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Universal large deviations for Kac polynomials

Raphaël Butez∗, Ofer Zeitouni†

July 8, 2016

Abstract

We prove the universality of the large deviations principle for the empirical mea-
sures of zeros of random polynomials whose coefficients are i.i.d. random variables
possessing a density with respect to the Lebesgue measure on C, R or R+, under the
assumption that the density does not vanish too fast at zero and decays at least as
exp −|x|ρ, ρ > 0, at infinity.

1 Introduction and statement of the main result

Consider random polynomials of the form:

Pn(z) =
n
∑

k=0

akzk = an

n
∏

i=1

(z − zi) (1)

where a0, . . . , an are i.i.d. random variables and z1, . . . , zn are the complex zeros of Pn.
(Such random polynomials are often referred to as Kac polynomials.) There is a rich
literature about the behavior of the zeros of Pn and we refer to [TV15] for a nice recent
review of the subject. An important aspect of the theory is universality. For example,
introduce the empirical measure of zeros:

µn :=
1

n

n
∑

k=1

δzk
.

Then, Ibragimov and Zaporozhets in [IZ13] showed that (µn)n∈N converges weakly to the
νS1, the uniform measure on the unit circle, if and only if E(log(1 + |a0|)) < ∞; that
is, the limit µn is (modulus technical conditions) universal. Other universal properties
include rescaled limits for µn, see [IZ97], correlation functions for the point process of
zeros [TV15], and more.

Our interest in this note is in large deviations for the sequence µn in the space M1(C)
equipped with the topology of weak convergence, which makes it into a Polish space.
In case the coefficients (ai) are i.i.d. standard complex random variables, Zeitouni and
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Zelditch1 proved in [ZZ10] that the sequence of empirical measures of zeros (which we
denote by µC

n for this model) satisfies the large deviations principle (LDP) in M1(C) with
speed n2 and good rate function IC defined by

IC(µ) = −

∫∫ (

log |z − w| −
1

2
log(1 + |z|2) −

1

2
log(1 + |w|2)

)

dµ(z)dµ(w)

+ sup
z∈S1

∫

(

log |z − w|2 − log(1 + |w|2)
)

dµ(w).

When

∫

log(1 + |z|2)dµ(z) is finite, it simplifies to:

IC(µ) = −

∫∫

log |z − w|dµ(z)dµ(w) + sup
z∈S1

∫

log |z − w|2dµ(w).

This has been extended by Butez [But15] to the case of real-valued i.i.d. standard Gaus-
sians (ai): the empirical measure of zeros, denoted µR

n for that model, satisfies the LDP
in M1(C) with speed n2 and good rate function IR defined by

IR(µ) =

{

1
2IC(µ) if µ is invariant under z 7→ z̄

∞ otherwise.

Finally, when the coefficients (ai) are i.i.d. standard exponential random variables, Ghosh
and Zeitouni proved in [GZ16] that the sequence of empirical measures of zeros, denoted
by µR+

n , satisfies the LDP in M1(C) with speed n2 and good rate function IR+ defined by:

IR+(µ) =

{

1
2IC(µ) if µ ∈ P̄

∞ otherwise.

where P is the set of empirical measures of zeros of polynomials with positive coefficients
and P̄ is its closure for the weak topology. (An explicit description of P is provided in
[BE15].)

Apart for the models described above, to our knowledge no other LDPs for the empiri-
cal measure of zeros of Kac polynomials appear in the literature. (In a different direction,
Zelditch [Zel13] extended the results of [ZZ10] to the case of Riemann surfaces, and Feng
and Zelditch [FZ11] studied some cases of non-i.i.d. coefficients in the context of more
general P (φ)2 random polynomials.)

Our main result concerns the universality of the above large deviation principles, under
mild technical conditions.

