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Abstract

The motivation of this work is the detection of cerebrovascular accidents by
microwave tomographic imaging. This requires the solution of an inverse
problem relying on a minimization algorithm (for example, gradient-based),
where successive iterations consist in repeated solutions of a direct prob-
lem. The reconstruction algorithm is extremely computationally intensive
and makes use of efficient parallel algorithms and high-performance com-
puting. The feasibility of this type of imaging is conditioned on one hand
by an accurate reconstruction of the material properties of the propagation
medium and on the other hand by a considerable reduction in simulation
time. Fulfilling these two requirements will enable a very rapid and accurate
diagnosis. From the mathematical and numerical point of view, this means
solving Maxwell’s equations in time-harmonic regime by appropriate domain
decomposition methods, which are naturally adapted to parallel architec-
tures.

Keywords: inverse problem, scalable preconditioners, Maxwell’s equations,
microwave imaging
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1. Introduction

A stroke, also known as cerebrovascular accident, is a disturbance in the
blood supply to the brain caused by a blocked or burst blood vessel. As a
consequence, cerebral tissues are deprived of oxygen and nutrients. This re-
sults in a rapid loss of brain functions and often death. Strokes are classified
into two major categories: ischemic (85% of strokes) and hemorrhagic (15%
of strokes). During an acute ischemic stroke, the blood supply to a part of
the brain is interrupted by thrombosis - the formation of a blood clot in a
blood vessel - or by an embolism elsewhere in the body. A hemorrhagic stroke
occurs when a blood vessel bursts inside the brain, increasing pressure in the
brain and injuring brain cells. The two types of strokes result in opposite
variations of the dielectric properties of the affected tissues. How quickly
one can detect and characterize the stroke is of fundamental importance for
the survival of the patient. The quicker the treatment is, the more reversible
the damage and the better the chances of recovery are. Moreover, the treat-
ment of ischemic stroke consists in thinning the blood (anticoagulants) and
can be fatal if the stroke is hemorrhagic. Therefore, it is vital to make a
clear distinction between the two types of strokes before treating the patient.
Moreover, ideally one would want to monitor continuously the effect of the
treatment on the evolution of the stroke during the hospitalization. The two
most used imaging techniques for strokes diagnosis are MRI (magnetic reso-
nance imaging) and CT scan (computerized tomography scan). One of their
downsides is that the travel time from the patient’s home to the hospital is
lost. Moreover, the cost and the lack of portability of MRI and the harmful
character of CT scan make them unsuitable for a continuous monitoring at
the hospital during treatment.

This has motivated the study of an additional technique: microwave to-
mography. The measurement system is lightweight and thus transportable.
The acquisition of the data is harmless and faster than CT or MRI. Hence,
this imaging modality could be used by an emergency unit and for moni-
toring at the hospital. At frequencies of the order of 1 GHz, the tissues are
well differentiated and can be imaged on the basis of their dielectric proper-
ties. After the first works on microwave imaging in 1982 by Lin and Clarke
[1], other works followed, but almost always on synthetic simplified models
[2]. New devices are currently designed and studied by EMTensor GmbH
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Figure 1: Left: Operating principle of the diagnosis apparatus. Middle: imaging chamber
prototype of EMTensor, by courtesy of EMTensor company. Right: the corresponding
simulation domain.

(Vienna, Austria) [3].
The purpose of this work is to solve in parallel the inverse problem as-

sociated with the time-harmonic Maxwell’s equations which model electro-
magnetic waves propagation. The dielectric properties of the brain tissues of
a patient yield the image that could be used for a rapid diagnosis of brain
strokes. Simulation results presented in this work have been obtained on the
imaging system prototype developed by EMTensor GmbH [3] (see Figure 1).
It is composed of 5 rings of 32 ceramic-loaded rectangular waveguides around
a metallic cylindrical chamber of diameter 28.5 cm and total height 28 cm.
The head of the patient is inserted into the chamber as shown in Figure 1
(left). The imaging chamber is filled with a matching solution and a mem-
brane is used to isolate the head. Each antenna successively transmits a
signal at a fixed frequency, typically 1 GHz. The electromagnetic wave prop-
agates inside the chamber and in the object to be imaged according to its
electromagnetic properties. The retrieved data then consist in the scattering
parameters measured by the 160 receiving antennas, which are used as input
for the inverse problem. These raw data can be wirelessly transferred to a re-
mote computing center. The HPC machine will then compute the 3D images
of the patient’s brain. Once formed, these images can be quickly transmitted
from the computing center to the hospital, see Figure 2.

