fork—1,2,3.

Here, the Pauli matrices 01,09 and o3 are defined by

01 0 —2 1 0
01:(1 O)a 0-2:<7; O)) 03:<0_1)>

and « - X denotes 23:1 a;X; for any X = (Xj, X5, X3). Let us now impose the
boundary conditions under consideration in this paper and define the associated
unbounded operator.

Notation 1.1. In the following , I' := 09 and for all x € I', n(x) is the outward-
pointing unit normal to the boundary.

Definition 1.2. The MIT bag Dirac operator (HS!, D(H)) is defined on the domain
Dom(H}) = {p e H(Q,C*) : By = on T}, with B = —iB(a-n),

by H® = H1p for all 1» € Dom(H}). Note that the trace is well-defined by a classical
trace theorem.

Notation 1.3. We will denote H = Hf! when there is no risk of confusion. We
denote (-,-) the C* scalar product (antilinear w.r.t. the left argument) and (-, ),
the L? scalar product on the set U.
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Remark 1.4. The operator B defined for all x € I' is a Hermitian matrix which
satisfies B% = 14 so that its spectrum is {+1}. Both eigenvalues have multiplicity
two. Thus, the MIT bag boundary condition imposes the wavefunctions ¥ to be
eigenvectors of B associated with the eigenvalues +1 . This boundary condition is
chosen by the physicists [14] so as to get a vanishing normal flow at the bag surface
—imn - j = 0 at the boundary I" where the current density j is defined by

j=@, ).
The opposite boundary condition v € ker(14 + B) is discussed in Section [L3.3

Let us now describe our results.
1.3. Results.

1.3.1. Self-adjointness. The following theorem gathers some fundamental spectral
properties of the MIT bag Dirac operator that we establish in this paper and that
are related to its self-adjointness.

Theorem 1.5. Let 2 be a nonempty, bounded and regular open set in R and m € R.
The following properties hold true.

i. The operator (H,Dom(H)) is a self-adjoint operator with compact resolvent.

ii. There is a non-decreasing sequence (fi,(m))n>1 < R* such that the spectrum of
H, denoted by sp(H), is

sp(H) = {£pn(m), n =1}

iii. Fach eigenvalue p,,(m) has pair multiplicity.
iv. For each 1) € Dom(H), we have

(1.2) |H | 220) =l VO Z20) + m¢] 720y + m2[¥] 720
and
1
(1.3 o - Vol = V0l + 5 | ol s

where k is the trace of the Weingarten map:
dn,: T,0Q0 — R?

v —>  0,n(s).

Self-adjointness results have already been obtained in the case of C'°-boundaries
in [3] through Calderén projections and sophisticated pseudo-differential techniques,
and, in two dimensions, with C? boundaries [2] (see also [21]), using Cauchy kernels
and Riemann mapping theorem. The proof that we present here relies on simple
PDE techniques and the introduction of an extension operator for Sobolev spaces
(see [4, Section 9.2]) and can be generalized to any dimension. Let us also mention
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that more general local boundary conditions are considered in [3 2].
Our other results are of asymptotic nature. They describe the limiting behavior of
the eigenvalues of the MIT bag Dirac operator as m tends to +oo.

1.3.2. The MIT bag model with positive mass. As we can guess from the expressions
(L2) and ([I3), when m — +o0, the operator H2 —m? tends, in some sense, towards
the Dirichlet Laplacian on 2. From the physical point of view, this limit is called
the non-relativistic limit since it relates the MIT bag model (relativistic particles in
a box) to the model for non-relativistic particles in a box.

From the spectral point of view, we have the following asymptotic result.

Theorem 1.6. Let —AP" be the Laplacian with domain H*(Q,C) n Hg(Q,C), and
let (1P"),=1 be the non-decreasing sequence of its eigenvalues. For alln = 1, we have

1 Dir _ 1
(M) — (m + 5 ) =0 (E) :

It is actually possible to describe the next term in the expansion of the first positive
eigenvalue.

Theorem 1.7. Let uy € H}(Q,C) be a L2-n0rmal_ized eigenfunction of the Dirichlet
Laplacian associated with its lowest eigenvalue uP™. We have

1 o 1 , 1
pi(m) — (m + S r_ om? | | Oy dF) =0 (W) :
Remark 1.8. This asymptotic expansion of pi(m) coincides with the one of the first
eigenvalue of the operator 4/m? — AR where —AR is the Robin Laplacian of mass

2m, i.e. the operator of L?(£2,C) whose quadratic form is defined for v € H'(£2,C)
by

UHJ |Vu|2dx+2mf 2 dT"
Q r

1.3.3. The MIT bag model with negative mass. Let us now describe our result re-
lated to the MIT bag model with “negative mass”. This “negative mass” may be
understood in two equivalent ways.

i. When we investigate the case = R?, the Dirac operators a - D + mf3 and
«a - D —mf are unitarily equivalent. Thus, in the case of a general €2, one may
be tempted to consider o - D — mf with the MIT bag condition B.

ii. Since we have

Vs (- D+mpB)ys =a-D—mpj, VsBvs = =B,

we notice that a - D — m/f with boundary condition B is unitarily equivalent
to a - D + mp with boundary condition —B. In this case, the flux —in - j also
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vanishes at the boundary and the justification given by the physicists [14] of the
MIT bag boundary condition can also be applied here (see Remark [[.4]).

Of course, these changes of signs have no effect on the self-adjointness.

Remark 1.9. From the physical point of view, the fact that HS does not commutes
with the chirality matrix 5 (see [22]) is called the chiral symmetry violation [23] [13].
The chiral symmetry is supposed to be a property approximately satisfied by light
quarks and exactly satisfied for quarks of mass 0.

In this paper, we will show that the limit m — —oo for the operator H! turns
out to be a semiclassical limit and not of perturbative nature as when m — +o0. It
will be shown that the boundary is attractive for the eigenfunctions with eigenvalues
lying essentially in the Dirac gap [—|m/|, |m|] and that their distribution is governed
by the operator

/€2

(1.4) EF—Z+K,

where k and K are the trace and the determinant of the Weingarten map, respec-
tively, and where LT is defined as follows.

Definition 1.10. The operator (L', D(L!)) is the operator associated with the qua-
dratic form

Q" () = f IV?dD, Wi e HY(T,C)* n ker(B — 1,).
T

As a consequence of our investigation, we will get the following lower bound of the
quadratic form QF.

Proposition 1.11. We have

vipe HY(I,C)* nker(B—1,), Q' (¥) = f (%2 — K) |2 dl.
r

Taking advantage of semiclassical technics, we will establish the following uniform
eigenvalues estimate.

Theorem 1.12. Let gy € (0,1) and
Negm := {n e N*: p,,(—m) < my/1—ep}.
There exist positive constants C_, C., mg such that, for all m = mgy and n € N, ,,

fhy, (M) < pin(=m) < p,t(m),
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with px(m)being the n-th eigenvalue of the operators L1+ of L*(T',C)* defined by
1
3

2
ch- = ([1 —C_m L - % + K — 0_m1> ,

SIS

2
Lot = ([1 +Cym 2L — % + K+ C’+m1>

Remark 1.13. By Proposition [LT1]

I<L2

[1+Com~ 2L — T TE+CmT =0,
so that the square root is well-defined. In the expression of £~ we are obliged to

take the non-negative part.

Rewriting the previous theorem in term of asymptotic expansions of the eigenval-
ues, we get the following result (see for instance [15, Corollary 3.2]).

Corollary 1.14. For all n € N*, we have that

where ([iy)nen+ 1S the non-decreasing sequence of the eigenvalues of the following
non-negative operator on L*(T',C)* n ker(14 — B):

Ii2

r
- —+ K.
L 4—1—

Let us describe the spectrum of the effective operator on the boundary in the case
where 2 is a ball (see [22], Section 4.6]).The proof of the following proposition just
follows from straightforward computations.

Proposition 1.15. Assume that 2 = B(0, R) with R > 0. Let A= 3(1+2S-L) be
the "spin-orbit” operator where S = %75(a1, ag,a3) and L =x x D. We have

AB = BA,
2

LF—%+K=R*2A2,

and its spectrum is {n?/R* n € N*}.

