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Time-difference-of-arrival estimation based on
cross recurrence plots, with application to
underwater acoustic signals

Olivier Le Bot, Cédric Gervaise and Jérôme I. Mars

Abstract The estimation of the time difference of arrival (TDOA) consists of the
determination of the travel-time of a wavefront between two spatially separated re-
ceivers, and it is the first step of processing systems dedicated to the identification,
localization and tracking of radiating sources. This article presents a TDOA estima-
tor based on cross recurrence plots and on recurrence quantification analysis. Six
recurrence quantification analyses measures are considered for this purpose, includ-
ing two new ones that we propose in this article. Simulated signals are used to study
the influence of the parameters of the cross recurrence plot, such as the embedding
dimension, the similarity function, and the recurrence threshold, on the reliability
and effectiveness of the estimator. Finally, the proposed method is validated on real
underwater acoustic data, for which the cross recurrence plot estimates correctly
77.6% of the TDOAs, whereas the classical cross-correlation estimates correctly
only 70.2% of the TDOAs.
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1 Introduction

Various applications make use of arrays of hydrophones to estimate the direction of
arrival (DOA) of underwater acoustic sources, including military surveillance, bio-
acoustics, and environmental monitoring, to name but a few. Such estimations can
be made through two broad classes of methods:

1. Time-difference-of-arrival (TDOA) estimation.
2. Space-time processing for high-resolution estimation of the DOA, like beam-

forming [1] or spatial spectral estimation (Capon, MUSIC [2], ESPRIT [3, 4],
and others).

The first class of methods is commonly used for bio-acoustic and environmental
applications, such as the localization of cetaceans [5, 6, 7, 8], and it generally uses
a small number of hydrophones (i.e., from 2 to 10). The estimation of the TDOA,
which consists of the determination of the travel-time of the wavefront between
two spatially separated receivers, relies generally on the cross-correlation, which is
classical and easy-to-use, even for non-specialists in signal processing. Moreover,
the cross-correlation gives good performances when the signal-to-noise ratio (SNR)
is high and the useful signal is slightly distorted. Thorough state-of-the-art reviews
of cross-correlation-based TDOA estimators can be found in [8, 9, 10].

The second class of methods is mostly used when the array has a much greater
number of receivers, and it is mostly used in applications such as SONAR [11],
acoustical tomography [12], seismic-wave analysis [13], and digital communication.
Methods from this class consist of the construction of a spatial spectrum by virtually
steering the array in various directions and estimating the received power. When the
array is steered in the direction of a source, the power received by the hydrophone
array is maximized, whereas in the directions where no sources radiate, the received
power is weak [1, 3, 4, 14].

In this article, we focus on the first class of methods, and more particularly, on
estimation of the TDOA of acoustic signals with low SNR and strong distortions
(when classical methods fail). Estimating the TDOA correctly is usually a challeng-
ing task, because underwater acoustic sources are immersed in a noisy environment
and the propagation through the oceanic canal significantly modifies the signal by
introducing amplitude and phase modulations. Thus, the signal received can be very
different from one hydrophone to another, and only a few series of samples will re-
main similar on all of the hydrophones. After propagation, the received signals can
be expressed as follows:{

s1(t) = A1(t)x(t)+n1(t)

s2(t) = A2(t)x(t +T DOA)+n2(t)
(1)

where x(t) is the unknown source signal, A1(t) and A2(t) are random ampli-
tude modulations introduced during the propagation between the source and each
hydrophone, and n1(t) and n2(t) are uncorrelated additive white Gaussian noise
(WGN).
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Based on these observations, we propose a new approach to estimate the TDOA
that is derived from the field of nonlinear analysis of dynamical systems. Our esti-
mator relies on cross-recurrence plots (CRPs) [15, 16], which are used to identify
series of samples that are similar within the signals received by two hydrophones.
The TDOA is then estimated from the CRP using some specific measures, called
recurrence quantification analysis (RQA), which are especially dedicated to quan-
tification of the information contained in CRPs. In this article, we consider six dif-
ferent RQA measures to estimate the TDOA. Four of these RQA measures come
from the existing CRP literature [17, 18]. However, we will show that classical
RQA measures are not appropriate for TDOA estimation. Therefore, in section 2.2,
we propose two new RQA measures that combine both the information contained
in the CRPs and in the distance plots (or unthresholded CRPs). These latter RQA
measures appear to be more appropriate for our purpose.

Cross recurrence plots have already been used for time-scale alignment of data
series [16], to find nonlinear interrelations from bivariate time series with applica-
tions in climatology [17, 19], and to study synchronization of dynamic systems [18].
To our knowledge, this is the first time that CRPs are used with acoustic signals for
TDOA estimation.

Section 2 recalls the basics of CRPs. Then some quantification measures are pro-
posed to estimate the TDOA from the CRP. Section 3 tests the proposed method
on simulated signals, and discusses the influence of the parameters involved in the
CRP on the performance of the estimator. The proposed method is finally validated
in section 4 using real bio-acoustic signals recorded at sea by a hydrophone array.
This validation set shows that our method gives an increase of the correctly esti-
mated TDOAs of 7% with respect to the classical cross-correlation estimator.

