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Abstract. Recurrence structures in univariate time series are challeng-
ing to detect. We propose a combination of symbolic and recurrence anal-
ysis in order to identify recurrence domains in the signal. This method
allows to obtain a symbolic representation of the data. Recurrence analy-
sis produces valid results for multidimensional data, however, in the case
of univariate time series one should perform phase space reconstruction
first. In this paper, we propose a new method of phase space reconstruc-
tion based on signal’s time-frequency representation and compare it to
delay embedding method. We argue that the proposed method outper-
forms delay embedding reconstruction in the case of oscillatory signals.
We also propose to use recurrence complexity as a quantitative feature
of a signal. We evaluate our method on synthetic data and show its
application to experimental EEG signals.

Keywords: recurrence analysis, symbolic dynamics, time-frequency rep-
resentation, Lempel-Ziv complexity, EEG

1 Introduction

Recurrent temporal dynamics is a phenomenon frequently observed in time series
measured in biological systems. For instance, bird songs exhibit certain tempo-
ral structures, that recur in time [29]. Other examples are returning epileptic
seizures [2], recurrent cognitive states in neural language processing [12] and in
early auditory neural processing [14]. All these latter phenomena are observed in
electroencephalographic data (EEG). To detect such temporal recurrent struc-
tures, typically one applies recurrence analysis [5,23] based on Poincaré’s the-
orem [25]. This approach allows to detect recurrence structures in multivariate
time series. To retrieve recurrence structures from univariate time, several meth-
ods have been suggested, such as delay embedding techniques.

However, most existing methods do not take into account specifically the
oscillatory nature of the signals as observed in biological systems. To this end,



we propose a technique to embed the univariate time series in a multidimen-
sional space to better consider oscillatory activity. The approach is based on the
signals time-frequency representation. In a previous work we have sketched this
approach [28] already but without discussing its performance subject to different
time-frequency representations. The present work shows this detailed discussion
and suggests a new method to classify signals according to their recurrence
complexity. Applications to artificial data permits to evaluate the method and
compare it to results gained from the conventional delay embedding technique.
Final applications to experimental EEG data indicates the method’s future ap-
plication.

2 Analysis Methods and Data

2.1 Recurrence Symbolic Analysis

Recurrence is a fundamental property of nonlinear dynamical systems, which was
first formulated by Poincaré in [25]. It was further illustrated in recurrence plot
(RP) technique proposed by Eckmann et al. [5]. This relatively simple method
allows to visualize multidimensional trajectories on a two-dimensional plane. The
RP can be obtained by plotting the recurrence matrix:

where z; € IR? is the state of the complex system in the phase space of dimension
d at a time instance 4; || - || denotes a metric, © is the Heaviside step function,
and ¢ is a threshold distance.

It can be seen from (1), that if two points in the phase space are relatively
close, the corresponding element of the recurrence matrix R;; = 1, which would
be represented by a black dot on the RP.

Instead of analyzing RPs point-wise we concentrate our attention on recur-
rence domains, labeling each domain with a symbol, thus obtaining recurrence
plots of symbolic dynamics. The RP from symbols were successfully used in sev-
eral studies (see, for instance, [6], [18], and [4]). Here, we use recurrence symbolic
analysis (RSA) proposed in [11], this technique allows to obtain symbolic repre-
sentations of the signal from the RP, the latter being interpreted as a rewriting
grammar. The RP contains rewriting rules, which substitute large time indices
with smaller ones when two states, occurring at these times, are recurrent. These
rules can be summarized as follows:

17 ifi>jand Rjj =1
i—k U (2)
j%k} ifi>j>kand R;j =1, Ry =1 .

More detailed description of the method and examples can be found in [11,
12].

By examining (1) one can see that the resulting recurrence matrix and, thus,
symbolic sequence strongly depends on distance threshold parameter . Several



techniques for optimal ¢ estimation exist [22], most of which are empirical. RSA
aims to obtain an optimal value of ¢ from the data.

Our approach to optimal € estimate is based on the principle of maximal
entropy, which implies that the system spends equal amount of time in each re-
currence domain [11]. Thus, optimal € is chosen such that the entropy of symbolic
sequence is maximal. The entropy of the symbolic sequence is given by:

M(e)

H(e) = - Z prlogpr 3)
k+1
where py is the relative frequency of the symbol k, M (e) is the cardinality of
the alphabet. Here, we use h(e) = H(e)/M(e) in order to compensate for the
influence of the alphabet size. This entropy ratio allows us to determine the
optimal threshold distance as follows:

€* = arg max h(e) . (4)

€

2.2 Phase Space Reconstruction

A dynamical system is defined by an evolution law in a phase space. This space
is d-dimensional, where each dimension is a certain property of a system (for
instance, position, and velocity). Each point of the phase space correspond to a
possible state of the system. An evolution law, which is normally given by a set
of differential equations, defines system’s dynamics, shown as a trajectory in a
phase space.