1.4. Remarks. Let us conclude this introduction with some comments related to
Robin Laplacians, d-interactions and shell-interactions.
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1.4.1. Comparison to Robin Laplacians. Theorem shares common features with
the known results about the Robin Laplacian in the strong coupling limit (see [19]
for the asymptotic of individual eigenvalues and [I5] in relation with the spectral
uniformity and the semiclassical point of view). But two major differences have to
be emphasized. Firstly, the effective operator is not semiclassical in our case (it
looks like the effective operator in the case of a Schrodinger operator with a strong
attractive d-interaction on I', see [§]). Secondly, the effective operator in our case is
a quadratic function of the principal curvatures (and not a linear one as in the Robin
case). These differences are crucially related to the vectorial nature of the Dirac
operator with the MIT conditions: they lead to a kind of semiclassical degeneracy.
It is also rather surprising that the order of this degeneracy is still less than the
order of the famous Born-Oppenheimer correction. Here, by the Born-Oppenheimer
method, we mean a semiclassical method of reduction to the boundary explained in
Sections [4] and

1.4.2. Shell interactions. There is a close relation between the MIT bag model that
we study in this work and the shell interactions for Dirac operators studied in [I]. In

[T, Theorem 5.5], the authors prove that H + V., generates confinement with respect
to ' for A2 — \2 = —4, where

1
‘/;sw = 5 ()\e + )\sﬁ)(w-i- + ¢—)dr,

Ae, As € R, 94 are the non-tangential boundary values of ) on I and dI is the surface
measure on I'. By using [II, Proposition 3.1], it is possible to see that the existence of
eigenvalues for H +V,, is equivalent to a spectral property of some bounded operators
on I'. More precisely,

(1.5) ker(H + Vs — p) # 0 <= ker(A\; — \e +4C,,,) # 0,

where C, , is a Cauchy-type operator defined on I' in the principal value sense. In the
regime A2 — A2 = —4, the right hand side of (I.5)) is also equivalent to the existence
of a solution 1) € H'(Q, C*) of the boundary value problem (H — u)y = 0 in Q and
Y =1 (A= AB)(a-n)yY on I'. Observe that when A\, = 0 and A\, = 2 we recover the
MIT bag model given in Definition It is worth pointing out that the right hand
side of (L)) does not hold for Ay > 0 if u € [—m,m]. So the eigenvalues must belong
to R\[—m, m] for A; > 0, as we already know from [I7, Section 5] in the case A, = 0

and A\, = 2.

1.5. Organization of the paper. The paper is organized as follows. In Section
2, we prove Theorem by constructing extension operators adapted to the Dirac
operator. Section [3lis devoted to the proofs of Theorems and [[.7. The remaining
sections are concerned with the case of the large negative mass. In Section [, we
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explain the main steps towards the proof of Theorem [[LT2l In Section [, we prove
the propositions and theorems stated in Section @l

2. PROOF OF THEOREM

2.1. Preliminaries. This section is devoted to establish elementary algebraic prop-
erties.

Lemma 2.1. For all x,y € R®, we have
(a-x)(a-y) = (x-y)ls + iy (x xy),
Bla-x)=—(a-x)8, B =—70,
Ys(a-x) = (- x)75.

Proof. We refer to [22, Appendix 1.B]. O

Points il and il of Theorem [[.5 are immediate consequences of the following lemma
(see [22] Section 1.4.6] and [20, Section 10.4.5]).

Lemma 2.2 (Discrete symmetries). Let us introduce three operators defined for ¢ €
C* by

Cvp = iBagt), Charge conjugation operator,

T = —iysa0tp, Time reversal-symmetry operator,

CTyY = Bvysv, CT-symmetry operator.

The operators C and T, resp. C'T are anti-unitary, resp. unitary transformations
that leave Dom(H) invariant and satisfy C* = —T? = 14, CT = TC,

HC =-CH, HT=TH and H(CT)=—(CT)H.
Moreover, we have for any 1 € C* that (, T¢) = 0.

We can relate the mean curvature to the commutator between the boundary con-
dition and a Dirac derivative parallel to the boundary.
Lemma 2.3 (Mean curvature as commutator). We have
[a-(nx D),B] = —kvyB.
Proof. Let s € 05). First we have, by anticommutation between « and S,
a-(nxD)BY =pa-(nxV)(a n).

Let n’ and n” be two eigenvectors of the Weingarten map dn, whose respective
eigenvalues are denoted by (XN, \”) and such that (n,n’,n”) is an orthonormal basis
of R3. We have

a-mxV)=a-1n"0y —a -n'dy.
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Then, by the Leibniz formula and Lemma 2.1] it follows that
(a-nxV)(a-ny)=—-a n(a-n"dy —a -n'dy)y
+ ((a-n")(e: dym) — (- n')(a - Owm)) ¥,
and thus, again by Lemma 2.T]
(a-nxV)(a-ny)=—-a-n(an"oy —a-n'dy)—i(AN+ N )ya-n.
We deduce that
a-(nx DBy =B(a-nx D) —i(N+N)pysa-n,
and the conclusion follows. U
2.2. Symmetry of H. Let us start by proving the symmetry of H.

Lemma 2.4. (H,Dom(H)) is a symmetric operator.

Proof. Since the a-matrices are Hermitian, we have, thanks to the Green-Riemann
formula:

(2.1) Ve, e H'(Q,CY,  {a-Dp,d)g = {p,a D)y + {(—ia-n)p, ). -
Now we consider v, o € Dom(H). By using 3% = 14 and the boundary condition, we
get

<(—ZCY : n)@? ¢>8Q = <5(pa ¢>aQ 5
so that, we deduce
(2.2) Vo, e D(H), K- Do, h)g —{p, a0 Dip)g = (B, V) -

The right hand side of (22) is a skew-symmetric expression of (¢, 1) and the left
hand side is symmetric in (p,®) since § is Hermitian. Thus both sides must be
ZEro. U

2.3. Self-adjointness of H. This subsection is devoted to the proof of Point [l of
Theorem [[L5. We denote by .Z(E, F') the set of continuous linear applications from
E to F where EF and F' are Banach spaces. We recall that the domain of H is
independent of m:

Dom(H) = {¢ € H(Q)*, By =) on 09},
and that the domain of the adjoint H* is defined by
Dom(H*) = { € LAQ)*, Ly € Z(LXQ)",C)},
where
Ly:peDom(H)— (Y, Hp),eC.
By Lemma 2.4] we get that
Dom(H) < Dom(H™).
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Let us remark that, without loss of generality, we can assume in the proof that m = 0
since the operator Sm is bounded (and self-adjoint) from L?(2)* into itself. The aim
of this section is to establish that

(2.3) Dom(H*) < Dom(H).

2.3.1. Extension operator on the half-space case. In this section, we consider the case
when Q = R3 and we establish the existence of an extension operator.

Lemma 2.5. There exists an operator
P:Dom(H*) — {p e L*(R**, a- Dy e L*(R*)*} = H(R*)*
such that P%Ri = and

HPwH%ﬂ(RS) = ‘|P¢|‘%Q(R3) + HVP@bH%?(RS) =2 (|\¢Hi2(mi) + [l D¢|\i2([@i)> -

Proof. The outward-pointing normal n is equal to —e3 = (0,0, —1)7 so that the
boundary condition is

iPasy =1,

on 0R?. Let us diagonalize the matrix iSas appearing in the boundary condition.
We introduce the matrix
oL < I il )
V2 iy 1y )
We have

rar = (0 T} et =, TBanT = (2 0 ) =B,
112 0 0 3

Thus we consider H = THT*. The operator H is defined by H Y = a - Dy for any
1 € Dom(H) where
Dom(H) = {v e H'(RY), B" =4, on dR3 }

={¢Ye H'(R?), ¢¥* =¢* =0 on 0R} }
and ¢ = (Y192 3 "7, This unitarily equivalent representation of the Dirac
operator is called the supersymmetric representation (see [22, Appendix 1.A]). This
expression of the domain makes more apparent the fact that the MIT bag boundary
condition is intermediary between the Dirichlet and Neumann boundary conditions.