The paper is organized as follows. In Section 2 the direct problem and the
time-harmonic Maxwell’s equations in curl-curl form with suitable boundary
conditions are introduced. In Section 3, we briefly describe the discretization
method with edge finite elements. Section 4 is devoted to the introduction
of the domain decomposition preconditioner. In Section 5 we explain how
to compute the scattering coefficients. We also compare measurement data
obtained by EMTensor with the coefficients computed by the simulation.
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Figure 2: Design concept of the diagnosis technology, by courtesy of EMTensor company.

We introduce the inverse problem in Section 6. Section 7 is dedicated to
numerical results. We first perform a strong scaling analysis to show the
effectiveness of the domain decomposition method. Then, we present results
obtained by solving the inverse problem in a realistic configuration, with noisy
synthetic data generated using a numerical brain model with a simulated
hemorrhagic stroke. Finally, we conclude this paper in Section 8 and give
directions for future research.

2. The direct problem

Let the domain Ω ⊂ R3 represent the imaging chamber (see Figure 1,
right). We consider in Ω a heterogeneous non-magnetic dissipative linear
isotropic dielectric medium, of dielectric permittivity ε(x) > 0 and electrical
conductivity σ(x) ≥ 0. For each transmitting antenna j = 1, . . . , N emitting
a time periodic signal at angular frequency ω, the complex amplitude Ej(x) of
the associated electric field Ej(x, t) = <(Ej(x)eiωt) is solution to the following
second order time-harmonic Maxwell’s equation:

∇× (∇× Ej)− µ0(ω2ε− iωσ)Ej = 0 in Ω, (1)

where µ0 is the permeability of free space. Note that the coefficient κ =
µ0(ω2ε− iωσ) in the equation can be written as κ = ω2µ0

(
ε− iσ

ω

)
, and in the

next sections we will consider the relative complex permittivity εr given by
the relation εrε0 = ε − iσ

ω
, where ε0 is the permittivity of free space. Let n

be the unit outward normal to ∂Ω. Equation (1) is equipped with perfectly
conducting boundary conditions on the metallic walls Γm:

Ej × n = 0 on Γm,
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and with impedance boundary conditions on the outer section of the trans-
mitting waveguide j and of the receiving waveguides i = 1, . . . , N , i 6= j
(see [4]):

(∇× Ej)× n + iβn× (Ej × n) = gj on Γj, (2)

(∇× Ej)× n + iβn× (Ej × n) = 0 on Γi , i 6= j. (3)

Here β is the propagation wavenumber along the waveguide, corresponding
to the propagation of the TE10 fundamental mode. Equation (2) imposes an
incident wave which corresponds to the excitation of the fundamental mode
E0
j of the j-th waveguide, with gj = (∇ × E0

j) × n + iβn × (E0
j × n). On

the other hand equation (3) corresponds to a first order absorbing boundary
condition of Silver–Müller approximating a transparent boundary condition
on the outer section of the receiving waveguides i = 1, . . . , N , i 6= j. The
bottom of the chamber is metallic, and we impose an impedance boundary
condition on the top of the chamber. We end up with the following boundary
value problem for each transmitting antenna j = 1, . . . , N : find Ej such that

∇× (∇× Ej)− µ0(ω2ε− iωσ)Ej = 0 in Ω,

Ej × n = 0 on Γm,

(∇× Ej)× n + iβn× (Ej × n) = gj on Γj,

(∇× Ej)× n + iβn× (Ej × n) = 0 on Γi , i 6= j.

(4)

Now, let V = {v ∈ H(curl,Ω),v × n = 0 on Γm}, where H(curl,Ω) = {v ∈
L2(Ω)3,∇ × v ∈ L2(Ω)3} is the space of square integrable functions whose
curl is also square integrable. For each transmitting antenna j = 1, . . . , N ,
the variational form of problem (4) reads: find Ej ∈ V such that∫

Ω

[
(∇× Ej) · (∇× v)− µ0(ω2ε− iωσ)Ej · v

]
+

∫
⋃N

i=1 Γi

iβ(Ej × n) · (v × n) =

∫
Γj

gj · v ∀v ∈ V.
(5)

