
HAL Id: hal-01343592
https://hal.science/hal-01343592

Submitted on 8 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Consistency in 3D
Marc Shapiro, Masoud Saeida Ardekani, Gustavo Petri

To cite this version:
Marc Shapiro, Masoud Saeida Ardekani, Gustavo Petri. Consistency in 3D. [Research Report] RR-
8932, Institut National de la Recherche en Informatique et Automatique (Inria). 2016. �hal-01343592�

https://hal.science/hal-01343592
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
89

32
--

FR
+E

N
G

RESEARCH
REPORT
N° 8932
July 2016

Project-Team Regal

Consistency in 3D
Marc Shapiro, Masoud Saeida Ardekani, Gustavo Petri

RESEARCH CENTRE
PARIS

2, rue Simone Iff, CS 42112

75589 Paris Cédex 12

France

Consistency in 3D

Marc Shapiro∗, Masoud Saeida Ardekani†, Gustavo Petri‡

Project-Team Regal

Research Report n° 8932 — July 2016 — 19 pages

Abstract:
Comparisons of different consistency models often try to place them in a linear strong-to-
weak order. However this view is clearly inadequate, since it is well known, for instance,
that Snapshot Isolation and Serialisability are incomparable. In the interest of a better
understanding, we propose a new classification, along three dimensions, related to: a
total order of writes, a causal order of reads, and transactional composition of multiple
operations. A model may be stronger than another on one dimension and weaker on
another. We believe that this new classification scheme is both scientifically sound and
has good explicative value. The current paper presents the three-dimensional design space
intuitively.

Key-words: C.2.4 Distributed databases; D.1.3 Concurrent programming; D.2.4 Soft-
ware/Program Verification; E.1 Distributed data structures; Consistency models; Replic-
ated data; Structural invariants; Correctness of distributed systems.

∗ Sorbonne-Universités-UPMC-LIP6 & Inria Paris
† Purdue University, now at Samsung Research America
‡ IRIF, Université Paris Diderot

Cohérence en trois dimensions
Résumé : Les comparaisons entre modèles de la cohérence tentent sou-
vent de les classer dans un ordre linéaire, de faible à forte. Cette vue est
clairement inadéquate, puisque il est bien connu que, par exemple, les mo-
dèles Snapshot Isolation et Serialisability sont incomparables. Dans l’intérêt
d’une meilleure compréhension du domaine, nous proposons une nouvelle
classification, en trois dimensions : les garanties liées à un ordre total des
écritures ; celles liées à un ordre causal des lectures ; et celles liées à la com-
position transactionelle d’opérations multiples. Un modèle peut être plus
fort qu’un autre dans une dimension, et moins dans une autre. Nous pensons
que ce nouveau schéma de classification, à la fois est scientifiquement valide,
et a une bonne valeur explicative. Le présent rapport présente l’espace de
conception en trois dimensions de façon intuitive.

Mots-clés : C.2.4 Bases de données réparties; D.1.3 Programmation
parallèle; D.2.4 Vérification de programme et de logiciel; E.1 Structures de
données réparties; Modèles de cohérence; Données répliquées; Invariants de
structurels; Caractère correct de système réparti.

Consistency in 3D 3

1 Introduction

A distributed database maintains data scattered and replicated across nodes
separated by networks that are inherently slow and unreliable. In this con-
text, designers face an inherent trade-off between system cost and applic-
ation cost. In particular, the CAP theorem [13] shows that, when failures
can partition the network (P), a database can either be strongly consistent
(C) or available (A), but not both. Strong consistency masks parallelism
and failures from the application, at the cost of constant synchronisation,
which translates to high latency and even stalling when the network is down
(CP). A model with weaker consistency significantly improves availability,
performance and cost (AP), but increases the opportunities for subtle yet
potentially catastrophic application errors.

This trade-off has spurred a lot of creativity. A dizzying number of
consistency designs are available, as theoretical models, protocol designs,
and implemented systems. Note however that, among the many options, not
all are related to CAP.

In order to develop high-performance yet correct distributed applica-
tions, we need a better understanding, in particular how an application’s
needs relate to consistency. How does a particular application behave in a
particular consistency model? What are its pros and cons? This paper aims
to clarify this crowded space.

The strongest consistency model, called Strict Serialisability (SSER), has
three remarkable features:1 absence of concurrent operations, i.e., transac-
tions execute in a total order;this ordering is monotonic and respects caus-
ality; and the unit of interaction with the database, the transaction, is a
composition of operations. The thesis of this paper is that each of these
features aims to guarantee a different class of application invariants. The
mechanism associated with each feature has an inherent associated cost, re-
spectively synchronisation, transitivity, and grouping.

Other consistency models differ from SSER by providing the same three
features to a lesser degree, or even not at all. Relaxing a feature generally
lowers its system cost but weakens the class of guaranteed invariants, increas-
ing its cost to application programmers. Accordingly, we argue for classifying
models in a three-dimensional space, along the axes of total-order, visibility,
and composition. This insight is illustrated in Figure 1, and is fully detailed
in Table 5.

Whereas previous surveys [1, 2, 29] are comprehensive and detailed, our
focus is more pedagogical. Our three axes constitute a simplification. We do

1 We refer to Table 6 for a full list the consistency models discussed herein and the
primary reference for each.

RR n° 8932

Consistency in 3D 4

Figure 1: Some consistency models situated in the three dimensions

not claim to explain everything, but wish to help the reader situate a model
on a mental map, glossing over details when convenient.

