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Abstract

This paper gives geometric tools: comparison, Nash and Sobolev inequalities for

pieces of the relevent Markov operators, that give useful bounds on rates of conver-

gence for the Metropolis algorithm. As an example, we treat the random placement

of N hard discs in the unit square, the original application of the Metropolis algo-

rithm.
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1 Introduction and results
sec1

Let Ω be a bounded, connected subset of Rd. We assume that its boundary, ∂Ω has
Lipschitz regularity. Let B1 be the unit ball of Rd and ϕ(z) = 1

V ol(B1)
1B1

(z) so that
∫

ϕ(z)dz = 1. Let ρ(x) be a measurable positive bounded function on Ω such that
∫

Ω
ρ(x)dx = 1. For h ∈]0, 1], set

Kh,ρ(x, y) = h−dϕ(
x− y

h
)min(

ρ(y)

ρ(x)
, 1) (1.1) 2.1

and let Th,ρ be the () Metropolis operator associated to these data, that is

Th,ρ(u)(x) = mh,ρ(x)u(x) +

∫

Ω

Kh,ρ(x, y)u(y)dy

mh,ρ(x) = 1 −

∫

Ω

Kh,ρ(x, y)dy ≥ 0

(1.2) 1.2

Then the Metropolis kernel Th,ρ(x, dy) = mh,ρ(x)δx=y +Kh,ρ(x, y)dy is a Markov ker-
nel, the operator Th,ρ is self-adjoint on L2(Ω, ρ(x)dx), and thus the probability measure
ρ(x)dx on Ω is stationary. For n ≥ 1, we denote by T nh,ρ(x, dy) the kernel of the iterate
operator (Th,ρ)

n. For any x ∈ Ω, T nh,ρ(x, dy) is a probability measure on Ω, and our main
goal is to get some estimates on the rate of convergence, when n→ +∞, of the probability
T nh,ρ(x, dy) toward the stationary probability ρ(y)dy.

A good example to keep in mind is the random placement of N non-overlapping discs
of radius ε > 0 in the unit square. This was the original motivation for the work of
Metropolis et al (

MRRTT
[MRR+53]). One version of their algorithm goes as follows: from a

feasable configuration, pick a disc (uniformly at random) and a point within distance h
of the center of the chosen disc (uniformly at random). If recentering the chosen disc
at the chosen point results in a feasable configuration, the change is made. Otherwise,
the configuration is kept as it started. If N is fixed and ε and h are small, this gives
a Markov chain with a uniform stationary distribution over all feasable configurations.
The state space consists of the N centers corresponding to feasible configurations. It
is a bounded domain with a Lipshitz boundary (see section

sec4
4, proposition

prop7
4.1). It is

non-convex (because of the non-overlaping constraints). The scientific motivation for the
study of random packing of hard discs is clearly described in Uhlenbeck (

Uhl
[?], section 5,

pg 18). An overview of the large literature is in Lowen (
Low
[?]). Entry to the zoo of modern

algorithms to do the simulation (particularly in the dense case) with many examples is
in [German guy, reference coming] . Further discussion, showing that the problem is
still of current interest, is in Radin (

Rad
[?]).

We shall denote by g(h, ρ) the spectral gap of the Metropolis operator Th,ρ. It is
defined as the best constant such that the following inequality holds true for all u ∈
L2(ρ) = L2(Ω, ρ(x)dx)

‖u‖2
L2(ρ) − (u|1)2

L2(ρ) ≤
1

g(h, ρ)
(u− Th,ρu|u)L2(ρ) (1.3) gap

or equivalently
∫

Ω×Ω

|u(x) − u(y)|2ρ(x)ρ(y)dxdy ≤
1

g(h, ρ)

∫

Ω×Ω

Kh,ρ(x, y)|u(x) − u(y)|2ρ(x)dxdy (1.4) gap2
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def1 Definition 1.1 We say that an open set Ω ⊂ Rd is Lipschitz if it is bounded and for all
a ∈ ∂Ω there exists an orthonormal basis Ra of Rd, an open set V = V ′×] − α, α[ and a
Lipschitz map η : V ′ →] − α, α[ such that in the coordinates of Ra, we have

V ∩ Ω = {(y′, yd < η(y′)), (y′, yd) ∈ V ′×] − α, α[}

V ∩ ∂Ω = {(y′, η(y′)), y′ ∈ V ′}.
(1.5)

Our first result is the following:

thm1 Theorem 1.1 Let Ω be an open, connected, bounded and Lipschitz subset of Rd. Let
0 < m ≤ M < ∞ be given numbers. There exists h0 > 0, δ0 ∈]0, 1/2[ and constants
Ci > 0 such that for any h ∈]0, h0], and any probability density ρ on Ω which satisfies for
all x, m ≤ ρ(x) ≤M , the following holds true.

i) The spectrum of Th,ρ is a subset of [−1 + δ0, 1], 1 is a simple eigenvalue of Th,ρ,
and Spec(Th,ρ) ∩ [1 − δ0, 1] is discrete. Moreover, for any 0 ≤ λ ≤ δ0h

−2, the number of
eigenvalues of Th,ρ in [1 − h2λ, 1] (with multiplicity) is bounded by C1(1 + λ)d/2.

ii) The spectral gap satisfies

C2h
2 ≤ g(h, ρ) ≤ C3h

2 (1.6) gap3

and the following estimate holds true for all integer n

supx∈Ω‖T
n
h,ρ(x, dy) − ρ(y)dy‖TV ≤ C4e

−ng(h,ρ) (1.7) 1.7

The next result will give some more information on the behavior of the spectral gap
g(h, ρ) when h→ 0. To state this result, let

αd =

∫

ϕ(z)z2
1dz =

1

d

∫

ϕ(z)|z|2dz =
1

d+ 2
(1.8) 1.1

and let us define ν(ρ) as the best constant such that the following inequality holds true
for all u in the Sobolev space H1(Ω)

‖u‖2
L2(ρ) − (u|1)2

L2(ρ) ≤
1

ν(ρ)

αd
2

∫

Ω

|∇u|2(x)ρ(x)dx (1.9) nu1

or equivalently

∫

Ω×Ω

|u(x) − u(y)|2ρ(x)ρ(y)dxdy ≤
αd
ν(ρ)

∫

Ω

|∇u|2(x)ρ(x)dx (1.10) nu2

Observe that for a Lipschitz domain Ω, the constant ν(ρ) is well-defined thanks to Sobolev
embedding. For a smooth density ρ, this number ν(ρ) > 0 is strongly related to the
unbounded operator Lρ acting on on L2(ρ)

Lρ(u)(x) =
−αd

2
(△u+

∇ρ

ρ
.∇u)

D(Lρ) = {u ∈ H1(Ω), −∆u ∈ L2(Ω), ∂nu|∂Ω = 0}

(1.11) 1.3
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When Ω has smooth boundary, standard elliptic regularity results show that for any
u ∈ H1(Ω) such that −∆u ∈ L2(Ω), the normal derivative of u at the boundary, ∂nu =
−→n (x).∇u|∂Ω is well define and belongs to the Sobolev space H1/2(Ω). Here, we denote by
−→n (x) the incoming unitary normal vector to ∂Ω at a point x. In the case where ∂Ω has
only Lipschitz regularity, the normal −→n (x) is well defined for allmost every x ∈ ∂Ω (with
respect to the measure σ induced on the boundary). Using a suitable covering of Ω it is
possible to define a trace operator γ0 : H1(Ω) 7→ L2(∂Ω) which is equal to the usual trace
in the case of a smooth boundary. We sometimes denote γ0(u) = u|∂Ω. The space defined
by H1/2(∂Ω) = Ran(γ0) doesn’t depend on the charts used to define γ0, and equipped
with the norm ‖u‖H1/2 = inf{‖v‖H1, γ0(v) = u} it is a reflexif Banach space. Then, we
can set H−1/2(∂Ω) = H1/2(∂Ω)∗ and for u ∈ H−1/2(∂Ω), the support of u can be defined
in a standard way. The trace operator acting on vector fields u ∈ L2, div(u) ∈ L2

γ1 : {u ∈ (L2(Ω))d, div(u) ∈ L2(Ω)} → H−1/2(∂Ω) (1.12) 1.3.2

is then defined by the formula

∫

Ω

div(u)(x)v(x)dx = −

∫

Ω

u(x).∇v(x)dx−

∫

∂Ω

γ1(u)v|∂Ωdσ(x) (1.13) 1.3.3

In particular, for u ∈ H1(Ω) satisfying −∆u = div∇u ∈ L2(Ω) we can define ∂nu|∂Ω =
γ1(∇u) ∈ H−1/2(∂Ω) and the set D(Lρ) is well defined. From (

1.3.3
1.13) we deduce that for

any u ∈ H1(Ω) with ∆u ∈ L2 and any v ∈ H1(Ω) we have

〈(Lρ + 1)u, v〉L2(ρ) =
αd
2

(

〈∇u,∇v〉L2(ρ) + 〈∂nu, ρv〉H−1/2(∂Ω),H1/2(∂Ω)

)

+ 〈u, v〉L2(ρ) (1.14) 1.3.4

Then, it is standard that Lρ is the self-adjoint realisation of the Dirichlet form

αd
2

∫

Ω

|∇u(x)|2ρ(x)dx. (1.15) 1.4

Sobolev embeddings show that Lρ has a compact resolvant and we denote its spectrum
by ν0 = 0 < ν1 < ν2 < ... and by mj the multiplicity of νj . In particular, ν(ρ) = ν1.
Observe also that m0 = 1 since KerL is spaned by the constant function equal to 1 .

