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ON LOGARITHMIC SOBOLEV INEQUALITIES

FOR THE HEAT KERNEL ON THE HEISENBERG GROUP

MICHEL BONNEFONT, DJALIL CHAFAÏ, AND RONAN HERRY

Abstract. In this note, we derive a new logarithmic Sobolev inequality for the heat ker-
nel on the Heisenberg group. The proof is inspired from the historical method of Leonard
Gross with the Central Limit Theorem for a random walk. Here the non commutativity
of the increments produces a new gradient which naturally involves a Brownian bridge
on the Heisenberg group. This new inequality contains the optimal logarithmic Sobolev
inequality for the Gaussian distribution in two dimensions. We show that this new
inequality is close to the symmetrized version of the sub-elliptic logarithmic Sobolev in-
equality of Hong-Quan Li on the Heisenberg group, seen as a weighted inequality. We
show furthermore that a semigroup approach can produce such weighted inequalities.

1. Introduction

The Heisenberg group H is a remarkable simple mathematical object, with rich alge-
braic, geometric, probabilistic, and analytic aspects. It is available in two versions, a
discrete one and a continuous one. In this text, we focus on the continuous Heisenberg
group H, formed by the set of 3 × 3 matrices

M(x, y, z) =





1 a c
0 1 b
0 0 1



 , a, b, c ∈ R.

Notations. The Heisenberg group H is a non commutative sub-group of the general
linear group, M(a, b, c)M(a′, b′, c′) = M(a + a′, b + b′, c + c′ + ab′) and M(a, b, c)−1 =
(−a, −b, −c+ab), and the discrete Heisenberg group is the discrete sub-group of H formed
by the elements of H with integer coordinates. The Heisenberg group H is a Lie group
(manifold compatible with group structure). Its Lie algebra L (tangent space at the origin)
is the sub-algebra of M3(R) given by the 3 × 3 matrices of the form





0 x z
0 0 y
0 0 0



 , x, y, z ∈ R.

The matrix exponential map exp : A ∈ L 7→ exp(A) ∈ H is a diffeomorphism. This allows
to identify the group H with the algebra L. Let us define

X :=





0 1 0
0 0 0
0 0 0



 , Y :=





0 0 0
0 0 1
0 0 0



 , and Z :=





0 0 1
0 0 0
0 0 0



 .

We have then

[X, Y ] := XY − Y X = Z and [X, Z] = [Y, Z] = 0.

The Lie algebra L is nilpotent of order 2:

L = span(X, Y ) ⊕ span(Z).
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This makes the Baker-Campbell-Hausdorff formula on L particularly simple:

exp(A) exp(B) = exp
(

A + B +
1
2

[A, B]
)

, A, B ∈ L.

The names Heisenberg group and Heisenberg algebra come from the fact that in quantum
physics, following Werner Heisenberg and Hermann Weyl, the algebra generated by the
position operator and the momentum operator is L. The identification of H with L





1 a c
0 1 b
0 0 1



 ≡ exp





0 x z
0 0 y
0 0 0



 = exp(xX + yY + zZ)

allows to identify H with R
3 equipped with the group structure

(x, y, z) · (x′, y′, z′) = (x + x′, y + y′, z + z′ +
1
2

(xy′ − yx′))

and (x, y, z)−1 = (−x, −y, −z). The neutral element is the “origin” e := (0, 0, 0). From
now on, we use these “exponential coordinates”. By translation with respect to the group
operation, the vector fields X, Y , Z at point (x, y, z) are given by the formulas

X := ∂x − y

2
∂z, Y := ∂y +

x

2
∂z, Z := ∂z. (1.1)

Geometrically, the quantity 1
2(xy′ − yx′) is the algebraic area in R

2 between the piecewise
linear path [(0, 0), (x, y)] ∪ [(x, y), (x + x′, y + y′)] and its chord [(0, 0), (x + x′, y + y′)].
This area is zero if (x, y) and (x′, y′) are collinear. This shows that the group product
(x, y, 0)(x′, y′, 0) = (x + x′, y + y′, 1