2 Method

2.1 About Cross-Recurrence Plots

Cross-recurrence plots are an extension to the bi-variate case of the recurrence plot
analysis (RPA) from Eckman [20], which was later introduced by Zbilut et al [15],
and then described with a mathematical formalism by Marwan et al [16]. CRPs
are used to study the similarities and dependencies between two different complex
systems, by comparisons of their respective states [16]. Three steps are involved to
transform a data series from two systems to a CRP representation.

Considering two measured signals (denoted x and y) recorded on two different
sensors, the first step aims at the simultaneous reconstruction of the trajectory of
each signal in the same phase space using the time-delay embedding method [21,
22]. The same embedding dimension m and delay τ are used for both signals. The
trajectory of each signal in the phase space domain is described by a series of phase
space vectors given by:



4 Olivier Le Bot, Cédric Gervaise and Jérôme I. Mars

−−→
xm(i) = [x(i), x(i+ τ), ... , x(i+(m−1)τ)] (2)

−−−→
ym( j) = [y( j), y( j+ τ), ... , y( j+(m−1)τ)] (3)

where i={1, 2, ... , Nx−(m−1)τ} and Nx are the sample index and the total number
of samples of the measured signal x, respectively, and j ={1, 2, ..., Ny− (m−1)τ}
and Ny are the sample index and the total number of samples of the measured signal
y, respectively. To simplify the notations, we will consider that x and y have the
same length N = Nx = Ny.

The second step consists of the measurement of the degree of similarity between
the phase space vectors

−−→
xm(i) and

−−−→
ym( j) associated to the two measured signals.

The calculation of the similarities between all of the possible pairs of phase space
vectors gives the similarity matrix with dimension N×N defined by:

d(i, j) = Sim
( −−→

xm(i) ,
−−−→
ym( j)

)
(4)

where Sim(. , .) is the function that is chosen to study the likeness of the phase space
vectors. A lot of different mathematical functions can be used for this step [23]. The
Euclidean norm is mostly used for this purpose by the recurrence plot community
[18]. However, the Euclidean norm is not suitable for our application, because it is
not adapted to the strong amplitude differences that exist between the noise samples
and the useful signal samples. Using the Euclidean norm leads to finding similar-
ities between vectors associated to the noise, because the noise samples generally
have low amplitude, which leads to low Euclidean norm, although this also leads to
finding similarities between vectors associated to the vectors of useful signals that
look alike and where their Euclidean norms are also close to zero.

Instead, we prefer to use the dot product and Pearson’s correlation coefficient
(PCC), which are both particular cases of the cross-correlation classically used for
TDOA estimation. These last two similarity functions are more appropriate to our
signals because they both give high values when phase space vectors of the useful
signal look alike, while they give a value close to 0 when the vectors are not alike.
Therefore, when thresholding the similarity matrix obtained with these similarity
functions, we only get recurrences associated to the useful signal. We have already
used the dot product and PCC as a similarity function in previous studies relative to
the use of RPA for detection purposes [23]. These similarity functions have already
proven to be very interesting solutions when studying various kinds of simulated
and real signals with RPA [23, 27, 28].

The dot-product between two phase space vectors is given by:

di, j =
m

∑
k=1

xk(i)× yk( j) (5)

where xk(i) and yk( j) are the kth components of vectors
−−→
xm(i) and

−−−→
ym( j), respec-

tively.
The PCC between two phase space vectors is given by:
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di, j =
∑

m
k=1

(
xk(i)− xk(i)

)(
yk( j)− yk( j)

)
√

∑
m
k=1

(
xk(i)− xk(i)

)2
√

∑
m
k=1

(
yk( j)− yk( j)

)2
(6)

where xk(i) and yk( j) are the kth components of vectors
−−→
xm(i) and

−−−→
ym( j), respec-

tively, and xk(i) and yk( j) are the empirical means of
−−→
xm(i) and

−−−→
ym( j), respectively.

Finally, in the last step, the CRP is obtained by comparing each coefficient of the
similarity matrix to a threshold ε . Therefore, the CRP is a binary matrix, where the
coefficient of index (i, j) is 1 if

−−→
xm(i) and

−−−→
ym( j) are considered as similar, and it is 0

otherwise. In mathematical formalism, the CRP is defined as follows:

CRP(i, j) =Θ

(
Sim
(−−→
xm(i),

−−−→
ym( j)

)
− ε

)
(7)

where Θ is the Heaviside function.

2.2 Recurrence Quantification Analysis

When calculating the CRP of signals received by two spatially separated sensors, a
recurrence pattern shows up on the binary image obtained. As shown in Figure 1, the
recurrence pattern, which is composed of 15 parallel diagonal lines in our example,
is only related to the useful signal (cosine function) and not to the noise. The noise
is not supposed to produce any recurrence pattern. The position of the recurrence
pattern of the useful signal depends on the TDOA. For example, in Figure 1, receiver
1 is taken as the reference and three different TDOAs are simulated by translation
of the signal of receiver 2 from -70 samples to +70 samples. These translations of
the cosine on receiver 2 lead to horizontal translation of the associated recurrence
pattern on the CRP (Fig. 1). If receiver 2 was taken as the reference and the cosine
was translated on receiver 1, then the recurrence pattern associated to the cosine
would be translated vertically on the CRP.

The automatic quantification of this pattern, like the diagonal or vertical struc-
tures, and of its position, can be performed using the measures known as RQA
[24, 25, 26]. The RQA measures can be computed on either the entire CRP or sepa-
rately on each diagonal parallel to the main diagonal [17, 18].

