
HAL Id: hal-01343553
https://hal.science/hal-01343553v1

Submitted on 13 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Discrete Event Modeling and Simulation for IoT
Efficient Design Combining WComp and DEVSimPy

Framework
S Sehili, Laurent Capocchi, Jean François Santucci, Stéphane Lavirotte,

Jean-Yves Tigli

To cite this version:
S Sehili, Laurent Capocchi, Jean François Santucci, Stéphane Lavirotte, Jean-Yves Tigli. Discrete
Event Modeling and Simulation for IoT Efficient Design Combining WComp and DEVSimPy Frame-
work. 5th International Conference on Simulation and Modeling Methodologies, Technologies and
Applications, Jul 2015, Colmar, France. �10.5220/0005538300440052�. �hal-01343553�

https://hal.science/hal-01343553v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Discrete Event Modeling and Simulation for IoT Efficient Design
Combining WComp and DEVSimPy Framework

S. Sehili1, L. Capocchi1, J. F. Santucci1, S. Lavirotte2 and J. Y. Tigli2
1SPE UMR CNRS 6134, University of Corsica, Corte, France

2I3S (UNS - CNRS), 930 Route des Colles - BP 145, 06903 Sophia-Antipolis, France
fsehili, capocchi, santuccig@univ-corse.fr, stephane.lavirotte@unice.fr, tigli@unice.fr

Keywords: Internet of Things, Discrete-Event System, Object Oriented Modeling, Modeling, Simulation, Ubiquitous
computing.

Abstract: One of today’s challenges in the framework of ubiquitous computing concerns the design of ambient systems
including sensors, smart-phones, interconnected objects, computers, etc. The major difficulty is to propose a
compositional adaptation which aims to integrate new features that were not foreseen in the design, remove
or exchange entities that are no longer available in a given context. In order to provide help to overcome this
difficulty, a new approach based on the definition of strategies validated using discrete-event simulation is
proposed. Such strategies make it possible to take into account conflicts and compositional adaptation of com-
ponents in ambient systems. These are defined and validate using a discrete-event formalism to be integrated
into a prototyping and dynamic execution environment for ambient intelligence applications. The proposed
solution allows the designers of ambient systems to define the optimum matching of all components to each
other. One pedagogical example is presented (switch-lamp system) as a proof of the proposed approach.

1 INTRODUCTION

The rapid progress of technology related to sensor
networks leads us to a merger between the physical
world and the virtual world where the interconnec-
tion of objects with a level of intelligence will lead
to a revolution in the creation and the availability of
service that will gradually change our way to act on
the environment. The definition of such complex sys-
tems involving sensors, smart-phone, interconnected
objects, computers, etc. results in what is called am-
bient systems. The software development of such sys-
tems belongs to ubiquitous computing domain. One
of todays challenges in the framework of ubiquitous
computing concerns the design of such ambient sys-
tems. One of the main problems is to propose a man-
agement adapted to the composition of applications in
ubiquitous computing. The difficulty is to propose a
compositional adaptation which aims to integrate new
features that were not foreseen in the design, remove
or exchange entities that are no longer available in a
given context. We have being focused on the WComp
environment (Hourdin et al., 2013) which is a proto-
typing and dynamic execution environment for Ambi-
ent Intelligence applications created by the Rainbow
research team of the I3S laboratory, hosted by Uni-

versity of Nice - Sophia Antipolis and CNRS. It uses
lightweight components to manage dynamic orches-
trations of Web service for device, like UPnP (Univer-
sal Plug and Play), discovered in the software infras-
tructure. In the framework of the WComp, it has been
defined a management mechanism allowing extensi-
ble interference between devices. In order to deal with
the asynchronous nature of the real world, WComp
has defined an execution machine for complex con-
nections. In (Sehili et al., 2014) we have presented
how the DEVS formalism can be used in order sim-
ulate the behavior of IoT components before any im-
plementation using the WComp environment. The in-
terest of this approach has been pointed out on a ped-
agogical example which allowed to show that using
the DEVS formalism conflicts can be detected using
simulation before any implementation.

In this paper we propose the definition a modeling
and simulation (M&S) scheme based on the DEVS
formalism in order to specify at the very early phase
of the design of an ambient system: (i) the behav-
ior of the components involved in the ambient sys-
tem to be implemented; (ii) the possibility to define
a set of strategies which can be implemented in the
execution machine; (iii) the automatic generation of
WComp code corresponding to a selected strategy.