2 (xy′ − yx′)) in H encodes the sum of increments in R
2

and computes automatically the generated area.
The Heisenberg group H is also a metric space for the Carnot-Carathéodory distance

d : H × H → [0, ∞), defined for any h, g ∈ H by

d(h, g) := sup
f

(f(h) − f(g))

where the supremum runs over all f ∈ C∞(H,R) such that Γ(f) := (Xf)2 + (Y f)2 ≤ 1.
We have the following estimates (see [BGG, L1]): for any g = (x, y, z) ∈ H,

r2 := x2 + y2 ≤ d(e, g)2 ≤ r2 + 2π|z|. (1.2)

There exists a constant c ∈ (0, 2π) such that for any g = (x, y, z) ∈ H with |z| ≥ r2,

r2 + c|z| ≤ d(e, g)2 ≤ r2 + 2π|z|. (1.3)

The Heisenberg group is a Carnot group. Its Hausdorff dimension for the Carnot-Cara-
théodory metric is 4. Its dimension as a topological manifold which is 3.

The Heisenberg group H is topologically homeomorphic to R
3 and the Lebesgue measure

on R
3 is a Haar measure of H (translation invariant). However, as a manifold, the geometry

of H is sub-Riemannian: the tangent space (at the origin and thus everywhere) is of
dimension 2 instead of 3, putting a constraint on the geodesics (due to the lack of vertical
speed vector, some of them are helices instead of straight lines).

Let β ≥ 0 be a real parameter. Let (xn, yn, zn)n≥0 be independent and identically
distributed random variables on R

3 with zero mean and covariance matrix diag(1, 1, β2).
Now set S0 := 0 and for any n ≥ 1,

Sn := (Xn, Yn, Zn) :=
( x1√

n
,

y1√
n

,
z1√

n

)

· · ·
( xn√

n
,

yn√
n

,
zn√

n

)

. (1.4)

The sequence (Sn)n≥0 is a random walk on H started from the origin and with i.i.d. “non
commutative multiplicative increments” given by a triangular array. We have

Xn =
1√
n

n
∑

i=1

xi, Yn =
1√
n

n
∑

i=1

yi, Zn = An +
β√
n

n
∑

i=1

zi
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where

An :=
1

2n

n
∑

i=1

n
∑

j=1

xiǫijyj and ǫi,j := 1j>i − 1j<i.

The random variable An is the algebraic area between the path (Xk, Yk)0≤k≤n of a ran-
dom walk in R

2 and its chord [(0, 0), (Xn , Yn)]. If we introduce the dilation operator
dilt(x, y, z) = (tx, ty, t2z) on H then

(Xn, Yn, An) = dil 1√
n

((x1, y1, 0) · · · (xn, yn, 0)).

According to a Functional Central Limit Theorem (or Invariance Principle) on Lie groups
due to Daniel Stroock and Srinivasa Varadhan [SV] (see also Donald Wehn [W]),

(

S⌊nt⌋

)

t≥0
law−→

n→∞

(

Xt, Yt, Zt
)

t≥0
=
(

Xt, Yt, At + βWt
)

t≥0
(1.5)

where (Xt, Yt)t≥0 is a standard Brownian motion on R
2 started from the origin, where

(Wt)t≥0 is a standard Brownian motion on R started from the origin and independent
of (Xt, Yt)t≥0, and where (At)t≥0 is the Lévy area of (Xt, Yt)t≥0, in other words the
algebraic area between the Brownian path and its chord, seen as a stochastic integral:

At :=
1
2

(

∫ t

0
Xs dYs −

∫ t

0
Ys dXs

)

.

The stochastic process (Ht)t≥0 = (h · (Xt, Yt, Zt))t≥0 started from H0 = h is a Markov
diffusion process on R

3 admitting the Lebesgue measure as an invariant and reversible
measure. The Markov semigroup (Pt)t≥0 of this process is defined for any t ≥ 0, h ∈ H,
and bounded measurable f : H → R, by

Pt(f)(h) := E(f(Ht) | H0 = h).