In certain cases only discrete measurements of single observable are available,
in this situation a phase space should be reconstructed according to Takens’s the-
orem [27], which states that phase space presented with a d-dimensional manifold
can be mapped into 2d + 1-dimensional Euclidean space preserving dynamics of
the system. Several method of phase space reconstruction exist: method of delays
(MOD) [27], numerical derivatives [24] and others (see for instance [17]).

In this paper we propose a new method of phase space reconstruction based
on the time-frequency representation of the signal. A time-frequency representa-
tion (TFR) is a distribution of the power of the signal over time and frequency.
Here, the power in each frequency band contributes to a dimension of the recon-
structed phase space. This approach is well-adapted for non-stationary and, es-
pecially, for oscillatory data, allowing better detection of oscillatory components
rather than creating RPs point-wise from the signal. In this article we compare
performance of RSA with different reconstruction methods, MOD and three
different TFRs: spectrogram, reassigned spectrogram and continuous wavelet
transform.

Method of Delays. Assume, we have a time series which represents scalar
measurements of a system’s observable in discrete time:

xn =x(nAt), n=1,..., N, (5)



where At is measurement sampling time. Then reconstructed phase space is
given by:

Sn = [J?n, Tnt1y Tn42715 -« - xn+(m71)7] , n=1,...,N— (m - 1)7_ ) (6)

where m is the embedding dimension and 7 is the time delay. These parameters
play an important role in correct reconstruction and should be estimated cor-
rectly. Optimal time delay 7 should be chosen such that delay vectors from (6)
are sufficiently independent.

Several approaches to estimate this parameter exist. Amongst them, one
well-established technique is based on average mutual information [7,20], which
we have chosen to estimate the proper value of the time delay 7. Moreover,
the main attribute of appropriately chosen dimension m is that the original d-
dimensional manifold will be embedded into an m-dimensional space without
ambiguity, i.e., self-crossing and intersections. We apply the method of false
nearest neighbors [16,15], which permits to estimate the minimal embedding
dimension.

Time-Frequency Representation. Time-frequency representation of a signal
shows the signal’s energy distribution in time and frequency. In this paper we
analyze three different types of TFR: spectrogram, reassigned spectrogram and
continuous wavelet transform.

The spectrogram S”(t,w) of a signal x(t) is the square magnitude of its
short-time Fourier transform (STFT)

“+oo
Xh(t,w) = /x(T)h*(t—T)e—WdT : (7)

where h(t) is a smoothing window and * denotes the complex conjugate, i.e.,
Sh(t,w) = | XP(t,w)|*.

Spectrogram reassignment [3] is a method of decreasing the spreading of
the conventional spectrogram by moving its value S(¢,w) from original location
where it has been computed to the centroids of the energy distribution #,& (one
can think of such centroids as “centers of gravity” of the distribution). More
detailed information about the implementation of the method can be found
in [10].

The continuous wavelet transform (CWT) [1] is obtained by convolving the
signal with a set of functions 14, () obtained by translation and dilation of a
mother wavelet function v (t):

Ty(b.0) = 7= +/mx<t>wz; (50 e (5)

Then the squared magnitude of the CWT is called scalogram and is given by:
Wy(b.a) = [Ty(b.a) . 9)



In practice, the scale a can be mapped to a pseudo-frequency f and the dilation
b represents a time instance and hence the time-frequency distribution is given
by Ww (t, f)

Reassigned and conventional spectrograms and scalogram were obtained us-
ing toolboxes for MATLAB®6. The CWT was computed using analytical Morlet
wavelet, and a Hamming window with 80% overlap was chosen for the spectro-
gram. In all the methods the window length and scales locations were chosen
such as to achieve a frequency resolution of 0.3Hz for synthetic data and 1Hz for
experimental data.

2.3 Complexity Measure

To quantitatively measure the obtained symbolic sequences we propose to mea-
sure its complexity. We present here three different complexity measures. These
are the cardinality of the sequence and the number of distinct words obtained
from the sequence [13], where a word is a unique group of the same symbols. In
addition, we compute the well-known Lempel-Ziv (LZ) complexity [19], which
is related to the number of distinct substrings and the rate of their occurrence
along the symbolic sequence. All of the complexity measures have in common
the notion of complexity, that is the number of distinct elements required to
encode the symbolic string. The more complex the sequence is the more of such
elements are needed to present it without redundancy.