The interest of such an approach is twofold: (i) the
behavior involved the DEVS models are used to write
the methods required in order to code the components
when using the WComp environment (automatic gen-
eration of WComp code); (ii) the DEVS implemen-
tation of the different strategies are used in order to
check them before implementation.

The rest of the paper is as follows: Section 2
gives the context of the study by presenting the inter-
est in combining DEVSimpy simulation and Wcomp
framework for IoT system design. Section 3 presents
the background of the work including the DEVS for-
malism, the DEVSimPy framework and the WComp.
Section 4 deals with the validation of the approach
through a complex case study involving different
kinds of sensors which have been used in order to
manage the lighting of a house. We points out how
different strategies can be compared using DEVS sim-
ulation and validated before their implementation us-
ing the WComp Framework. We also explain how the
WComp code can be automatically generated from
the DEVS model of the selected strategy. The con-
clusion and future work are given in section 5.

2 CONTEXT

A synchronous automaton of an IoT component is
dissociated form its asynchronous execution machine
that manages its I/O using strategies (see Figure 1).

Figure 1: State automaton with its execution machine.

This main challenge is to define the appropriate
strategies employed by the execution machine. It is
the execution machine that encapsulates the automa-
ton and that will handle asynchronous I/O. Therefore,
the executing machine has asynchronous communica-
tions with its environment. This encapsulation leads
to a combinatorial explosion of the potential strategies
that results in complex systems. The issue is whether
the execution machine behavior will remain consis-
tent with the model of the automaton (with possible
additional constraints).

There is a lack of work in the literature concern-
ing the execution machine exhibited in a number of

different strategies. The problem of managing the
synchronous automaton is the management of the out-
break of the execution cycle (which should not be pre-
empted). There are many possible strategies which
could be adopted: (i) triggering a cycle when an event
happens in the automaton; (ii) triggering a cycle on a
certain type of event; etc. Ideally, the modeler should
have the choice of the execution machine he wants to
use.

This paper shows how the DEVS formalism is
suitable to model synchronous automatons and check
the strategies of the execution machine in a context
of IoT system design. It also presents the strong
ability of WComp to design IoT component based
on the strategies defined with DEVSimPy which is
a framework dedicated to DEVS M&S. Furthermore,
the strategies defined using DEVSimPy are fully inte-
grated in WComp.

Figure 2: Design and test of WComp execution machines
(strategies) using DEVSimPy framework.

Figure 2 depicts the use of DEVSimPy framework
to perform the design and test of strategies involved
in WCoimp execution machines. The behavior of a
DEVS model is expressed through specifications of
a finite state automaton. However, this DEVS speci-
fications represent both the state automation and the
execution machine. The interest of using DEVS is the
ability to define as many strategies as DEVS model
specifications. DEVS simulations are used to test
and validate the strategies defined by the user in a
Strategy.py Python file. This file can be dynamically
loaded in the Bean class of WComp and then can be
used in order to change the properties of the C# com-
ponent obtained after compilation.

In the following section, background information
as the DEVS formalism, DEVSimPy framework and
WComp are outlined.



3 BACKGROUND

3.1 DEVS and DEVSimPy Framework

Since the seventies some formal work have been
directed in order to develop the theoretical base-
ments for the M&S of dynamical discrete-event sys-
tems (Zeigler, 2003). DEVS (Discrete EVent system
Specification) (Zeigler et al., 2000) has been intro-
duced as an abstract formalism for the modeling of
discrete-event systems, and allows a complete inde-
pendence from the simulator using the notion of ab-
stract simulator.

DEVS defines two kinds of models: atomic mod-
els and coupled models. An atomic model is a ba-
sic model with specifications for the dynamics of the
model. It describes the behavior of a component,
which is indivisible, in a timed state transition level.
Coupled models tell how to couple several compo-
nent models together to form a new model. This kind
of model can be employed as a component in a larger
coupled model, thus giving rise to the construction of
complex models in a hierarchical fashion. As in gen-
eral systems theory, a DEVS model contains a set of
states and transition functions that are triggered by the
simulator.

Figure 3: DEVS atomic model in action.