To state our theorem, we need

def2 Definition 1.2 Let Ω be a Lipschitz open set of Rd. We say that ∂Ω is stratified if
∂Ω = Γreg ∪ Γsing,Γreg ∩ Γsing = ∅ with Γreg reunion of smooth hypersurfaces, relatively
open in ∂Ω, and Γsing a closed subset of R

d such that

v ∈ H−1/2(∂Ω) and support(v) ⊂ Γsing =⇒ v = 0 (1.16) uniq

Observe that
uniq
1.16 is obviously satisfied if ∂Ω is smooth, since in that case one can

take Γsing = ∅. More generally, if Ω is a Lipschitz open set of Rd such that ∂Ω =
Γreg ∪ Γsing, Γreg ∩ Γsing = ∅, where Γreg is a smooth hypersurface of Rd, relatively open
in ∂Ω, and Γsing a closed subset of Rd such that Γsing = ∪j≥2Sj where the Sj are smooth
disjoints submanifolds of Rd such that

codimRdSj ≥ j, ∪k≥jSk = Sj (1.17)



Metropolis Algorithm on Lipshitz Domains 5

then Ω is stratified, since in that case, if v ∈ H−1/2(∂Ω) is such that near a point x0, the
support of v is contained in a submanifold S of codimension ≥ 2 in Rd, then v = 0 near
x0. This follows from the fact that S has codimension ≥ 1 in ∂Ω, and if u ∈ D′(Rp) is

such that u ∈ H
−1/2
loc (Rp) and support(u) ⊂ {x1 = 0}, then u = 0 . As an example, a cube

in Rd is stratified.

thm2 Theorem 1.2 Let Ω be an open, connected, bounded and Lipschitz subset of Rd, such
that ∂Ω is stratified. Assume that the positive density ρ is continuous on Ω. Then

limh→0h
−2g(h, ρ) = ν(ρ) (1.18) 1.6

Moreover, if the density ρ is smooth up to the regular part Γreg of the boundary ∂Ω, then
for any R > 0 and ε > 0 such that νj+1 − νj > 2ε for νj+2 < R, there exists h1 > 0 such
that one has for all h ∈]0, h1]

Spec(
1 − Th,ρ
h2

)∩]0, R] ⊂ ∪j≥1[νj − ε, νj + ε] (1.19) 1.5

and the number of eigenvalues of
1−Th,ρ

h2 in the interval [νj − ε, νj + ε] is equal to mj.

Theorem
thm1
1.1 is proved in section

sec2
2. This is done from the spectrum of the operator

by comparison with a ’ball walk’ on a big box B containing Ω. One novelty is the
use of ’normal extensions’ of functions from Ω to B. When the Dirichlet forms and
stationary distributions for random walk on a compact group are comparible, the rates
of convergence are comparable as well (

DSC2
[?], lemma ??). Here, the Metropolis Markov

chain is far from a random walk on a group. Indeed, because of the holding implicit
in the Metropolis algorithm, the operator doesnt have any smoothing properties. The
transfer of information is carried out by a Sobolev inequality for a spectraly truncated
part of the operator. This is transfered to a Nash inequality and then an inductive
argument of Hebisch (see also[ ]) is used to get decay bounds on iterates of the kernel. A
further technique is the use of crude Weyl type estimates to get bounds on the number of
eigenvalues close to 1. All of these enter the proof of the total variation estimate

1.7
1.7. All

of these techniques seem broadly applicable. Theorem
thm2
1.2 is proved in section

sec3
3. It gives

rigourous underpinnings to a general picture of the spectrum of the Metropolis algorithm
based on small steps. This was observed and proved in special cases (

LM
[?],

DL07
[DL07]). The

picture is this: because of the holding (or presence of the multiplier mh,ρ in
1.2
1.2) in the

Metropolis algorithm, the operator always has continuous spectrum. This is well isolated
from 1 and can be neglected in bounding rates of convergence. The spectrum near 1 is
discrete and for h small, merges with the spectrum of an associated Neumann problem.
This is an analytic version of the convergence of the discrete time Metropolis chain to
the Langevin diffusion with generator

1.3
1.11. See Lepingle (

Lep
[?]) Paper of Burdzy and

Chen reference coming COAUTHORS SAY A SENTENCE OR TWO ABOUT THE
IDEA OF PROOF? In section

sec4
4, we return to the hard disc problem showing that the

operators and domains involved satisfy our hypothesis. Precisely, in theorem
thm3
4.1 we shall

prove that the results of theorem
thm1
1.1 and theorem

thm2
1.2 holds true in this case.

2 A proof of theorem
thm1

1.1
sec2

Let us recall that

Kh,ρ(x, y) = h−dϕ(
x− y

h
)min(

ρ(y)

ρ(x)
, 1) (2.1)
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so that
Th,ρ(u) = u−Qh,ρ(u)

Qh,ρ(u)(x) =

∫

Ω

Kh,ρ(x, y)(u(x) − u(y))dy

((1 − Th,ρ)u|u)L2(ρ) =
1

2

∫ ∫

Ω×Ω

|u(x) − u(y)|2Kh,ρ(x, y)ρ(x)dxdy

(2.2) 2.2

For the proof of theorem
thm1
1.1, we will not really care on the precise choice of the density

ρ. In fact, if ρ1, ρ2 are two densities such that m ≤ ρi(x) ≤M for all x, then

ρ2(x) ≤ ρ1(x)(1 +
‖ρ1 − ρ2‖∞

m
)

Kh,ρ1(x, y)ρ1(x) ≤ Kh,ρ2(x, y)ρ2(x)(1 +
‖ρ1 − ρ2‖∞

m
)

(2.3) comp1

and this implies using the definition
gap2
1.4 of the spectral gap and of νρ

gh,ρ1
gh,ρ2

≤ (1 +
‖ρ1 − ρ2‖∞

m
)3

νρ1
νρ2

≤ (1 +
‖ρ1 − ρ2‖∞

m
)3

(2.4) comp2

In particular, it is sufficient to prove
gap3
1.6 for a constant density.

Observe that since Ω is Lipschitz, from
1.2
1.2 and

comp1
2.3, there exists h0 > 0, δ0 > 0 such

that for any density ρ with m ≤ ρ(x) ≤ M one has supx∈Ωmh,ρ(x) ≤ 1 − 2δ0. Thus
the essential spectrum of Th is a subset of [0, 1 − 2δ0]. The proof that for some δ0 > 0,
independent of ρ, one has Spec(Th,ρ) ⊂ [−1 + δ0, 1] for all h ∈]0, h0] is the following: one
has

(u+ Th,ρu|u)L2(ρ) =
1

2

∫

Ω×Ω

Kh,ρ(x, y)|u(x) + u(y)|2ρ(x)dxdy + 2(mh,ρu|u)L2(ρ) (2.5) inf1

Therefore, it is sufficient to prove that there exists h0, C0 > 0 such that the following
inequality holds true for all h ∈]0, h0] and all u ∈ L2(Ω)

∫

Ω×Ω

h−dϕ(
x− y

h
)|u(x) + u(y)|2dxdy ≥ C0‖u‖

2
L2(Ω) (2.6) inf2

Let ωj ⊂ Ω, ∪jωj = Ω be a covering of Ω such that diam(ωj) < h and for some Ci > 0
independent of h, vol(ωj) ≥ C1h

d, and for any j, the number of k such that ωj ∩ ωk 6= ∅
is less than C2. Such a covering exists as Ω is Lipschitz. Then

C2

∫

Ω×Ω

h−dϕ(
x− y

h
)|u(x) + u(y)|2dxdy ≥

∑

j

∫

ωj×ωj

h−dϕ(
x− y

h
)|u(x) + u(y)|2dxdy

≥
∑

j

h−d
1

|B1|

∫

ωj×ωj

|u(x) + u(y)|2dxdy ≥
∑

j

2h−d
1

|B1|
vol(ωj)‖u‖

2
L2(ωj)

≥
2C1

|B1|
‖u‖2

L2(Ω)

(2.7) inf4

From
inf4
2.7, we get that

inf2
2.6 holds true.