To demonstrate these measures we generated 100 artificial signals of two
kinds (see below) with random initial conditions and random noise.

2.4 Synthetic data

Transient Oscillations. The signal is a linear superposition of three signals,
which exhibit sequences of noisy transient oscillations at a specific frequency [28].
These frequencies are 1.0Hz, 2.25Hz and 6.3Hz, cf. Fig.1. The sampling frequency
is 50Hz and the signal has a duration of 70s. Figure 1 shows the three different
transient oscillations whose sum represents the signal under study.

Lorenz System. The solution of the chaotic Lorenz system [21, 11] exhibits two
wings which are approached in a unpredictable sequence. These wings represent
metastable signal states. Figure 2 shows the time series of the z-component of
the model.

2.5 Experimental data

We investigate electroencephalographic data (EEG) obtained during surgery un-
der general anaesthesia [26]. The EEG data under investigation has been cap-
tured at frontal electrodes 2 minutes before (pre-incision phase) and 2 minutes

5 They are openly available at https://github.com/mfedoten/reasspectro and
https://github.com/mfedoten/wavelets
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Fig. 1. Three signals whose superposition yield transient oscillations. Different frequen-
cies of each oscillating component is shown in different color: blue color corresponds to
1Hz, red — 2.25Hz and green — 6.3Hz. Here no experimental noise is added (high SNR).
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Fig. 2. Solution of the Lorenz system without noise.

after (post-incision phase) skin incision and lasts 30 seconds. The raw signal was
digitized at a rate of 128 Hz and digitally band-pass filtered between 1 Hz and
41 Hz using a 9th order Butterworth filter. The question in the corresponding
previous study [26] was whether it is possible to distinguish the pre-incision from
post-incision phase just on the basis of the captured EEG time series.

3 Results

3.1 Synthetic data

Time-Frequency Embedding. To illustrate the method, Fig. 3 shows three
different time-frequency representations of the transient oscillation signal. Spec-
trogram and reassignment spectrogram yield time-frequency intervals of high
power at very good accordance to the underlying dynamics, cf. Sect. 2.4. In con-
trast, wavelet analysis smears out upper frequencies as a consequence of their
intrinsic normalization of power. The symbolic sequence and the corresponding
recurrence plot (right-hand side of the panel) derived from the spectrogram fits
perfectly to the underlying dynamics. They exhibit three different symbols in the
symbolic sequence color-coded in blue, red and orange in Fig. 3(A) and alternate
in very good accordance to the three different transient oscillations. They are
also visible as three rectangles of different size in the symbolic recurrence plot.



Conversely, the reassignment spectrogram and wavelet representation yield two
recurrent signal features only not reflecting the underlying dynamics.
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I

Fig. 3. Results for the transient oscillation signal. (A) spectrogram; (B) reassigned
spectrogram; (C) continuous wavelet transform. On each subfigure, left: time-frequency
representation, right: RPs with corresponding symbolic sequences above them.

Typically experimental neurophysiological signals exhibit a less regular tem-
poral structure than given in the transient oscillations example. Solutions of the
Lorenz system exhibit chaotic behavior, that is rather unregular and exhibits
metastable oscillatory states. Since experimental EEG may exhibit chaotic be-
havior [9,8], the Lorenz signal is closer to neurophysiological data. Figure 4
shows TFR of the Lorenz signal without experimental noise. For the three time-
frequency representations, one can well identify visually the four signal states
I to IV marked in Fig.2. The color-coded symbolic sequences extracted from
the spectrogram (seen in Fig.4(A) on the right-hand side) identify correctly the
time windows of the signal states I to IV. The states I, IT and IV are well cap-
tured, whereas the short state III is not well identified. The result for reassigned
spectrogram is similar, whereas wavelet results are much worse.

Delay embedding. To illustrate the power of the method proposed, we com-
pare our results to recurrence analysis results utilizing delay embedding, cf.
Sect. 2.2. We consider the transient oscillations and the Lorenz signal, compute
the optimal delay embedding parameters and apply the recurrence analysis tech-
nique to gain the symbolic sequences and the recurrence plots. Figure 5 reveals
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Fig. 4. Results for the Lorenz system. (A) spectrogram; (B) reassigned spectrogram;
(C) continuous wavelet transform. On each subfigure, left: time-frequency representa-
tion, right: RPs with corresponding symbolic sequences above them.

that the delay embedding leads to a bad detection of the recurrence domains
in the transient oscillations compared to the time-frequency embedding. In the
Lorenz signal all states I-IV are captured in the symbolic sequence and visible
in the recurrence plot, however the detection is much worse than with time-
frequency embedding, cf. Fig. 4.