3. Edge finite elements

Nédélec edge elements [5] are finite elements particularly suited for the
approximation of electromagnetic fields. Indeed, given a tetrahedral mesh T
of the computational domain Ω, the finite dimensional subspace Vh generated
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by Nédélec basis functions is included in H(curl,Ω), since their tangential
component across faces shared by adjacent tetrahedra of T is continuous.
They thus match the continuity properties of the electric field. Nédélec el-
ements are called edge elements because the basis functions are associated
with the edges of the mesh T . More precisely, for a tetrahedron T ∈ T , the
local basis functions are associated with the oriented edges e = {ni, nj} of T
as follows

we = λi∇λj − λj∇λi,
where the λ` are the barycentric coordinates of a point with respect to the
node n` of T . Note that the polynomial degree of we is 1 since the barycentric
coordinates λ` are polynomials of degree 1 and their gradients are constant.
As these basis functions are vector functions, we only need one set of un-
knowns to approximate all the components of the field, and not three sets
of unknowns, one for each component of the field as is instead required for
usual nodal (scalar) finite elements.

The finite element discretization of the variational problem is obtained
by taking test functions v ∈ Vh, the edge finite element space on the mesh
T , and by looking for a solution Eh ∈ Vh in the same space: find Eh ∈ Vh
such that ∫

Ω

[
(∇× Eh) · (∇× v)− µ0(ω2ε− iωσ)Eh · v

]
+

∫
⋃N

i=1 Γi

iβ(Eh × n) · (v × n) =

∫
Γj

gj · v ∀v ∈ Vh.
(6)

Locally, over each tetrahedron T , we write the discretized field as Eh =∑
e∈T cew

e, a linear combination with coefficients ce of the basis functions
associated with the edges e of T , and the coefficients ce will be the unknowns
of the resulting linear system. For edge finite elements (of degree 1) these
coefficients can be interpreted as the circulations of Eh along the edges of
the tetrahedra:

ce =
1

|e|

∫
e

Eh · te,

where te is the tangent vector to the edge e of length |e|, the length of e.
This is a consequence of the fact that the basis functions are in duality with
the degrees of freedom given by the circulations along the edges, that is:

1

|e|

∫
e

we′ · te =

{
1 if e = e′,

0 if e 6= e′.
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4. Domain decomposition preconditioning

The finite element discretization (6) of the variational problem (5) pro-
duces linear systems

Auj = bj

for each transmitting antenna j. However, the matrixA can be ill-conditioned.
This, combined with the fact that the underlying PDE is indefinite, highlights
the need for a robust and efficient preconditioner. Here we employ domain
decomposition preconditioners, which are extensively described in [6], as they
are naturally suited to parallel computing. Our domain decomposition pre-
conditioner is presented in the following.

Let T be the mesh of the computational domain Ω. First, T is partitioned
intoNS non-overlapping meshes {Ti}16i6NS

using standard graph partitioners
such as SCOTCH [7] or METIS [8]. If δ is a positive integer, the overlapping
decomposition {T δi }16i6NS

is defined recursively as follows: T δi is obtained
by including all tetrahedra of T δ−1

i plus all adjacent tetrahedra of T δ−1
i ; for

δ = 0, T δi = Ti. Note that the number of layers in the overlap is then 2δ. Let
Vh be the edge finite element space defined on T , and {V δ

i }16i6NS
the local

edge finite element spaces defined on {T δi }16i6NS
, δ > 0. Now consider the

restrictions {Ri}16i6NS
from Vh to {V δ

i }16i6NS
, and a local partition of unity

{Di}16i6NS
such that

NS∑
i=1

RT
i DiRi = In×n. (7)

Algebraically speaking, if n is the global number of unknowns and {ni}16i6NS

are the numbers of unknowns for each local finite element space, then Ri is
a Boolean matrix of size ni × n, and Di is a diagonal matrix of size ni × ni,
for all 1 6 i 6 NS. Note that RT

i , the transpose of Ri, is a n × ni matrix
that gives the extension by 0 from V δ

i to Vh.
Using these matrices, one can define the following one-level precondi-

tioner, called Optimized Restricted Additive Schwarz preconditioner (ORAS)
[9]:

M−1
ORAS =

NS∑
i=1

RT
i DiB

−1
i Ri, (8)

where {Bi}16i6NS
are local operators corresponding to the subproblems with

impedance boundary conditions (∇ × E) × n + ikn × (E × n), where k =
ω
√
µ0εrε0 is the wavenumber. These boundary conditions were first used as
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transmission conditions at the interfaces between subdomains in [10]. The
local matrices {Bi}16i6NS

of the ORAS preconditioner make use of more effi-
cient transmission boundary conditions than the submatrices {RiAR