Let us denote by S : R® — R? and II : R® — R3 the orthogonal symmetry with
respect to dR? and the orthogonal projection on dR? . Based on (2.4)), we define the

(2.4)

extension operator P for ¢ € Dom(H*) as follows:

N | Wl y, 2), ifz>0
Py(z,y,2) = { (W, =%, =3 N (2, y, —2) = B (Y0 S) (x,y,2), ifz<0
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for (z,y,2) € R3. In other words, we extend ', * by symmetry and 1?2 ¢ by
antisymmetry.

Let us get back to the standard representation and define the extention operator
P for ¢ € D(H*) and (z,y, 2) € R? as follows :

U(z,y, 2), if 2> 0,

Plp(l',y,Z) = T*PTi/J(SL’,y,Z) = {(BOH) (wo S) (x’y’z)’ if z<0.

Since B(s) is a unitary transformation of C* for any s € dR? | we get that
| PY )72y = 2|\¢|\%2(R1)-
Let us study a - DPt in the distributional sense. We have for p € D = C°(R?) that
<Oé' DP¢>S0>D’><D = <P’I7D,Oé- D90>]R3 = <waa' D90>]Ri +<(BOH)'¢OS>O‘ DSO>]R§

where (-, )5, p is the distributional bracket on R*. Since B is Hermitian, we obtain
by a change of variables, that

(BoT)woS,a-Dgyg = oS, (Boll)a- Doy
= (, ~i (BoTI) (10, + a2, - aga» 00 )y = (.o D((BoTD) o))y .

Hence, we get
{a - DPY,0)pp =Y, D (p+ (BOH)SDOS»Ri-

Let us remark that the function ¢ + (BoIl) ¢ o S belongs to Dom(H). Indeed, we
have that

(Boll) (¢ + (Boll)poS)(x,y,0) = (¢ + (Boll)poS) (z,y,0)

for all (x,y) € R%. Since ¢p € Dom(H*), by the Riesz theorem and a change of
variable, we have that

{a - DPY,)pip =< D, (¢ + (Boll)po S)>]R3+
= (- DY, o)ps +((Boll) (- DY) o S, s -
Thus, we obtain that in the distributional sense
a-DPy = xgs (a- DY) + xgs (Boll) (a- D)o Se L*(R?)

so that
IV PY|Za@s) = oo DPY|72es) = 2]a - DYLas -
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2.3.2. Proof of Pointld of Theorem[I.3. Let us now consider the case of our general €).
Let us remark that the understanding of the case of the half-space is not sufficient to
conclude since curvature effects have to be taken into account. The proof of Lemma
is just used here as a guideline for the proof of the next proposition.

Proposition 2.6. There exist a constant C' > 0 and an operator
P :Dom(H*) — H'(R?*)*
such that Piyq =1 and

1Pl < € (14 + o D¥lizg)) -
for all 1) € Dom(H™).
Proof. Using a partition of unity and the fact that

{ue L*(R*)*: a-Due L*(R*)*} = HY(R?)?,

we are reduced to study the case of a deformed half-space. Let us recall the standard
tubular coordinates near the boundary of € :

n:(UnoQ)x (-T,T) — U,
(x0,t) — X — tn(xg)

where T' > 0 and U is a bounded open set of R3. Without loss of generality, we can
assume that 7 is a diffeomorphism such that

n((UndQ) x (0,7) =QnU, n((UnoQ)x{0})=0Q2nU.

The rest of the proof is divided into four steps:

(a) we introduce a bounded extension operator P : L*(U n Q) — L*(U),
(b) we introduce a map & which extends the a-matrices on U so that, we have

|6 - DPYlaw) < C (9 a@ny + o Delsann )
for any function v € Dom(H*) whose support is a compact subset of U N Q,
(¢c) we show that the norm || - |y defined on
V={veL*(U), a-Dve L*(U), suppv cc U}
by
[0 = [v]72 + & - Doz

is equivalent to the H' norm on CF(U).
(d) we deduce by a density argument that V < H}(U),
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and the conclusion follows.
Step (@). The following tubular projection and symmetry defined by

os:U—->QnU
Xo — tn(xg) — Xo + tn(xp)
¢p U —-00nU
Xo — tn(Xg) — X
are well-defined and regular functions.

Let us denote by P(xg) the matrix of the identity map of R3 from the canonical
basis (e1, es, €3) to the orthonormal basis (€1(xg), €2(Xo), n(xg)) defined by

P(xq) = Mat(ld, (e1, es, €3), (€1(x0), €2(X0), n(x0))) ,

for any xg € 02 n U where (€1(X0), €2(X)) is a basis of the tangent space Ty,0€2. Up
to taking a smaller T', we have that, for any xy € 02 N U,

1 0 O
Jac ¢5(x0) = P(x0) ' [ 0 1 0 |P(x),
00 —1
and, for any x € U,
3 1
(2.5) 52 [Jac ¢(x)| := | det Jac ¢s(x)| = 3

Following the idea of the proof of Lemma 2.5 we define the extension operator
P:L*(UnQ)— L*U)
for v € L?(U n Q) and x € U as follows:

»(x), ifxeUnQ,

Polx) = {(BO%(X))@D o ¢s(x), ifxelUn Qe

By (2.3]), we get that
|PYllz2wy < ClYlzwae) -
Step (D). Let us extend the a-matrices for x € U as follows:

3(x) = (a, g, a3)T ifxelUnQ,
| Hac ¢y (x)|B o ¢,(x) ((Jac hs(x)) " (1, g, az)T) Bog,(x), ifxelUnQe°.

Let us remark that &(x) is a column-vector of three matrices and the above matrix
product makes sense as a product in the modulus on the ring of the 4 x 4 Hermitian
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matrices. In particular, we get for xg € 0§ n U that

[Jac ¢5(x0)|B o ¢,(x0) ((Jac bs(x0)) " (a1, s, a3)") B o ¢,(xo)

—~

10 0 o
= B(xo) (P(xo)1 ( 01 0 )P(XO) ( o) )) B(xo)
0 0 -1 a3
1 0 0 a - El(Xo)
= B(xo) (P(xo)1 ( 01 0 ) ( a - €(Xp) )) B(xo)
00 -1 n(xo)
- € (X(])
= P(x0) 'B(xo) | - 62(x0)> B(xo)

- 61(X0) Oél
=P(xo) ' | - EQ(X()) :
(Xo) as

Hence, the application & is continuous on U. Since it is also a C'-map on both Q n U
and Q¢ n U, we get that & is a Lipschitz map. This choice for the extension of « is
made in order to get

a-DPy e L*(U),
in the sense of distributions. Indeed, since & is Lipschitz, we get that, for o € H} (U),
<a . DP'QD, S0>H*1( ><HO(U = <P¢, « - DQ0>U + <P¢> —'lle( )90>UmQC .
For x € U n €2, we also have that
(@ V) (95 (x) = Hacgs(67 1 (x))] (BodpaBog,) -V (poe') (x)
and thus
(@ V) (97 (x)) = Hacos (67 (%) Bo g, (a- V ((Bod,)posr)) (x)

—Jac oy (¢ (%) Bo gy (a-V(Bogy))pod, (x).
We deduce that

<Pwa& DQP>U(\QC = <¢>O" D ((Bo¢p)wo¢;l)>(]mg

_<¢7(O"D(BO¢P>>S@O¢;1>UmQ :

Since 1 € Dom(H*) and the function ¢ + (Bo ¢,) po ¢t : @ n U — C* belongs to
Dom(H), we get that

@ DPY, 0y wywmywy = & Db, + (Bogy) po Oy Dirna + W ROy g
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where R is a bounded operator from L*(U) in L?(U n Q) defined for all p € L*(U)
by

Ry = —idiv(@)p +i(a-V (Bog,))pod; .
Then, we obtain by Riesz’s theorem that & - DPv € L*(U) and that