For the proof of (
gap3
1.6) we need a suitable covering of Ω. Given ǫ > 0 small enough,

there exists some open sets Ω0, . . . ,ΩN such that {x ∈ R
d, dist(x,Ω) ≤ ǫ2} ⊂ ∪Nj=0Ωj ,

where the Ωj ’s have the following properties:
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1. Ω0 = {x ∈ Ω, d(x, ∂Ω) > ǫ2}

2. For j = 1, . . . , N , there exists rj > 0, an affine isometry Rj of Rd and a Lipschitz
map ϕj : Rd−1 → R such that, denoting φ̃j(x

′, xd) = (x′, xd+ϕj(x
′)) and φj = Rj◦φ̃j,

we have
φj is injective on B(0, 2rj)×] − 2ǫ, 2ǫ[

Ωj = φj(B(0, rj)×] − ǫ, ǫ[)

Ωj ∩ Ω = φj(B(0, rj)×]0, ǫ[)

φj(B(0, 2rj)×]0, 2ǫ[) ⊂ Ω

(2.8) recouv

We put our open set Ω in a large box B =] − A/2, A/2[d and for j = 0, . . . , N we let
χj ∈ C∞

0 (Ωj) be such that
∑

j χj(x) = 1 for dist(x,Ω) ≤ ǫ2. For any function u ∈ L2(Ω),

let uj, j = 0, . . . , N be defined in a neighbourhood of Ωj by uj = u ◦ φj ◦ S ◦ φ−1
j , where

S(x′, xd) = (x′,−xd) if xd < 0 and S(x′, xd) = (x′, xd) if xd ≥ 0. For x ∈ Ω ∩ Ωj , one has
uj(x) = u(x) and we define

E(u)(x) =
N

∑

j=0

χj(x)uj(x) (2.9) 2.3

We observe that φ̃−1
j (x) = (x′, xd−ϕj(x

′)). Consequently, as ϕj is Lipschitz-continuous,

then φj and φ−1
j are also Lipschitz-continuous. Hence, formula (

2.3
2.9), gives us an exten-

sion map from L2(Ω) into L2(B), which is also bounded from H1(Ω) into H1(B). For
u ∈ L2(Ω), v ∈ L2(B), set

Eh,ρ(u) = ((1 − Th,ρ)u|u)L2(ρ)

Eh(v) =

∫ ∫

B×B,|x−y|≤h
h−d|v(x) − v(y)|2dxdy

(2.10) 2.4

Since for A large, E(u) vanishes near the boundary of B, we can extend v = E(u) as a
A-periodic function on Rd, and write its Fourier serie v(x) = E(u)(x) =

∑

k∈Zd ck(v)e
2iπkx/A

with ck(v) = A−d ∫

B
e−2iπkx/Av(x)dx. Then

‖E(u)‖2
L2(B) = Ad

∑

k

|ck|
2 ≃ ‖u‖2

L2(Ω)

‖E(u)‖2
H1(B) = Ad

∑

k

(1 + 4π2k2/A2)|ck|
2 ≃ ‖u‖2

H1(Ω)

(2.11) 2.5

Moreover, one gets

Eh(v) = Ad
∑

k

|ck|
2θ(hk)

θ(ξ) =

∫

|z|≤1

|e2iπξz/A − 1|2dz
(2.12) 2.6

Observe that the function θ is non-negative, quadratic near 0 and has a positive lower
bound for |ξ| ≥ 1 .

lem0 Lemma 2.1 For all α > 1, there exists C > 0 and h0 > 0 such that

∀u ∈ L2(Ω), ∀h ∈]0, h0], Eαh,ρ(u) ≤ CEh,ρ(u). (2.13)
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Proof. Using
2.2
2.2 and

comp1
2.3, we observe that it suffices to prove the lemma in the case where

ρ(x) = ρ is constant, and we first we show the result when Ω is convex. In that case,
since |u(x) − u(y)| ≤ |u(x) − u(x+y

2
)| + |u(x+y

2
) − u(y)|, one has

Eαh,ρ(u) =
(hα)−d

2V ol(B1)

∫

Ω

∫

Ω

1|x−y|≤αh|u(x) − u(y)|2ρdxdy

≤
(hα)−d

V ol(B1)

∫

Ω

∫

Ω

1|x−y|≤αh|u(x) − u(
x+ y

2
)|2ρdxdy

≤
22−d(hα/2)−d

V ol(B1)

∫

φ(Ω×Ω)

1|x−y|≤αh
2

|u(x) − u(y)|2ρdxdy

(2.14)

where φ(x, y) = (x, x+y
2

). As Ω is convex φ(Ω×Ω) ⊂ Ω×Ω and we get Eαh,ρ(u) ≤ 2Eαh
2
,ρ(u).

Iterating this process we obtain the anounced result for convex domains.
In the general case, we use the local covering introduced in

recouv
2.8. Let Ω+

i = Ωi ∩ Ω
(respectively Ω−

i = Ωi ∩ (Rd \ Ω)) and Ui(h) = {(x, y) ∈ Ω+
i × Ω, |x− y| ≤ αh}. Since by

2.2
2.2, Ω ⊂ ∪iΩ

+
i , we have Eαh,ρ(u) ≤

∑N
i=0 E

i
αh,ρ(u) with

E iαh,ρ(u) =
(αh)−d

2V ol(B1)

∫

Ui(h)

1|x−y|≤αh|u(x) − u(y)|2ρdxdy. (2.15)

Let us estimate E0
αh,ρ(u). For h ∈]0, ǫ2/α[ and (x, y) ∈ U0(h), we have [x, y] ⊂ Ω. There-

fore, the change of variable φ(x, y) = (x, x+y
2

) maps U0(h) into Ω0 × Ω and we get as
above

E0
αh,ρ(u) ≤

(αh)−d

V ol(B1)

∫

U0(h)

1|x−y|≤αh|u(x) − u(
x+ y

2
)|2ρdxdy ≤ 2Eαh

2
,ρ(u). (2.16)

For i 6= 0 and h > 0 small enough, we remark that Ui(h) ⊂ Ω̃+
i × Ω̃+

i , where Ω̃±
i =

φi(B(0, 2ri) × {0 < ±xd < 2ǫ}). Denoting Qi = B(0, ri)×]0, ǫ[, Q̃i = B(0, 2ri)×]0, 2ǫ[, we
can use the Lipschitz-continuous change of variable φi : Q̃i → Ω̃+

i ⊂ Ω to get

E iαh,ρ(u) ≤
(αh)−d

2V ol(B1)

∫

Q̃i

∫

Q̃i

Jφi
(x)Jφi

(y)1|φi(x)−φi(y)|≤αh|u◦φi(x)−u◦φi(y)|
2ρdxdy (2.17)

where the Jacobian Jφi
of φi is a bounded function defined almost everywhere. As both

φi, φ
−1
i are Lipschitz-continuous, there exists Mi, mi > 0 such that for all x, y ∈ Q̃i we

have mi|x− y| ≤ |φi(x) − φi(y)| ≤Mi|x− y|. Therefore,

E iαh,ρ(u) ≤ Ch−d
∫

Q̃i

∫

Q̃i

1|x−y|≤αh
mi

|u ◦ φi(x) − u ◦ φi(y)|
2ρdxdy, (2.18)

where C denotes a positive constant changing from line to line. As Q̃i is convex, it follows
from the study of the convex case that

E iαh,ρ(u) ≤ Ch−d
∫

Q̃i

∫

Q̃i

1|x−y|≤ h
Mi

|u ◦ φi(x) − u ◦ φi(y)|
2ρdxdy

≤ Ch−d
∫

Q̃i

∫

Q̃i

1|φi(x)−φi(y)|≤h|u ◦ φi(x) − u ◦ φi(y)|
2dxdyρ

≤ Ch−d
∫

Ω̃+

i

∫

Ω̃+

i

1|x−y|≤h|u(x) − u(y)|2ρdxdy ≤ CiEh,ρ(u)

(2.19)
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and the proof is complete. �

lem1 Lemma 2.2 There exist C0, h0 > 0 such that the following holds true for any h ∈]0, h0]
and any u ∈ L2(ρ)

Eh,ρ(u)/C0 ≤ Eh(E(u)) ≤ C0(Eh,ρ(u) + h2‖u‖2
L2) (2.20) 2.7

As a byproduct, there exists C1 such that for all h ∈]0, h0], any function u ∈ L2(ρ) such
that

‖u‖2
L2(ρ) + h−2((1 − Th,ρ)u|u)L2(ρ) ≤ 1

admits a decomposition u = uL + uH with uL ∈ H1(Ω), ‖uL‖H1 ≤ C1, and ‖uH‖L2 ≤ C1h.