For the TDOA estimation we want to perform in this paper, we use these latter
modified RQA measures, which are calculated for each diagonal of the CRP taken
separately, and are therefore based on recurrences that form diagonal lines parallel
to the main diagonal [17, 18].

Relying on notations introduced in [17], the RQA measures are expressed as
a function of the index of the diagonal t ∈ [−T, ...,T ], where t = 0 corresponds
to the main diagonal, t > 0 are the diagonals above the main diagonal, and t < 0
are the diagonals below the main diagonal. T is the maximum allowable TDOA
(expressed as samples) with respect to the geometry of the array. Diagonals with
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(a) TDOA = -70 samples
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(b) TDOA = 0 samples
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(c) TDOA = +70 samples

Fig. 1: Examples of CRP matrices in the case of a 100-sample cosine mixed with
300-sample additive WGN received by two sensors with three different TDOAs: (a)
TDOA = - 70 samples; (b) TDOA = 0 samples; (c) TDOA = + 70 samples. The SNR
is 6 dB. The CRP is built with m=16, τ = 1, Sim(. , .) = dot product, ε = 0.075.

indices t > 0 represent the positive TDOAs, while diagonals with indices t < 0
represent the negative TDOAs.

We recall the expressions of the RQA measures from the literature [17, 18], and
we introduce two new RQA measures that we consider for the TDOA estimation.
The first four RQA measures from the literature only rely on the length of the diag-
onal lines of the CRPs, and so they are based only on the binary information con-
tained in the CRPs. We will show that these RQA measures have some limitations
and are not appropriate for our purpose. To overcome these limitations. we propose
two new RQA measures, which combine the information from the CRP with that of
the distance matrix, and which leads to more accurate results.

The first RQA measure is the average diagonal line length given by:

L(t) =

N−|t|
∑

l=lmin

lPt(l)

N−|t|
∑

l=lmin

Pt(l)

(8)

where Pt(l) is the distribution of diagonal line lengths for diagonals with index t,
lmin is the threshold that sets the length of the shortest diagonal line considered,
and N is the total number of lines (resp. columns) of the CRP matrix. This RQA
measure characterizes the duration of similarities between both signals [17]. Thus,
for the diagonal with index t associated to the real TDOA value, we expect that the
diagonal lines are long, so that we reach a global maximum for L(t) that indicates
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that the highest coincidence between both signals is reached for this specific delay
t.

The second RQA measure is the determinism given by:

DET (t) =

N−|t|
∑

l=lmin

lPt(l)

N−|t|
∑

l=1
lPt(l)

(9)

As for the average diagonal line length L(t), the determinism DET (t) characterizes
the proportion of recurrence points that form long diagonal structures of all of the
recurrence points. A high determinism for the diagonal t indicates that both signals
have similar dynamic behavior over a long time span with a certain delay t [17].
Therefore, we expect that the determinism will reach a global maximum for the
diagonal with index t associated to the TDOA that we try to estimate.

The third RQA measure is the longest diagonal line within diagonal t, given by:

Lmax(t) = argmax
i∈{1,...Nl}

(li) (10)

where i ∈ {1, ...Nl} is the index of the diagonal line, and Nl is the total number of
diagonal lines within diagonal t. As above, we expect to get a global maximum for
Lmax(t) at the index t associated to the TDOA.

The fourth RQA measure is the recurrence rate, which is defined as:

RR(t) =


1

N + t

N+t

∑
i=1

CRP(i− t, i) (t < 0)

1
N− t

N−t

∑
i=1

CRP(i, i+ t) (t ≥ 0)

(11)

where N is the total number of lines (resp. columns) of the CRP matrix. This RQA
measure gives the probability of occurrence of similar waveforms in both signals
with a certain time delay t [17]. The greater the number of recurrences in the diag-
onal t is, the greater the value of RR(t) is. Again, we expect that RR(t) reaches a
global maximum for the diagonal t associated to the TDOA value.

RR(t) only relies on the binary matrix obtained with the CRP, and does not take
into account all of the information contained in the similarity matrix d(i, j) given by
Equation (4) that might be valuable. Therefore, we introduce two additional RQA
measures that also rely on the similarity matrix d(i, j).

The first proposed RQA measure is the sum of all similarity values d(i, j) from
the diagonal t that have led to recurrence points (i.e., CRP(i, j) = 1) in the CRP
matrix. This is defined as:
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SS(t) =


N+t

∑
i=1

CRP(i− t, i)�d(i− t, i) (t < 0)

N−t

∑
i=1

CRP(i, i+ t)�d(i, i+ t) (t ≥ 0)

(12)

where � is the Hadamard product.
The last proposed RQA measure is a normalized version of the previous one, and

it is given by:

SR(t) =


1

N + t

N+t

∑
i=1

CRP(i− t, i)�d(i− t, i) (t < 0)

1
N− t

N−t

∑
i=1

CRP(i, i+ t)�d(i, i+ t) (t ≥ 0)

(13)

As for RR(t), SS(t) and SR(t) are high if the number of recurrences in diagonal t
and the associated coefficients in the similarity matrix are simultaneously both high.
A global maximum is expected for RR(t), SS(t), and SR(t) when t is equal to the
TDOA to estimate.