T
i }16i6NS

of the original Restricted Additive Schwarz (RAS) preconditioner [11]. It is
important to note that when a direct solver is used to compute the action
of B−1

i on multiple vectors, it can be done in a single forward elimination
and backward substitution. More details on the solution of linear systems
with multiple right-hand sides are given in Section 7. The preconditioner
M−1

ORAS (8) is naturally parallel since its assembly requires the concurrent
factorization of each {Bi}16i6NS

, which are typically stored locally on dif-
ferent processes in a distributed computing context. Likewise, applying (8)
to a distributed vector only requires peer-to-peer communications between
neighboring subdomains, and a local forward elimination and backward sub-
stitution. See chapter 8 of [6] for a more detailed analysis.

4.1. Partition of unity

The construction of the partition of unity is intricate, especially for Nédélec
edge finite elements.

The starting point is the construction of partition of unity functions
{χi}16i6NS

for the classical P1 linear nodal finite element, whose degrees
of freedom are the values at the nodes of the mesh. First of all, we define for
i = 1, . . . , NS the function χ̃i as the continuous piecewise linear function on
T , with support contained in T δi , such that

χ̃i =

{
1 at all nodes of T 0

i ,

0 at all nodes of T δi \ T 0
i .

The function χi can then be defined as the continuous piecewise linear func-
tion on T , with support contained in T δi , such that its (discrete) value for
each degree of freedom is evaluated by:

χi =
χ̃i

NS∑
j=1

χ̃j

. (9)

Thus, we have
∑NS

i=1 χi = 1 both at the discrete and continuous level. Remark
that if δ > 1, not only the function χi but also its derivative is equal to zero on
the border of T δi . This is essential for a good convergence if Robin boundary

8



conditions are chosen as transmission conditions at the interfaces between
subdomains. Indeed, if this property is satisfied, the continuous version of
the ORAS algorithm is equivalent to P. L. Lions’ algorithm (see [9] and
[6] §2.3.2). Note that in the practical implementation, the functions χ̃i and
χi are constructed locally on T δi , the relevant contribution of the χ̃j in (9)
being on T δj ∩T δi . This removes all dependency on the global mesh T , which
could be otherwise problematic at large scales.

Now, the degrees of freedom of Nédélec finite elements are associated with
the edges of the mesh. For these finite elements, we can build a geometric
partition of unity based on the support of the degrees of freedom (the edges of
the mesh): the entries of the diagonal matrices Di, i = 1, . . . , NS are obtained
for each degree of freedom by interpolating the piecewise linear function χi at
the midpoint of the corresponding edge. The partition of unity property (7)
is then satisfied since

∑NS

i=1 χi = 1.

4.2. Software stack

All operators related to the domain decomposition method can be eas-
ily generated using finite element Domain-Specific Languages (DSL). Here
we use FreeFem++ [12] (http://www.freefem.org/ff++/) since it has al-
ready been proven that it can enable large-scale simulations using overlapping
Schwarz methods [13] when used in combination with the library HPDDM
[14] (High-Performance unified framework for Domain Decomposition Meth-
ods, https://github.com/hpddm/hpddm). HPDDM implements several do-
main decomposition methods such as RAS, ORAS, FETI, and BNN. It uses
multiple levels of parallelism: communication between subdomains is based
on the Message Passing Interface (MPI), and computations in the subdo-
mains can be executed on several threads by calling optimized BLAS libraries
(such as Intel MKL), or shared-memory direct solvers like PARDISO. Domain
decomposition methods naturally offer good parallel properties on distributed
architectures. The computational domain is decomposed into subdomains in
which concurrent computations are performed. The coupling between subdo-
mains requires communications between computing nodes via messages. The
strong scalability of the ORAS preconditioner as implemented in HPDDM
for the direct problem presented in Section 2 will be assessed in Section 7.
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5. Computing the scattering parameters

In order to compute the numerical counterparts of the reflection and
transmission coefficients obtained by the measurement apparatus of the imag-
ing chamber shown in Figure 1, we use the following formula, which is ap-
propriate in the case of open-ended waveguides:

Sij =

∫
Γi

Ej · E0
i∫

Γi

|E0
i |2

, i, j = 1, . . . , N, (10)

where E0
i is the TE10 fundamental mode of the i-th receiving waveguide and

Ej is the solution of the problem where the j-th waveguide transmits the
signal (Ej denotes the complex conjugate of Ej). The Sij with i 6= j are the
transmission coefficients, and the Sjj are the reflection coefficients. They are
gathered in the scattering matrix, also called S-matrix.