I DPY 1) < O ([0l + o Dl )

where C' > 0 does not depend on .
Step [@). Let ¢ € C°(U), we have

| — i@ - Vol iz = (o, (—id - V)?p), — (o, div(@) (@ - V))y g

and
3

(—ic - V)* = = > @005, + (0;0;01) O
k=1

Let us define the matrix-valued function A for all x € U by

A(x) = |Jac ¢s(x)](Jac ¢5(x)) ~'xvnee (%) + Lsxuna(x) = (a;(x))x
and denote by A;(x) the j-th line of A(x). We get that, for all x e U,

a;(x)ag(x) = Bo ¢, (ajiar + ajoas + ajsas) (o + akaos + agsas) Bo ¢,

3
= (Z ajlakl> 14 + B o ¢p ( Z Qg (CleCLks - ajsakl)> B o ¢p
=1

1<l<s<3

and
3

3
0;0 05 = 1y Y A;ALS
k=1 k=1
Since, AAT(x) = 15 for all x € U n 09, we get that x — AAT(x) is a Lipschitzian
application on U and
3 3
&]&kafk = 14 le ATV - ]_4 2 6 AAT
7,k=1 7,k=1

Integrating by parts yields

| =& Voliaw) = 14"Vl iw) = Clelw Vel rw)
= CHV@H%Z(U) — Clelea) Vel 2wy

where

¢ = min{inf sp(AAT (x)), x e U}.
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Note that ¢ > 0 by (235). This ensures that the H'-norm and the | - ||,-norm are
equivalent on C§°(U).
Step (d). Let v eV and (p.). a mollifier defined for x € R? by
1 X

00 = 50 (2)
where p; € CFP(R?), supp p1 < B(0,1), pr = 0 and [|p1|,r = 1. Let us define
ve = v p, for any € > 0. There exists ¢y > 0 such that for all € € (0, ], the function
ve belongs to C°(U). Let us temporarily admit that there exists C' independent of
v and € such that

(2.6) [vellv < Cly.

Then, Step (@) and the fact that v. converges to v in L*(U) ensure that V < H}(U)
and the result follows.
It remains to prove (2.6]). There exists a constant C' > 0 such that

[vellz2 < Cllo] 22
and
Ve — (@ Vo) = pe|p2 + [ (- Vv) = pe| 2
V0. — (@ V0) = pelie + Cl& - Vol 2.
By integration by parts, we get, for x € U,
a-Vo(x) — (@ - Vv) * p.(x)
- | 360 e Tntx =) dy - | @) Vowintx - y)ay

R3

|6 Dvg| 2 <
<

= fRS (A(x) —a(y)) - (v(y)Vpe(x —y)) dy + f (diva(y)) v(y)p-(x —y)dy,

R3
and by a change of variable

| @) @) () Vputx = y) ay

-], W) A (o — <) V() d.

Since & is Lipschitzian, we get that

fw W) = 8C=22) (o - ca)Vpi(2)) dz

. < Clof el -V er O s

L2

and

| (aivae et —x)dy

< Ol -,
L2
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so that (28] follows. O

Now we can end the proof of ([2.3]). Thanks to Proposition [2.6] the set Dom(H*) is
included in H'(2). Hence, for any ¢ € Dom(H*), the trace of 1) on the set 0§ is well-
defined and belongs to HY?(812). By the definition of Dom(H*) and an integration
by parts, we obtain that, for any ¢ € Dom(H),

0=, Hppg — (CHY, p)g = ¥, —ta - np)aq = (BY, ) -
Hence, we have, for almost any s € 052,
Bib(s) € ker(B — 14)* = ker(B + 14),
so that
P(s) € ker(B—14),
and we get (2.3)).

2.4. Proof of Point [ivl in Theorem In the following lines, we assume that
1 € Dom(H). First we expand the square to get

| H |72y = (- Db, Dipyg +m? (B, Bipyg, + 2mRe (B, a - Dby,
Then we use (2.I]) with ¢ = f1 and we find, by using that o anticommutes with £,
2Re(BY, - Dby = (i 0, 1,00 = (—ifa 01, 1)a0 = [¥]72(0) -
It remains to use that [ is unitary to deduce
(2.7) \|H¢|\2Lz(9) = |a- D@Z)H%z(ﬂ) + m2\|¢||%2(9) + meH%Z(aQ) :

Assume moreover that 1 € H%(2). Then, we again use the Green-Riemann formula
1) and we have

<O{ : D¢>O‘ : D¢>Q = <¢, (O{ : D)2¢>Q + <(-7:Oé : n)waa : D¢>6Q >
and thus, by noticing that (a - D)? = 1,D?%, we find, by another integration by parts:
(a-Dp,a- Dpyg = (Db, Dp)g + i, (- m)(a - D) = (n- D)) h),q -

Since H?() is dense in H'(2), we get that this formula holds for any u € Dom(H).
We shall now investigate the boundary term by using the first algebraic relation in

2.10):
i, ((a-n)(a- D) = (n- D)) )sq = — (b, 500+ (m x D))
= — (¥, a-(nx D))y, .

It remains to investigate the term (51, o - (n x D)1)),,. Since ¢ belongs to Dom(H),
we have

(v, - (nx D)w>aﬂ = (0, [a - (n x D)a8]¢>ag + (15, B - (n D)w>ag )
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and, since B is a symmetric operator, we get

(s, Ba - (nx D)p)sq = Bysth,a - (nx D)p)sq = — (B, a- (nx D))y, -
We deduce that

1
<’75’17D,Oé : (Il X D)¢>a@ = 5 <75wa [a : (Il X D>a8]¢>89 )
and, with Lemma 2.3 we get

i@, ((@ m)(a - D) = (0 D) g = —3 s, ~m150)a0 -

and the conclusion follows.

3. LARGE POSITIVE MASS

This section is devoted to the proofs of Theorems and [L7l For that purpose,
one will work with the square of the Dirac operator H? appearing in Theorem

and determine the asymptotic expansions of its lowest eigenvalues.
Form > 0 and ¢ € D = {¢p € H'(Q,C*), ¢ € ker (B — 1) on I'}, we let

K
@u(w) = [Vl + | (m+5) far.
r
In addition, we also define, for ¢ € H}(Q, C*),

Qu(¥) = [VY[*.

Let us denote by (A;(Q;,))j>1 and (A;j(Qx))j>1, the ordered sequence of eigenvalues
related to the operators associated with the quadratic forms Q,, and Q.. There
respective L2-normalized eigenfunctions are denoted by that t;,, and 1; .

3.1. First non-trivial term in the asymptotic expansion. Theorem is a
consequence of the following proposition and of Theorem

Proposition 3.1. For all j = 1, we have

lim  Aj(@m) = Aj(Qu) -

m—+00

Proof. Since H}(Q2,C*) = D, we have, for all n > 1,
An (@m) < A (Qoo) -

Let us fix N > 1 and consider an orthonormal family (¢;,,)1<j<n such that ¢; ,, is an
eigenfunction of the operator related to @), and associated with its j-th eigenvalue.
We set

EN(m) = Span (wj7m)1<j<N~
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We easily get that, for all ¥ € Ey(m),

Qu(¥) < An(@u)|[¥]* < An(Q)[ ¥

Let us first prove that \(Q,,) converges towards A\;(Qy). For that purpose, let us
establish that the only accumulation point of (A1 (Qum))m=0 s A (Qx). Since (1)
is bounded in H'(2), we may assume, up to a subsequence extraction, that t ,
converges weakly to ¥y o, € H'(Q2). But, we have

| 1unar = o0m ),

r

and by the Fatou lemma, 1 , = 0 on I so that ¢ ., € H3(Q2). Then, we get
MQx) > Tim A (Q) = liminf [V ? > V01017 2 M(Q).

We deduce that 1; , is an eigenfunction of the Dirichlet Laplacian associated with
A (Qy). Therefore, we have the convergence result for the first eigenvalue. We also
get that (¢y,,) converges to 11 « strongly in H'(£2).