2.3 Time-Difference-of-Arrival Estimated with RQA Measures

For the six RQA measures presented in the previous section, we said that their val-
ues would be high if both signals have similar waveforms with a certain delay t.
Therefore, the estimated TDOA is obtained by looking for the diagonal t that gives
the global maximum of each RQA measure. This is given by:

T̂ DOA = t such that argmax
t

(
RQA(t)

)
(14)

where t ∈ [−T, ... , T ] and RQA(t) is either L(t), DET (t), Lmax(t), RR(t), SS(t) or
SR(t).

3 Results on Simulated Data

In this section, we use simulated signals to study the reliability of CRPs and RQA
measures as TDOA estimators. We will show that the RQA measure SS(t) is the
most appropriate one. We will also discuss the influence of the embedding dimen-
sion m, of the similarity function Sim(., .), of the SNR and the TDOA value to esti-
mate, on the overall performances of the proposed method. Finally, we will compare
the proposed method with the cross-correlation, which is classically used for TDOA
estimation in several fields.
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3.1 Performance Analysis Methodology

To analyze the performances of the proposed method, we use simulated signals as
they would be received independently by two sensors. The characteristics of these
simulated signals are representative of the real acoustic signals used in section 4.
The received signals are cosine functions of frequency f0, where their respective
amplitudes A1(t) and A2(t) are modulated randomly according to a first-order au-
toregressive model. The WGN denoted as n1(t) and n2(t) is also added to the two
receivers, to achieve a certain SNR. A time-delay is added to the second signal to
model the TDOA. Therefore, the two simulated signals can be written as follows:

s1(t) = A1(t)× cos(2π f0t)+n1(t) (15)

s2(t) = A2(t)× cos
(
2π f0(t +T DOA)

)
+n2(t) (16)

We can recall that a first-order autoregressive model is given by:

A(t) = αA(t−1)+Y (t) (17)

where |α| ∈ [0, 1[ so that the process remains stationary in a wide sense, and Y (t)
is WGN with zero mean and variance of 1.

For the simulations, we take f0 = 1 kHz, which is the frequency of the real acous-
tic signal used in section 4, and a sampling frequency fe = 12 kHz. The SNR varies
as follows: {−7; −5; −3; 0; 3; 5; 7; 10} dB. For the autoregressive model, we
arbitrarily choose α = 0.98, so that the integration time of the process is about nine
cosine periods. Moreover, the peak amplitude of the autoregressive model is normal-
ized to the following values: Apeak = {0.4; 0.7; 1; 1.3; 1.5; 1.9}, to reach various
modulation indices. Figure 2 shows an example of the simulated signal as received
by the two sensors, with various SNRs.

We study the performances of the proposed estimator for five different theoretical
TDOA values; namely [0, 4, 15, 40, 100] samples. This is to determine the reliability
of the method when the TDOA corresponds to the diagonals that are either close to
or far from the main diagonal of the CRP matrix, and also when the TDOA is lower
or higher than the period of the cosine signal.

For each set of sextuple
(
m, ε , Sim(. , .), SNR, Apeak, T DOA

)
we repeat the sim-

ulations 500 times, to derive a statistical analysis of the results. The performances
are assessed by calculation of the ratio of correct estimates over the total number of
estimates. An estimated TDOA is considered as correct if it is exactly equal to the
simulated TDOA.

3.2 Performances of the RQA Measures

In this section, we study the relevance of the proposed RQA measures as tools for
TDOA estimation. We want to identify the RQA measures that appear to be appro-
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Fig. 2: (a, b) Simulated signals received by two sensors without additional noise.
Each of these is a cosine function where the amplitude is modulated by a first-order
auto-regressive model, the peak amplitude of which is Apeak=1.5. (c, d) Simulated
signal added to WGN with SNR = -3dB. (e, f) Simulated signal added to WGN with
SNR = 3dB. (g, h) Simulated signal added to WGN with SNR = 7dB.

priate for our TDOA estimation problem, and to discard the other ones. We will
show that the two proposed RQA measures outperform the classical ones.

Figure 3 shows the results of the simulations for three sets of parameters; namely
τ = 1, m = 16, Sim(. , .) = PCC, a recurrence threshold ε giving a fixed recurrence
point density of 10% over the entire CRP, Apeak = 1, and T DOA = 0, T DOA = 15
and T DOA = 40. However, the conclusions remain the same whatever the variations
of the parameters m, ε , SNR, T DOA and Apeak.

We notice that the RQA measure SS (Fig. 3, solid line) always gives the best
performances, as its percentage of correct estimates is always the highest, whatever
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the SNR, TDOA, similarity function Sim(. , .), and amplitude of the modulations
Apeak.

The RQA measure SR (Fig. 3, line with squares) follows the same trend as SS, but
with a lower performance. All of the other proposed RQA measures, i.e., L, Lmax,
DET , and RR, give very poor results and are not suitable for the TDOA estimation.
A detailed observation of the simulation results shows that these four latter RQA
measures give estimates that are far from the true simulated TDOAs.

Finally here, it is important to note that the percentage of correct estimates ob-
tained with SS is independent of the TDOA, which is not the case with SR. For
example, the plots given in Figure 3 show that for SNR=7 dB the RQA measure SS
gives a percentage of correct estimates of about 69% (± 1%) for all three TDOA
values, whereas SR gives a percentage of correct estimates of about 30% (± 10%).
These observations and conclusions remain valid for other simulated values of am-
plitude modulations Apeak (not presented here). Thus, SS gives the most consistent
results for all of the sets of parameters, and it is therefore the most reliable RQA
measure to estimate TDOAs.