The Figure 3 describes the behaviour of a discrete-
event system as a sequence of deterministic transi-
tions between sequential states (S). The atomic model
(AM in Figure 3) reacts depending on two types of
events: external and internal events. When an input
event occurs (X), an external event (coming from an-
other model) trigger the external transition function
dext(X ;S) of the atomic model in order to update its
state. If no input event occurs, an internal event trig-
ger the internal transition dint(S) of the atomic model
in order to update its state. Then, the output function
l(S) of the atomic model is executed to generate the
outputs (Y ). ta(S) is the time advance function which
determine the life time of a state.

DEVSimPy (Capocchi et al., 2011) is an open
Source project (under GPL V.3 license) supported by
the SPE (Science pour l’Environnement) team of the
UMR CNRS 6134 Lab. of the university of Corsica
”Pasquale Paoli”. This aim is to provide a GUI for
the M&S of PyDEVS and PyPDEVS (Li et al., 2011)

models. PyDEVS is an Application Programming
Interface (API) allowing the implementation of the
DEVS formalism in Python language (Perez et al., ).
PyPDEVS is the parallel version of PyDEVS based on
Parallel DEVS formalism (Chow and Zeigler, 1994)
which is an extension of DEVS formalism. The DE-
VSimPy environment has been developed in Python
with the wxPython (Rappin and Dunn, 2006) graphi-
cal library without strong dependencies other than the
Scipy (Jones et al., 2001) and the Numpy (Oliphant,
2007) scientific python libraries. The basic idea be-
hind DEVSimPy is to wrap the PyDEVS API with
a GUI allowing significant simplification of handling
PyDEVS/PyPDEVS models (like the coupling be-
tween models or their storage into libraries).

Figure 4: DEVSimPy with simulation dialogue window.

Figure 4 shows the DEVSimPy interface with four
interconnected DEVS atomic models (Lamp, Motion-
Gen, LightGen and SwitchGen on the right of the
interface) instantiated from the ”IoT” library frame
(left of the interface) into a coupled model called
”Diagram0”. The simulation is performed by using
the ”Diagram0 Simulator” dialogue windows and the
simulation trace is printed in the ”lamp logger” win-
dow. A plug-in manager is proposed in order to ex-
pand the functionalities of DEVSimPy allowing their
enabling/disabling through a dialog window. In this
paper, a plug-in is used to allow the transposition
of the execution machine strategies validated with
DEVS simulation to WComp environement.

3.2 WComp for IoT

Ubiquitous computing involves collaboration be-
tween all kinds of components to build dynamically
new applications that are adapted to the physical en-
vironment. The complexity of such a system to
sense and adapt to the environment involves solving
problems related to memory management, time con-
straints, etc., between all communicating objects.



Mechanism to address this concern must be pro-
posed by middleware for ubiquitous computing. Sev-
eral variety of middleware tools have been defined in
the recent years in order to perform ubiquitous com-
puting : (a) HOMEROS (Seung et al., 2004) mid-
dleware architecture which allows high flexibility in
the environment of heterogeneous devices and user ;
(b) EXEHDA (Lopes et al., 2014) middleware which
manages and implements the follow-me semantics in
which the applications code is installed on-demand
on the devices used and this installation is adaptive to
context of each device ; (c) WComp (Hourdin et al.,
2013) middleware based on a software infrastructure,
a service composition architecture and a composi-
tional adaptation mechanism. In this paper we are
interested in the WComp middleware.

Figure 5: WComp framework.

The architecture of WComp framework is orga-
nized around containers and designers (Figure 5).
Containers manage the instantiation, designation and
destruction of components. A Designer runs contain-
ers for instantiation and destruction of components or
connections between components in the assembly us-
ing an adequate formalism. WComp uses the .NET
framework which has a container implemented in C#
language.

The components in WComp are implemented with
a object oriented approach in the Bean classes. The
component is a self-contained class that contains
properties and methods needed to communicate with
other components. Methods are executed when the
component receives an event from others compo-
nents. The manner of executing these methods (state
automaton) depending on some inputs is called the
execution machine. The application needs to be con-
text awareness. For this, the components need to have
an adaptive behavior and several ways to manage the
execution machine are defined as strategies.

In WComp, the implementation of the execution
machine is done manually in the methods of the class

Bean. To illustrate this point, we reuse the pedagog-
ical example of a lamp connected with two switches
presented in (Sehili et al., 2014). The lamp can be en-
abled/disabled simultaneously from the two switches
and a strategy for the execution machine is needed
to prevent and deal with any possible conflicts. We
can observe two behaviors according to the assembly
that involves the definition of two execution machines
(strategies) of the behaviors. The two code blocks be-
low represent the two strategies corresponding to the
behaviors of the switches implemented in the Control
method of the Bean class. This method is written for
each class Bean. In WComp framework, we define
each execution machine in a separated class.