This paper is structured as follows. After this introduction (Section 1),
Section 2 presents a generic system model. Then we define and discuss
the three axes in turn: Gen1 invariants and total order in Section 3, PO
invariants and visibility order in Section 4, EQ invariants and composition
in Section 5. Finally, Section 6 summarises the relations between the three
axes and concludes.

Inevitably, it is difficult to discuss one axis without referring to the oth-
ers. We ask the reader’s patience with such apparent circularities, which we
do our best to minimise.

2 System model

Our model and definitions are derived from previous work [9, 14, 25, 29]. The
system is composed of an unbounded set of sequential processes, uniquely
identified. We divide it into an application layer running above a consistency
layer. The application consists of objects stored in the database and of client
processes that call operations on objects and receive results in return. Clients
do not communicate directly, only via operations on shared data.

The consistency layer manages state and executes the message sending,
receiving and delivery events described hereafter. A consistency model con-
sists of a set of restrictions imposed on the ordering of events, in order to
guarantee a class of invariants that remains true in any execution of that
model. Ideally, we would like to ensure any invariant of a sequential execu-
tion.

To simplify the discussion, there will be no failures: a message sent is
eventually received, unaltered, by its destination process. We focus on safety
and do not consider liveness properties.

RR n° 8932

Consistency in 3D 5

(a) Operation u decomposed into indi-
visible call, return, generator u? and ef-
fector u!. Precondition upre is true at
the effector.

(b) The effectors of concurrent opera-
tions may execute in different orders in
the general case.

Figure 2: Operation model

2.1 Data

Server processes collectively implement the abstraction of a database or
persistent memory. The database consists of discrete data items of objects
x, y. The state of server i, noted σi, contains a copy or replica, noted xi, of
object x.2

A common object type is the register, which supports the read and write
operations, respectively returning and completely overwriting overwrites the
register’s content. The state of a register depends only on the last write.
However, our model is not restricted to registers. The application may store
object types of arbitrary complexity, for instance a set, a stack, a table, or
a tree, with their high-level operations (respectively, add and remove, push
and pop, insert row, or rebalance).

2.2 Operations

We decompose an operation into indivisible asynchronous events, as illus-
trated in Figure 2a (a specific consistency model may place restrictions on
their ordering).

The semantics of update operations is defined by a function:
F ∈ Op→ (State→ Val× (State→ State)) where Op is the set of opera-
tions, State the set of replica states, and Val the set of return values. Oper-
ationally, an update u starts as a call event, a message from client to origin
replica. Delivering this message triggers an initial computation at the ori-
gin, called the generator u?. The generator reads the state of the origin
without modifying it, then: (1) Computes a return value uret, sent back
to the client. When the client receives it, the update is visible to the client.

2 To simplify the model, we assume full replication: every replica has a copy of every
object.

RR n° 8932

Consistency in 3D 6

(2) Computes a state transformation, the effector u!. The effector is sent
to all replicas, including the origin itself. If and when a replica delivers the
effector, it applies its transformation to the replica’s local state, making the
update visible to the replica.

The effector is generated based on the origin state read by the generator;
we abstract this dependence with the precondition upre of the effector. The
generator can check the precondition at the origin but not at other replicas
[14].

An operation reads (generator) and writes (effector) the replicas of a
single object. As we shall see shortly, objects can be connected by invariants
and/or transactions.

The history of a client consists of a sequence of call (sending) followed
by return (delivery) events. The history of a server consists of a sequence of
generator (reading and sending) events and effector (delivery and side-effect)
events. The current state of a server can be identified with the sequence the
effectors it has delivered. In the general case, effectors of different updates
may be delivered in different orders, as illustrated in Figure 2b.

This model is very general. It abstracts away from any specific data
type (from registers to complex data types with high level operations), trans-
mission mode (state-based or operation-based), and concurrency semantics
(which will be encoded into the function definition). We model operations
that do not return by returning nil; we model queries that do not modify
state by the skip effector; we abstract arguments away by folding them into
the function definition.

The client may choose an arbitrary origin replica, not necessarily the
same for successive client operations. Therefore, client-side guarantees may
be weaker than those at the server [8, 27]. Conversely, we consider that the
server-side guarantees are at least as strong as the client-side ones.

2.3 Executions

We define an execution as a tuple ex = 〈R,E , so−→, ro−→, ext−−→〉 where: (i) R
is a set of replicas – which shall otherwise remain abstract. (ii) E is a set
of events, including calls, generators, effectors and returns. (iii) so−→ is a
relation among events of the same session [29], indicating the order in which
the client issued the operations; so−→ is our abstraction of the behavior of the
client. (iv) ro−→ is a family of orders – indexed by replica name – of events
that affect that replica. These events include: call, generator and return
events for any operation that has this replica as its origin, and effectors
of any operation that is delivered to the replica. We shall denote ro−→

ri
the

replica order of replica ri, and we shall overload the notation ro−→ to denote

RR n° 8932

Consistency in 3D 7

Baseline Semantic condition =⇒ Reference
Sequential Sufficient precondition Safe Gotsman et al. [14]

TOE Deterministic operations Same state Burckhardt et al. [9],
Terry et al. [28]

0 Unspecified convergence conditions EC Vogels [30]
0 Monotonic semi-lattice Monotonic SEC Baquero and Moura [5]
CC Commutative concurrent effectors SEC Shapiro et al. [25]
CC Stable effector precondition Gen1 Gotsman et al. [14]
SI Materialized conflict SI ∩ SER Fekete et al. [11]

0 = lowest point on all three axes. Sequential = sequential non-replicated system.