According to these results, in the remainder of this article we only use the RQA
measure SS, as defined by Equation (12) to estimate TDOAs, and all of the results
will now be given with this particular RQA measure.
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Fig. 3: Percentages of good estimates over the total number of estimates as a func-
tion of the SNR of the RQA measure and for three simulated TDOAs: (a) TDOA=
0; (b) TDOA = 15; (c) TDOA = 40. The parameters of the simulations are: τ = 1,
m = 16, Sim(. , .) = PCC, Apeak = 1. The RQA measure SS almost always gives the
highest percentages, and it is therefore the most appropriate RQA measure for our
TDOA estimator.
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3.3 Performances as a Function of the Parameters Used to Build
the CRP

In this section, we study the influence of the similarity function Sim(. , .), of the
embedding dimension m, and of the recurrence threshold ε used to compute the
CRP on the performances of the TDOA estimator.

3.3.1 Influence of the Embedding m

Simulations are performed for numerous embedding dimension values within the
range of 4 to 24, while keeping τ = 1 constant, and ε so that the recurrence point
density over the entire CRP is always 10%. Figure 4 summarizes the results of these
simulations for a given set of parameter: (Apeak = 1.5, T DOA = 100, RQA = SS).
The conclusions remain similar for all of the other sets of parameters, whatever the
values given to Apeak and T DOA.

We can see in Figure 4a that if the similarity function is the PCC, the percentage
of correct estimates increases when m increases. When m increases from 4 to 10
in particular, the percentage of correct estimates is multiplied by three on average
(which depends on the SNR), while when m increases from 12 to 24, the percentages
of correct estimates increases by just a few percent. For example, from m = 12 to
m = 24, the percentage of correct estimates increases only by about 15%, whatever
the SNR.

If the similarity function is the dot product, then the percentage of correct esti-
mates is very similar for all of the embedding dimensions (Fig. 4b).

3.3.2 Influence of the Similarity Function

For this subsection, we keep the parameters τ , m, and ε used to build the CRP
constant, and we study the influence of the similarity function on the performances
of the proposed estimator. Simulations are carried out for various combinations of
TDOA and of amplitude modulations Apeak. The most significant results are shown
in Figure 5.

We note that when Apeak = 0.4 (Fig. 5, first row of the panel), the estimator us-
ing the dot product always gives a better percentage of correct estimates than the
estimator with the PCC, whatever the SNR and the TDOA. When Apeak = 1 (Fig. 5,
second row of the panel), both similarity functions give very similar results, what-
ever the SNR and the TDOA. When Apeak = 1.5 (Fig. 5, third row of the panel), the
estimator with the PCC has better performances than the one with the dot product.

By examination of the results of the simulations for all six simulated values of
amplitude modulation, we can conclude that when the signals are weakly modu-
lated, typically Apeak < 1, then the estimator using the dot product always outper-
forms the estimator with the PCC. Then, as the signal is more and more modulated,
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Fig. 4: Percentage of good estimates over the total number of estimates as a function
of the embedding dimension m, of the SNR, and of the similarity function Sim(. , .):
(a) Sim(. , .)=PCC; (b) Sim(. , .)=Dot product. The parameters of the simulations
are: τ = 1, Apeak = 1.5, T DOA = 100 and RQA measure SS.

i.e., the Apeak increases, the performances of the estimator using the dot product
decreases. Similar performances are obtained with both estimators when Apeak = 1.
Finally, for highly modulated signals with a lot of fading (i.e.,Apeak > 1), the esti-
mator using PCC always outperforms the estimator with the dot product.

Whatever the similarity function used, when Apeak increases, the percentage of
correct estimates decreases. However, the rate at which performances decrease is
not the same for all of the estimators. If the dot product is used, then for all SNRs
the percentages of correct estimates are divided by a factor of about 2.5 when Apeak
goes from 0.4 to 1.5. At the same time, the percentages of correct estimates are
divided by a factor of at most 1.5 if the estimator uses the PCC.

Relying on these observations and conclusions, we will choose the PCC as a
similarity function to estimate the TDOA on the real acoustic data used in section 4.

3.3.3 Influence of the Recurrence Threshold

The choice of the recurrence threshold affects the number of recurrence points that
appear on the CRP. Simulations are made by keeping τ and m constant, while the
values of ε are adjusted so that they give a fixed recurrence point density over the
entire CRP. Performances are studied for recurrence thresholds with the following
recurrence densities: 1%, 2%, 5%, 8%, 10%, 12%, 15%, 20% and 25%. These sim-
ulations show that for a given set of values for the quintuple (τ , m, Apeak, T DOA,
SNR), the percentage of correct estimates is nearly the same for all of the recurrence
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Fig. 5: Percentage of correct estimates over the total number of estimates as a func-
tion of the SNR, of the TDOA (each column of the panel), and of the amplitude
of the modulation Apeak (each line of the panel). The results with Sim(. , .) = PCC
are shown with the solid line. The results with Sim(. , .) = Dot Product are shown
with the stars (*). The parameters of the simulations are: τ = 1, m = 16, and RQA
measure SS.

densities used. Figure 6 shows an example of these results when τ = 1, m = 12,
Apeak = 1.5, T DOA = 40, SNR ∈ [−7 ;10] dB. Therefore, we can conclude that our
method is invariant with regard to the recurrence threshold.