The lines [3-7] in the first code block below al-
ter the received event as follow: if the lamp state is
”light ON”, it changes to ”light OFF”. This imple-
mentation represents the push button switch behavior.
1 public bool lightstate = false;
2 public void ControlMethod() {
3 lightstate =! lightstate;
4 string msg = "light_OFF";
5 if (lightstate) msg = "light_ON";
6 if (PropertyChanged != null)
7 PropertyChanged(msg);
8 }

The lines [2-5] in the second code block below
concern the modification of the lamp status depending
on the old state. If the lamp status is ”light ON”, we
alter the state to ”light OFF” else we keep the initial
state (”light ON”). This implementation represents a
toggle switch behavior.
1 public void ControlMethod(bool on) {
2 if(on){
3 if (PropertyChanged != null)
4 PropertyChanged("light_ON");
5 }else{ PropertyChanged("light_OFF"); }
6 }

After the implementation of the methods in each
class, we have to compile the Bean classes to obtain
two executable files (DLL) which are inserted in the
resulting assembly to be instantiated and connected in
applications.

The question that arises is how to choose between
the two Bean classes before any instantiation and ex-
ecution of the assembly? With the help of DEVS sim-
ulation, we are able to defined an approach to check
differente strategies to be instantiated in the Bean
class early in the desing process.



4 CASE STUDY: SMART
LIGHTING

4.1 Description of the System

To validate our approach, we chose to deal with an
application dedicated to control home lighting using
sensors and actuators.

Figure 6: Description of the system.

The case study involves four components (Lamp,
Switch, Light sensor, Motion sensor in Figure 6) to
be assembled:

1. The Lamp component has two states ”On” and
”Off” with a level of intensity i (i 2 [0�100])

2. The Switch component sends the activa-
tion/desactivation messages ”On”/”Off” to
the lamp. It is connected to a preemptive port and
it generates random events

3. The Light sensor component sends messages cor-
responding to a brightness levels in percent (%)
such as a value greater than 50 involves activation
for the connected object (”on” for the lamp) oth-
erwise deactivation (”off” for the lamp)

4. The Motion sensor component sends messages
corresponding to a proximity level compared to
the sensor such as a level between 1 and 5 involves
the detection of a person in the sensor’s range of
action this implies that the connected object re-
ceiving these values can be activated in this range
(”on” for the lamp) or disable if the level is zero
(off for the lamp)

We present in Figure 7 the interconnection be-
tween the various components (Lamp, Switch, Light
sensor, Motion sensor) which represents our model-
ing approach. Three event generators are connected
with the Lamp model which embeds strategies. Then
we define four strategies associated with the previ-
ously presented assembly. The strategies are coded in

Figure 7: Assembly of the system.

the ”Lamp” model with features allowing to perform
the proposed approach.

4.2 Description of the Strategies

The interconnection between all components is fea-
sible in several ways. In this part we have defined
the possible cases for this interconnection to further
illustrate the applications of ambient computing. Two
scenarios are presented in the following sections: (i)
buffer management of ”Lamp model”, (ii) preemption
management.

4.2.1 First Scenario: Buffer Management

The component Lamp has a buffer of events and is
connected with the components LightGen and Mo-
tionGen (Figure 7). The behavior of MotionGen is to
generate a message every 0.1 units of time. The be-
havior of LightGen is to generate a message every 0.7
units of time. The buffer will have several messages
MotionGen and at least one message of LightGen. We
define two strategies according to the first scenario.

Strategy I

The first strategy is the basic one:

� If it is bright (LightGen > 50) whatever presence
is detected or not detected, if the Lamp is ’on’ it
passes ’off’ and if it is ’off’ it remains ’off’

� If it is dark (LightGen > 50) and presence is de-
tected, if the Lamp is ’on’ is remains ’on’ and if it
is ’off’ it passes ’on’

� If it is dark (LightGen > 50) and presence not de-
tected, if the lamp is ’on’ it passes ’off’ and if it is
’off’ it remains ’off’



Strategy II

The second strategy allows us to improve the energy
management.