Table 1: Application assumptions (top) and robustness conditions (bottom).

as the set-theoretic union of the replica orders of each replica, formally the
relation

⋃
ri∈dom(

ro−→)

ro−→
ri

. (v) Finally, ext−−→ is an external order representing

the real-time (otherwise called wall-clock time) in which the events occurred;
we shall simply assume the existence of this order for some models, and it
shall otherwise remain opaque.

Provided with the definition of executions we obtain the derived defini-
tion of visibility of operations:

u
vis−→
ri

v ⇐⇒ u!
ro−→
ri
v?

vis−→ =
⋃

ri∈R
vis−→
ri

In turn, we obtain a definition the happens-before order:
hb−→ = (

so−→ ∪ vis−→)+, where we denote by a superscript + the set-theoretic
transitive closure of a binary relation. We speak of transitive visibility
if vis−→

∗
⊆ vis−→, and we speak of causal visibility if the visibility relation is

consistent w.r.t. the happens-before relation: u hb−→ v ⇒ u
vis−→ v.

2.4 How models relate to application semantics

Applications care about consistency models for the guarantees that they
provide. We say that model guarantees a certain class of invariants, if an
invariant of that class remains true in any execution of that model without
requiring additional instrumentation from the programmer.

Some guarantees refer to relations between replicas, for instance,
Identical State and Convergence. However, an application-observable in-
variant refers to the state that is observable for a client, e.g., single-object
statements such as x > 0 or multi-object statements such as x = y or
P (x) ⇐= Q(y). As we shall discuss in detail hereafter, some consistency
models guarantee some related classes of invariants.

Although it is convenient to think of the consistency and application
levels as independent, this is not entirely true. The correctness of the guar-
antees rests on two crucial assumptions about the application:

RR n° 8932

Consistency in 3D 8

1. A generator and an effector are functions, i.e., their result is determ-
inistic.

2. The application is sequentially correct, i.e., each operation (or, in the
transactional case, each transaction) in isolation maintains the applica-
tion invariant. This is the C condition of ACID, called “consistency” or
“correctness” in the database literature. Formally, for some invariant I,
∀σ ∈ State, u ∈ Op : I(σ)∧upre =⇒ I(σ •u!) for the single-operation
case, where we denote by σ • u! the state resulting from updating σ
with the effector u!.

A robustness condition is one by which an application, running above
a less-than-perfect consistency model, can compensate for its deficiencies
and support the same invariants as a stronger model. For instance, EC
(Eventual Consistency) requires that the application converges, even when
running above level zero on all axes (for this, see Convergent Data Types [5]
or CRDTs [25]).

Fekete et al. show how the application can emulate Serialisability (SER)
above Snapshot Isolation (SI) by applying some simple programming rules
[11, Section 5.1].

Gotsman et al. [14] discuss under which conditions concurrent execution
can maintain arbitrary application invariants (class Gen1 hereafter). They
demonstrate (under certain conditions) that, if all effector preconditions upre
are stable under all concurrent updates v!, then the invariant remains true,
no matter what the order of delivery of effectors.

3 Gen1/Total Order Axis

This section focuses on guaranteeing invariants by restricting concurrency
as summarised in Table 2. This axis orders the different consistency proper-
ties according to which events must be totally-ordered with respect to each
other. Here we consider operations on a single object (the other two axes
consider multiple objects). Let us now consider the different protocols ac-
cording to the ordering of events that they impose on the operations to the
object of interest (ignoring operations on other objects, which may proceed
in parallel).

Unless indicated otherwise, we assume the Monotonic Client property,
which is the conjunction of the Monotonic Reads guarantee: given two op-
erations related by the session order v so−→ w, if the former “views” a third
operation u (i.e., u vis−→ v) then so does the latter (u vis−→ w); and the Read-
My-Writes guarantee: if two operations are related by the session order
u

so−→ v, then so are they by the visibility order u vis−→ v.

RR n° 8932

Consistency in 3D 9

Level Guarantees Other axes Examples
External visibility SSER, LINTOG=TOE Gen1 Transitive visibility SER
External visibility SSI
Causal visibility PSIGapless TOE No lost updates,

Identical State Transitive visibility NMSI
Transitive visibility LWWCapricious TOE register =⇒ Identical State Non-monotonic Bayou
Monotonic visibility RC0 = Concurrent Blind1 EC

Table 2: Total-order axis. The double line marks the “CAP boundary.”

3.1 Same total order for generators and effectors
(TOG=TOE)

The first class of models we consider are those for which there exists a Total
Order relating all Effectors and Generators (TOG=TOE), let us denote this
(existentially quantified) order with the arrow toeg−−→.3 These are the strongest
models in the total-order axis. Evidently, there are a number of constraints
that are required for toeg−−→: 1. Generators and effectors are uninterrupted by
other events in the order (therefore the sequences u?

toeg−−→ v?
toeg−−→ u! and

u?
toeg−−→ v!

toeg−−→ u! are disallowed). 2. The visibility relation is consistent
w.r.t. the total order, meaning that each generator sees exactly the effectors
that precede it in this order (u toeg−−→ v =⇒ u

vis−→ v). Table 2 presents in the
cell at the first row and last column protocols that fall under this category
in the total order axis.

Importantly, the existence of such an order implies that the Visibility
relation, restricted to the object, is transitive since each generator must see
all the effectors before it, and the effectors of an operation necessarily follow
its generator. On the other hand, causality is not guaranteed unless we add
the condition that the total order respects the client order ((so−→ ∪ toeg−−→)+

is irreflexive). By adding this additional constraint we require the Visibility
relation to be causal for this object.