For any t > 0 and h ∈ H, the law of Ht conditionally on H0 = h admits a density and

Pt(f)(h) =
∫

H

f(g)pt(h, g) dg.

Estimates on the heat kernel pt are available, see [BGG, L3]. For instance when β = 0,
there exist constants C2 > C1 > 0 such that for any g = (x, y, z) ∈ H and t > 0,

C1
√

t3 + t4rd(e, g)
exp

(

− d2(e, g)
4t

)

≤ pt(e, g) ≤ C2
√

t3 + t4rd(e, g)
exp

(

− d2(e, g)
4t

)

(1.6)

where d is the Carnot-Carathéodory distance and where r2 := x2 + y2.
Let us define the probability measure (which depends on the β parameter)

γ := Law(H1 | H0 = 0) = P1(·)(0).

The infinitesimal generator is the linear second order operator

L =
1
2

(X2 + Y 2 + βZ2)

where X, Y, Z are as in (1.1). The Schwartz space Schwartz(H,R) of rapidly decaying C∞

functions from H to R is contained in the domain of L and is stable by L and by Pt for any
t ≥ 0. We have [X, Y ] = Z = ∂z and [X, Z] = [Y, Z] = 0, the operator L is hypoelliptic,
and by the Hörmander theorem Pt admits a C∞ kernel. The operator L is elliptic if β > 0
and not elliptic if β = 0 (singular diffusion matrix).

The operator L acts like the two dimensional Laplacian on functions depending only
on x, y and not on z. The one parameter family of operators obtain from L when β runs
over the interval [0, 1] interpolates between the sub-elliptic or sub-Riemannian Laplacian
1
2(X2 + Y 2) (for β = 0) and the elliptic or Riemannian Laplacian 1

2(X2 + Y 2 + Z2) (for
β = 1). The sub-Riemannian Brownian motion (Ht)t≥0 has independent and stationary
(non commutative) increments and is a Lévy processes associated to a (non commutative)



4 MICHEL BONNEFONT, DJALIL CHAFAÏ, AND RONAN HERRY

convolution semigroups (Pt)t≥0 on H. When β = 0 then the probability measure γ0 is
infinitely divisible and can be seen as a Gaussian measure on H and a formula (oscillatory
integral) for the kernel of Pt was computed by Paul Lévy using Fourier analysis. We refer
to the books [M, B1, N] and references therein for more details.

The entropy of f : H → [0, ∞) with respect to a probability measure µ is defined by

Entµ(f) := Eµ(Φ(f)) − Φ(Eµ(f)) with Eµ(f) :=
∫

f dµ

where Φ(u) = u log(u).

Main results. Our main results are the following.

Theorem 1.1 (Logarithmic Sobolev inequality). For any β ≥ 0 and f ∈ Schwartz(H,R),

Entγ(f2) ≤ 2
∫ 1

0
E(g(H1, Ht)) dt (1.7)

where

g(h, h′) :=
(

∂xf(h) − x − 2x′

2
∂zf(h)

)2

+
(

∂yf(h) +
y − 2y′

2
∂zf(h)

)2

+ β2 (∂zf(h))2

= ((X + x′Z)f(h))2 + ((Y − y′Z)f(h))2 + β2(Zf(h))2.

We refer for instance to the book [BGL] for a general introduction to Sobolev type
functional inequalities for diffusion processes.

The shape of the right hand side of (1.7) comes from the fact that the increments are
not commutative: the sum in Sn produces along (1.5) the integral from 0 to 1.

The following corollary is obtained via Brownian Bridge and heat kernel estimates.

Corollary 1.2 (Weighted logarithmic Sobolev inequality). Take β = 0. There exist

constants C > 0 and C ′ > 0 such that for any f ∈ Schwartz(H,R),

Entγ(f) ≤ 2 Eγ

(

(∂xf)2 + (∂yf)2 + C(1 + x2 + y2 + |z|)(∂zf)2
)

. (1.8)

Leonard Gross used in [G1] and [G2] the Central Limit Theorem to proof logarithmic
Sobolev inequality on elliptic Lie groups. In a surprising way, the very same method works
on the sub-Riemannian setting of the Heisenberg group, and gives a non degenerate result.
Indeed it was a common thought to believe that in the non-elliptic case, the Central Limit
Theorem will produce asymptotically the collapse or the explosion of the right hand side.