� If MotionGen decreases (person going away) and
LightGen > 50 (it is bright) then : (i) if Lamp
is ’on’ it passes ’off’ ; (ii) if the Lamp is ’off’ it
remains ’off’

� If MotionGen decreases (person going away) and
LightGen < 50 (it is dark) then : (i) if Lamp is ’on’
its intensity decreases with distance; (ii) if Lamp
is ’off’ it remains ’off’

� If MotionGen increases (person approaching) and
LightGen > 50 (it is bright) then : (i) if Lamp is
’on’ it passes ’off’ ; (ii) if Lamp is ’off’ it remains
’off’

� If MotionGen increases (person approaching) and
LightGen < 50 (it is dark) then : (i) if Lamp is ’on’
its intensity increases with distance; (ii) if Lamp is
’off’ it passes ’on’ with a proportional level to the
proximity given by MotionGen

4.2.2 Second Scenario: Preemption
Management

The component Lamp is connected with the three
components LightGen, MotionGen and SwitchGen of
the Figure 7. The connection port of SwitchGen com-
ponent will be considered as preemptive in the first
case and non-preemptive in the second case both for
the component Lamp. SwitchGen generates random
events. The Lamp component use its buffer only for
the non-preemptive case. We define two strategies ac-
cording to the second scenario.

Strategy III

”SwitchGen” is preemptive:

� If the component Lamp is ’on’ and receives ’on’ it
remains ’on’ and inversely

� If the component Lamp is ’on’ and receives ’ off
it passes to’ off’ and inversely

Strategy IV

”SwitchGen” is not preemptive:

� If no SwitchGen event in the buffer, then the strat-
egy I is applied.

� If at least one SwitchGen event is in the buffer,
then the events of MotionGen are not considered
and the events of LightGen override the Switch-
Gen events (energy management):

– If it is bright (LightGen > 50) and the lamp is
’on’ it passes to ’off’

– If it is bright (LightGen > 50) and the lamp is
’off’ it remains ’off’

– If it is dark (LightGen < 50) and the lamp is
’on’ it remains ’on’

– If it is dark (LightGen < 50) and the lamp is
’off’ it passes to ’on’

4.3 DEVS Modeling

The modeling of the previous system has been real-
ized using the DEVS formalism. In order to highlight
the different scenarios of the section 4.2 in the Lamp
model we have defined the DEVS specifications us-
ing the state automaton of the Figure 8. In this au-
tomaton we define five states: the lamp states (”ON”,
”OFF”), the observation state ”OBS”, the selection
state ”SEL” and the preemption state ”PRE”.

Figure 8: Lamp state automaton integrating strategies.

The behavior of the Lamp are described in a se-
quence of transitions (internal transition and external
transition) between sequential states (”ON”, ”OFF”,
”OBS”, ”SEL”, ”PRE”) as described below:
� In the external transition dext we define two cases:

– The first case is when the received message is
preemptive, it will be inserted into the preemp-
tive message list; if the initial state of the mes-
sage is ”on” or ”off” then the system passes to
the preemption state ”PRE” and the time ad-
vance is set to 0.

– The second case is when the received message
is not preemptive, it will be inserted in the
buffer of messages ”b”; if the initial state in
”on” or ”off”, the system passes to the obser-
vation state ”OBS” and the time advance is set
to ”sigma obs” else if the initial state is ”OBS”
the time advance is elapsed.



� In the internal transition dint : If the initial state is
in ”PRE” or ”OBS” then the system passes to the
selection state ”SEL” and the time advance ta is
set to ”sigma sel” else if the state is ”SEL” and the
preemptive list is not empty and the preemptive
value is ”on” then the lamp state is ”on” else ”off”;
if the preemptive list is empty we apply one of the
four strategies written before in section 4.2 and
the time advance is set to INFINITY.

We have used the DEVSimPy framework to im-
plement the IoT component library including the four
atomic models SwitchGen, MotionGen, LightGen and
Lamp. The Lamp model has been implemented us-
ing the preceding DEVS automaton (Figure 8). The
Figure 4 depicts the modeling of the case study with
DEVSimPy.

4.4 DEVS Simulation

The representation of the system using the notions of
hierarchy and modularity offered by the DEVS for-
malism allows us to manipulate and reuse the system
that can be quickly simulated. In our work we per-
formed the simulations of the described strategies in
section 4.2 using DEVSimPy framework.

Figure 9 depicts the simulation results obtained
using strategy II which improves the management of
energy. For that we defined parameters sigma obs =
1, sigma sel = 0 with an interval of simulation equal
to 10.