3.2 TOG=TOE and Gen1 Invariants.

At this strongest point in this axis, we consider generic (arbitrary) single-
item invariants, noted hereafter Gen1. For instance, a banking application

3In the interest of readability and space, we shall present some definitions intuitively
instead of providing precise mathematical definitions. Their mathematical interpretation
is generally self-evident.

RR n° 8932

Consistency in 3D 10

may require that the balance of accounts be non-negative: bal ≥ 0. Another
example: an object G that represents a graph, with the invariant that the
graph forms a tree.

Recall from Section 2.4 that a sequential program enforces its invariants
assuming the effector-precondition upre, which may be verified locally by
the generator. In the bank account example, credit(amt)! and debit(amt)! re-
spectively add or subtract amt to or from the local balance bali. To maintain
invariant bal ≥ 0, the sequential preconditions are creditpre = amt ≥ 0 and
debitpre = bal ≥ amt ≥ 0 respectively. However, under unbounded concur-
rency there exists no safe precondition that can be evaluated locally at the
origin replicas; intuitively, enforcing this invariant requires to totally order
at least some operations.

In the case of protocols respecting TOG=TOE, and assuming the system
respects the ordering of operations issued by the client (the session order:
so−→), any invariant that is correct for a shared memory implementation of the
object – where we interpret the clients as being processes, and the database
as being the shared memory – will also be respected in this case. We posit
that anything provable using, for instance, the Owiki-Gries [21] logic under
the shared-memory interpretation, is respected in such a model.

3.3 Total Order of Effectors (TOE): Capricious vs. Gapless

Since generators only read state without changing it, it is tempting to remove
them from the total order, therefore allowing concurrency between reads and
writes. We shall denote this weaker existential order as toe−−→. This introduces
the possibility of anomalies such as write-skew [7].

The order toe−−→ may be Capricious: meaning that servers assign sequence
numbers independently from one another. While effectors are totally ordered
(i.e., each effector has a unique place in the order), they may be received
in a non-increasing sequence. This conflicts with the monotonic-client re-
quirement; as a consequence, updates might be lost, if an effector has been
delivered at a replica while another effector ordered lower in toe−−→ is received
at a later point. This approach is used, for instance, in the Last-Writer Wins
(LWW) protocol.

Alternatively, toe−−→ can be Gapless: in this case replicas must synchronise
to guarantee that the effectors are given a slot in the total order in a strictly
monotonic fashion, and therefore replicas can buffer effectors until all prior
updates in toe−−→ have been delivered. Here lies the “CAP Line:” Capricious
TOE is Available even when the network is Partitioned, whereas Gapless
TOE (and of course gapless TOG=TOE) is not Available when Partitions
occur.

RR n° 8932

Consistency in 3D 11

Strictly speaking, a protocol could be both Capricious and TOG=TOE;
however this combination is not very useful; therefore, to simplify the
presentation, we order TOG=TOE above Gapless TOE.

3.4 TOE and Causality Based Invariants

In terms of application guarantees provided by protocols satisfying TOE
guarantees we cannot generally assume that Gen1 invariants will be satisfied.
On the other hand, under Causal Visibility, Rely-Guarantee based techniques
can be used [14].

As it is the case with TOG=TOE models, the existence of a toe−−→ order
implies that the visibility relation is transitive per-object. If we additionally
require that toe−−→ respects the client order (so−→) we can conclude that visib-
ility is causal per-object. An important distinction between capricious and
gapless toe−−→ models is that in the latter, any two replicas that have received
the same updates have the exact same state. In contrast, capricious models
cannot guarantee the same-state property.

3.5 Concurrent Effectors

At the weakest end of the total order axis, the protocol “Concurrent effectors”
in Table 2 does not require any total ordering of effectors and/or generators.

Consider a register, with an invariant that refers only to the current
state: e.g., register z must contain an odd number of “1” bits. To maintain
it, the order and history of updates is immaterial, and it suffices that each
update is individually safe. We shall denote these invariants that are blind
to the environment and on a single object (1), Blind1 in Table 2.

4 PO/Visibility Axis

The Visibility dimension (Table 3) constitutes our second axis. It aims to
guarantee invariants that require control of which effectors are visible, in
which order, to generators. Whereas the first axis concerned single-object
guarantees, this one connects multiple updates, system-wide. Whereas the
first axis is concerned mostly about writes (effectors), this one is mostly
about reads (generators). However, they are not totally independent.

RR n° 8932

Consistency in 3D 12

4.1 PO-type invariants

The PO-type invariants discussed in this section abstract the concept of
a partial order. Conventionally we will write them as L ≥ R and refer
to the two terms as left- and right-hand-side, LHS and RHS, respectively.
The prime example is program order, where each process proceeds through
statements S1;S2; . . . ;Sn, left to right. This may be re-written (abusing
notation somewhat) as S1 ⇐= S2 ⇐= . . . ⇐= Sn, i.e., executing Si
implies that Si−1 has executed. Similarly, write-read dependences, where v?
reads the result of u!, can be summarised as u! ⇐= v? and message delivery
as u? ⇐= v!.

Other PO-type invariants are traditional data invariants, such as “em-
ployee’s salary must be less than his manager’s”, stock maintenance [6], or
referential integrity (object x allocated ⇐= y points to x).