3.4 Comparison with the Classical Cross-Correlation

In this last section, we compare the performances of the proposed estimator with an
estimator based on the cross-correlation, which is classically used for this purpose.
Unlike the CRP, which divides the signal into multiple smaller pieces that are repre-
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Fig. 6: Percentages of correct estimates over the total number of estimates as a
function of the SNR and the recurrence densities: 1%, 2%, 10%, 15% and 20%.
The parameters of the simulations are: τ = 1, m = 12, Apeak = 1.5, T DOA = 40,
Sim(., .) = PCC, and RQA measure SS.

sented by the phase space vectors to estimate the TDOA, the cross-correlation uses
the whole signal at once and the estimated TDOA is then the lag associated to the
global maximum of the cross-correlation function. All of the previous simulations
were performed with the cross-correlation as the TDOA estimator.

The results obtained here are shown in Figure 7, and they are compared with
those of the proposed estimator. If the received signals are weakly modulated, then
the cross-correlation outperforms the CRP-based estimator with the PCC, whereas
this latter outperforms the cross-correlation when signals are highly modulated. For
a given TDOA, we note that the results of the cross-correlation are very dependent of
the amplitude of the modulations, while for a given amplitude of the modulation, the
results stay consistent for all simulated TDOAs. Comparing Figure 5 and Figure 7,
we note that for a given triplet (SNR, Apeak, T DOA), the cross-correlation gives
exactly the same percentage of correct estimates as the CRP with the dot product as
a similarity function.

4 Validation on Real Data

In the previous subsection, we studied the performances of a CRP-based TDOA es-
timator and looked at the influence of the parameters used to built a CRP represen-
tation using simulated signals. This helped us to define SS as the most appropriate
RQA measure to estimate the TDOA. We also showed that the PCC is the similar-
ity function that gives the most consistent results for various conditions of the SNR
and the modulation of the received signal. In this section, we validate the proposed
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Fig. 7: Percentages of correct estimates over the total number of estimates as a func-
tion of the SNR, of the TDOA (each column of the panel), and of the amplitude of
the modulation Apeak (each line of the panel). The results of the proposed method
with similarity function Sim(. , .) = PCC are given by the solid line. The results
obtained with classical cross-correlation are shown with the diamonds (�). The pa-
rameters of the simulations are: τ = 1, m = 16, and RQA measure SS.

TDOA estimator on real acoustic signals, and show again that it outperforms the
classical cross-correlation.

4.1 Material and Methods

The database used in this section contains underwater sounds that were recorded
in the Bay of Calvi (Corsica Island, France). The data were acquired by an au-
tonomous acoustic recorder (RTSys EA-SDA14) that recorded the signals coming
from four hydrophones (HTI-92, High Tech Inc., Gulport, MS, USA) simultane-
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ously, at a sampling frequency of 156.25 kHz. The data were digitized at 24 bits,
and saved as WAV files on a hard drive. The four hydrophones form an array with a
pyramidal shape. The distance between each hydrophone pair was about 1.5 m. The
antenna was placed on the seafloor at a depth of 38 m and the hydrophones were
between 1 m and 1.5 m above the seafloor (Fig. 8).

Hydrophone 4 

Hydrophone 2 
Hydrophone 3 

Hydrophone 1 

Autonomous acoustic  
recorder 

Fig. 8: Set-up of the antenna used to record the data. Four hydrophones are con-
nected to four synchronized channels of an autonomous acoustic recorder.

The sounds of interest come from a Mediterranean fish of undetermined species,
and they are short frequency modulated signals that last about 0.15 s and have a
mean frequency of between 800 Hz and 1000 Hz. Figure 9 shows two examples of
these acoustic signals, from which we can clearly note that the amplitude modula-
tions differ significantly from one hydrophone to another due to the effects of the
propagation in the seawater. We manually annotated 56 of these sounds and then
estimated the TDOAs between all of the possible pairs of hydrophones. As four hy-
drophones form six separate pairs, we obtained a total of 336 estimated TDOAs to
validate the proposed TDOA estimator.

Prior to the TDOA estimation by our CRP-based method, the annotated sounds
were down-sampled at 10 kHz to reduce the size of the CRP matrix and to speed
up the algorithm, and then they were bandpass filtered between 100 Hz and 2000
Hz. The CRP was then computed with the following parameters: τ = 1, m = 18,
Sim(. , .) = PCC, and a fixed threshold ε = 0.75. The TDOAs were then estimated
with the RQA measure SS given by Equation (12). The TDOAs were also estimated
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with classical cross-correlation, and the results were compared to those of the CRP-
based method, to determine whether this latter was more accurate and efficient.
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Fig. 9: Examples of two distinct recordings of the sounds produced by a fish (unde-
termined species) and recorded simultaneously by four hydrophones.
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4.2 Methodology to Assess the Results on Real Data

When using real data, we face the problem of knowing the ground truth to validate
our results. To assess the validity of the estimated TDOAs given by our method and
by the cross-correlation, we used both automatic and visual checking.

The automatic checking was based on the idea that each annotated signal gives
six TDOA values, which are not independent of each other, but must respect transi-
tive relations. For example, the TDOA between hydrophones 1 and 4 must be equal
to the sum of the TDOA between hydrophones 1 and 2 and hydrophones 2 and 4.
Checking all of the possible transitive relations helped us to identify possible mis-
estimated TDOAs. Details of the method we followed for this automatic checking
can be found in the Appendix.