Theorem 1.1. Let E be C, R or R
+. Let a0, . . . , an be i.i.d. random variables with a

density g with respect to the Lebesgue measure on E. Assume that:

1. There exist ρ > 0, r > 0 and R > 0 such that

∀z ∈ C, g(z) ≤ exp(−r|z|ρ + R), (2)

2. There exits δ > 0 such that for all λ > 0:
∫

1|x|≤δ
1

g(x)λ
dℓE(x) < ∞ (3)

1In fact, [ZZ10] work in CP
1 and consider more general ensembles of holomorphic polynomial with

Gaussian coefficients, but it is not hard to check that their result, when specialized to Kac polynomials
with complex Gaussian coefficients, is equivalent to the one here; this is implicitly stated in [ZZ10] and
explicitely checked in [But15].
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Then the sequence of empirical measures (µn)n∈N satisfies a large deviations principle in
M1(C) with speed n2 and rate function IE.

The second assumption in Theorem 1.1 means that either the density g does not vanish
around zero or, if it vanishes, g is greater than any |x|a in a neighborhood of zero.

Before describing the (simple) ideas behind the proof of Theorem 1.1, we explain
some of the background and why we find the theorem somewhat surprising. The proof
of the LDPs in the Gaussian and Exponential cases is based on an explicit expression
for the joint distributions of zeros, that we review below. Given that expression, the
proofs of the LDP follow (with some detours) a track well explored in the case of the
empirical measure of eigenvalues of random matrices. For the latter, large deviations
have been extensively studied, initially by Ben Arous and Guionnet [BAG97], Ben Arous
and Zeitouni [BAZ98] and Hiai and Petz [HP00]. Recently, the large deviations for the
empirical measure were proved for Wigner matrices with entries possessing heavier-than-
Gaussian tails by Bordenave and Caputo [BC14], with a rate function depending on the
tail of the entries. Very similar results were obtained by Groux [Gro15] for Wishart
matrices. In particular, it follows from these results that in the random matrix setup, the
rate function is known to not be universal; this is in sharp contrast with Theorem 1.1.

As mentioned above, the LDP for Kac polynomials in the Gaussian and exponential
coefficients cases begin with an explicit expression for the density of zeros, which we now
explain. We concentrate first on the case of complex Gaussian coefficients. Note that the
second equality in (1) gives an n!-to-1 map between (an, z1, . . . , zn) and (a0, . . . , an). A
classical computation of the Jacobian followed by integration over an, see e.g. [BBL92],
[But15],[FH99], [ZZ10], shows that the distribution of (z1, . . . , zn) possesses a density with
respect to the Lebesgue measure dℓCn on C

n given by:

n!

πn

∏

i<j |zi − zj |2
(

∫ n
∏

k=1

|z − zk|2dνS1(z)

)n+1 =
n!

πn

∏

i<j |zi − zj |2

‖ã‖2n+2
2

(4)

where ã = (a0/an, . . . , an−1/an, 1) is a continuous function of (z1, . . . , zn) given explicitely
by Vieta’s formula.

In the case of real Gaussian coefficients, the probability of having k real zeros is positive
for k having the same parity of n. Following a computation of Zaporozhet in [Zap04], one
obtains that the distribution of the roots of Pn is given by:

⌊n/2⌋
∑

k=0

2kΓ(n+1
2 )

k!(n − 2k)!π(n−1)/2

∏

i<j |zi − zj |

(
∫ ∏n

i=1 |z − zi|2dνS1)(n+1)/2
dℓn,k(z1, . . . , zn)

=

⌊n/2⌋
∑

k=0

2kΓ(n+1
2 )

k!(n − 2k)!π(n−1)/2

∏

i<j |zi − zj |

‖ã‖n+1
2

dℓn,k(z1, . . . , zn)

where
dℓn,k(z1, . . . , zn) = dℓR(z1) . . . dℓR(zn−2k)dℓC(zn−k) . . . dℓC(zn). (5)

Note that the k-th term of the mixture corresponds to the case where Pn has n − 2k real
roots.

Finally, in the case of positive exponential real coefficients, the distribution of the
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vector of the zeros is given by:

⌊n/2⌋
∑

k=0

2kn!

k!(n − 2k)!

∏

i<j |zi − zj |

(
∏n

i=1 |1 − zi|)(n+1)
dℓn,k(z1, . . . , zn)

=

⌊n/2⌋
∑

k=0

2kn!

k!(n − 2k)!

∏

i<j |zi − zj |

‖ã‖n+1
1

dℓn,k(z1, . . . , zn).