Even with unbounded concurrency, it is safe to update the objects involved
in a PO-type invariant, by first increasing the LHS by some amount c, and
later increasing the RHS by an amount c′ ≤ c. More generally, it is always
safe to strengthen the invariant, and later weaken it assuming that the prior
strengthening has been applied. This is known as the Demarcation Protocol
[6] or the safe-publication idiom [1]. As a special case, c′ can be null, i.e., it
is safe to unilaterally increase the LHS.

We will consider different versions of the demarcation protocol according
to the visibility guarantees enforced by the underlying model (as shown in
Table 3). For instance, for a system enforcing causal visibility, we can operate
under the causal demarcation protocol if one client does the strengthening
of the invariant and notifies another client of this fact by writing on a flag.
When the second client sees the effects of the update on the flag, by causality
we can assume that the invariant can be safely weakened according to the
prior strengthening on the other operation. A similar arguments can be
made for transitive demarcation.

The above requires that updates become visible to other replicas in the
same order. We discuss such protocols in the next section.

At the weakest level of the Visibility axis, labeled “Rollbacks” in Table 3,
there is no required order between reads. A client could observe the effects
of some update u, and later observe a state where u has not occurred. This
violates the so-called Monotonic-Reads session guarantee [27]. Similarly, a
client might update an object, and later observe a state of the object before
the update is applied. This violates Read-My-Writes [27].

Few systems are at Rollback level; most models assume what we call
the Monotonic Client level, in which the client state is monotonic, ensuring
both Monotonic Reads and Read-My-Writes (as defined in Section 3). In
fact, client monotonicity must appear so obvious that many authors do not

RR n° 8932

Consistency in 3D 13

Level Guarantees Other axes Example
External external demarcation SSER, LIN, SSI

TOE PSITrans. Vis. + Client Order
= Causal Visibility causal demarcation not TOE Causal HAT, CC

TOE SER, NMSIMonotonic + WR dependence
= Transitive Visibility transitive demarcation not TOE

MR + RMW = Monotonic Client client progress
0 = Rollbacks Bayou

MR = Monotonic Reads. RMW = Read-My-Writes. WR = Write-Read dependency. Client
Order conjoins all these relations with Write-Write dependencies [29].

Table 3: Visibility axis

even state this assumption, e.g., Gray and Reuter [15]. We will follow the
common practice of assuming the Monotonic Client guarantee in this paper,
unless explicitly mentioned. Frigo [12] argues that non-monotonic models
are “not reasonable,” but some systems deliberately eschew these guarantees
for the benefit of responsiveness [28].

The next-stronger level, Transitive Visibility, simply requires the visibil-
ity relation to be transitive. Given operations u and v, if the (generator of)
update v reads the result of (the effector of) update u, then all clients should
observe the results of u before those of v. Formally vis−→

∗
⊆ vis−→. Note that

Total Order of Effectors implies Transitive Visibility, but not vice-versa. Not
all models have the Transitive Visibility property. For instance, SER has it,
but not EC nor PRAM. To simplify the presentation, hereafter Transitive
Visibility also includes Monotonic Client.

The next level adds Client Order (Monotonic Writes and Writes Follow
Reads [27]), resulting in Causal Visibility (also called Causal Consistency
or Causal Memory [3]). Formally this requires that visibility be consistent
with the session order: hb−→⊆ vis−→. Transitive and Causal Visibility are partial
orders. They can be further strengthened by requiring the existence of a total
order that is causal (hence also transitive); this point meets the TOG=TOE
point of the Total Order axis of Section 3.

Causal visibility is strictly stronger than transitive visibility, and is not
supported by all models. As a case in point, SER does not require causal
visibility: if a client calls operations u and then v, and u and v are on
different object, a server (even the origin server) may execute v before u.4

The highest point in the Visibility axis is External Consistency. This
requires that all operations are totally ordered (finding a toeg−−→ as in Sec-
tion 3), and that this order coincides with the external (real-time) order:

4 Here we argue about operations, while serialisability is defined for transactions. The
analogous argument is obvious assuming that the transactions operate on different object
sets.

RR n° 8932

Consistency in 3D 14

ext−−→ ⊆ toeg−−→. In this way, updates can be related with external events, and
the causality between internal and external events is preserved.

Causal Visibility is the conjunction of the four so-called session guar-
antees [8]: formally, all sixteen combinations are possible. Pragmatically,
however, we find that the linear presentation of Table 3 captures the import-
ant practical properties.

5 EQ/Composition Axis

Our third axis aims to guarantee some form of coupling between separate
objects. It provides mechanisms to: (i) compose together multiple updates
and multiple objects dynamically, and (ii) to close the guarantees provided
by the Total Order and/or Visibility axes over the whole composition.

5.1 EQ-type and Gen* invariants

An EQ-type invariant is one that maintains an equivalence relation between
objects. EQ requires to always group together updates to both objects; we
call this All-Or-Nothing Effectors; intuitively, either all the updates of the
composition are visible, or none is. For instance, a symmetric friendship
graph x.friendOf(y) ⇐⇒ y.friendOf(x), or disjoint union to a constant set,
A∩B = ∅∧A∪B = C. Notice the similarity between EQ and Blind1: neither
depends on previous state, only on the current transaction (resp. operation).
As it is the case for Blind1 invariants, in order to verify EQ invariants, no
ordering assumptions are required from the environment, and it suffices to
show that each individual transaction preserves the invariant if it was initially
valid.