Figure 9: Simulation results obtained with strategy II.

The results shown in the logger (Figure 9) rep-
resent the transitions between the state of the model
Lamp when the strategy II is applied. The model
Lamp is in the observation state ”OBS” (line 1).
During 0.1 units of time, the models MotionGen
and LightGen generate messages every 0.7 units of
time (line 2-12). Once the time advance is achieved
(sigma=1) the system move to selection state ”SEL”

(line 13) and Lamp state change to ”OFF” depending
of its previous state (line 14). This results allows us
to validate the strategy II and then generate the strat-
egy Python file to be integrated in a Bean class into
WComp:
1 def Strategy2(lightGen, L_MotionGen, previous_state, power):
2 if (L_MotionGen[0].value[1] < L_MotionGen[-1].value[1]):
3 if (lightGen > 50): state = ’OFF’
4 else:
5 if (previous_state == ’ON’):
6 state = ’OFF’
7 power -=(L_MotionGen[-1].value[1]-L_MotionGen[0].value[1])*20
8 else: state = ’OFF’
9 else:
10 if (lightGen > 50): state = ’OFF’
11 else:
12 power += (L_MotionGen[-1].value[1]-L_MotionGen[0].value[1])*20
13 state = ’OFF’ if previous_state == ’ON’ else ’ON’
14 return (state, power)

In the previous code, the test of the motion is con-
sidered with a conditional statement (line 2,9) that
considers the last value of the array L MotionGen.
The test of the level of light is assumed by the light-
Gen variable (line 3,10). Depending on the values of
L MotionGen, lightGen and previous state variables,
the power and state variables are updated (line 14).

4.5 Integration of Strategies in WComp

The integration of strategies in WComp starts by
defining the DEVS atomic model corresponding to
the component in which strategies are identified (us-
ing functions) in DEVSimPy environment (Lamp in
the case study). These strategies will be defined in
a dedicated interface from a DEVSimPy local plug-
in. The access to the local plug-in will be through the
context menu of the atomic model only when the gen-
eral plug-in called ”WComp” of strategies is activated
(Figure 10).

Figure 10: General plug-in WComp in DEVSimpy.

Once simulations are performed and strategies are
validated in the DEVSimPy framework, we load the
strategies file that contains strategies in WComp (Fig-
ure 11). This is done due to through IronPython which



is an implementation of Python for .NET allowing us
to leverage the .NET framework using Python syntax
and coding styles.

Figure 11: Integration of strategies validated with DE-
VSimPy into WComp.

For that, the class Bean of the component Lamp
has been created in WComp and the references (line
1-2) have been added as illustrated below in order to
insert Python statements into C# code.
1 using IronPython.Hosting;
2 using IronPython.Runtime;
3 using Microsoft.Scripting.Hosting;
4 using Microsoft.CSharp;

As illustrated by the code below, the IronPython
runtime (line 2), the Dynamic Type and the strategy
Python file (line 6) have been created. Depending on
the content of the Strategy.py file, a function can be
called (Strategy1 in line 8) in order to invoke the se-
lected strategy that return a new state.
1 public void Strategie1(string val) {
2 ScriptRuntime py = Python.CreateRuntime();
3
4 if (PropertyChaned != null) {
5 // Create a Dynamic Type for Python File
6 dynamic pyf = py.UseFile("Strategy.py");
7
8 PropertyChanged(pyf.Strategie1(val))
9 }
10 }

After the compilation of the Bean class, the cor-
responding binary file (dll) is inserted in the resulting
assembly to be interconnected with the other compo-
nents.

5 CONCLUSION

This paper deals with an approach for the design and
the implementation of IoT ambient systems based on
discrete-event M&S. A new approach based on DEVS
simulations is proposed: instead of waiting the imple-
mentation phase of an IoT ambient system to detect
eventual specification problem, we describe an initial
phase consisting in DEVS M&S of the behavior of
components involved in an ambient system as well
as the behavior of different strategies corresponding
to different behaviors of execution machines. Once
the DEVS simulations have brought successful re-
sults, the Designer can implement the behavior of the
given ambient system using an IoT framework such
as WComp. The code corresponding to selected strat-
egy can be fully inserted in the WComp environment
in such a way that the Designer has no code to write
in the WComp environment when implementing the
selected strategy.