Proof. Using the second line of
comp1
2.3, we may assume that the density ρ is constant. The

proof of the left inequality in
2.7
2.20 is obvious. For the upper bound, we remark that there

exists C > 0 such that Eh(E(u)) ≤ C
∑N

j=0(E
j,1
h + E j,2h ) with

E j,1h = h−d
∫

B×B
1|x−y|≤h|χj(x) − χj(y)|

2|uj(x)|
2dxdy (2.21)

and

E j,2h = h−d
∫

B×B
1|x−y|≤h|χj(y)|

2|uj(x) − uj(y)|
2dxdy (2.22)

As the functions χj are regular, there exist some χ̃j ∈ C∞
0 (B) equal to 1 near the support

of χj such that

E j,1h ≤ Ch−d
∫

B

χ̃j(x)|uj(x)|
2(

∫

B

1|x−y|≤h|x− y|2|dy)dx ≤ Ch2‖u‖2
L2(Ω) (2.23)

In order to estimate E j,2h one has to estimate the contribution of the points x ∈ Ω, y /∈ Ω
and x /∈ Ω, y /∈ Ω. All the terms are treated in the same way and we only examine

E j,3h = h−d
∫

Ω×(B\Ω)

1|x−y|≤h|χj(y)|
2|uj(x) − uj(y)|

2dxdy

= h−d
∫

Ω̃+

j ×Ω−

j

1|x−y|≤h|χj(y)|
2|u(x) − u ◦ φj ◦ S ◦ φ−1

j (y)|2dxdy
(2.24)

Let σ : Rd → Rd be the symetry with respect to {yd = 0}, so that Sσ = Id on {yd < 0}.
We use the Lipschitz-continuous change of variable ψj : y ∈ Ω+

j 7→ φj ◦ σ ◦ φ−1
j (y) ∈ Ω−

j

to get

E j,3h ≤ Ch−d
∫

Ω̃+

j ×Ω+

j

1|x−ψj(y)|≤h|χj ◦ ψj(y)|
2|u(x) − u(y)|2dxdy (2.25)

We claim that there exists β > 0 such that,

∀(x, y) ∈ Ω̃+
j × Ω+

j , |ψj(y) − x| ≥ β−1|x− y|. (2.26) 2.8

Inded, as both φj and φ−1
j are Lipschitz-continuous,

2.8
2.26 is equivalent to find β > 0 such

that
∀(x, y) ∈ Ω̃+

j × Ω+
j , |σ(x) − y| ≥ β−1|x− y| (2.27)
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wich is obvious with β = 1. From (
2.8
2.26) it follows that for some α > 1, one has

E j,3h ≤ Ch−d
∫

Ω̃+

j ×Ω+

j

1|x−y|≤αh|u(z) − u(y)|2dzdy ≤ CEαh,ρ(u) (2.28)

and the upper bound is then a straightforward consequence of Lemma
lem0
2.1.

The byproduct is obtain by projecting the extension v = E(u) on low frequencies
h|k| ≤ 1 and high frequencies h|k| > 1 and the fact that the function θ is quadratic near
0 and has a positive lower bound for |ξ| ≥ 1 . The proof of lemma

lem1
2.2 is complete.

�

We are in position to prove the estimate (
gap3
1.6) on the spectral gap. To show the right

inequality, it suffices to plug a function u ∈ C∞
0 (Ω) into (

gap
1.3) with support contained in

a small ball Q ⊂ Ω and such that
∫

Ω
u(x)ρ(x)dx = 0. As Q is convex, it follows from

Taylor formula that for such u, we have 〈u− Thu, u〉 = O(h2).
To show the left inequality in (

gap3
1.6) we first observe that it is clearly satisfied when Ω

is convex. Indeed, given u ∈ L2(Ω) we have

‖u‖2
L2(Ω) −〈u, 1〉2 ≤ Ch−1

K(h)
∑

k=0

∫

Ω×Ω

(u(x+ kh(y−x)/α)−u(x+(k+1)h(y−x)/α))2dxdy

(2.29)
where α = diam(Ω) and K(h) = O(h−1). With the new variables x′ = x + kh(y − x)/α,
y′ = x+ (k + 1)h(y − x)/α it comes

‖u‖2
L2(Ω) − 〈u, 1〉2 ≤ Cαh−d−1K(h)

∫

Ω×Ω

1|x′−y′|<h(u(x
′) − u(y′))2dx′dy′ (2.30)

which proves the left inequality in (
gap3
1.6) in the case where Ω is convex.

In the general case, we can find some open sets contained in Ω, ωj ⊂⊂ Ω+
j ⊂⊂ Ω̃+

j ,

j = 1, . . . , N + M such that for j = 1, . . . , N , Ω+
j , Ω̃

+
j are given in the previous lemma,

(Ω+
j )j=N+1,...,N+M are convex Ω0 ⊂ ∪Mj=N+1Ω

+
j , Ω ⊂ ∪N+M

j=1 ωj, and where A ⊂⊂ B that

A
Ω
⊂ B. Hence for h > 0 small enough

Eh,ρ(u) ≥ C

N+M
∑

j=1

h−d
∫

Ω+

j ×Ω̃+

j

1|x−y|<h(u(x) − u(y))2dxdy

≥ C
N

∑

j=1

h−d
∫

Qj×Q̃j

1|φj(x)−φj(y)|<h(u ◦ φj(x) − u ◦ φj(y))
2dxdy

+ C
N+M
∑

j=N+1

h−d
∫

Ω+

j ×Ω̃+

j

1|x−y|<h(u(x) − u(y))2dxdy

(2.31) eq2.9

From the estimate proved precedently in the convex case, we know that there exists a > 0
independant on h such that the second sum in (

eq2.9
2.31) is bounded from below by

Ch2
N+M
∑

j=N+1

∫

ωj×Ω+

j

(u(x)−u(y))2dxdy ≥ Ch2
N+M
∑

j=N+1

∫

ωj×Ω,|x−y|<a
(u(x)−u(y))2dxdy. (2.32) eq2.10
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On the other hand, thanks to the fact that φj is Lipschitz diffeomorphism, there exists
α > 0 such that 1x−y|<h/α ≤ 1|φj(x)−φj(y)|<h ≤ 1|x−y|<αh. Using the convexity of Qi and
Lemma

lem0
2.1 it follows that the first sum in the right hand side of (

eq2.9
2.31) is bounded from

below by

Ch2

N
∑

j=1

∫

ωj×Ω,|x−y|<a
(u(x) − u(y))2dxdy (2.33) eq2.11

Combining (
eq2.9
2.31),(

eq2.10
2.32) and (

eq2.11
2.33), we get

Eh,ρ(u) ≥ Ch2

∫

Ω×Ω,|x−y|<a
(u(x) − u(y))2dxdy (2.34)

for some fixed a > 0 independant on h. Using Lemma
lem0
2.1 with h = a we achieve the

proof of (
gap3
1.6).

lem3 Lemma 2.3 There exists δ0 ∈]0, 1/2[ such that Spec(Th,ρ) ∩ [1 − δ0, 1] is discrete, and
for any 0 ≤ λ ≤ δ0/h

2, the number of eigenvalues of Th in [1 − h2λ, 1] (with multiplicity)
is bounded by C1(1 + λ)d/2. Moreover, any eigenfuntion Th(u) = λu with λ ∈ [1 − δ0, 1]
satisfies the bound

‖u‖L∞ ≤ C2h
−d/2‖u‖L2 (2.35) eq2.12

Proof. To get
eq2.12
2.35, we just write that since λ is not in the range of mh, one has

u(x) =
1

λ−mh(x)

∫

Ω

h−dϕ(
x− y

h
)min(

ρ(y)

ρ(x)
, 1)u(y)dy

and we apply Cauchy-Schwarz. The important point here is the estimate on the number
of eigenvalues in [1 − h2λ, 1] by a power of λ. This is obtain by the min-max and uses
2.7
2.20. The min-max gives: if for some closed subspace F of L2(ρ) with codim(F ) = N
one has for all u ∈ F , h−2((1 − Th)u|u)L2(ρ) ≥ λ‖u‖2

L2(ρ), then the number of eigenvalues

of Th in [1 − h2λ, 1] (with multiplicity) is bounded by codim(F ) = N . Then, we fix
c > 0 small enough, and we choose for F the subspace of functions u such that their
extension v = E(u) is such that the Fourier coefficients satisfy ck(E(u)) = 0 for |k| ≤ D
with hD ≤ c. The codimension of this space F is exactly the number of k ∈ Z

d such
that |k| ≤ D, since if p is a trigonometric polynomial such that E∗(p) = 0, we will have
∫

Ω
p(x)u(x)dx = 0 for any function u with compact support in Ω and such that E(u) = u,

and this implies p = 0. Thus codim(F ) ≃ (1 + D)d. On the other hand, the right in-
equality in

2.7
2.20 gives for u ∈ F , h−2((1−Th)u|u)L2(ρ) ≥ C0(D

2−C1)‖u‖
2
L2(ρ) for universal

C0, C1, since by
2.6
2.12, there exists C0 > 0 such that one has θ(hk)h−2 ≥ C0D

2 for all
D ≤ c/h and all |k| > D. The proof of our lemma is complete. �

We are now ready to prove the total variation estimate
1.7
1.7. Let Π0 be the orthogonal

projector in L2(f) on the space of constant functions

Π0(u)(x) = 1Ω(x)