Consider now a generic sequential invariant over multiple objects, noted
Gen*. Since multiple objects are involved, this likely requires All-Or-Nothing
Effectors. Furthermore, the generators’ reads will need to be mutually con-
sistent, and served from a consistent snapshot. Finally, Gen* may require a
total order, by the same reasoning as for Gen1 (recall Sections 3.2 and 3.3).
The Transactional Composition axis serves to enforce these requirements.

Transactions support “ad-hoc” composition. For instance, when buying a
ticket online, ensuring that the buyer has sufficient balance and that a ticket
is available (ad-hoc Gen*), and ensuring that the money is both debited from
the buyer’s account and credited to the seller’s (ad-hoc EQ).

RR n° 8932

Consistency in 3D 15

Level Guarantees Other axes

All-or-Nothing + Snapshot EQ + Gen* TOG=TOE
EQ

All-or-Nothing Effectors
0 = Single Operation

Table 4: Composition axis

5.2 (Transactional) Composition axis

For this axis we add begin and end markers to the repertoire of events uttered
by a client, grouping all the intervening calls and returns into one transaction.
Depending on the model, transactions may be associated with the properties
“All-Or-Nothing Effectors” and “Snapshot.” Table 4 shows the composition
axis.

In many implementations, a server may execute a transaction speculat-
ively, and either commit or abort at the end [23]. An aborted transaction has
no effect and does not return anything. Our model considers only committed
transactions.

All-Or-Nothing Effectors means that, if some effector of transaction T1
is visible to transaction T2, then all of T1’s effectors are visible to T2. (This
is the A in ACID, sometimes called Atomic.) TOE guarantees extend to all
effectors of a transaction: if u! and v! are part of T1, w! and t! are of part of
T2, and u! < w! in the TOE, then v! < w! and u! < t!. We may write simply
T1! < T2!.

Typically, all the generators of the transaction read from a same set of
effectors, called its snapshot. Generator order guarantees, if any, extend to
the whole snapshot, i.e., (i) Monotonic-Client, resp. Transitive, resp. Causal
Visibility: the snapshot (the set of effectors read from) is closed under the
visibility order. (ii) TOG=TOE: the generators are adjacent in the total
order.

5.3 Composition: Discussion

Transactional protocols generally assume All-or-Nothing but differ in their
snapshot guarantees. For instance, SER, NMSI or SI require Transitive
Visibility but do not enforce client order, i.e., Monotonic Writes [15]. Indeed,
these models allows a client to execute T1; T2 and the system to serialise as
T2; T1 if their read-write sets are disjoint. Strong Snapshot Isolation (SSI)
does ensure client order, hence Causal Visibility, as it mandates to choose
a snapshot greater than any commit point when a transaction starts. The
same is true of a protocol that requires external causality, such as Strict
Serialisability (SSER).

RR n° 8932

Consistency in 3D 16

Total Order Composition Visibility
Rollbacks Monotonic Transitive Causal External

All-or-Nothing + Snapshot SER SSER
All-or-Nothing EffectorsTOG=TOE

Single Operation SC LIN
All-or-Nothing + Snapshot NMSI PSI SSI
All-or-Nothing EffectorsGapless TOE

Single Operation
All-or-Nothing + Snapshot Bayou ∅
All-or-Nothing Effectors ∅Capricious TOE

Single Operation LWW ∅
All-or-Nothing + Snapshot Causal HAT ∅
All-or-Nothing Effectors RC ∅Concurrent Ops

Single Operation EC PRAM CC ∅

Table 5: Matrix of features and consistency models

In addition to the features discussed so far, snapshots may be partially
ordered or totally ordered. For instance, NMSI’s snapshots are partially
ordered, whereas SI, SSI, and SER snapshots are totally ordered. This rep-
resents the main difference between SI and NMSI.

As a simplification, our linear axis does not differentiate between
partially- and totally-ordered snapshots. Unfortunately and consequently,
SI is missing from our summary table (Table 5) as it would occupy the same
position as NMSI.

6 Discussion and conclusion

Our system model (Section 2) is very general. The separation between gen-
erators and effectors allows for internal parallelism; if unusual, it reflects
practical implementations [23]. Our total order axis (Section 3), classifies
the degree of concurrency between operations to a single object, including
only effectors or also generators, and accounts for both available (capricious)
and consensus-based (gapless) approaches. The other two axes introduce
mechanisms that relate multiple objects; however, they serve different pur-
poses and have different costs. Visibility order (Section 4) relates reads to
writes and involves maintaining a system-wide transitive closure, and aims to
support PO-type invariants. Transactions (composition, Section 5) serves to
enforce ad-hoc EQ and Gen*; a transaction is a one-off grouping, requested
by the application.

In order to be intuitively useful, our classification simplifies the design
space into three approximately linear axes (which we relate to application
invariants). Obviously, this cannot account for the full complexity of the
relations between models. We acknowledge the deficiencies of such a simpli-
fication. For instance, we flatten the visibility axis, and abusively assume
that all TOG=TOE models must be gapless. We defend this simplification

RR n° 8932

Consistency in 3D 17

Acronym Full name Type Total-Order Visibility Composition Ref.
Bayou Bayou system Capricious TOE Rollbacks All-or-Nothing + Snapshot Terry et al. [28]
CC Causal Consistency model Concurrent Ops Causal Single Operation Ahamad et al. [3]