Theorem 1.1 is proved in Section 2, by following the method of Gross. Corollary 1.2
is proved in Section 3, by using an expansion of (1.7), and probabilistic (Bayes for-
mula), analytic (bounds for the heat kernel on H), and geometric (bounds for the Carnot-
Carathéodory distance) arguments for the control of the density of the Brownian bridge.

Baudoin and Garofalo developed in [BG] a generalization of the Bakry-Émery semigroup
approach to the curvature adapted to the sub-Riemannian setting. This framework is well-
suited for studying weighted functional inequalities such as (1.8) and (1.13) and allow us
to derive the following result. Note that a similar result is already stated in the PhD
thesis [Bo, Prop. 5.3.7 p. 129], see also [BB], and [B2, Prop. 4.13] more generally.

Theorem 1.3 (Yet another logarithmic Sobolev inequality on Heisenberg group). Take

β = 0. For any real number ν > 0 and any function f ∈ Schwartz(H,R),

Entγ(f2) ≤ 2ν(e
1
ν −1) Eγ

(

(Xf)2 + (Y f)2 + ν(Zf)2
)

. (1.9)

The symmetrized version of (1.9) is the following new weighted logarithmic Sobolev
inequality on the Heisenberg group, lying between (1.8) and (1.13).
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Corollary 1.4 (Weighted logarithmic Sobolev inequality on Heisenberg group). Take

β = 0. For any real number ν > 0 and any function f ∈ Schwartz(H,R),

Entγ(f2) ≤ 2ν(e
1
ν − 1) Eγ

(

(∂xf)2 + (∂yf)2+
(

ν +
x2 + y2

4

)

(∂zf)2
)

. (1.10)

The proof of Theorem 1.3 and Corollary 1.4 is given in Section 4.

Discussion.

Novelty. Taking β = 0 in (1.7) provides a new sub-elliptic logarithmic Sobolev inequality
for the sub-Riemannian Gaussian law γ, namely, for any f ∈ Schwartz(H,R),

Entγ(f2) ≤ 2
∫ 1

0
E(g(H1, Ht)) dt (1.11)

where

g(h, h′) :=
(

∂xf(h) − x − 2x′

2
∂zf(h)

)2

+
(

∂yf(h) +
y − 2y′

2
∂zf(h)

)2

.

Horizontal optimality. The logarithmic Sobolev inequality (1.11), implies the optimal log-
arithmic Sobolev inequality for the standard Gaussian distribution N (0, I2) on R

2 with
the Euclidean gradient, namely, for any f ∈ Schwartz(R2,R),

EntN (0,I2)(f
2) ≤ 2 EN (0,I2)((∂xf)2 + (∂yf)2).

To see it, it suffices to express (1.11) with a function f that does not depend on the third
coordinate z. This shows in particular the optimality (minimality) of the constant 2 in
front of the right hand side in the inequality of Theorem 1.1 and in (1.11).

Poincaré inequality. Recall that the variance of f : H → R with respect to µ is

Varµ(f) :=
∫

Φ(f) dµ − Φ
(

∫

f dµ
)

where this time Φ(u) = u2.

As usual, the logarithmic Sobolev inequality (1.11) gives a Poincaré inequality by lin-
earization. More precisely, replacing f by 1 + εf in (1.11) gives, as ε → 0,

Varγ(f) ≤
∫ 1

0
E(g(H1, Ht)) dt.

Comparison with H.-Q. Li inequality. For β = 0, Hong-Quan Li has obtained in [L1] (see
also [BBBC, DM] for a Poincaré inequality) the following logarithmic Sobolev inequality:
there exists a constant C > 0 such that for any f ∈ Schwartz(H,R),

Entγ(f2) ≤ C Eγ((Xf)2 + (Y f)2). (1.12)

The right hand side in (1.12) involves the “carré du champ” of L, namely the functional
quadratic form L(f2) − 2fLf = (Xf)2 + (Y f)2. Following the by now standard Bakry-
Émery approach, the expansion of the scaled version shows that necessarily C ≥ 2 but the
optimal (minimal) constant is unknown.