Let us now proceed by induction. Let N > 1. Assume that, for all j € {1,..., N},
(Aj(@Qm)) converges to \;(Qx) and that, up to a subsequence extraction, (1)
converges to 1., an eigenfunction associated with \;(Qs). As above, we may
assume that (¢¥ny1,,) weakly converges to some ¥y, 1 € H'(Q) and that its trace
on I' is zero. We also get, by convergence in L?((2), that

s
¢N+1,oo € <span 7vbj,oo> .
1<j<N

By the min-max principle, it follows that
Avi1(Qu) = ml—i>r-1+100 Av41(@Qm) = lr}llg}rrg VNt 1m]? = IVUNt10]° = Ani1(Qu) -

From these last inequalities, we infer that 1)1 o is an eigenfunction of the Dirichlet
Laplacian associated with Ay 1(Q), that (Ay41(Qm)) converges to (Any;1(Qy)) and
(Yn+1,m) converges strongly in H'(Q) to ¥n41.00- O

3.2. Asymptotic expansion of the first eigenvalue. The following lemma will
be used in the proof of Theorem

Lemma 3.2. Let u € H}(Q,C) be an L*-normalized eigenfunction of the Dirichlet
Laplacian on €2. Then

f |Oqu)?ndl = 0.
r
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Proof. We have Vu = (0yu) n so that by integration by parts, we get

J |Oqu|*ndl’ =J |Vu|?ndl =J V|Vul*dx = <J QVU-VékudX)
r r 0 Q k=1,2,3

=2 <f (—Au)dpudx + f OnUOU dF)
Q r k=1,2,3

=2 ()\j(Qoo)/Qf Or|u)? dx + f OnUOxU dF)
Q r

k=1,2,3

= QJ OnuVudl' = QJ |Oqu*ndl,
r r

and the conclusion follows. U
Theorem [I.7 is a consequence of the following proposition and of Theorem

Proposition 3.3. Let u; € H}(Q) be an L*-normalized eigenfunction of the Dirichlet
Laplacian associated with its lowest eigenvalue A\ (Qy). We have that

1
)\1(Qm) = )\I(Qoo) — Q—J |(?nu1|2 dr’ + (’)(m*2) .
m Jr
Remark 3.4. In the case of the Robin Laplacian, we obtain
1
AFP(Q,) = M(Qw) — EJ Ot | AT + O(m™?)
r

and we recover asymptotically the fact that AfF°*(Q,,) < A\1(Q,).

Proof. The proof of this result is divided into three steps:

(a) we perform a formal study of the asymptotic expansion of \;(Q,,),
(b) we build rigorously a test function based on Step (@) to get the upper bound,
(c) we study the lower bound.

Step (@). We look for quasi-eigenvalues and quasi-eigenfunctions in the form

AP(Qn) = M(Qa) + 2+ O(m ™),
PP =1 +m o+ O(m™?),

1m —

where \ and ¢ are unknown.
We recall that 1y ,, and 1y o, satisty

- Awl,m = Al(Qm)wl,ma on Q>
U1 € ker(B —14), on I,
(On + /2 4+ M)y, € ker(B+14), on I'.
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and
— A1 = M(Quw)1,00, 0D €,
Piw =0, onl.

Then, we want that

(—2 = \(Q0)) ¢ = Moron, o 2,
(3.1) p € ker(B—14), onI',

OnY1.00 + @ € ker(B+14), on I'.

1-B(s)

5, the orthogonal projection on ker(B — 14), we

Denoting for all se ', P, (s) =
get that

0= P+ (anwlm + @) = P+an¢1,oo t.

Taking the scalar product of equation ([B.I]) with ¢ ., and integrating by parts twice,
we obtain that

A= —|Pénthrola
and
(_A — Al(Qoo)) Y= A¢l’w’ on &2,

.2
(3:2) o = —P,oatpr, on T

Let us now consider A. Note, that for all eigenfunction 1, o, of the Dirichlet Laplacian
in L?(Q,C*) associated with its lowest eigenvalue \;(Q.), there exists a € C* such
that |a| = 1 and 11 o = auy. Then, we have

1
= ‘§J tia|” (1 + (@, Ba)) dT
T

1 1
= ——J |Oqu1)? dl’ — = {a, —ifBa - <J |Oqu1]*n dF) ay .
2 J; > .
With Lemma [B.2], we obtain that

1
A= ——J |(3nu1|2 dI'.
2 Jr

Step (B)). Let 11, = au; be an eigenfunction of the Dirichlet Laplacian associated
with A\1(Qx) and w € H?(Q) be such that w = —P,dyt1 . Let us study the
existence of a solution ¢ of equation ([3:2]). We denote by (—A)~! the inverse of the
Dirichlet Laplacian and v = 7 — w so that

(Id = Ai(Qu)(=A) ) v = (A) Moy — (=A) 7 (A = Ai(Q)) w.
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By the Fredholm alternative, there exists such a function v if and only if
(=) (M1 — (—A = A (Qs)) w) € ker (Id — Ay(Qoo)(—=A) )
Let 1 € ker (Id — A (Qu)(=A)~1)". We have by integrations by parts that
W, (D)7 (Mo — (A = Mi(Qx)) w))g,
= M1(Qeo) ™ (W, Mthre)g = (=2 = Mi(Quo)) ¥, w)g — (Outh, w)y)
= A1 (Q0) " (W, M¥1,00) + (On?, PyOnthi0)p) -

Hence, we get

0 = (W10, (=A) T (Moo = (A = Aio) w))g,
provided that
(3.3) Ao —f 1P, (Outhr) [2dT .
r
Let a,b € C* be such that {a,b) = 0, |a] = |b] = 1, ¥1 o, = auy and ¢ = bu;. We have
0=, (=A) 7 (Mt = (A = M (Qu)) w))y,
since

0 = (O, PiOntro0)p = %<b, —ifo - (f R dF> ay .
r

Hence, assuming that (3.3]) is true, we get that system (3.2)) has a solution ¢;.
P10 + m 1y, can be used as a test function and we have

O (10 + m 1) = M(Qyp) +m ! (23@ V1,00, Vior)q + J o1 dF) +0(m™?)
r

=M@l = | [P (Bute) T + O 2)
T
so that
(3.4) AM(Qm) < M(Qw) — m_lf [Py (Onthr o) 2T + O(m™?).
T

Step ([@). Let us now study the lower bound. The sequence (¢4 ,,) is uniformly
bounded in H*(£2). We extract a subsequence (mjy)ren such that

liminf m (Arm = Aeo) = Hm 70 (A, = Aoo)

and (11 m, Jren converges strongly in H'(Q2) to ¢ o, € Hi(Q) and (Ontb1 m, ) converges
to (Ont1.00) in H~Y2(T). Integrating by parts yields

(35) ()‘1777% - )‘1,00) <,l7bl,mk’ 77b1,OO>Q = _mk_l <(/{/2mk + 1)_lan¢mk,oo> P+an¢1,oo>p )
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so that by Step (@),

.. 1
lim inf m Atm = M) = = Pifnthr ol T2y = 3 L |Onua [>T
and the result follows. O

4. LARGE NEGATIVE MASS: MAIN STEPS IN THE PROOF OF THEOREM [1.12]

In this section, we study the non-relativistic limit m — 400 of the nonnegative
eigenvalues of the MIT bag Dirac operator H® . For the sake of readability, we
present the main ingredients used in the proof of Theorem Part of the ideas
are related to recent results about the semiclassical Robin Laplacians (see [12, Section
7], [1I] and [15]). The detailed proofs will be given in Section

4.1. Semiclassical reformulation and boundary localization. The main ob-
jective of this section is to get boundary localization results of Agmon type. For that

purpose, we will rather consider (H ?m)z and introduce the semiclassical parameter
h=m2-=0.

4.1.1. The semiclassical operator. In order to lighten the presentation, it will also be

more convenient to work with the following operator

(4.1) Ly = h2((H® )2 —m?*1y),

whose domain is given by

Dom(.%,) = Dom((H*,,)?)

— {w e HX(Q) : ¢ eker(B—1,), (an + g - h*%> W € ker(B + 1), on r} .

The associated quadratic 2, form is defined by

42)  VeeDom(2), 20 = KIVUlue + [

T

COE T

where
Dom(2;,) = Dom(H?,) = {»€ H'(Q) : ¢ eker(B—14) onT} .

In other words, the operator %, is the semiclassical Laplacian with combined MIT
bag condition and Robin condition on the boundary.
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4.1.2. Relations between the eigenvalues of %, and H® . Let us describe the rela-
tions between the spectra of our operators. Let us recall that the spectrum of H*
is discrete, symmetric with respect to 0 and with pair multiplicity. The spectrum of
H  lying in [—m,m] is given by

{J_r\/h—QAn(h) TR ne N0}, —h < A(h) < o} ,

where A\, (h) denotes the n-th eigenvalue of %,. Therefore, we shall focus on the
study of the negative eigenvalues of .%,.