∫

Ω

u(y)ρ(y)dy (2.36) T1

Then
2supx0∈Ω‖T

n
h,x0

− ρ(x)dx‖TV = ‖T nh − Π0‖L∞→L∞ (2.37) T2
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Thus, we have to prove that there exist C0, h0, such that for any n and any h ∈]0, h0],
one has

‖T nh − Π0‖L∞→L∞ ≤ C0e
−ngh,ρ (2.38) T3

Observe that since we know that for h0 small, the estimate
gap3
1.6 holds true for any ρ, we

may assume n ≥ Ch−2. In order to prove
T3
2.38, we split Th in 3 pieces, according to the

spectral theory.
Let 0 < λ1,h ≤ ... ≤ λj,h ≤ λj+1,h ≤ ... ≤ h−2δ0 be such that the eigenvalues of Th in

the interval [1− δ0, 1[ are the 1− h2λj,h, with associated orthonormals eigenfunctions ej,h

Th(ej,h) = (1 − h2λj,h)ej,h, (ej,h|ek,h)L2(ρ) = δj,k (2.39) T4

Then we write Th − Π0 = Th,1 + Th,2 + Th,3 with

Th,1(x, y) =
∑

λ1,h≤λj,h≤h−α

(1 − h2λj,h)ej,h(x)ej,h(y)

Th,2(x, y) =
∑

h−α<λj,h≤h−2δ0

(1 − h2λj,h)ej,h(x)ej,h(y)

Th,3 = Th − Π0 − Th,1 − Th,2

(2.40) T5

Here α > 0 is a small constant that will be chosen later. One has T nh−Π0 = T nh,1+T
n
h,2+T

n
h,3,

and we will get the bound
T3
2.38 for each of the 3 terms. We start by very rough bounds.

Since there is at most Ch−d eigenvalues λj,h and using the bound (
eq2.12
2.35), we get that there

exists C independent of n ≥ 1 and h such that

‖T n1,h‖L∞→L∞ + ‖T n2,h‖L∞→L∞ ≤ Ch−3d/2 (2.41) T6

Since T nh is bounded by 1 on L∞, we get from T nh − Π0 = T nh,1 + T nh,2 + T nh,3

‖T n3,h‖L∞→L∞ ≤ Ch−3d/2 (2.42) T7

Next we use
1.2
1.2 to write Th = mh +Rh with

‖mh‖L∞→L∞ ≤ γ < 1

‖Rh‖L2→L∞ ≤ C0h
−d/2 (2.43) T8

From this, we deduce that for any p = 1, 2, ..., one has T ph = Ap,h + Bp,h, with A1,h =
mh, B1,h = Rh and the recurrence relation Ap+1,h = mhAp,h, Bp+1,h = mhBp,h + RhT

p
h .

Thus one gets since T ph is bounded by 1 on L2

‖Ap,h‖L∞→L∞ ≤ γp

‖Bp,h‖L2→L∞ ≤ C0h
−d/2(1 + γ + ...+ γp) ≤ C0h

−d/2/(1 − γ)
(2.44) T9

Let θ = 1 − δ0 < 1 so that ‖T3,h‖L2→L2 ≤ θ. Then one has

‖T n3,h‖L∞→L2 ≤ ‖T n3,h‖L2→L2 ≤ θn

and for n ≥ 1, p ≥ 1, one gets using
T9
2.44 and

T7
2.42
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‖T p+n3,h ‖L∞→L∞ = ‖T phT
n
3,h‖L∞→L∞

≤ ‖Ap,hT
n
3,h‖L∞→L∞ + ‖Bp,hT

n
3,h‖L∞→L∞

≤ Ch−3d/2γp + C0h
−d/2θn/(1 − γ)

(2.45) T10

Thus we get for some C > 0, µ > 0,

‖T n3,h‖L∞→L∞ ≤ Ce−µn, ∀h, ∀n ≥ 1/h (2.46) T11

and thus the contribution of T n3,h is far smaller than the bound we have to prove in
T3
2.38.

Next, for the contribution of T n2,h, we just write, since there is at most Ch−d eigenvalues
λj,h and using the bound (

eq2.12
2.35)

T nh,2(x, y) =
∑

h−α<λj,h≤h−2δ0

(1 − h2λj,h)
nej,h(x)ej,h(y)

‖T n2,h‖L∞→L∞ ≤ Ch−3d/2(1 − h2−α)n
(2.47) T12

Thus we get for some Cα > 0,

‖T n2,h‖L∞→L∞ ≤ Cαe
−nh2−α

2 , ∀h, ∀n ≥ h−2+α/2 (2.48) T13

and thus this contribution is still neglectible for h ∈]0, h0] for h0 small. It remains to
study the contribution of T nh,1. Let Eα be the (finite dimensional) subspace of L2(ρ) span

by the eigenvectors ej,h, λj,h ≤ h−α. By lemma
lem3
2.3, one has dim(Eα) ≤ Ch−dα/2.

lem4 Lemma 2.4 There exist α > 0, p > 2 and C independent of h such that for all u ∈ Eα,
the following inequality holds true

‖u‖2
Lp ≤ Ch−2((EΩ,h(u) + h2‖u‖2

L2) (2.49) T14

Proof. Clearly, one has for u =
∑

λ1,h≤λj,h≤h−α ajej,h ∈ Eα

EΩ,h(u) + h2‖u‖2
L2 =

∑

λ1,h≤λj,h≤h−α

h2(1 + λj,h)|aj|
2

Take u ∈ Eα such that h−2((EΩ,h(u)+h
2‖u‖2

L2) ≤ 1. Then by
2.7
2.20, one has h−2Eh(E(u)) ≤

C0. Let ψ(t) ∈ C∞
0 (R) equal to 1 near t = 0, and for v(x) =

∑

k∈Zd ck(v)e
2iπkx/A, set

v = vL + vH , vL(x) =
∑

k∈Zd

ψ(h|k|)ck(v)e
2iπkx/A (2.50) LH

Then v = vL + vH is a decomposition of the extension v = E(u) in low frequencies (vL)
and high frequencies (vH). One has vL(x) =

∫

Rd h
−dθ(x−y

h
)v(y)dy, where θ is the function

in the Schwartz space defined by θ̂(2πz/A) = ψ(|z|). Hence, the map v 7→ vL is bounded
uniformly in h on all the space Lq for 1 ≤ q ≤ ∞. Then, from

2.6
2.12 we get

‖vL‖H1(B) ≤ C (2.51) T15

Thus, with uL = vL|Ω and uH = vH |Ω, we get ‖uL‖H1(Ω) ≤ C so by Sobolev for p < 2d
d−2

‖uL‖Lp ≤ C (2.52) T16
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One the other hand, one has also by
2.7
2.20

h−2Eh(E(ej,h)) ≤ C0(1 + λj,h) (2.53) T17

and this implies by
2.6
2.12

h−2‖E(ej,h)H‖
2
L2 ≤ C0(1 + λj,h) ≤ C0(1 + h−α) (2.54) T18

Thus for α ≤ 1, we get ‖E(ej,h)H‖L2 ≤ Ch1/2. On the other hand, since ‖ej,h‖L∞ ≤
Ch−d/2, using the definition of the low frequency cut-off we get ,

‖E(ej,h)H‖L∞ ≤ ‖E(ej,h)‖L∞ + ‖E(ej,h)L‖L∞ ≤ C‖E(ej,h)‖L∞ ≤ Ch−d/2

By interpolation we can find some p > 2 such that

‖E(ej,h)H‖Lp ≤ C0h
1/4 (2.55) T19

Thus, one get for u =
∑

λ1,h≤λj,h≤h−α ajej,h ∈ Eα with h−2((EΩ,h(u) + h2‖u‖2
L2) ≤ 1

‖uH‖Lp ≤
∑

λ1,h≤λj,h≤h−α

|aj |‖E(ej,h)H‖Lp

≤ C0h
1/4dim(Eα)

1/2‖u‖L2 ≤ Ch1/4h−dα/4
(2.56) T20

Our lemma follows from
T16
2.52 and

T20
2.56 if one takes α small. Observe that here, the esti-

mate on the number of eigenvalues (i.e the estimation of the dimension of Eα) is crucial.
The proof of lemma

lem4
2.4 is complete. �

From lemma
lem4
2.4, using the interpolation inequality ‖u‖2

L2 ≤ ‖u‖
p

p−1

Lp ‖u‖
p−2

p−1

L1 , we deduce
the Nash inequality, with 1/D = 2 − 4/p > 0

‖u‖
2+1/D
L2 ≤ Ch−2((EΩ,h(u) + h2‖u‖2

L2)‖u‖
1/D
L1 , ∀u ∈ Eα (2.57) T20bis

For λj,h ≤ h−α, one has h2λj,h ≤ 1, and thus for any u ∈ Eα, one gets EΩ,h(u) ≤
‖u‖2