Here we compare the coefficients computed from the simulation with a
set of measurements obtained by EMTensor. For this test case, the imag-
ing chamber was filled with a homogeneous matching solution. The electric
permittivity ε of the matching solution is chosen by EMTensor in order to
minimize contrasts with the ceramic-loaded waveguides and with the differ-
ent brain tissues. The choice of the conductivity σ of the matching solu-
tion is a compromise between the minimization of reflection artifacts from
metallic boundaries and the desire to have best possible signal-to-noise ratio.
Here the relative complex permittivity of the matching solution at frequency
f = 1 GHz is εgel

r = 44 − 20i. The relative complex permittivity inside the
ceramic-loaded waveguides is εcer

r = 59.
The set of experimental data at hand given by EMTensor consists in

transmission coefficients for transmitting antennas in the second ring from
the top. Figure 3 shows the normalized magnitude (dB) and phase (degree)
of the complex coefficients Sij corresponding to a transmitting antenna in
the second ring from the top and to the 31 receiving antennas in the mid-
dle ring (note that measured coefficients are available only for 17 receiving
antennas). The magnitude in dB is calculated as 20 log10(|Sij|). The normal-
ization is done by dividing every transmission coefficient by the transmission
coefficient corresponding to the receiving antenna directly opposite to the
transmitting antenna, which is thus set to 1. Since we normalize with re-
spect to the coefficient having the lowest expected magnitude, the magnitude
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Figure 3: The normalized magnitude (top) and phase (bottom) of the transmission coef-
ficients computed with the simulation and measured experimentally.

of the transmission coefficients displayed in Figure 3 is larger than 0 dB. We
can see that the transmission coefficients computed from the simulation are
in very good agreement with the measurements.

6. The inverse problem

The inverse problem that we consider consists in finding the unknown di-
electric permittivity ε(x) and conductivity σ(x) in Ω, such that the solutions
Ej, j = 1, . . . , N of problem (4) lead to corresponding scattering parame-
ters Sij (10) that coincide with the measured scattering parameters Smes

ij ,
for i, j = 1, . . . , N . In the following, we present the inverse problem in the
continuous setting for clarity.

Let κ = µ0(ω2ε − iωσ) be the unknown complex parameter of our in-
verse problem, and let us denote by Ej(κ) the solution of the direct problem
(4) with dielectric permittivity ε and conductivity σ. The corresponding
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scattering parameters will be denoted by Sij(κ) for i, j = 1, . . . , N :

Sij(κ) =

∫
Γi

Ej(κ) · E0
i∫

Γi

|E0
i |2

, i, j = 1, . . . , N.

The misfit of the parameter κ to the data can be defined through the following
functional:

J(κ) =
1

2

N∑
j=1

N∑
i=1

∣∣Sij(κ)− Smes
ij

∣∣2 =
1

2

N∑
j=1

N∑
i=1

∣∣∣∣∣∣∣∣
∫

Γi

Ej(κ) · E0
i∫

Γi

|E0
i |2

− Smes
ij

∣∣∣∣∣∣∣∣
2

.

(11)
In a classical way, solving the inverse problem then consists in minimizing
the functional J with respect to the parameter κ. Computing the differential
of J in a given arbitrary direction δκ yields

DJ(κ, δκ) =
N∑
j=1

N∑
i=1

<

(Sij(κ)− Smes
ij

)
∫

Γi

δEj(κ) · E0
i∫

Γi

|E0
i |2

 , δκ ∈ C,

where δEj(κ) is the solution of the following linearized problem:
∇× (∇× δEj)− κδEj = δκEj in Ω,

δEj × n = 0 on Γm,

(∇× δEj)× n + iβn× (δEj × n) = 0 on Γi , i = 1, . . . , N.

(12)

We now use the adjoint approach in order to simplify the expression of
DJ . This will allow us to compute the gradient efficiently after discretization,
with a number of computations independent of the size of the parameter
space. Considering the variational formulation of problem (12) with a test
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function F and integrating by parts, we get∫
Ω

δκEj · F =

∫
Ω

(∇× (∇× δEj)− κδEj) · F

=

∫
Ω

(∇× (∇× F)− κF) · δEj −
∫
∂Ω

((∇× δEj)× n) · F

+

∫
∂Ω

((∇× F)× n) · δEj

=

∫
Ω

(∇× (∇× F)− κF) · δEj +
N∑
i=1

∫
Γi

iβ(n× (F× n)) · δEj

+

∫
Γm

(∇× δEj) · (F× n) +
N∑
i=1

∫
Γi

((∇× F)× n) · δEj.