The random variables −Ht and Ht have the same law conditionally to {H0 = 0}.
This symmetry property permits us to cancel out, in average, the cross terms involving
x∂xf∂zf and y∂xf∂zf when expanding the right hand side of the sum of (1.12) and its
rotated version. The symmetrized version of (1.12) that we obtained in this way appears
as a weighted logarithmic Sobolev inequality: for anyf ∈ Schwartz(H,R),

Entγ(f2) ≤ C Eγ

(

(∂xf)2 + (∂yf)2 +
x2 + y2

4
(∂zf)2

)

. (1.13)

The inequality (1.13) should be compared with our inequalities (1.8) and (1.10), which
are of the same nature, yet sub-optimal.
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Open questions and extensions. The Heisenberg group is the simplest non-trivial version
of Carnot (stratified nilpotent Lie groups). Those group have a strong geometric meaning
both in standard and stochastic analysis (see for instance [B1] for the latter point). A
version of Theorem 1.1 should be available on those groups even though the function g
might not be computable explicitly due to the complexity of the group operation. The
bounds on the distance and the heat kernel used to derive the weighted inequality (1.8)
are not available on general Carnot groups and it should require more work to obtain an
equivalent of Corollary 1.2. As a comparison, note that a version of (1.12) exists on groups
with a so called H-structure (see [L3]) but a general version on Carnot groups is unknown
due to the lack of general estimates for the heat kernel.

In the spirit of the work of Leonard Gross [G2] in the elliptic case, an approach at the
level of paths space should be available.

It is also natural to ask about a direct analytic proof or semigroup proof of the inequality
of Theorem 1.1, without using the Central Limit Theorem.

2. Proof of Theorem 1.1

Fix a real β ≥ 0. Consider (xn, yn, zn)n≥1 a sequence of independent and identically
distributed random variables with standard Gaussian law N (0, I3) and let Sn be as in (1.4).
The Central Limit Theorem gives

Sn
law−→

n→∞
γ.

The law νn of Sn satisfies νn = (µn)∗n where the convolution takes place in H and where
µn is the Gaussian law on R

3 with covariance matrix diag(1/n, 1/n, β2/n).
For any i = 1, . . . , n, let us define

Sn,i := (Xn, Yn, Zn, Xn,i, Yn,i)

where

Xn,i := − 1√
n

n
∑

j=1

ǫijxj and Yn,i := − 1√
n

n
∑

j=1

ǫijyj.

The optimal logarithmic Sobolev inequality for the standard Gaussian measure N (0, I3n)
on R

3n gives, for any g ∈ Schwartz(R3n,R),

EntN (0,I3n)(g
2) ≤ 2 EN (0,I3n)

(

n
∑

i=1

(∂xi
g)2 + (∂yi

g)2 + (∂zi
g)2
)

.

Let sn : R3n → H be the map such that Sn = sn((x1, y1, z1), . . . , (xn, yn, zn)). For some
f ∈ Schwartz(H,R) the function g = f(sn) satisfies

∂xi
g(sn) =

1√
n

(

∂xf − Yn,i

2
∂zf

)

(sn),

∂yi
g(sn) =

1√
n

(

∂yf +
Xn,i

2
∂zf

)

(sn),

∂zi
g(sn) =

β√
n

(∂zf)(sn).