L2 − ‖Thu‖
2
L2, thus we get from

T20bis
2.57

‖u‖
2+1/D
L2 ≤ Ch−2((‖u‖2

L2 − ‖Thu‖
2
L2 + h2‖u‖2

L2)‖u‖
1/D
L1 , ∀u ∈ Eα (2.58) T21

From
T11
2.46 and

T13
2.48, and T nh −Π0 = T nh,1 +T nh,2 +T nh,3, we get that there exists C2 such

that
‖T n1,h‖L∞→L∞ ≤ C2, ∀h, ∀n ≥ h−2+α/2 (2.59) T22

and thus since T1,h is self adjoint on L2

‖T n1,h‖L1→L1 ≤ C2, ∀h, ∀n ≥ h−2+α/2 (2.60) T23

Fix p ≃ h−2+α/2. Take g ∈ L2 such that ‖g‖L1 ≤ 1 and consider the sequence cn, n ≥ 0

cn = ‖T n+p
1,h g‖2

L2 (2.61) T24

Then, 0 ≤ cn+1 ≤ cn and from
T21
2.58 and

T23
2.60, we get

c
1+ 1

2D
n ≤ Ch−2(cn − cn+1 + h2cn)‖T

n+p
1,h g‖

1/D

L1

≤ CC
1/D
2 h−2(cn − cn+1 + h2cn)

(2.62) T25
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From this inequality, we deduce that there exist A ≃ CC2sup0≤n≤h−2(2 + n)(1 + h2 −
(1 − 1

n+2
)2D) which depends only on C,C2, D, such that for all 0 ≤ n ≤ h−2, one has

cn ≤ (Ah
−2

1+n
)2D, and thus there exist C0 which depends only on C,C2, D, such that for

N ≃ h−2, one has cN ≤ C0. This implies

‖TN+p
1,h g‖L2 ≤ C0‖g‖L1 (2.63) T26

and thus taking adjoints
‖TN+p

1,h g‖L∞ ≤ C0‖g‖L2 (2.64) T27

and so we get for any n and with N + p ≃ h−2

‖TN+p+n
1,h g‖L∞ ≤ C0(1 − h2λ1,h)

n‖g‖L2 (2.65) T28

And thus for n ≥ h−2

‖T n1,h‖L∞→L∞ ≤ C0e
−(n−h−2)h2λ1,h = C0e

λ1,he−ngap, ∀h, ∀n ≥ h−2 (2.66) T29

This conclude the proof of theorem
thm1
1.1.

rem1 Remark 2.5 Observe that (
eq2.12
2.35) is certainly true with a power of Λ instead of a power

of h with λ = 1 − h2Λ, but we have no proof for this; thats why we use for T1,h a Nash
inequality.

rem2 Remark 2.6 The above proof seems to apply for a more general choice of the elementary
Markov kernel h−dϕ(x−y

h
). Replace ϕ by a positive symmetric measure of total mass 1

with support in the unit ball, and let Th be the Metropolis with this data. Assume that one
is able to prove that for some δ0 > 0 one has Spec(Th) ⊂ [−1 + δ0, 1] for all h ≤ h0, and
that for some power M , one has for some C, c > 0

TMh (x, dy) = µh(x, dy) + Ch−d1|x−y|≤chρ(y)dy, µh(x, dy) ≥ 0

Then there exist γ < 1 such that ‖µh‖L∞ ≤ γ. Moreover, the right inequality in
2.7
2.20

and
eq2.12
2.35 are still valid for TMh . Also, the spectral gap of TMh is given by formula

gap2
1.4 with

TMh (x, dy) in place of Kh,ρ(x, y)dy, and therefore the left inequality in
gap3
1.6 holds true, and

the right one is true , since if ρ is constant, for any θ ∈ C∞
0 (Ω), one has u−Thu ∈ O(h2).

We shall use these remark later in the study of the hard disc problem, in section
sec4
4.

3 A proof of theorem
thm2

1.2
sec3

In all this section, we suppose additionaly that Ω is stratified. For a given continuous
density ρ, using (

comp2
2.4) and an approximation of ρ in L∞ by a sequence of smooth density

ρk, one sees that the first assertion (
1.6
1.18) of theorem

thm2
1.2 is a consequence of the second

one (
1.7
1.7). Assume now that ρ is smooth.

lem5 Lemma 3.1 Let θ ∈ C∞(Ω) be such that supp(θ) ∩ Γsing = ∅ and ∂nθ|Γreg = 0. Then

Qh,ρ(θ) = h2Lρ(θ) + r, ‖r‖L2 ∈ O(h5/2) (3.1) 3.1
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Proof. For θ ∈ C∞(Ω) and x ∈ Ω, we can use the Taylor formula to get

Qh,ρ(θ)(x) =
1

V ol(B1)

∫

A(x,h)

min(1 + h
∇ρ(x)

ρ(x)
.z +O(h2|z|2), 1)

(−h∇θ(x).z −
h2

2

∑

i,j

zizj∂xi
∂xj

θ(x) +O(h3|z|3))dz
(3.2)

with A(x, h) = {z ∈ Rd, |z| < 1, x + hz ∈ Ω}. As A(x, h) = A+(x, h) ∪ A−(x, h), with
A±(x, h) = {z ∈ A(x, h), ±(ρ(x + hz) − ρ(x)) ≥ 0}, it follows by an easy computation
that

Qh,ρ(θ)(x) = −
h

V ol(B1)
∇θ(x).

∫

A(x,h)

zdz −
h2

2V ol(B1)

d
∑

i,j=1

∂xi
∂xj

θ(x)

∫

A(x,h)

zizjdz

−
h2

V ol(B1)

∫

A−(x,h)

∇ρ(x)

ρ(x)
.z∇θ(x).zdz + r(x) = f1(x) + f2(x) + f3(x) + r(x)

(3.3)

with ‖r‖L∞(Ω) = O(h3). Let χ = 1d(x,∂Ω)<2h, then for j = 2, 3

‖χfj‖L2(Ω) ≤ ‖χ‖L2(Ω)‖fj‖L∞(Ω) = O(h5/2) (3.4) 3.1bis

thanks to the support properties of χ. Moreover, for x ∈ supp(1−χ), A(x, h) = {|z| < 1}
and the change of variable z 7→ −z shows that (1− χ)f2 = −(1−χ)αd

2
h2∆θ(x) thanks to

1.1
1.8. Hence,

f2(x) = −
αd
2
h2∆θ(x) + r(x) (3.5)

with ‖r‖L2 = O(h5/2).
To compute f3, we first observe that |f3(x)| ≤ Ch2|∇ρ(x)||∇θ(x)|. We thus get

‖1|∇ρ|≤h1/2f3‖L∞ ≤ Ch5/2‖∇θ‖L∞. At a point x where |∇ρ(x)| ≥ h1/2, we may write

z = t ∇ρ(x)
|∇ρ(x)| + z⊥, t = z.∇ρ(x)

|∇ρ(x)| , z⊥.∇ρ(x) = 0. In these coordinates, one has A−(x, h) =

{(t, z⊥), t|∇ρ(x)|+O(h(t2 + |z⊥|2)) ≤ 0}. From |∇ρ(x)| ≥ h1/2 we get that the symmetric
difference R between A−(x, h) and {t ≤ 0} satisfies meas(R) = O(h1/2) (the symmetric
difference of two sets A,B is A ∪ B \ A ∩ B). Therefore

1|∇ρ|≥h1/2(1−χ)f3(x) = −h21|∇ρ|≥h1/2(1−χ)(x)

∫

{|z|<1,∇ρ(x).z≤0}

∇ρ(x)

ρ(x)
.z∇θ(x).zdz+ r(x)

(3.6)
with ‖r‖L∞ = O(h5/2). Using the change of variable z 7→ z − 2z⊥ we get

1|∇ρ|≥h1/2(1 − χ)f3(x) = −h21|∇ρ|≥h1/2

αd
2

(1 − χ)(x)
∇ρ(x)

ρ(x)
.∇θ(x) + r(x) (3.7)

and therefore using
3.1bis
3.4 we get

f3(x) = −h2αd
2

∇ρ(x)

ρ(x)
.∇θ(x) + r(x) (3.8)

with ‖r‖L2 = O(h5/2). It remains to show that ‖f1‖L2(Ω) = O(h5/2). Using the change of
variable z 7→ −z we easily obtain (1−χ)f1 = 0. Hence, it suffices to show that f ′

1(x, h) =
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∫

A(x,h)
z.∇θ(x)dz satisfies ‖f ′

1‖L∞(Ω) = O(h). As Γsing is compact and supp(θ)∩Γsing = ∅,

dist(Γsing, supp(θ)) > 0, this is a local problem near any point x0 of the regular part Γreg
of the boundary . Let φ be a smooth diffeomorphism as in

recouv
2.8 so that locally near x0, one

has φ−1(Ω) = {xd > 0}. For x close to x0 one has

A(x, h) = {z ∈ R
d, |z| < 1, (φ−1(x) + hDxφ

−1(z) +O(h2))d > 0} (3.9)

Set
A1(x, h) = {z ∈ R

d, |z| < 1, (φ−1(x) + hDxφ
−1(z))d > 0} (3.10)

then the symmetric difference R between A(x, h) and A1(x, h) satisfies meas(R) = O(h)
uniformly in x close to x0. This yields

f ′
1(x, h) = ∇θ(x).v(x, h) + r(x), v(x, h) =

∫

A1(x,h)

zdz (3.11)

with ‖r‖L∞ = O(h). Let ν(x) be the vector field defined by ν(x).z = (Dxφ
−1(x)(z))d.