Introducing the solution Fj(κ) of the following adjoint problem

∇× (∇× Fj)− κFj = 0 in Ω,

Fj × n = 0 on Γm,

(∇× Fj)× n + iβn× (Fj × n) =
(Sij(κ)− Smes

ij )∫
Γi

|E0
i |2

E0
i on Γi , i = 1, . . . , N,

(13)
we get ∫

Ω

δκEj · Fj =
N∑
i=1

(Sij(κ)− Smes
ij )

∫
Γi

E0
i · δEj∫

Γi

|E0
i |2

.

Finally, the differential of J can be computed as

DJ(κ, δκ) =
N∑
j=1

<
[∫

Ω

δκEj · Fj

]
.

We can then compute the gradient to use in a gradient-based local op-
timization algorithm. The numerical results presented in Section 7 are ob-
tained using a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
algorithm. Note that every evaluation of J requires the solution of the state
problem (4) while the computation of the gradient requires the solution of (4)
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as well as the solution of the adjoint problem (13). Moreover, the state and
adjoint problems use the same operator. Therefore, the computation of the
gradient only needs the assembly of one matrix and its associated domain
decomposition preconditioner.

Numerical results for the reconstruction of a hemorrhagic stroke from syn-
thetic data are presented in the next section. The functional J considered in
the numerical results is slightly different from (11), as we add a normalization
term for each pair (i, j) as well as a Tikhonov regularizing term:

J(κ) =
1

2

N∑
j=1

N∑
i=1

∣∣Sij(κ)− Smes
ij

∣∣2∣∣Sempty
ij

∣∣2 +
α

2

∫
Ω

|∇κ|2, (14)

where Sempty
ij refers to the coefficients computed from the simulation with

the empty chamber, that is the chamber filled only with the homogeneous
matching solution as described in the previous section, with no object inside.
In this way, the contribution of each pair (i, j) in the misfit functional is
normalized and does not depend on the amplitude of the coefficient, which
can vary greatly between pairs (i, j) as displayed in Figure 3. The Tikhonov
regularizing term aims at reducing the effects of noise in the data. For
now, the regularization parameter α is chosen empirically so as to obtain a
visually good compromise between reducing the effects of noise and keeping
the reconstructed image pertinent. All calculations carried out in this section
can be accommodated in a straightforward manner to definition (14) of the
functional.

As is usually the case with most medical imaging techniques, the recon-
struction is done layer by layer. For the imaging chamber of EMTensor that
we study in this paper, one layer corresponds to one of the five rings of 32
antennas. This allows us to exhibit another level of parallelism, by solving
an inverse problem independently for each of the five rings in parallel. More
precisely, each of these inverse problems is solved in a domain truncated
around the corresponding ring of antennas, containing at most two other
rings (one ring above and one ring below). We impose absorbing boundary
conditions on the artificial boundaries of the truncated computational do-
main. For each inverse problem, only the coefficients Sij with transmitting
antennas j in the corresponding ring are taken into account: we consider 32
antennas as transmitters and at most 96 antennas as receivers.
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Figure 4: Strong scaling experiment. Colors indicate the fraction of the total time spent
in the setup and solution phases. The number of GMRES iterations is reported in paren-
theses.

7. Numerical results

Results in this paper were obtained on Curie, a system composed of
5,040 nodes made of two eight-core Intel Sandy Bridge processors clocked
at 2.7 GHz. The interconnect is an InfiniBand QDR full fat tree and the
MPI implementation used was BullxMPI version 1.2.8.4. Intel compilers and
Math Kernel Library in their version 16.0.2.181 were used for all binaries and
shared libraries, and as the linear algebra backend for dense computations.
One-level preconditioners such as (8) assembled by HPDDM require the use
of a sparse direct solver. In the following experiments, we have been using
either PARDISO [15] from Intel MKL or MUMPS [16]. All linear systems
resulting from the edge finite elements discretization are solved by GMRES
right-preconditioned with ORAS (8) as implemented in HPDDM. The GM-
RES algorithm is stopped once the unpreconditioned relative residual is lower
than 10−8. First, we perform a strong scaling analysis in order to assess the
efficiency of our preconditioner. We then solve the inverse problem in a re-
alistic configuration, with noisy synthetic data generated using a numerical
brain model with a simulated hemorrhagic stroke.