Causal HAT Causal Highly-Av. Txn. model Concurrent Ops Causal All-or-Nothing + Snapshot Bailis et al. [4]
EC Eventual Consistency model Concurrent Ops Rollbacks Single Operation Vogels [30]
LIN Linearisability model TOG=TOE External Single Operation Herlihy and Wing [17]
LWW Last-Writer Wins protocol Capricious TOE Monotonic Single Operation Johnson and Thomas [18]
NMSI Non-Monotonic SI model Gapless TOE Transitive All-or-Nothing + Snapshot Saeida Ardekani et al. [24]
PRAM Pipeline RAM model Concurrent Ops Monotonic Single Operation Lipton and Sandberg [20]
PSI Parallel SI model Gapless TOE Causal All-or-Nothing + Snapshot Sovran et al. [26]
RC Read Committed model Concurrent Ops Monotonic All-or-Nothing Effectors Berenson et al. [7]
SC Sequential Consistency model TOG=TOE Causal Single Operation Lamport [19]
SER Serialisability model TOG=TOE Transitive All-or-Nothing + Snapshot Gray and Reuter [15]
SI Snapshot Isolation model Gapless TOE Transitive All-or-Nothing + Snapshot Berenson et al. [7]

SSER Strict Serialisability model TOG=TOE External All-or-Nothing + Snapshot Papadimitriou [22]
SSI Strong Snapshot Isolation model Gapless TOE External All-or-Nothing + Snapshot Daudjee and Salem [10]

Table 6: Cross-reference of models, protocols and systems

as practically relevant, even if not formally justified. We also ignored hybrid
models, such as Update Serialisability [16].

We focus on client-monotonic models, as they are the most intuitive,
and because monotonicity is trivial to implement. While the specifications
of SER, NMSI, or RC do not require Monotonic visibility, all the actual
implementations that we know of do provide it.

Table 5 positions some major consistency models within the three axes.
Compare for instance two prominent strong consistency models: SSER and
LIN. While LIN considers single operations and single objects, SSER is a
transactional model requiring All-or-Nothing and Snapshot. Also notice how
the visibility axis differentiates SSER from SER, and NMSI from PSI.

While our results are preliminary, we believe that this classification sheds
light on the crowded space of distributed consistency guarantees, towards a
better understanding of the application invariants enforced by each of them.
We intend, in further work, to formalize our definitions and prove some
interesting meta-properties. This work aims to be an step towards a rigorous
and systematic understanding of distributed database implementations and
their applications.

References
[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A

tutorial. Computer, 29(12):66–76, December 1996. doi: 10.1109/2.546611. URL
http://dx.doi.org/10.1109/2.546611.

[2] Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Implementa-
tions for Distributed Transactions. PhD thesis, Mass. Institute of Technology, Cam-
bridge, MA, USA, March 1999. URL http://pmg.csail.mit.edu/pubs/adya99__weak_
consis-abstract.html.

[3] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W.
Hutto. Causal memory: definitions, implementation, and programming. Dis-
tributed Computing, 9(1):37–49, March 1995. doi: 10.1007/BF01784241. URL
http://dx.doi.org/10.1007/BF01784241.

RR n° 8932

http://dx.doi.org/10.1109/2.546611
http://pmg.csail.mit.edu/pubs/adya99__weak_consis-abstract.html
http://pmg.csail.mit.edu/pubs/adya99__weak_consis-abstract.html
http://dx.doi.org/10.1007/BF01784241

Consistency in 3D 18

[4] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and
Ion Stoica. Highly available transactions: Virtues and limitations. Proc. VLDB
Endow., 7(3):181–192, November 2013. doi: 10.14778/2732232.2732237. URL http:
//dx.doi.org/10.14778/2732232.2732237.

[5] Carlos Baquero and Francisco Moura. Using structural characteristics for autonomous
operation. Operating Systems Review, 33(4):90–96, 1999. ISSN 0163-5980. doi:
http://doi.acm.org/10.1145/334598.334614.

[6] Daniel Barbará-Millá and Hector Garcia-Molina. The demarcation protocol: A
technique for maintaining constraints in distributed database systems. The VLDB
Journal, The Int. J. on Very Large Data Bases, 3(3):325–353, July 1994. doi:
10.1007/BF01232643. URL http://dx.doi.org/10.1007/BF01232643.

[7] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. A critique of ANSI SQL isolation levels. SIGMOD Rec., 24(2):1–10, May
1995. ISSN 0163-5808. doi: 10.1145/568271.223785. URL http://doi.acm.org/10.
1145/568271.223785.

[8] J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. From session causality to causal
consistency. In Conf. on Parallel, Distributed and Network-Based Processing (PDP),
pages 152–158, A Coruña, Spain, February 2004. Euromicro. doi: 10.1109/EMPDP.
2004.x.

[9] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Rep-
licated data types: Specification, verification, optimality. In Symp. on Principles
of Prog. Lang. (POPL), pages 271–284, San Diego, CA, USA, January 2014. doi:
10.1145/2535838.2535848. URL http://doi.acm.org/10.1145/2535838.2535848.

[10] Khuzaima Daudjee and Kenneth Salem. Lazy database replication with snapshot
isolation. In Int. Conf. on Very Large Data Bases (VLDB), pages 715–726, 2006.

[11] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis
Shasha. Making snapshot isolation serializable. Trans. on Database Systems, 30
(2):492–528, June 2005. doi: http://doi.acm.org/10.1145/1071610.1071615.

[12] Matteo Frigo. The weakest reasonable memory model. PhD thesis, Massachussets
Institute of Technology, Cambridge, MA, USA, October 1997.

[13] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002. ISSN
0163-5700. doi: http://doi.acm.org/10.1145/564585.564601.