4.1.3. Localization estimates a la Agmon. The estimates given in Proposition [4.1] are
a consequence of the fact that the Laplacian is a non-negative operator.

Proposition 4.1. Let ¢y € (0,1) and v € (0,,/0). There exists C > 0 such that
for any h € (0,1], any eigenvalue A < —eoh of £, and any eigenfunction ¥y, of £,

associated with X, we have
~d(-, T\ |? ~d(-,T
e (V57 91 (e (D)) < lvulio,

4.2. The operator near the boundary. Relying on Proposition ] we introduce
the operator near the boundary. Given ¢ € (0,dy) (with §y > 0 small enough), we
introduce the d-neighborhood of the boundary

(4.3) Vs ={xeQ : dist(x,T") < ¢},

and the quadratic form, defined on the variational space

+ht
12(Q)

Vs = {u e H'(Vs) : u(x) =0 for all x € Q such that dist(x,I') = §

and Bu=uonf},
by the formula

Vu e Vs, Q,{f}(u) = J 5

AVul? dx + J (fiﬂ - h%> |2 dT.
Vs r

We denote by .ﬁfh{&} the corresponding operator.

4.2.1. The operator near the boundary in tubular coordinates. Let ¢ be the canonical
embedding of T in R3 and ¢ the induced metrics on I'. (T, g) is a C®> Riemannian
manifold, which we orientate according to the ambient space. Let us introduce the
map ¢ : I' x (0,0) — Vs defined by the formula

O(s,t) = 1(s) —tn(s).
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The transformation ® is a C? diffeomorphism for any § € (0,dy) provided that dy is
sufficiently small. The induced metrics on I" x (0, d) is given by

G =go(ld—tL(s))*+ dt?,

where L(s) = dny is the second fundamental form of the boundary at s. Let us now
describe how our MIT bag - Robin Laplacian is transformed under the change of
coordinates. For all u € L?(Vs), we define the pull-back function

(4.4) u(s,t) = u(P(s,t)).
For all u e H'(V5), we have

(4.5) fuf? dx — f (s, ) adr dt,
Vs T'x(0,9)

(4.6) |Vul?dx = J

[<vsa, GV + |ata|2] adrdt.
Vs T'x(0,9)

where ,
g = (Id — tL(s)) ,
and a(s,t) = |g(s,t)|2. Here ¢.,-) is the Euclidean scalar product and V, is the

differential on T" seen through the metrics g. Since L(s) € C**2, we have the exact
formula

(4.7) a(s,t) =1 —tr(s) + 2K (s)

where

k(s) = Tr L(s) and K(s) = det L(s).
The operator 92”,;{6} is expressed in (s,t) coordinates as
2 = _p2a7'V,(ag V) — k% 1o,(ad,) .
In these coordinates, the Robin condition becomes
Wou = (5h* =hi)u on t=0.

We introduce, for ¢ € (0, ),
(4.8)
Vs ={(s,t) : se’ and 0<t<d},

Vs = {ue H'(Vs), u(-,0) e ker (B —14), u(-,6) = 0},
Ds — {ue H2(]76) NV dru(-,0) — (E - h_%> u(+,0) € ker(B + 14)},

2
99 () = ﬁ (h*(V 20,571V sw) + [ho,uf? ) adr dt + f (5% = 1¥) Ju(s, 0)Far .

Vs
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The operator 922,36} acts on L2(Vs, adtdl).

Let us denote by )\if}(h) the n-th eigenvalue of the corresponding operator .5?,35}.
Using smooth cut-off functions, the min-max principle and the Agmon estimates of
Proposition 4] it is then standard to deduce the following proposition (see [10]).

Proposition 4.2. Let ¢y € (0,1) and v € (0,,/ey). There exist constants C' > 0,
ho € (0,1) such that, for all h € (0,hg), § € (0,80), n = 1 such that \,(h) < —eoh,

(4.9) Aa(h) < APHRY < Ma(h) + Cexp (—wf%> .
In the following, it is sufficient to choose
(4.10) §=hi.
4.3. The rescaled MIT bag operator in boundary coordinates. Looking at
the rate of convergence obtained in Proposition 4.1 we perform a change of scale in

the normal direction that allows us to see something at the limit. We introduce the
rescaling

(s,7) = (s,h"2t),

the new semiclassical parameter h = hi and the new weights

(4.11) an(s,7) = a(s,h37),  Gals,7) = Gls, hi7).
We also introduce the parameter

(4.12) Tp=6h2=h"1=h"

(see (AI0)). We consider rather the operator

(4.13) L =h"'%,

acting on L2(Vy, @5 dI'dr) and expressed in the rescaled coordinates (s, 7).
As in ([L8]), we let
(4.14)

Vo={(s,7) : seTand0<7<h '},
Vi = {ue H'(Vy:apdl d7), u(-,0) € ker (B — 14), u(-,h~") = 0},

Dy = {ue H2(Vy;andUdr) A Vs : Ovu(-,0) — (gh2 - 1) u(-,0) € ker(B + 1)},

Dn(u) = f (790,53 V) + |0-uf? )y T dr + f (572 =1) lu(s, 0)2ar,
Vi I

L =~V (@49, V) — Gy ' 0ran0s .
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4.4. Contribution of the normal variable. Let us notice that the first order
terms in (£14) are related to the normal variable. Hence, we are naturally led to
introduce the following quadratic form gathering all the terms acting in the normal
direction:

V! = {ue L*(Vy:apdL dr), d,u € L2 (Vg ap AT d7),
u(-,0) e ker (B —14), u(-, A ') =0},

(fhl 10023 dT + (grﬂ - 1) |u(s,0)|2) ar.

0

(4.15)
D(u) = f

The goal of this section is to study the lowest part of the spectrum of the operator
&} associated with the quadratic form 2}.

4.4.1. Diagonalization of the boundary condition. Without the gradient term in the
s-direction appearing in Z;(u), the MIT bag boundary condition can be diagonalized
for every s € I'. Let us introduce for all s € I, the unitary 4 x 4 matrix

P_L 12 10 - 1N
n= B \icn 1, )¢

P 'BP, = 3,

We have

so that for all ¢ € V!,

¢ = Prp e fue L2(Vyapdl dr), drue L2(Vy; Gy dl dr),
<u('7 0)7 63> = <u<7 O), €4> =0, u('v hil) = 0} )

where (u, e,y is the k-th component of the vector u € C*. Since P, is unitary and
does not depend on the variable 7, we get that

Di(u) = D(Pru) .

Up to this change of variable, the first two components satisfy the following Robin

boundary condition
hZ
(aT+ 1- %) u(-0) =0,

whereas the last two ones satisfy the Dirichlet boundary condition.
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4.4.2. The Robin Laplacian on the half-line. Let Cy > 0, k, K € (—Cy, Cp) and kg > 0
such that for all i € (0, k),

(7)) =1 —Rr7 + B*K7% € (—1/2,1/2).

We introduce the following operator in one dimension (and valued in C), defined on
the Hilbert space L*((0,h™1); ap . x d7) by

Wk — 20 KT

(4.16) Hiol i = —ap s 1 (7)0r (anwx(1)0;) = =02 +
Y Y aﬁ,n,K(T>

aT’

with domain

mmm$w=wweHmahm©:wnﬂ=(@+Lf?)wm=m.

For the associated quadratic form QR°°,.. we have,

Dom(Q5k) = {v € H'((0,n71),C), (h™") = 0},

Rob " 2 Wk 2
Qmaw=L 2t Panscdr + (1425 o).

2
Let us notice that our Robin Laplacian 7—[;‘,’5  on a weighted space looks like the one

introduced by Helffer and Kachmar in [I1]. But, here, we have an additional term
"TEQ in the boundary condition which will have an important impact on the spectrum

in the limit 7 — 0. We can also notice that (H;Ef?{b K
(B) in the sense of Kato (see [16]).

)H & 18 an analytic family of type

Notation 4.3. The function uy . x denotes the first positive eigenfunction of Hzo%,

normalized in L2((0, "), ap . rc d7).

Let us now describe the bottom of the spectrum of H;Fff,’{b,K when A goes to 0.