7.1. Scaling analysis

Using the domain decomposition preconditioner (8), we solve the direct
problem corresponding to the setting of Section 5 where the chamber is filled
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NS Setup Solve # of iterations Speedup
256 293.36 73.06 43 1
512 95.11 36.92 53 2.8

1,024 35.13 20.55 64 6.6
2,048 25.89 12.77 81 9.5

Figure 5: Strong scaling experiment. Timings (in seconds) of the setup and solution
phases.

with a homogeneous matching solution. We consider a right-hand side cor-
responding to a transmitting antenna in the second ring from the top. Given
a fine mesh of the domain composed of 82 million tetrahedra, we increase
the number of MPI processes to solve the linear system of 96 million double-
precision complex unknowns yielded by the discretization of Maxwell’s equa-
tion using edge elements. The global unstructured mesh is partitioned using
SCOTCH [7] and the local solver is PARDISO from Intel MKL. We use one
subdomain and two OpenMP threads per MPI process. Results are reported
in Figure 5 and illustrated in Figure 4 with a plot of the time to solution
including both the setup and solution phases on 256 up to 2048 subdomains.
The setup time corresponds to the maximum time spent for the factoriza-
tion of the local subproblem matrix Bi in (8) over all subdomains, while the
solution time corresponds to the time needed to solve the linear system with
GMRES. We are able to obtain very good speedups up to 4096 cores (2048
subdomains) on Curie, with a superlinear speedup of 9.5 between 256 and
2048 subdomains.

7.2. Reconstruction of a hemorrhagic stroke from synthetic data

In this subsection, we assess the feasibility of the microwave imaging tech-
nique presented in this paper for stroke detection and monitoring through a
numerical example in a realistic configuration. We use synthetic data cor-
responding to a numerical model of a virtual human head with a simulated
hemorrhagic stroke as input for the inverse problem. The numerical model of
the virtual head comes from CT and MRI tomographic images and consists
of a complex permittivity map of 362×434×362 data points. Figure 6 (left)
shows a sagittal section of the head. In the simulation, the head is immersed
in the imaging chamber as shown in Figure 6 (right). In order to simulate a
hemorrhagic stroke, a synthetic stroke is added in the form of an ellipsoid in
which the value of the complex permittivity εr has been increased. For this
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Figure 6: Left: sagittal section of the brain. Right: numerical head immersed in the
imaging chamber, with a simulated ellipsoid-shaped hemorrhagic stroke.

test case, the value of the permittivity in the ellipsoid is taken as the mean
value between the relative permittivity of the original healthy brain and the
relative permittivity of blood at frequency f = 1 GHz, εblood

r = 68 − 44i.
The imaging chamber is filled with a matching solution. The relative per-
mittivity of the matching solution is chosen by EMTensor as explained in
Section 5 and is equal to εgel

r = 44− 20i at frequency f = 1 GHz. In the real
setting, a special membrane fitting the shape of the head is used in order to
isolate the head from the matching medium. We do not take this membrane
into account in this synthetic test case. The synthetic data are obtained by
solving the direct problem on a mesh composed of 17.6 million tetrahedra
(corresponding to approximately 20 points per wavelength) and consist in
the transmission and reflection coefficients Sij calculated from the simulated
electric field as in (10). We subsequently add noise to the real and imaginary
parts of the coefficients Sij (10% additive Gaussian white noise, with different
values for real and imaginary parts). The noisy data are then used as input
for the inverse problem. Furthermore, we assume no a priori knowledge on
the input data, and we set the initial guess for the inverse problem as the
homogeneous matching solution everywhere inside the chamber. We use a
piecewise linear approximation of the unknown parameter κ, defined on the
same mesh used to solve the state and adjoint problems. For the purpose of
parallel computations, the partitioning introduced by the domain decompo-
sition method is also used to compute and store locally in each subdomain
every entity involved in the inverse problem, such as the parameter κ and
the gradient.