It follows that for any f ∈ Schwartz(H,R), denoting νn := Law(Sn),

Entνn
(f2) ≤ 2

n

n
∑

i=1

E(h(Si
n)) = 2 E

( 1
n

n
∑

i=1

h(Si
n)
)

(2.1)

where h : R5 → R is defined from f by

h(x, y, z, x′, y′) := ((∂x − y′

2
∂z)f(x, y, z))2 + ((∂y +

x′

2
∂z)f(x, y, z))2.
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The right hand side of (2.1) as n → ∞ is handled by explaining the law of Si
n through a

triangular array of increments of the process we anticipated in the limit. More precisely,
let ((Xt, Yt))t≥0 be a standard Brownian motion on R

2 started from the origin, let (At)t≥0
be its Lévy area, and let (Wt)t≥0 be a Brownian motion on R starting from the origin,
independent of (Xt, Yt)t≥0. Let us define, for n ≥ 1 and 1 ≤ i ≤ n,

ξn,i :=
√

n
(

X i

n

− X i−1
n

)

, ηn,i :=
√

n
(

Y i

n

− Y i−1
n

)

, ζn,i :=
√

n
(

W i

n

− W i−1
n

)

.

For any fixed n ≥ 1, the random variables (ξn,i)1≤i≤n, (ηn,i)1≤i≤n, and (ζn,i)1≤i≤n are
independent and identically distributed with Gaussian law N (0, 1). Let us define now

Xn :=
1√
n

n
∑

i=1

ξn,i, Yn :=
1√
n

n
∑

i=1

ηn,i,

An :=
1

2n

n
∑

i=1

n
∑

j=1

ξn,iǫi,jηn,i, Zn := β
1√
n

n
∑

i=1

ζn,i + An,

Xn,i := − 1√
n

n
∑

j=1

ǫi,jηn,j, Yn,i := − 1√
n

n
∑

j=1

ǫi,jηn,i.

We have then the equality in distribution

(Xn, Yn, Zn − An, Xn,i, Yn,i)
d= (X1, Y1, βW1, X1 − (X i−1

n

+ X i

n

), Y1 − (Y i−1
n

+ Y i

n

)).

Moreover, as i/n → s ∈ [0, 1], we have the convergence in distribution

Sn,i := (Xn, Yn, Zn, Xn,i, Yn,i)
d−→

n→∞
(X1, Y1, A1 + βW1, X1 − 2Xs, Y1 − 2Ys).

It follows that for any continuous and bounded h : R5 → R,

1
n

n
∑

i=1

E(h(Sn,i)) =
∫ 1

0
E(h(Xn, Yn, Zn, X

n,
⌊tn⌋

n

, Y
n,

⌊tn⌋
n

) dt

−→
n→∞

∫ 1

0
E(h(X1, Y1, A1 + βW1, X1 − 2Xt, Y1 − 2Yt)) dt.

3. Proof of Corollary 1.2

Let us consider (1.7) with β = 0. By expanding the right-hand side, and using the fact
that the conditional law of H1 given {H1 = 0} is invariant by central symmetry, we get a
symmetrized weighted logarithmic Sobolev inequality: for any f ∈ Schwartz(H,R),

Entγ(f2) ≤ 2 E
(

(∂xf)2(H1) + (∂yf)2(H1)
)

+
1
2

∫ 1

0
E
(

E
(

(X1 − 2Xt)2 + (Y1 − 2Yt)2 | H1
)

(∂3f)2(H1)
)

dt

≤ 2 E
(

(∂xf)2(H1) + (∂yf)2(H1)
)

+ E
(

(X2
1 + Y2

1)(∂zf)2(H1)
)

+ 4 E
(

(∂zf)2(H1)
∫ 1

0
E
(

X2
t + Y2

t | H1
)

dt
)

.

The desired result is a direct consequence of the following lemma.

Lemma 3.1 (Bridge control). There exists a constant C > 0 such that for any 0 ≤ t ≤ 1
and h = (x, y, z) ∈ H,

E(X2
t + Y2

t | H1 = h) ≤ C(t2d2(e, h) + t)

and
∫ 1

0
E(X2

t + Y2
t | H1 = h) dt ≤ C(1 + x2 + y2 + |z|).
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Note that for the classical euclidean Brownian motion

E(‖Bt‖2 | B1) = t2‖B1‖2 + nt(1 − t).