Proposition 4.4. The lowest eigenpair (A (HFPy ), unwx) of Hioy satisfies the

following. Let €q € (0,1). There exist hy,C' > 0 such that for all h € (0,h), there
holds
Rob 4 K
A (HRS2x) — (—1 +h (K — Z))

Huh,n,K - ¢0\|H1((0,hrl);am,;< ar) S Ch? ) where ¢0(7') = \/564-
The constants hg, C' > 0 do not depend on k, K but depend on Cj.

<CRh®, N (H,'?c;bK) > —go/2,

and

Notation 4.5. In the following, we use k = k(s) and K = K(s) and we let
Uh(s), K (s)(T) = Vn(5,T), A (HS,%?S),K(S)) = A(s,n).
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Considering the asymptotic expansion of the eigenfunction in Proposition 4] leads
to the following remark (v, (s, 7) does not depend very much on s in the semiclassical
limit).

Remark 4.6. We introduce the “Born-Oppenheimer correction”:
Ri(s) = |V svnl 720153 ar) -

It can be shown that

(4.17) | Rul ey = O(RY),

by using straightforward adaptations of [12, Lemma 7.3]. By using (£I7) and an
induction procedure, it is also possible to show the same estimate for the second
order derivatives:

sup | Vvl 2o 1yanarn) = O(R%) .

SE

4.4.3. Spectrum of .5?;1 Since the spectrum of the Dirichlet Laplacian is non-negative,
Proposition [£.4] gives us immediately the following result.

Proposition 4.7. Let ey € (0,1). There exist C, hy > 0 such that for any h € (0, hy),
we have

sp(.ﬁjﬂg) < (=1 —Ch', =1+ Ch*) U [~&p, +0).
The L2(1A)h; ay AU dr)- spectral projection 11, := X(_l_cﬁ47_1+ch4)(o?hl) satisfies
Ranll, = {(s,7) € Vy f(s)va(s,7), fe L*(T; dI)* nker(14 — B)}.
Remark 4.8. Since, s — wvy(s, ) is regular, we also have
Iy € Hl(f}h; apdldr)?

for any ¢ € V. Actually, we can give an explicit expression of II; by using the
diagonalization of the MIT condition of Section 4.1t

1, 0 "
(4.18) [y = v Py ( 02 0 > P, vn)r2(0,5-1),84 dr) »

where (Y, vg)r2((0.5-1),a,ar) = ({5, Vn)L2((0,8-1),3n dr)) jeq1,..,ay- By taking the derivative
of ([AIR) with respect to s, by using the Leibniz formula and (£I7), we have the

commutator estimate, for ¢ € Vj,

I[Vs, Hh]@bﬂm(ﬁﬁ,admr) S CWHLZ(%,adeF) :
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4.5. Effective operator on B\an [1;. In this section, we compare the lower part of
the spectrum of the operator .%; with the one of the operator £ acting on Ran Il ,
whose quadratic form gathers all the terms of orders lower or equal to 4 and which
is defined by

(4.19)

Vet = {u e H' (Vi @5 dT d7)*, u(-,0) € ker (B — 14), u(-,h™") = 0} n RanTl,,

2% (u) = B} (u) + h4f 1V, ul?, dT dr

Vi

We get the following result.
Theorem 4.9. Foreye (0,1), h > 0, we let
Nogn = {ne N*: A, (h) < —eo} .
There exist positive constants hy, C' such that, for all h € (0,hy) and n € ./\A/'Eoﬁ,

(4.20) () < Aa(h) < AFH(R),

n

where X:f(ﬁ) is the n-th eigenvalue of D?;ff’i whose quadratic form is defined for all
refft _ {reff
ueV, = =V by

Vh

T ) = i)+ 1 | )

(14 Ch)|Vul*a,dl dr + Ch6f |u|*@, AT dr .

4.6. Effective operator on the boundary. The aim of this section is to exhibit
an effective operator on the boundary I'. To do so, we will have to study the Born-
Oppenheimer correction terms. The effective operator up to the order 4 on the
boundary has the following quadratic form:

Ve — HYT) A ker(1, — B)

(4.21)
Fr ) = Aty + 1 | (190 (-

More precisely, we obtain the following result.
Theorem 4.10. Foreye€ (0,1), A > 0, we let
Nogn = {ne N*: A, (h) < —eo} .

There exist positive constants hy, C' such that, for all h € (0,hg) and n € ./\A/'Eoﬁ,

~

(4.22) A0 (R) < Ma(h) < ALF(R),
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where Xgi(h) is the n-th eigenvalue of oé?’eﬁ’i whose quadratic form is defined by:

{rTeff,+ _ 1 Teff
\% =V ,

Kk(s)?

) = Sy + 0 | (0 OMITAP + (=55 4 K £ On) ) ar
r

Theorem [[.12]is a consequence of the semiclassical reformulation in Section [4.1], of
Proposition [£.2] of the rescaling of Section [4.3], and of Theorem 10
5. PROOF OF THE RESULTS STATED IN SECTION [4]

5.1. Proof of the Agmon estimates of Proposition 4.1l Before stating the
proof, let us recall the following lemma.

Lemma 5.1. Let x and v be Lipschitzian functions on €, we have
Re(V, V(x*0)) = [VOx¥)[* — [ Vx|*.
Let us now give the proof of Proposition [l
Proof. We notice first that by (4.2),
(5.1) 2 = —h.

Let us denote by ay(+, ) the sesquilinear form associated with 2, defined in (4.2).
Let us define the following Lipschitzian functions

x € Q — P(x) = ydist(x,00) e R
and
x€Q > yp(x) = e e R,

Since xy, is real-valued and Lipschitzian, we get that x4, belongs to D(2). We
have that

an(Vn, Xitbn) = Re{Lthn, Xatln)q

— Re {d B2 (Vi V(32 Epz_pt 2dF}.
e{ (Vi (Xh¢h>>Q+L(2 >|Xh¢h|

By Lemma [5.1] we get that
an(Pn, Xan) = 2n(xnthn) — W2 [VnV xn] 7210 -
Recall that vy, is an eigenfunction of .}, associated with the eigenvalue A, so that
(5.2) 2 (xnon) — P nVxul 22 ) = Mxatnlizq) -
Let R > 1 and ¢ > 1. Let us introduce a quadratic partition of unity of 2

2 2
Xihe T Xonr =1,
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in order to study the asymptotic behavior of ¢, in the interior and near the boundary
I' separately. We assume that i g satisfies

(x) = 1 ifdist(x,T) > h'/2R
XEREEE =0 if dist(x,T) < h
and that
max(|Vx1,n,r(X)|, |Vxenr(x)]) < 2¢h?/R,
for all x € Q. Using again Lemma [5.1], we get

2uOxnton) = D 2u(xknmxntn) = W[ XntnV Xenrl 720 -

k=1,2

We have 2, (x1.n.rX0%n) = 0 because of a support consideration. Let us also remark
that

W2 [ Xh RN X Rl T2y < 7AE/R2 [ Xnn] 20
and
W[ onV Xl 22 < Y2 Ixntnl 22 -
We deduce from (5.2]) that
AHXM/%H%%Q) = Dn(Xoh,rRX0YR) — hWhXhH%Z(Q) (72 + 85’2R72) )
so that
(5.3) h(eo —7° = 8 R7?) [ xntnl Toi) < —2n(xonrXntn) -
By Lemma 5.1} we get that
D (Xa,nmXn0n) = an(Vn, (X2h.mX0) Un) + 1210V (X, mX0) | 72(0)
= Mxznrxn®nliz) + P2 0nxaVxanelTe@) + PIYaxenexa V|72
+ h¥?2Re <wh62¢h71/2VX2,h,Ru th2,h,RV(I>>L2(Q)
> NXznmX0Un 2 (0) — hAe/ Ry xn ¥l 72(q) -
Hence, we obtain by (B3] and (5.0]) that
(20 = = 82R™2 — 4¢R™y) |xntnl T2y < IX2h RXHYA] 720
< [¢nl 72 ()€™ -
Let us fix R > 0 so that
(s0 —7* —8FR > —4eR'y) = (g9 —7*)/2 > 0.
We get that

IxntnllL2@) < Cllbnl 2y
and the conclusion follows by (5.2). O
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5.2. Proof of Proposition 4.4

Proof. The proof follows from the method by Helffer and Kachmar used in [11]. Let
us recall the strategy. The operator is

Wk — 20K
HEP = —ar L (7)0r (anp i (7)) = =02 + —— 2 Ta
Y m n an i (T)
2
(aT+ 1- %) u(-,0) = 0.