The presented approach has been validated on a
test-case example which is described in detail in the
paper: DEVS implementation of four different strate-
gies which can be used for a given ambient system,
definition of the corresponding DEVS specification,
implementation of the DEVS behavior using the DE-
VSimPy framework, analysis of the simulation re-
sults.

Our future work will consist in two main direc-
tions: (1) we have to work on the Design of more
complex IoT systems using DEVS formalism and
DEVSimPy framework; (2) we also plan to use the
DEVSimPy framework in order to manage discrete-
event simulations obtained from DEVS models asso-
ciated with connected objects such as board comput-
ers, sensors, controllers or actuators (the interest is
to strongly associate simulations and connected ob-
jects). The result will be the ability to manage con-
nected objects (sensors, computer boards, actuators,
controller) from the DEVSimPy framework while
providing intelligent decisions based on simulations.

From a M&S aspects the following tasks are per-
formed (Sehili et al., 2015):

� Development of a DEVSimPy Phidget compo-
nents library for manipulating Phidget board com-
puters, sensors and actuators

� Implementation of a Web Server in order to run
the simulations involving components of the DE-
VSimPy Phidgets Library which allows to man-
age connected objects and provision of web ser-
vices allowing to dynamically interact from the
mobile application with the DEVSimPy frame-
work which is installed on the Web Server



REFERENCES

Capocchi, L., Santucci, J. F., Poggi, B., and Nicolai, C.
(2011). DEVSimPy: A Collaborative Python Soft-
ware for Modeling and Simulation of DEVS Systems.
In WETICE, pages 170–175. IEEE Computer Soci-
ety. URL: http://code.google.com/p/devsimpy/ [Re-
trieved: Dec 2014].

Chow, A. C. H. and Zeigler, B. P. (1994). Parallel DEVS: A
parallel, hierarchical, modular, modeling formalism.
In Proceedings of the 26th Conference on Winter Sim-
ulation, WSC ’94, pages 716–722, San Diego, CA,
USA. Society for Computer Simulation International.

Hourdin, V., Ferry, N., Tigli, J.-Y., Lavirotte, S., and Rey, G.
(2013). Middleware in Ubiquitous Computing. pages
71–88.

Jones, E., Oliphant, T., and Peterson, P. (2001). Scipy:
Open source scientific tools for python. URL:
http://www.scipy.org/Citing SciPy [Retrieved: Febru-
ary, 2014].

Li, X., Vangheluwe, H., Lei, Y., Song, H., and Wang, W.
(2011). A testing framework for devs formalism im-
plementations. In Proceedings on the 2011 Sympo-
sium on Theory of Modeling & Simulation: DEVS
Integrative M&S Symposium, TMS-DEVS ’11, pages
183–188, San Diego, CA, USA. Society for Computer
Simulation International.

Lopes, J. a., Souza, R., and Geyer, C. (2014). A middle-
ware architecture for dynamic adaptation in ubiqui-
tous computing. Journal of Universal Computer Sci-
ence, 20:1357–1351.

Oliphant, T. E. (2007). Python for scientific computing.
Computing in Science and Engineering, 9:10–20.

Perez, F., Granger, B. E., and Hunter, J. D. Python: An
ecosystem for scientific computing. Computing in Sci-
ence and Engineering, (2):13–21.

Rappin, N. and Dunn, R. (2006). WxPython in action. Man-
ning.

Sehili, S., Capocchi, L., and Santucci, J.-F. (2014). Iot com-
ponent design and implementation using devs simu-
lations. The Sixth International Conference on Ad-
vances in System Simulation SIMUL 2014.

Sehili, S., Capocchi, L., and Santucci, J.-F. (2015). Manage-
ment of ubiquitous systems with a mobile application
using discrete event simulations (WIP). London, UK.
Accepted in ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation (PADS).

Seung, W. H., Yeo, B. Y., and Hee, Y. Y. (2004). A new
middleware architecture for ubiquitous computing en-
vironment. IEEE Workshop on Software Technolo-
gies for Future Embedded and Ubiquitous Systems.

Zeigler, B. P. (2003). An introduction to set theory. Techni-
cal report, ACIMS Laboratory, University of Arizona.
URL: http://www.acims.arizona.edu/EDUCATION/
[Retrieved: April, 2014].

Zeigler, B. P., Praehofer, H., and Kim, T. G. (2000). Theory
of Modeling and Simulation, Second Edition. Aca-
demic Press.