The visual inspection was performed by superimposing the waveform received
by each pair of hydrophones and compensating for the TDOA between both signals
with its estimated value. Because of the periodic nature of the received signals, we
could quickly assess whether both signals were re-aligned correctly or whether the
estimated TDOA was biased by a number of samples that are proportional to the
oscillation period of the signal.

As an example, Figure 10a shows the signals received simultaneously by two
hydrophones without compensating for the TDOA. It appears that these signals are
not synchronized, as their respective waveforms are not superimposed. Figure 10b
shows the same signals after the TDOA between the two hydrophones was compen-
sated by the estimated value obtained with the proposed method (i.e., CRP with CPP
and SS). We note that the TDOA is estimated correctly, as both of the waveforms are
perfectly superimposed and oscillate similarly. On the contrary, the cross-correlation
misestimated the TDOA by a number of samples equivalent to one oscillation pe-
riod (Fig. 10c). Despite both signals oscillating the same way and at the same speed,
we see that they are not perfectly superimposed. Therefore, this visual inspection al-
lowed validation of the estimated value obtained with the CRP, while discarding that
obtained with the cross-correlation.

For most of the annotated sounds, checking simultaneously all of the transitive re-
lations and the alignment of the waveform after compensation of the TDOAs helped
to determine the validity of the estimated TDOAs.

4.3 Results

Among the 56 annotated sounds, the CRP-based method succeeded in the estima-
tion of all six TDOAs for 18 of them, which represents a success rate of 32.1%. The
classical cross-correlation succeeded in the estimation of all six TDOAs of only 10
annotated sounds, which represents a 17.6% success rate. This first observation sug-
gests that the proposed TDOA estimator gives better performances than that using
the cross-correlation. This apparent low success rate obtained for the estimation of
all of the TDOAs of singular annotated sounds can be explained according to the



20 Olivier Le Bot, Cédric Gervaise and Jérôme I. Mars
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c) Waveform after re−synhronization by compensation of the TDOA by its estimate from the cross−correlation

Sample index

hydrophone 1

hydrophone 2

Fig. 10: Examples of waveforms received simultaneously by two distinct hy-
drophones. The signal from hydrophone 1 is shown in blue, and the signal from
hydrophone 2 is shown in red. (a) Before the signals were re-synchronized. (b) After
the signals were re-synchronized by compensating for the TDOA by the estimated
value obtained with the CRP. (c) After the signals were re-synchronized by compen-
sating for the TDOA by the estimated value obtained with the cross-correlation. We
note that for this particular example, the CRP estimated the TDOA well, whereas
the cross-correlation failed to estimate the TDOA correctly.

two following reasons: First, the periodic nature of the signal makes it very likely
to have mis-estimated the TDOA values. The error is then proportional to the sig-
nal period. Secondly, the underwater environment is a highly fluctuating and noisy
environment, which heavily affects the form of the acoustic signals received by the
hydrophones of the antenna, even when the distance between these hydrophones is
very small. Therefore, despite the apparent good SNR of the annotated signals, the
waveforms recorded are very different from one hydrophone to another, as shown
on Figure 9, which makes the TDOA estimation difficult.

Consequently, 38 of the annotated sounds had at least one TDOA misestimated
by the CRP-based estimator, and 46 sounds had at least one TDOA misestimated
by the cross-correlation. For these sounds, the results for the transitive relations
were studied closely, and visual checking was used to find the misestimated TDOA
values.

The overall results of this analysis include all 336 estimated TDOAs from the 56
annotated sounds, which show that 77.6% of the TDOAs were correctly estimated
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by the CRP, while 70.2% of the TDOAs were correctly estimated by the cross-
correlation.

Therefore, the proposed CRP method provides a gain of 7.4% for the number of
correctly estimated TDOAs, with respect to the cross-correlation. Thus, these results
validate the use of the CRP as a tool to estimate the TDOA of signals received by
spatially separated sensors.

5 Conclusion

In this article, we proposed a method based on CRPs and on dedicated RQA mea-
sures to estimate the TDOA of signals that arrive at spatially separated sensors.

Instead of computing the RQA measures on the whole CRP, we computed them
on each diagonal parallel to the main diagonal to deduce the TDOA. We used four
existing RQA measures from the literature, and we proposed two new RQA mea-
sures. Among the investigated RQA measures, only the proposed RQA measure SS,
which gives the sum of all similarity values that lead to recurrence points in a given
diagonal of the CRP matrix, appeared to be appropriate and reliable to correctly
estimate the TDOAs.

The proposed TDOA estimator was tested and validated on simulated and real
data. The simulated data helped to confirm the reliability and the effectiveness of
the proposed method with controlled data for which the true TDOA to be estimated
was known. Also, these simulations let us study and understand the influence of the
parameters, such as the embedding dimension m, the similarity function Sim(. , .),
and the RQA measures, on the performances of the proposed method. In particular,
the PCC appeared to be the most appropriate similarity function for our purpose.
Moreover, the simulated data were also used to compare the CRP-based TDOA
estimator with a cross-correlation based estimator. This comparison showed that
for signals with weak amplitude modulations, the cross-correlation was better than
the proposed method (from 0% to 25% higher, depending on the parameters of the
simulations and the SNR), whereas for signals with strong amplitude modulations,
the CRP using the PCC gave a higher number of correctly estimated TDOAs than the
cross-correlation (0% to 30% higher depending on the parameters of the simulations
and the SNR).