Main idea of the proof of Theorem 1.1. We will prove the universality of the LDP
by comparing the distributions of the vectors of the zeros in the different models. Assume
one could find two sequences (bn)n∈N and (cn)n∈N satisfying

lim
n→∞

1

n2
log bn = lim

n→∞

1

n2
log cn = 0 (6)

and two probability densities on C
n, Fn and Gn satisfying:

∀(z1, . . . , zn) ∈ C
n bnFn(z1, . . . , zn) ≤ p(z1, . . . , zn) ≤ cnGn(z1, . . . , zn) (7)

such that, under the distribution given by Fn or Gn, the sequence of empirical measures
(µFn

n )n∈N and (µGn
n )n∈N satisfies a LDP in M1(C), with speed n2 and the same rate

function I. Then, the sequence (µn)n∈N satisfies a LDP in M1(C) with speed n2 and rate
function I, since for any set A, P(µn ∈ A) is an integral with respect to the distribution
of the zeros and therefore one can use the bounds (7) to obtain the LDP.

In practice, we will obtain (7) by noting that if the joint distribution of the coefficients
is a function of a norm ‖.‖ of the vector of the coefficients, the distribution of the zeros is
roughly of the form:

∏

i<j |zi − zj |2

‖ã‖2n+2
.

If ‖.‖ can be compared with ‖.‖2 with nice constants, we can can relate the density of
zeros by one that is closer to the Gaussian or exponential cases in the spirit of (7). For
i.i.d. variables, the first hypothesis of the theorem is used to replace the joint distribution
of the coefficients by a function of ‖a‖ρ and then we prove the upper bound for the latter
distribution. The second hypothesis means that, for the lower bound, we can replace the
joint distribution of a by a 1‖a‖∞≤δ which is also a function of a norm.

We conclude this introduction by stating and proving a technical lemma that will be
used in the proof of the LDP lower bound.

Lemma 1.2. Let E be C, R or R
+. Let X0, . . . , Xn be i.i.d. random variables, uniformly

distributed on the disk of center 0 and radius δ of E. Assume that there exits δ > 0 such
that for all λ > 0,

c(λ) :=

∫

1|x|≤δ
1

g(x)λ
dℓE(x) < ∞. (8)

Then, for any K > 0 and ε > 0 there exists n0 = n0(K, δ, ε) such that for all n > n0,

∫

1
{
∏n

k=0
g(ai)≤e−εn2 }

1‖a‖∞<δdℓEn(a0, . . . , an) ≤ e−Kn2
. (9)
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Proof of Lemma 1.2. Fix K > 0, micking the proof of Chernoff’s inequality, we have:

∫

1
{
∏n

k=0
g(ai)≤e−εn2 }

1‖a‖∞<δdℓEn+1(a0, . . . , an)

=

∫

1
{
∏n

k=0
g(ai)−λ≥eλεn2 }

1‖a‖∞<δdℓEn+1(a0, . . . , an)

≤ e−λεn2
∫ n
∏

k=0

[

g(ak)−λ1|ak |<δ

]

dℓEn+1(a0, . . . , an)

≤ e−λεn2
e(n+1)c(λ).

The proof is completed by taking λ large enough so that λε > K and then taking n0 large
enough so that n!e−λεn2

e(n+1)c(λ) ≤ e−Kn2
for all n > n0.

2 Proof of Theorem 1.1

The proof of the main theorem is made in two steps: we start by proving the theorem
when the coefficients are complex, and then we treat the real and the positive case. The
proof of the three cases are very similar, the arguments and ideas are exactly the same.

Proof of Theorem 1.1. Complex coefficients.