Observe that v(x, h) is collinear to ν(x), vanish for dist(x, ∂Ω) > Ch and that for x ∈ ∂Ω,
ν(x) is collinear to the unit normal to the boundary −→n (x). Since ∂nθ|Γreg = 0, we thus
get ‖f ′

1‖L∞ = O(h). The proof of our lemma is complete. �

Let us recall that we denote 1 = ν0 < ν1 < . . . < νj < ... the eigenvalues of Lρ and mj

the associated multiplicities. We introduce the bilinear form

aρ(u, v) =
αd
2
〈∇u,∇v〉L2(ρ) + 〈u, v〉L2(ρ). (3.12)

It defines an Hilbertian structure on H1(Ω) which is equivalent to the usual one. We
denote ‖.‖H1

ρ
the norm induced by aρ. For j ∈ N we denote Fj = Ker(Lρ − νj), F<N =

⊕j<NFj and by F≥N = ⊕j≥NFj the orthogonal complement of F<N in H1 for teh scalarr
product aρ. Observe that since we assume here ρ smooth, by the classical theory of elliptic
boundary problems, any function in Fj is smooth in Ω and smooth up to the regular part
Γreg of the boundary. We also denote Πj the orthogonal projection for aρ on Fj and

DN = {θ ∈ C∞(Ω), θ = 0 near Γsing, ∂nθ|Γreg = 0, 〈θ, v〉L2(ρ) = 0 ∀v ∈ F<N} (3.13)

where we use the convention F<0 = ∅. One has DN ⊂ F≥N , since for any θ ∈ DN and any
v ∈ Fj with j < N one has by

1.3.4
1.14, aρ(v, θ) = 〈(Lρ + 1)v, θ〉L2(ρ) = 〈(νj + 1)v, θ〉L2(ρ) = 0.

lem6 Lemma 3.2 For all N ∈ N and all u ∈ F≥N there exists a sequence (uk) in DN converging
to u in H1.

Proof. We proceed by induction. Let us first verify the property for N = 0, i.e that D0 is
dense in H1. Let f ∈ H1(Ω) be orthogonal to D0 for aρ. Then, it is orthogonal to C∞

0 (Ω)
so that (Lρ + 1)f = 0 in the sense of distributions. In particular −∆f ∈ L2(Ω). Hence
we can use the Green formula (

1.3.4
1.14) to get for any θ ∈ D0, since aρ(f, θ) = 0,

〈∂nf, ρθ〉H−1/2,H1/2 = 0 (3.14)

For any ψ ∈ C∞
0 (Γreg), using smooth local coordinates we can find ψ̃ in D0 such that

ψ̃|∂Ω = ψ . Consequently,

〈∂nf, ρψ〉H−1/2,H1/2 = 〈∂nf, ρψ̃〉H−1/2,H1/2 = 0 (3.15)
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Hence, ∂nf|Γreg = 0. This shows that ∂nf|∂Ω ∈ H−1/2 is supported in Γsing. From
uniq
1.16

this implies ∂nf|∂Ω = 0. This shows that f ∈ D(Lρ). As the operator Lρ + 1 is strictly
positive this implies f = 0.

For N ≥ 1 and f ∈ F≥N , we consider a familly (fǫ) in D0 such that ‖f − fǫ‖H1 ≤ ǫ.
Let Q be an open ball such that Q ⊂ Ω. We look for h ∈ C∞

0 (Q) such that f̃ǫ = fǫ + h
satisfies the lemma. Let θ ∈ C∞

0 (Q), with θ ≥ 0 and θ 6= 0. We look for h under
the form h =

∑J
k=1 βkθek, where (ej)j∈{1,...,J} denote the eigenfunctions of Lρ such that

F<N = span(ej , j ∈ {1, . . . , J}) and β = (β1, . . . , βJ) ∈ CJ . The condition fǫ + h ∈ DN

reads 〈h, ej〉L2(ρ) = αj with αj = −〈fǫ, ej〉L2(ρ) = O(ǫ). Denoting β = (β1, . . . , βJ) and
〈u, v〉Q,ρθ =

∫

Q
u(x)v(x)ρ(x)θ(x)dx, this is equivalent to Mβ = α where M is the J × J

matrix M = (〈ej , ek〉Q,ρθ)j,k=1,...,J .
We claim that 〈, 〉Q,ρθ is definite positive on F<N . If not, there will exist a non zero

function v ∈ F<N such that
∫

Q
|v(x)|2ρ(x)θ(x)dx = 0. This implies that v(x) = 0 on the

non void open set θ(x) > 0. Since v satisfies Πj<N(Lρ− νj)v = 0, the uniqueness theorem
for second order elliptic operators implies v(x) = 0 for all x ∈ Ω. As a consequence, the
matrix M is invertible, so that β = M−1α = O(ǫ). Hence ‖h‖H1 = O(ǫ). The proof of
our lemma is complete.

�

We are now in position to achieve the proof of Theorem
thm2
1.2. We first observe that if

νh ∈ [0,M ] and ψh ∈ L2(ρ) satisfy ‖ψh‖L2 = 1, h−2Qhψh = νhψh, then thanks to Lemma
lem1
2.2 the family (ψh)h∈]0,1] is relatively compact in L2(ρ) so that we can suppose (extracting
a subsequence hk) that νh → ν and ψh → ψ in L2(ρ), ‖ψ‖L2 = 1, and moreover by Lemma
lem1
2.2, the limit ψ belongs to H1(ρ). Given θ ∈ D0, it follows from self-ajointness of Qh and
Lemma

lem5
3.1 that

0 = 〈(h−2Qh − νh)ψh, θ〉L2(ρ) = 〈ψh, (Lρ − νh)θ〉L2(ρ) +O(h1/2) (3.16)

Making h→ 0 we obtain 〈ψ, (Lρ−ν)θ〉L2(ρ) = 0 for all θ ∈ D0. It follows that (Lρ−ν)ψ = 0
in the distribution sense, and integrating by parts that ∂nψ vanish on Γreg. Since ψ ∈
H1(ρ), we get as above using

uniq
1.16 that ∂nψ = 0 , and it follows that ψ ∈ D(Lρ) . This

shows that ν is an eigenvalue of Lρ, and thus (
1.5
1.19) is satisfied. Moreover, by compactness

in L2 of the sequence ψh, one gets that for any ǫ > 0 small enough, there exists hǫ > 0
such that

♯Spec(h−2Qh) ∩ [νj − ǫ, νj + ǫ] ≤ mj (3.17) ppm

for h ∈]0, hǫ] with hǫ > 0 small enough. It remains to show that there is equality in
ppm
3.17,

and we shall proceed by induction on j.

Let ǫ > 0 small be given such that for 0 ≤ νj ≤M+1, the intervals Iǫj = [νj−ǫ, νj + ǫ]

are disjoint. Let (µj)j≥0 the increasing sequence of eigenvalues of h−2Qh, σN =
∑N

j=1mj

and (ek)k≥0 the eigenfunctions of Lρ such that for all k ∈ {1 + σN , . . . , σN+1}, one has
(Lρ − νN+1)ek = 0. As 0 is a simple eigenvalue of both Lρ and Qh, we have clearly
ν0 = µ0 = 0 and m0 = 1 = ♯Spec(h−2Qh) ∩ [ν0 − ǫ, ν0 + ǫ].

Suppose that for all n ≤ N , mn = ♯Spec(h−2Qh) ∩ [νn − ǫ, νn + ǫ]. Then, one has by
1.5
1.19, for h ≤ hε,

µ1+σN
≥ νN+1 − ǫ (3.18) min1
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By min-max principle, if G is a finite dimensional subspace of H1 with dim(G) = 1+σN+1,
one has

µσN+1
≤ sup

ψ∈G,‖ψ‖=1

〈h−2Qhψ, ψ〉L2(ρ) (3.19) min2

Thanks to Lemma
lem6
3.2, for all ek, 0 ≤ k ≤ σN+1 and all α > 0, there exists ek,α ∈ D0 such

that ‖ek − ek,α‖H1
ρ
≤ α. Let Gα be the vector space span by the ek,α, 0 ≤ k ≤ σN+1. For

α small enough, one has dim(Gα) = 1 + σN+1. From Lemma
lem5
3.1, one has

〈h−2Qhek,α, ek′,α〉L2(ρ) = 〈Lρek,α, ek′,α〉L2(ρ) +Oα(h
1/2) (3.20)

Since ek,α ∈ D0, one has 〈Lρek,α, ek′,α〉L2(ρ) = αd

2
〈∇ek,α,∇ek′,α〉L2

ρ
, and 〈∇ek,α,∇ek′,α〉L2

ρ
=

〈∇ek,∇ek′〉L2
ρ
+O(α). Therefore, for ψ ∈ Gα, ‖ψ‖ = 1, we get

〈h−2Qhψ, ψ〉L2(ρ) ≤ νN+1 + Cα +Oα(h
1/2) (3.21) min3

Taking α > 0 small enough and h < hα we obtain from
min2
3.19,

min3
3.21 µσN+1

≤ νN+1 + ǫ.
Combining this with

min1
3.18 and

ppm
3.17, we get mN+1 = ♯Spec(h−2Qh) ∩ [νN+1 − ǫ, νN+1 + ǫ].