Proof of Lemma 3.1. For any random variables U, V , we denote by ϕU the density of U
and by ϕU |V =v the conditional density of U given {V = v}. For any 0 < t ≤ 1 and k ∈ H,

E(X2
t + Y2

t | H1 = k) =
∫

H

r2
g ϕHt|H1=k(g) dg

where r2
g = x2

g + y2
g and g = (xg, yg, zg). Recall that pt(h, g) := ϕHt=g|H0=h and that

e := (0, 0, 0) is the origin in H. Thanks to the Bayes formula, for any g, k ∈ H,

ϕHt|H1=k(g) =
ϕ(Ht,H1)(g, k)

ϕH1(k)
=

ϕHt
(g)ϕH1 |Ht=g(k)

ϕH1(k)
=

pt(e, g)p1−t(g, k)
p1(e, k)

Back to our objective, we have

E(X2
t + Y2

t | H1 = k) =

∫

pt(e, g)r2
gp1−t(g, k) dg

p1(e, k)

≤

∫

pt(e, g)d2
gp1−t(g, k) dg

∫

pt(e, g)p1−t(g, k) dg
.

In what follows, the constant C may change from line to line. The idea is to kill the
polynomial term d2 in the numerator by using the exponential decay of the heat kernel,
at the price of a slight time change. Namely, using (1.6), we get, for any 0 < ε < 1,
∫

pt(e, g)r2(e, g)p1−t(g, k) dg ≤
∫

C
√

t3 + t4rd(e, g)
d2(e, g) exp

(

−d2(e, g)
4t

)

p1−t(g, k) dg

≤
∫

Ct

ε
√

t3 + t4rd(e, g)
exp

(

−(1 − ε)
d2(e, g)

4t

)

p1−t(g, k) dg

≤
∫

Ct

ε

√

√

√

√

√

(

t
1−ε

)3
+
(

t
1−ε

)4
rd(e, g)

t3 + t4rd(e, g)
p t

1−ε

(e, g)p1−t(g, k) dg

≤ Ct

ε(1 − ε)2

∫

p t

1−ε

(e, g)p1−t(g, k) dg

≤ Ct

ε(1 − ε)2
p1+ εt

1−ε

(e, k).

where we used x exp(−x) ≤ 1
eε exp(−(1 − ε)x). Therefore, for all 0 < ε ≤ 1/2,

E(X2
t + Y2

t | H1) ≤ Ct

ε(1 − ε)2

p1+ εt

1−ε

(e, k)

p1(e, k)

≤ Ct

ε(1 − ε)2
exp

(

εt

1 + εt

d2(e, k)
4

)

≤ Ct

ε
exp

(

εt
d2(e, k)

4

)

.

Now if td2(e, k) ≥ 1, then we take ε = 1/(2td2(e, k)) which gives

E(X2
t + Y2

t | H1) ≤ Ct2d2(e, k),

while if td2(e, k) < 1, then we take ε = 1/2 which gives

E(X2
t + Y2

t | H1) ≤ Ct.
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This provides the first desired inequality. We get the second using (1.2). �

4. Proof of Theorem 1.3 and Corollary 1.4

In this section, we provide the proofs of Theorem 1.3 and Corollary 1.4. Note that the
method remains valid beyond the assumption β = 0.

Proof of Theorem 1.3. For simplicity, we change L by a factor 2 and set L = X2 + Y 2 and
Pt = etL, and in particular γ = P1/2(·)(0). For any f, g ∈ Schwartz(H,R), let us define

Γhori(f, g) :=
1
2

(L(fg) − fLg − gLf) = X(f)X(g) + Y (f)Y (g),

Γvert(f, g) := Z(f)Z(g),

Γelli(f, g) := Γhori(f, g) + νΓvert(f, g).

Let us also denote

Γhori
2 (f, f) :=

1
2

(LΓhori(f, f) − 2Γhori(f, Lf)),

Γvert
2 (f, f) :=

1
2

(LΓvert(f, f) − 2Γvert(f, Lf)),

Γmix
2 (f, f) :=

1
2

(LΓelli(f, f) − 2Γelli(f, Lf)).