Recall that the density of the distribution of the random vector of zeros (z1, . . . , zn) (taken
at random uniform order) with respect to ℓCn is given by

p(z1, . . . , zn) =

∫

∏

i<j

|zi − zj |2|an|2ng(a0) . . . g(an)dℓC(an)

where the aj’s are seen as functions of z1, . . . , zn and an using Vieta’s formula. See e.g.
[HKPV09, Lemma 1.1.1 p3] for a proof of this classical result.
Upper Bound. Using the inequality (2), we obtain:

p(z1, . . . , zn) ≤

∫

∏

i<j

|zi − zj |2|an|2n exp(−r
n
∑

k=0

|ak|ρ)e(n+1)RdℓC(an)

For a vector b = (b0, . . . , bn) and ρ > 0, set ‖b‖ρ = (
∑n

i=0 |bi|
ρ)1/ρ. Then,

∫

∏

i<j

|zi−zj|
2|an|2n exp(−r

n
∑

k=0

|ak|ρ)dℓC(an) =

∫

∏

i<j

|zi−zj |2|an|2n exp(−r|an|ρ‖ã‖ρ
ρ)dℓC(an)

where ã = (a0/an, . . . , an−1/an, 1). We note that ã only depends on the zeros and not
on an, so we can compute the last integral using the change of variables u = an‖ã‖ρ to
obtain:

p(z1, . . . , zn) ≤ e(n+1)R

∏

i<j |zi − zj |2

‖ã‖2n+2
ρ

∫

|u|2ne−r|u|ρdℓC(u).

Finally, using the classical inequalities on C
n+1:

if ρ > 2, ‖.‖ρ ≥
1

n1/2−1/ρ
‖.‖2

if ρ ≤ 2, ‖.‖ρ ≥ ‖.‖2
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we obtain that there exists a sequence (γn)n∈N such that, for any ρ > 0,

‖.‖ρ ≥ γn‖.‖2 and lim
n→∞

1

n
log γn = 0. (10)

Using this inequality we get

p(z1, . . . , zn) ≤ e(n+1)R

∏

i<j |zi − zj|
2

‖ã‖2n+2
2

1

γ2n+2
n

∫

|u|2ne−r|u|ρdℓC(u)

≤ e(n+1)R n!

πn+1

∏

i<j |zi − zj |2

‖ã‖2n+2
2

×
πn+1

n!γ2n+2
n

∫

|u|2ne−r|u|ρdℓC(u).

The first term of the product is the distribution µC
n , see (4), and thanks to (10) we have

cn := e(n+1)R πn+1

n!γ2n+2
n

∫

|u|2ne−r|u|ρdℓC(u) = eO(n log n).

Let A ⊂ M1(C) be a Borel set. Then,

1

n2
logP(µn ∈ A) =

1

n2
log

∫

1µn∈Ap(z1, . . . , zn)dℓCn(z1, . . . , zn)

≤
1

n2
log

∫

1µn∈A
n!

πn+1

∏

i<j |zi − zj |2

(
∫
∏n

k=1 |z − zk|2dνS1(z))n+1 dℓCn(z1, . . . , zn) +
log cn

n2

=
1

n2
logP(µC

n ∈ A) +
log cn

n2
.

Therefore, using the LDP upper bound for µC
n , we complete the proof of the upper bound

by noting that

lim sup
n→∞

1

n2
log P(µn ∈ A) ≤ − inf

cloA
IC.

Lower Bound. First, we show that the technical lemma allows us to reduce the problem
to the proof of the lower bound for i.i.d. (ai), with uniform distribution on the disk D(0, δ).
Let A ⊂ M1(C) be a Borel set with inf intA IC < ∞, fix K > inf intA IC and ε > 0 then,
thanks to Lemma 1.2 there exists n0 such that for any n > n0:

P(µn ∈ A) =

∫

1µn∈A

n
∏

k=0

g(ak)dℓC(a0) . . . dℓC(an)

≥

∫

1
{
∏n

k=0
g(ai)≥e−εn2 }

1µn∈A1‖a‖∞<δ

n
∏

k=0

g(ak)dℓC(a0) . . . dℓC(an)

≥ e−εn2
∫

1
{
∏n

k=0
g(ai)≥e−εn2 }

1µn∈A1‖a‖∞<δdℓC(a0) . . . dℓC(an)

≥ e−εn2
∫

1µn∈A1‖a‖∞<δdℓC(a0) . . . dℓC(an) − e−(K+ε)n2
. (11)

The integral
∫

1µn∈A1‖a‖∞<δdℓC(a0) . . . dℓC(an) is, up to a normalizing factor (πδ2)n+1

which is of order eO(n), the probability that the empirical mesure of the zeros of a random
polynomial with i.i.d. uniform coefficients on the disk D(0, δ) belongs in A.
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Now we deal with this integral using the same techniques used for the upper bound:

∫

1µn∈A1‖a‖∞<δdℓC(a0) . . . dℓC(an)

=

∫

1µn∈A

∏

i<j

|zi − zj |2
∫

1|an|‖ã‖∞<δ|an|2ndℓC(an)dℓCn(z1, . . . , zn)

=

∫

1µn∈A

∏

i<j |zi − zj|
2

‖ã‖2n+2
∞

dℓCn(z1, . . . , zn)

∫

|u|2n1|u|<δdℓC(u)

=
n!

πn+1

∫

1µn∈A

∏

i<j |zi − zj |2

‖ã‖2n+2
2

dℓCn(z1, . . . , zn)
πn+1

n!

∫

|u|2n1|u|<δdℓC(u)

= P(µC
n ∈ A)

πn+1

n!

∫

|u|2n1|u|<δdℓC(u).

Here we used the change of variables u = ‖ã‖∞an, using the fact that ‖ã‖∞ does not
depend on an and the inequality ‖.‖∞ ≤ ‖.‖2 in C

n+1. Since

lim
n→∞

1

n2
log

(

πn+1

n!

∫

|u|2n1|u|<δdℓC(u)

)

= 0,

we obtain

lim inf
n→∞

1

n2
log





∫

1µn∈A

∏

i<j

|zi − zj |2
∫

1|an|‖ã‖∞<δ|an|2ndℓC(an)dℓCn(z1, . . . , zn)



 ≥ − inf
intA

IC.

Combined with (11) we obtain

lim inf
n→∞

1

n2
log P(µn ∈ A) ≥ −ε − inf

intA
IC.

Taking the limit as ε goes to zero completes the proof of the lower bound.
Real coefficients. Let E be R or R

+. The proof for real coefficients is essentially the
same as for complex coefficients, except that the distribution of the roots is a mixture of
measures instead of an absolutely continuous measure. We will apply the same ideas to
each term of the mixture to obtain the upper and lower bound. If the coefficients ak’s are
i.i.d. random variables with density g with respect to the Lebesgue measure on E, then
the distribution of the vector (z1, . . . , zn, an) is given by:

⌊n/2⌋
∑

k=0

2k

k!(n − 2k)!
|an|n

∏

i<j

|zi − zj|
n
∏

k=0

g(ai)dℓE(an)dℓn,k(z1, . . . , zn)

=

⌊n/2⌋
∑

k=0

2k

k!(n − 2k)!
pn,k(z1, . . . , zn, an)dℓE(an)dℓn,k(z1, . . . , zn).

Using exactly the same reasoning as in the complex case, we define θE
n as:

θE
n =







π(n−1)/2

Γ( n+1
2

)
if E = R

1
n! if E = R

+

and we notice that

lim
n→∞

1

n2
log θE

n = 0.
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We obtain that for any k:
∫

pn,k(z1, . . . , zn)dℓE(an) ≤
1

θE
n

∏

i<j |zi − zj |

(
∫ ∏n

i=1 |z − zi|2dνS1)(n+1)/2
θE

n .

This inequality implies that, for any Borel set A ∈ M1(C):

P(µn ∈ A) =

⌊n/2⌋
∑

k=0

2k

k!(n − 2k)!

∫

1µn∈A

∫

pn,k(z1, . . . , zn)dℓE(an)dℓn,k(z1, . . . , zn)

≤ θE
n P(µE

n ∈ A).

Using the large deviations principle for (µE
n )n∈N ends the proof of the upper bound.

The proof of the lower bound is very similar to the complex case, we use the technical
lemma to deal with i.i.d. uniform random variables on the disk D(0, δ).

P(µn ∈ A) =

∫

1µn∈A

n
∏

k=0

g(ak)dℓE(a0) . . . dℓE(an)

≥

∫

1
{
∏n

k=0
g(ai)≥e−εn2 }

1µn∈A1‖a‖∞<δ

n
∏

k=0

g(ak)dℓE(a0) . . . dℓE(an)

≥ e−εn2
∫

1µn∈A1‖a‖∞<δdℓE(a0) . . . dℓE(an) − e−(K+ε)n2
. (12)

We transform this integral in order to compare it to one of the known cases.
∫

1µn∈A1‖a‖∞<δdℓE(a0) . . . dℓE(an)

=

⌊n/2⌋
∑

k=0

2k

k!(n − 2k)!