All mis-estimated TDOAs obtained with the proposed method were due to a
shift of samples that was proportional to the oscillation period of the signal. The
periodicity of the simulated and real signals gave several parallel lines on the CRP,
and the distance between these diagonals corresponded exactly to the oscillation
period of the signal. Due to the high sensitivity of the proposed method, most of the
time we can obtain parts or all of these diagonals, even when the signal is highly
modulated or has a poor SNR. However, we then face the problem of picking up
the diagonal that corresponds to the true TDOA, with an ambiguity factor related
to the oscillation period of the signal. This constitutes the major challenge and the
potential downfall faced when using the CRP as a TDOA estimator.
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Also, these results appear to be important in the choice and application of a
TDOA estimation method on real data. For signals with weak amplitude modula-
tions, the classical cross-correlation or the CRP with the dot product as a similarity
function might be sufficient to achieve good performances. On the contrary, more
distorted signals would require the use of CRP with PCC to achieve good perfor-
mances. In the case of underwater acoustics, these concepts of weak and strong
amplitude modulations can be related to three different acoustic phenomena: (1)
controlled variations in the amplitude of the sound during its emission by the ani-
mal; (2) amplitude modulations introduced during the propagation due to the reflec-
tions and scattering at the boundaries, the frequency-dependent attenuation in the
sea, and the distance between the source and receiver; and (3) the directivity of the
sound source that affects the waveform ’viewed’ by the different hydrophones.

The proposed method was validated on real acoustic data recorded at sea by a
four-hydrophone array. As with the simulated data, we showed that the CRP-based
TDOA estimator gave better performances than the cross-correlation, with a global
score of 77% of correct estimates for the CRP, as a gain of 7.4% over the number of
correctly estimated TDOAs with respect to the cross-correlation
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Appendix

This appendix deals with the automatic controls performed to determine the validity
of TDOA estimated on real acoustic data.

This automatic checking is based on the concept that each annotated signal gives
six TDOA values, which are not independent of each other, but which must respect
transitive relations. A four-hydrophone array gives four independent transitive rela-
tions between all of the TDOA values (Fig. 11). Let T DOAi j be the TDOA between
hydrophones i and j, with (i, j) ∈ {1, 2, 3, 4} the index of the hydrophones. The
four independent transitive relations between the estimated TDOA (expressed as
samples) are given by:

T DOA12 +T DOA23 = T DOA13±2
T DOA12 +T DOA24 = T DOA14±2
T DOA13 +T DOA34 = T DOA14±2
T DOA23 +T DOA34 = T DOA24±2

(18)

As each TDOA was estimated with 1-sample precision (equiv. 10−4 s), the sum of
two TDOAs is estimated with 2-sample precision (equiv. 2.10−4 s).
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Fig. 11: Four examples of independent transitive relations of the TDOAs given by
Eq. (18): a) T DOA12 +T DOA23 = T DOA13; b) T DOA12 +T DOA24 = T DOA14; c)
T DOA13 +T DOA34 = T DOA14; d) T DOA23 +T DOA34 = T DOA24.

If the four relations given in Equation (18) are met, then we can assume that all
of the estimated TDOAs are true. Visual inspection is then performed to confirm the
validity of the estimates, and particularly to check whether there are any cumulative
errors within the relations; i.e., if two or more TDOAs are misestimated but their
sum respects the transitive relations.

If one of the transitive relations from Equation (18) is not met, we check the
transitive relations of the third orders, to determine which TDOA is true and which
TDOA is misestimated. The TDOA values give three independent transitive third-
order relations, which are given by:

T DOA13 +T DOA34−T DOA24 = T DOA12±3
T DOA12 +T DOA23 +T DOA34 = T DOA14±3
T DOA13−T DOA23 +T DOA24 = T DOA14±3

(19)

For the relations in Equation (19), the sum of three TDOAs is estimated with 3-
samples precision. If one of the relations in Equation (19) is verified, then the four
associated TDOA values are assumed to be true and a visual inspection is performed
to confirm the results. Again the visual inspection aims to prevent cumulative errors.

Finally, for each transitive relation from Equation (19) taken individually, two
of the estimated TDOAs are not involved. Either these two estimated TDOAs are
false, or only one of them is false. To determine which of these two TDOAs was
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effectively misestimated, we looked back at the transitive relations given in Equa-
tion (18) by assuming that the four estimated TDOAs involved in the third-order
transitive relations have already been validated.

For example, if the relation T DOA12 + T DOA23 + T DOA34 = T DOA14 ± 3 is
met, we assume that T DOA12, T DOA23, T DOA34 and T DOA14 are true. In this
transitive relation, we note that T DOA13 and T DOA24 have not been used. Then,
to check whether T DOA13 was well estimated, we look to see whether the fol-
lowing relations are also true: T DOA13 = T DOA12 +T DOA23± 2 and T DOA13 =
T DOA14 − T DOA34 ± 2. If these are both true, it means that T DOA13 was cor-
rectly estimated. We can do the same for T DOA24 by checking whether T DOA24 =
T DOA14− T DOA12± 2 and T DOA24 = T DOA23 + T DOA34± 2 are satisfied. We
repeat this reasoning for the other two transitive third-order relations.
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