We look for quasi-eigenvalues and quasi-eigenfunctions expressed as formal series:
)\Z)\0+h2)\1+h4)\2, w=w0+h2w1+h4’¢)2.

By writing the formal eigenvalue equation, expanding the operator and the bound-
ary condition in powers of h?, we get the following succession of equations. In the
following, the integration interval is (0, +c0). The first one is

—63@[)0 = )\Q’QZJQ, (67- + 1)’17Z)0(0) =0.
We get that \g = —1 and 1(7) = v/2e™7. Then, we must solve the equation:
(02 + 1) by = (M — K)o, (@ + 1)y (0) — g%(m ~0.

By taking the scalar product with 1y, we find (by the Fredholm alternative) that
there is a solution if and only if there holds

(=02 + 1) 1, voyr2(0400) = {(A1 — K£02) Yo, Yo)r2(0,100) -
Note that (0-ty, %) r2(0,+5) = —1 and that, by integration by parts,

(=02 + 1) 1, Yopr2(0,400) = (07 + 1) ¥1(0),%0(0)) + (W1, (=07 + 1) tho)12(0,+00)
K 2
= §|¢0(0)| =K,

so that Ay = 0. We may actually give an explicit expression for a function ),
satisfying

(2 +1) ¢y = rtho, (05 + 1) (0) — gwo(O) ~0.

The functions & (% + c) e~ T are a solution for all ¢ € R. We choose ¢ = 0 so that

(1) = %6’7. We can now consider the crucial step. We write

K
(—672_ + 1) ’QDQ = )\g’wo — I{a.r’l?bl — T(—QK + /€2)a7-’¢10, (6T + 1)’¢2(O) — §’¢1(0) =0.
As previously, it is sufficient to find Ay such that there holds

(=02 4 1) Y2, Yoyr2(0,40m) = Patbo — kO — T(—2K + £2)0:40, Yo )12(0,400) -
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We have
(=02 4 1) w2 v 1200 = (0 + 1) 02(0),0(0)) = - (r(0),40(0)) = 0.,

and
<—/‘€5T¢1, ¢0>L2(0,+oo) = K<¢la a7"‘7D0>L2(0,+oo) + ’f<¢1 (0)7 %(0» = _K'<w1> ¢0>L2(07+w) )
+o (2
= —KQJ e T dr = ——
0 4
+o0 (2
(—1(—2K + m2)8T¢0,1D0>L2(07+00) =2(—2K + mz)J e dr = —K + 5
0
It follows that
(2
)\2 == K - Z .

By using convenient cutoff functions (to satisfy the Dirichlet condition near A~1) and
the spectral theorem, we easily get that

2
dist (—1 +ht (K — %) ,Sp (H,fff,’ij)> < ChS.

Then, by using straightforward adaptations of the results in [15, Appendix]| (we deal
with the additional term in the boundary condition as a perturbation), we get the
lower bound for A, (H,ff,%lfK).

Rob

Therefore, the only eigenvalue in the spectrum of H;7’) that is close to —1 +

4
arguments and the Agmon estimates (to deal with the cutoff functions). O

Kt (K - “—2> is the first one. The approximation of wuy . x follows from elementary

5.3. Proof of Theorem [4.91 Let us denote

Iy = Id — 1T
5.3.1. Main Lemma. The proof of the theorem relies on the following lemma (see
also [19]).

Lemma 5.2. There exist C,hg > 0 such that the following holds for all h € (0, hy)
and all v € Vy,

2,(Iyu) < 2-(1u) + K1 + Ch) f IV Iyu|2@, AT dr
Vi,
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and

. L2(Vp;a, dT dr)

Dy(u) = 2 (Iyu) + k(1 — Ch) f IV Iyu|2ay, dT dr — CRS || Tl
Vi

|V I ul*@y dI" dr — Ch2HH%uHiQ(9h%ahdFd7) ’

Vi

+ 9! (ITku) + BY(1 — Ch) f
Proof. Let us remark first that there exist C, iy > 0 such that for all & € (0, A),

) J (|v8u|2ah—<v8u,ah§glvsu>> dFdT) <0hf V%G, AT dr
Vi

Vi

since 0 < 7 < A~!. The upper bound follows. Let us now focus on the lower bound.
Since I, is a spectral projection of £}, we get that for all u € V;,

2 (u) = 2} () + 2 (i)
We also have

ﬁ |V ul*a, dl dr = f Vs (Wpu + Hyu) [*a,dl dr = f |V, (ILyu) [*ay dI dr

Vh Vi Vh

+ f V(I w)|*a, dT dr + 2Re | (V(Iyu), V(Iyu))yay dl dr .
Vi Vi
Let us analyze the double product. We have

; (V(yu), V(I3u)y @y dT dr = ; <V5((Hh)2u),vs((H;)2u)>ahdr dr

= | ALV ILw), Iy Vi(Iu)ya,dl dr + | V), [V, Oy | Hyu) @, dl dr
Vi Vh

+ | Vs, W] Wy, Iy Vi (Irw)y @ AU A7 + | [V, ) Wy, [V, I | Irup @, D dr
Vi

<
Vh
Since IIj; is an orthogonal projection of Lz(i}ﬁ, apdl'dr), we get that

Re J LV (), TV o (ru) )y @y d0 dr = 0.
Vi

Moreover, by commuting ITi- and V,, by using an integration by parts and Remark
(see also Remark [4.8)), we have

[V, Ty Ty, 1 Vo (T w)) @ AT dT)
%3

/
2 2 1
<C (HHEUHL2(9ﬁ;ahdFdT) + Hvsﬂﬁuuy(ﬁh;ah dl"dT)) 1wl 229y ap arar -
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Using the inequality |2ab] < h?a® + h™2b%, we obtain that

ﬁ |V ul?ay dl dr
Vi

> ﬁ |V, (ITyu) %85 AT d7 + f |V (IT;-u) 2@y AT dr
Vi

2 2 1
= C (Il 5, 20 arary + IV aran) T 5 aran

> (1= ) [ (9.0 andr dr — Ol
h

+ ﬁ V(1L w) [*a, AT dr — Ch™2|11; uHL2 P
Vi '

drdr)

drdr)
and the result follows. O

5.3.2. Proof of Theorem[{.9 The upper bound of Theorem follows immediately
from the min-max principle. Let us focus on the lower bound. We have byA Proposi-
tion 4] that there exist fig, C' > 0 such that for all i € (0, hy) and all u € V,

S (Tku) + KA1 — Ch) f VT uf2a, dT dr — CR2|TT-ul 2

o LZ(V ;ap dldT)

3
> — ey

Hence, Lemma [5.2] ensures that

L2 Vh apdl dr)
Dy(u) = G (M) — eo| TThul?
W) = =“h h 40 L2(Vpsp dT d7) *

Since IIj is an orthogonal projection of L2(1A)h; apdl'dr), we get that the spectrum
of %, lying below —gg is discrete and coincides with the one of Z"™.

5.4. Proof of Theorem [4.10.
Proof. We first notice that, by definition of vy, (see Propositions [£.4] and [A.7),
Di(fon) = | Al IS0
T
Then we have

f |vs(fvh)|2ahdrd7=f |vsf|2|vh|zaﬁdrdr+f \Vsuil?| fI?an T dr
D D D

+2Re | (unV.f, fVeup)apdldr.
Vi
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By Proposition €4, we get that |vp(s, ')H%%(o,hfl),aﬁ(s) ar) = 1, for all s € I" so that

ﬁ IV f2enlan dT dr = f V2T,
T

Vh

JA |V8vh|2|f|26hdl“d7 = J Rh|f|2 dF,
r

Vi
and

1/2 1/2
‘QRG R <thSf, fVSvh> ay dl’ d’T’ <2 (J‘ Rﬁ|f|2 dl—‘) <f |st|2 dr)
Vi r I

< h‘2f Ry|f|>dl’ + h?f IV, f]?dl,
T r

where R, is defined in Remark The result follows. O
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