∫

1µn∈A1‖a‖∞<δ|an|n
∏

i<j

|zi − zj |dℓE(an)dℓn,k(z1, . . . , zn)

=

⌊n/2⌋
∑

k=0

2k

k!(n − 2k)!

∫

|u|n+11|u|<δdℓE(u)

∫

1µn∈A

∏

i<j |zi − zj |

‖ã‖n+1
∞

dℓn,k(z1, . . . , zn).

If E = R, we use the inequality ‖.‖∞ ≤ ‖.‖2 on R
n+1 to obtain

∫

1µn∈A1‖a‖∞<δdℓR(a0) . . . dℓR(an)

≥

⌊n/2⌋
∑

k=0

2k

k!(n − 2k)!

∫

|u|n+11|u|<δdℓR(u)

∫

1µn∈A

∏

i<j |zi − zj |

‖ã‖n+1
2

dℓn,k(z1, . . . , zn).

If E = R
+, we use the inequality ‖.‖∞ ≤ ‖.‖1 on R

n+1 to obtain
∫

1µn∈A1‖a‖∞<δdℓR+(a0) . . . dℓR+(an)

≥

⌊n/2⌋
∑

k=0

2k

k!(n − 2k)!

∫

|u|n+11|u|<δdℓR+(u)

∫

1µn∈A

∏

i<j |zi − zj|

‖ã‖n+1
1

dℓn,k(z1, . . . , zn).

Note that the only difference between the case R and the case R
+ is the reference norm

employed. Using (12) with the last two inequalities, we obtain that for any ε > 0 fixed,
we have:

lim inf
n→∞

1

n2
logP(µn ∈ A) ≥ lim inf

n→∞

1

n2
logP(µE

n ∈ A) + lim
n→∞

1

n2
log θE

n − ε

≥ − inf
intA

IE − ε.

Taking the limit as ε goes to zero ends the proof of the large deviations lower bound for
the real and positive cases.
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3 Concluding remarks and an open problem.

We focused in this note on Kac polynomials but we could as well study the universality
of the large deviations for the zeros of

Pn =
n
∑

k=0

akRk

where the Rk’s are orthogonal polynomials satisfying the assumptions of regularity given
in [ZZ10] and [But15]. In this case, the distribution of the zeros can be computed ([But15,
Theorem 5.1]) and, under the same hypotheses as in Theorem 1.1, the same large devia-
tions principle as for Gaussian coefficients holds. Similar ideas apply to certain non i.i.d.
models such as the P (φ)2 model of [FZ11].

A significant limitation of our approach is the use of the assumption (3) in Theorem
1.1. While it is possible that it can be relaxed, we note that some assumption of this type
is necessary for the universality resut. Indeed, if the support of the distribution of the
coefficients is inside an annulus, it follows from Jensen’s formula, see [HN08], that µn con-
verges deterministically towards νS1. Hence, no non-trivial LDP can hold in this case. An
interesting test case is the case where the i.i.d. coefficients possess the density |z|α1|z|<δ for
some α > 0 and δ > 0. In that case, the distribution of the zeros (z1, . . . , zn) is absolutely
continuous with respect to the Lebesgue measure on C

n with density proportional to:

∏

i<j

|zi − zj |2
∫

|an|2n
∏

|ai|
α1‖a‖∞<δdℓC(an) =

∏

i<j |zi − zj|
2

‖ã‖2n+2+nα
∞

n
∏

k=0

|ak|

|an|
.

If we are able to prove that the term
∏n

k=0
|ak|
|an| does not contribute to the large deviations,

then a LDP at speed n2 would follow with rate function

Iα(µ) = −

∫∫

log |z − w|dµ(z)dµ(w) + (2 + α) sup
z∈S1

∫

log |z − w|dµ(w).

In particular, we do not expect universality in that case. We have not been able to carry
out the analysis of this setup.
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