Complexity Measure. To quantify the intrinsic temporal structure, in ad-
dition we compute three complexity measures for each of the signals based on
the spectrograms and the delay embedding technique. Table 1 indicates that
transient oscillations have a higher complexity than the Lorenz signal. More-
over, the three complexity measures are similar in size for the time-frequency
embedding, whereas complexity measures of delay-embedded signals exhibit dra-
matic differences. It is important to note that the degree of complexity based on
the spectrogram is in the range of the number of recurrent states of the signals,
whereas the complexity values of delay-embedded signals well exceed the number
of recurrent states.

Since these results on single datasets do not allow to evaluate whether com-
plexity measures are well adapted to distinguish temporal structures, Fig. 6
gives the distribution of complexity measures for both artificial datasets. We
observe that all complexity measures show significantly different distributions.
Qualitatively, the largest difference between both signals is reflected in the LZ
complexity measure.
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Fig.5. Results obtained with method of delays. (A) The transient oscillations, re-
construction parameters: m = 5, 7 = 0.1 s; (B) the Lorenz system, reconstruction
parameters: m =3 and 7 = 0.18 s.

Table 1. Complexity measures of transient oscillations and Lorenz signal with spec-
trogram and delay embedding.

Complexity measure Transient oscillations Lorenz system

Spectrogram
Alphabet size 8 2
Nr. of words 12 11
Lempel-Ziv 13 10

Delay embedding

Alphabet size 20 2
Nr. of words 80 29
Lempel-Ziv 285 35

(A) S —— (B) S —— © S —
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Frequency
Frequency
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Fig. 6. Three complexity measure distributions for Lorenz system and transient oscil-
lations. (A) Alphabet size; (B) number of words; (C) Lempel-Ziv complexity. For each
complexity measure, both distributions are significantly different (Kolmogorov-Smirnov
test with p < 0.001).



3.2 EEG data

Finally, we study experimental EEG data. Figure 7 shows time-frequency plots
(spectrogram) with corresponding symbolic sequences for two patients before
and after incision during surgery. We observe activity in two frequency bands,
namely strong power in the d-band (1 — 5 Hz) and lower power in the a-range
(8 — 12 Hz). This finding is in good accordance to previous findings in this
EEG dataset [26]. The corresponding spectral power is transient in time in both
frequency bands, whose temporal structure is well captured by the recurrence
analysis as seen in the symbolic sequence.
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1 HIINEEIE 10 N 0 O O
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Fig. 7. Results for EEG signals obtained with spectrogram. Pre-incision is on the left
and post-incision is on the right. (A) Patient #1065; (B) Patient #1099.

In order to characterize the temporal structure, we compute the symbolic
sequences’ recurrence complexity, cf. Table 2. We observe that the complexity
values of the various complexity measures are very similar in pre- and post-
incision data and close between patients. Since the time periods of pre- and
post-incision data are captured several minutes apart and hence the correspond-
ing data are uncorrelated, their similarity of complexity measures is remarkable
pointing out to a constant degree of complexity in each patient. This is in line
with the different complexity measures in both patients indicating different com-
plexity measures.

4 Discussion

The present work shows that recurrence analysis can be employed on univariate
time series if, at first, the data is transformed to its time-frequency representa-
tion. This transform provides a multivariate time series whose number of dimen-
sions is equal to the number of frequencies considered. We show that the best
time-frequency representation for the synthetic time series studied is the spec-
trogram. The recurrence structures extracted can be represented by a symbolic
sequence whose symbolic complexity may serve as an indicator of the time series



Table 2. Complexity measures of EEG signals (spectrogram).

Complexity measure Pre-incision Post-incision

Patient #1065

Alphabet size 11 12
Nr. of words 25 26
Lempel-Ziv 29 27

Patient #1099

Alphabet size 16 11
Nr. of words 31 26
Lempel-Ziv 30 31

complexity. The application to experimental EEG data reveals small differences
in the symbolic complexities between two experimental conditions and larger
differences between subjects. This indicates that the symbolic complexity may
serve as a classifier to distinguish temporal structures in univariate time series.
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