In the sequel, we also denote Γ(f) = Γ(f, f) and Γ2(f) = Γ2(f, f).
Curvature inequality. The following inequality holds: for any f ∈ Schwartz(H,R),

Γmix
2 (f, f) ≥ − 1

ν
Γelli(f, f). (4.1)

Indeed, an easy computation gives

Γhori
2 (f, f) = (X2f)2 + (Y 2f)2 + (XY f)2 + (Y Xf)2 − 2(Xf)(Y Zf) + 2(Y f)(XZf)

Γvert
2 (f, f) = (XZf)2 + (Y Zf)2.

Since Γmix
2 = Γhori

2 +νΓvert
2 and Zf = XY f −Y Xf , the Cauchy-Schwarz’s inequality gives

Γmix
2 (f, f) ≥ 1

2
(Lf)2 +

1
2

(XY f + Y Xf)2 +
1
2

(Zf)2 − 1
ν

X(f)2 − 1
ν

Y (f)2,

which implies the desired curvature inequality (4.1).
Semigroup inequality. Let f ∈ Schwartz(H,R) with f ≥ 0. For any 0 ≤ s ≤ t, set

U(s) := (Pt−sf) log(Pt−sf) and V (s) := (Pt−sf) Γelli(log(Pt−sf)).

Then for 0 ≤ s ≤ t,

LU + ∂sU = (Pt−sf) Γhori(log(Pt−sf)) ≤ (Pt−sf) Γelli(log(Pt−sf)) = V (s) (4.2)

LV + ∂sV = 2(Pt−sf) Γmix
2 (log(Pt−sf)) ≥ − 2

ν
V (s). (4.3)

The first equality in (4.2) holds since Γhori is the “carré du champ” associated to L, the
inequality holds because Γvert(f, f) ≥ 0 and the second equality is the definition of V .
In (4.3) we have used that Γelli = Γhori + νΓvert, that the horizontal part of Γelli will
produce Γhori

2 (same kind of computation as in the first inequality of (4.2)) and that
vertical part commute to the horizontal one Γhori(f, Γelli(f, f)) = Γelli(f, Γvert(f, f)), the
inequality comes from (4.1).

Final step. Since by (4.3), L(e
2s

ν V (s)) + ∂s(e
2s

ν V (s)) ≥ 0, a parabolic comparison such
as [BG, Prop. 4.5] or a simple semigroup interpolation implies that for t ≥ 0,

e
2t

ν Pt(fΓelli(log f)) = e
2t

ν V (t) ≥ V (0) = (Ptf)Γelli(log Ptf).
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In particular,

V (s) ≤ e
2(t−s)

ν Pt−s(fΓelli(log f)). (4.4)

Now from (4.2) another application of the parabolic comparison theorem and the last
estimate (4.4) give

Pt(U(t)) ≤ U(0) +
∫ t

0
Ps(V (s)) ds ≤ U(0) +

∫ t

0
e

2(t−s)
ν ds Pt

(

fΓelli(log f)
)

;

that is:

Pt(f log f)(x) − Pt(f)(x) log Pt(f)(x) ≤ ν

2

(

e
2t

ν −1
)

Pt

(

Γelli(f, f)
f

)

(x).

The conclusion follows by taking t = 1/2 and x = 0 since γ = P1/2(·)(0). �

Proof of Corollary 1.4. Let us consider the right (instead of left) invariant vector fields

X̂ := ∂x +
y

2
∂z and Ŷ := ∂y − x

2
∂z

and L̂ = X̂ + Ŷ and P̂t = etL̂ the corresponding generator and semi-group. The semi-
group is bi-invariant in the sense that Ptf(0) = P̂tf(0), see for instance [BBBC]. Recall
that γ = P1/2(·)(0) = P̂1/2(·)(0). The method of proof of Theorem 1.9 remains valid
if one replaces X, Y, L, Pt by their right invariant counter parts and yields that for any
f ∈ Schwartz(H,R),

Entγ(f2) ≤ 2ν(e
1
ν − 1) Eγ

(

(X̂f)2 + (Ŷ f)2 + ν(−Zf)2
)

. (4.5)

The conclusion follows by the summation of the inequalities (1.9) and (4.5). �
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