[14] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc
Shapiro. ’Cause I’m strong enough: Reasoning about consistency choices in dis-
tributed systems. In Symp. on Principles of Prog. Lang. (POPL), pages 371–
384, St. Petersburg, FL, USA, 2016. doi: 10.1145/2837614.2837625. URL http:
//lip6.fr/Marc.Shapiro/papers/CISE-POPL-2016.pdf.

[15] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, San Francisco CA, USA, 1993. ISBN 1-55860-190-2.

[16] R C Hansdah and Lalit M. Patnaik. Update serializability in locking. In Giorgio
Ausiello and Paolo Atzeni, editors, Int. Conf. on Database Theory, pages 171–185,
1986.

[17] Maurice Herlihy and Jeannette Wing. Linearizability: a correcteness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems, 12
(3):463–492, July 1990. URL http://doi.acm.org/10.1145/78969.78972.

RR n° 8932

http://dx.doi.org/10.14778/2732232.2732237
http://dx.doi.org/10.14778/2732232.2732237
http://dx.doi.org/10.1007/BF01232643
http://doi.acm.org/10.1145/568271.223785
http://doi.acm.org/10.1145/568271.223785
http://doi.acm.org/10.1145/2535838.2535848
http://lip6.fr/Marc.Shapiro/papers/CISE-POPL-2016.pdf
http://lip6.fr/Marc.Shapiro/papers/CISE-POPL-2016.pdf
http://doi.acm.org/10.1145/78969.78972

Consistency in 3D 19

[18] Paul R. Johnson and Robert H. Thomas. The maintenance of duplicate databases.
Internet Request for Comments RFC 677, Information Sciences Institute, January
1976. URL http://www.rfc-editor.org/rfc.html.

[19] Leslie Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. on Computers, C-28(9):690–691, September
1979.

[20] R J Lipton and J S Sandberg. PRAM: A scalable shared memory. Technical Report
CS-TR-180-88, Princeton University, Department of Computer Science, 1988.

[21] Susan Owicki and David Gries. Verifying properties of parallel programs: an ax-
iomatic approach. Communications of the ACM, 19(5):279–285, May 1976. doi:
http://doi.acm.org/10.1145/360051.360224.

[22] Christos H. Papadimitriou. The serializability of concurrent database updates.
Journal of the ACM, 26(4):631–653, October 1979.

[23] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine approach. J.
of Dist. and Parallel Databases and Technology, 14(1):71–98, 2003.

[24] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-Monotonic Snapshot
Isolation: scalable and strong consistency for geo-replicated transactional systems.
In Symp. on Reliable Dist. Sys. (SRDS), pages 163–172, Braga, Portugal, October
2013. IEEE Comp. Society. doi: 10.1109/SRDS.2013.25. URL http://lip6.fr/Marc.
Shapiro/papers/NMSI-SRDS-2013.pdf.

[25] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free
replicated data types. In Xavier Défago, Franck Petit, and V. Villain, editors, Int.
Symp. on Stabilization, Safety, and Security of Distributed Systems (SSS), volume
6976 of Lecture Notes in Comp. Sc., pages 386–400, Grenoble, France, October 2011.
Springer-Verlag. doi: 10.1007/978-3-642-24550-3_29. URL http://www.springerlink.
com/content/3rg39l2287330370/.

[26] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional
storage for geo-replicated systems. In Symp. on Op. Sys. Principles (SOSP), pages
385–400, Cascais, Portugal, October 2011. Assoc. for Computing Machinery. doi:
http://doi.acm.org/10.1145/2043556.2043592.

[27] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M.
Theimer, and Brent B. Welch. Session guarantees for weakly consistent replicated
data. In Int. Conf. on Para. and Dist. Info. Sys. (PDIS), pages 140–149, Austin,
Texas, USA, September 1994.

[28] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J.
Spreitzer, and Carl H. Hauser. Managing update conflicts in Bayou, a weakly
connected replicated storage system. In Symp. on Op. Sys. Principles (SOSP),
pages 172–182, Copper Mountain, CO, USA, December 1995. ACM SIGOPS, ACM
Press. URL http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/
p172-terry.pdf.

[29] Paolo Viotti and Marko Vukolić. Consistency in non-transactional distributed stor-
age systems. ArXiv e-print 1512.00168, arXiv.org, December 2015. Accepted for
publication in ACM Computing Surveys.

[30] Werner Vogels. Eventually consistent. ACM Queue, 6(6):14–19, October 2008. doi:
http://doi.acm.org/10.1145/1466443.x.

RR n° 8932

http://www.rfc-editor.org/rfc.html
http://lip6.fr/Marc.Shapiro/papers/NMSI-SRDS-2013.pdf
http://lip6.fr/Marc.Shapiro/papers/NMSI-SRDS-2013.pdf
http://www.springerlink.com/content/3rg39l2287330370/
http://www.springerlink.com/content/3rg39l2287330370/
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf

RESEARCH CENTRE
PARIS

2, rue Simone Iff, CS 42112

75589 Paris Cédex 12

France

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	System model
	Data
	Operations
	Executions
	How models relate to application semantics

	Gen1/Total Order Axis
	Same total order for generators and effectors (TOG=TOE)
	TOG=TOE and Gen1 Invariants.
	Total Order of Effectors (TOE): Capricious vs. Gapless
	TOE and Causality Based Invariants
	Concurrent Effectors

	PO/Visibility Axis
	PO-type invariants

	EQ/Composition Axis
	EQ-type and Gen* invariants
	(Transactional) Composition axis
	Composition: Discussion

	Discussion and conclusion