Figure 7 shows the imaginary part of the exact and reconstructed per-
mittivity for three steps of the evolution of the hemorrhagic stroke, from the
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Figure 7: Top row: imaginary part of the exact permittivity used to produce noisy data
as input for the inverse problem during time evolution of a simulated hemorrhagic stroke
(indicated by the black arrow). The size of the ellipsoid is 3.9 cm × 2.3 cm × 2.3 cm and
7.7 cm× 4.6 cm× 4.6 cm in the middle and right column respectively. Bottom row: corre-
sponding reconstructions obtained by taking into account only the first ring of transmitting
antennas.

healthy brain (left column) to the large stroke (right column). Increasing the
size of the ellipsoid in which the value of the permittivity is raised simulates
the evolution of the stroke. Each of the three reconstructions in Figure 7
corresponds to the solution of an inverse problem in the truncated domain
containing only the first two rings of antennas from the top, and where only
the coefficients Sij corresponding to transmitting antennas j in the first ring
are taken into account. Each reconstruction starts from an initial guess con-
sisting of the homogeneous matching solution and is obtained after reaching
a convergence criterion of 10−2 for the value of the cost functional, which
takes around 30 iterations of the L-BFGS algorithm.

Figure 8 gathers the results of a strong scaling experiment which consists
in solving the same inverse problem corresponding to the third reconstructed
image of Figure 7 for an increasing number of MPI processes. We report
the total computing time needed to obtain the reconstructed image. For this
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Figure 8: Strong scaling experiment: total time needed to obtain the third reconstructed
image shown in Figure 7.

experiment we use one subdomain and one OpenMP thread per MPI process.
The mesh of the computational domain is composed of 674 580 tetrahedra,
corresponding to approximately 10 points per wavelength.

Note that evaluating the functional or its gradient requires the solution of
a linear system with 32 right-hand sides, one right-hand side per transmitter.
This introduces a trivial level of parallelism since the solution corresponding
to each right-hand side can be computed independently. However when con-
sidering a finite number of available processors, there is a tradeoff between
the parallelism induced by the multiple right-hand sides and the parallelism
induced by the domain decomposition method. Additionally, we solve for
multiple right-hand sides simultaneously using a pseudo-block method im-
plemented inside GMRES which consists in fusing the multiple arithmetic
operations corresponding to each right-hand side (matrix-vector products,
dot products), resulting in higher arithmetic intensity. The scaling behavior
of this pseudo-block algorithm with respect to the number of right-hand sides
is nonlinear, as is the scaling behavior of the domain decomposition method
with respect to the number of subdomains. Thus, for a given number of
processors, we find the optimal tradeoff between parallelizing with respect
to the number of subdomains or right-hand sides through trial and error.
For example, the best computing time for 2048 MPI processes is achieved
by using 8 domain decomposition communicators (i.e. 8 concurrent direct
solves) with 256 subdomains treating 4 right-hand sides each.

Figure 8 shows that we can generate an image with a total computing
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time of less than 2 minutes (94 seconds) using 4096 cores of Curie. These
preliminary results are very encouraging as we are already able to achieve a
satisfactory reconstruction time in the perspective of using such an imaging
technique for monitoring. This allows clinicians to obtain almost instanta-
neous images 24/7 or on demand. Although the reconstructed images do not
feature the complex heterogeneities of the brain, which is in accordance with
what we expect from microwave imaging methods, they allow the character-
ization of the stroke and its monitoring.

8. Conclusion

We have developed a tool that reconstructs a microwave tomographic im-
age of the brain in less than 2 minutes using 4096 cores. This computational
time corresponds to clinician acceptance for rapid diagnosis or medical mon-
itoring at the hospital. These images were obtained from noisy synthetic
data from a very accurate model of the brain. To our knowledge, this is the
first time that such a realistic study (operational acquisition device, highly
accurate three-dimensional synthetic data, 10% noise) shows the feasibility
of microwave imaging. This study was made possible by the use of massively
parallel computers and facilitated by the HPDDM and FreeFem++ tools
that we have developed. The next step is the validation of these results on
clinical data.

Regarding the numerical aspects of this work, we will accelerate the so-
lution of the series of direct problems, which accounts for more than 80% of
our elapsed time. We explain here the three main avenues of research:

• The present ORAS solver for Maxwell’s equations is a one level algo-
rithm, which cannot scale well over thousands of subdomains. The in-
troduction of a two-level preconditioner with an adequate coarse space
would allow for very good speedups even for decompositions into a large
number of subdomains.

• Recycling information obtained during the convergence of the optimiza-
tion algorithm will also enable us to improve the performance of the
method, see [17].

• Iterative block methods that allow for simultaneous solutions of linear
systems have not been fully investigated. Arithmetic intensity would
be increased since block methods may converge in a smaller number of
iterations while exploiting modern computer architectures effectively.
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