The proof of Theorem
thm2
1.2 is complete.

4 Application to random placement of non-overlapping

balls
sec4

In this section, we suppose that Ω is a bounded Lipschitz stratified connected open subset
of Rd with d ≥ 2. Let N ∈ N, N ≥ 2 and ǫ > 0 be given. Let ON,ǫ be the open bounded
subset of RNd

ON,ǫ = {x = (x1, . . . , xN) ∈ ΩN , ∀ 1 ≤ i < j ≤ N, |xi − xj | > ǫ}

We introduce the kernel

Kh(x, dy) =
1

N

N
∑

j=1

δx1
⊗ . . .⊗ δxj−1

⊗ h−dϕ(
xj − yj
h

)dyj ⊗ δxj+1
⊗ . . .⊗ δxN

(4.1) eq4.1

and the associated Metropolis operator on L2(ON,ǫ)

Th(u)(x) = mh(x)u(x) +

∫

ON,ǫ

u(y)Kh(x, dy) (4.2) eq4.2

with

mh(x) = 1 −

∫

ON,ǫ

Kh(x, dy). (4.3) eq4.3

The operator Th is Markov and self -adjoint on L2(ON,ǫ). The configuration space ON,ǫ

is the set of N disjoints closed balls of radius ǫ/2 in Rd, with centers at the xj ∈ Ω. The
topology of this set, and the geometry of its boundary is in general hard to understand
(references a trouver), but since d ≥ 2, ON,ǫ is clearly non void and connected for
a given N if ǫ is small enough. The metropolis kernel Th is associated to the following
algorithm: at each step, we choose uniformly at random a ball, and we move it center
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uniformly at random in Rd in a ball of radius h. If the new configuration is in ON,ǫ, the
change is made. Otherwise, the configuration is kept as it started.

In order to study the random walk associated to Th in in Proposition
prop7
4.1 we prove

that the open set ON,ǫ is Lipschitz stratified for ǫ > 0 small enough, and in lemma
lem7bis
4.5 we

prove that the kernel of the iterated operator TMh (with M large, but independent of h)
admits a suitable lower bound, so that we will be able to use our remark

rem2
2.6.

We define Γreg and Γsing the set of regular and singular points of ∂ON,ǫ as follows. Let
us denote NN = {1, . . . , N}. For x ∈ ON,ǫ we set

R(x) = {i ∈ NN , xi ∈ ∂Ω}

S(x) = {τ = (τ1, τ2) ∈ NN , τ1 < τ2 and |xτ1 − xτ2 | = ǫ}

r(x) = ♯R(x), s(x) = ♯S(x)

(4.4)

The functions r and s are lower semi-continuous and any x ∈ ON,ǫ belongs to ∂ON,ǫ iff
r(x) + s(x) ≥ 1. We define

Γreg = {x ∈ ON,ǫ, s(x) = 1 and r(x) = 0}

∪ {x ∈ ON,ǫ, s(x) = 0, R(x) = {j0} and xj0 ∈ ∂Ωreg}
(4.5)

and Γsing = ∂ON,ǫ\Γreg. Then, Γsing is clearly close, and the Γreg is the reunion of smooth
disjoint hypersurfaces in RNd.

prop7 Proposition 4.1 For ǫ > 0 small enough, the set ON,ǫ is connected, Lipschitz and strat-
ified.

Proof. For ν ∈ Sp−1, p ≥ 1 and δ ∈]0, 1[ we denote

Γ±(ν, δ) = {ξ ∈ R
p, ±〈ξ, ν〉 > (1 − δ)|ξ|, |〈ξ, ν〉| < δ}. (4.6)

We remark also that an open set O ⊂ Rp is Lipschitz if it satisfies the cone property:
∀a ∈ ∂O, ∃δ > 0, ∃νa ∈ Sp−1, ∀b ∈ B(a, δ) ∩ ∂O we have

b+ Γ+(νa, δ) ⊂ O and b+ Γ−(νa, δ) ⊂ R
p \ O. (4.7)

Let x ∈ ∂ON,ǫ. The equivalence relation i ≃ j iff xi and xj can be connected by a
path lying in the union of the closed balls, give us a partition {1, . . . , N} = ∪rk=1Fk such
that

∀k 6= l, ∀i ∈ Fk, ∀j ∈ Fl, |xi − xj| > ǫ

∀k, ∀i 6= j ∈ Fk, ∃(nl) ∈ Fk, 1 ≤ l ≤ m, n1 = i, nm = j, |xnl
− xnl+1

| = ǫ.
(4.8)

Observe that in the case where ♯Fk = 1 the second condition is empty. We look for
ν ∈ SNd−1 such that the cone property at x holds with ν. We construct the coordinates
of ν according to the partition (Fk)k. Let k ∈ {1, . . . , r}.

Suppose that Fk = {jk} for some jk ∈ {1, . . . , N}. If xjk ∈ Ω, we set ξjk = 0. If
xjk ∈ ∂Ω, thanks to the cone property satisfied by Ω we can find ξjk ∈ Sd−1 and δk > 0
such that

xjk + Γ+(ξjk, δk) ⊂ Ω and xjk + Γ−(ξjk, δk) ⊂ R
d \ Ω. (4.9)
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Suppose that ♯Fk ≥ 2. If xj ∈ Ω for all j ∈ Fk we fix yk ∈ Rd and for all j ∈ Fk we
set ξj = xj − yk. Hence xj(t) = xj + tξj is obtained from xj by homothety centered in yk,
with ratio 1+ t. Consequently, for all i, j ∈ Fk and t close to 0, we have |xi(t)−xj(t)| > ǫ
for t > 0 and there exists at least two distinct indices i, j ∈ Fk such that |xi(t)−xj(t)| < ǫ
for t < 0.

If there exists i0 ∈ Fk such that xi0 ∈ ∂Ω, the cone property provides us ηi0 ∈ Sd−1 and
δi0 > 0. Moreover, taking ǫ > 0 sufficiently small, we can suppose that all the xi, i ∈ Fk
are close to xi0, since |xi−xi0 | ≤ ǫ(N−1). Thus, for all i ∈ Fk, we have b+Γ+(ηi0 , δi0) ⊂ Ω
for all b ∈ Ω, |b− xi| ≤ δi0 . Let yi0(z) = xi0 − z
etai0 and for i ∈ Fk, ξ

′
i(z) = xi − yi0(z). Then, for z > 0 large enough and α > 0

sufficiently small, we have ξi = αξ′i(z) ∈ Γ(ηi0 , δi0). In particular, for i ∈ Fk and t > 0
close to 0, xi + tξi belongs to Ω, while for t < 0, one has xi0 + tξi0 /∈ Ω. Moreover, the
same argument as above shows that for i 6= j, the functions t 7→ |xi − xj + t(ξi − ξj)| are
strictly increasing near t = 0.

Observe that ξ = (ξ1, . . . , ξN) 6= 0, since if ξi = 0 for all i, then ♯Fk = 1 and xjk ∈ Ω
for all k which contradicts x ∈ ∂ON,ǫ. Finally, we take ν = ξ

|ξ| . Then for δ > 0 small

enough, the cone property is satisfied at x with (ν, δ). Thus ON,ǫ is Lipschitz.
Let us show that ON,ǫ is connected for ǫ small enough. We define for j ∈ NN the two

applications πj from RNd to RNd and σj from Rd to RNd by

πj(x1, ..., xj , ..., xN) = (x1, ...,0, ..., xN)

σj(y) = (0, ...,y, ..., 0)
(4.10) g0

so that x = πj(x) + σj(xj). For F ⊂ NN we define σF : Πj∈FRd → RNd by σF (x) =
∑

j∈F σj(xj). We have the following geometric lemma.

lem7ter Lemma 4.2 There exists ǫ0 > 0 and δ0 > 0 such that for all ǫ ∈]0, ǫ0] and all n ∈ NN ,
there exists a finite covering (Ul)l of ON,ǫ such that for all l there exists a subset Fn ⊂ NN

with ♯Fn = n, there exists ν ∈ Snd−1 such that

∀x ∈ Ul ∩ON,ǫ, x+ σFn(Γ+(ν, δ0)) ⊂ ON,ǫ (4.11) sl00

Moreover, there exists c0 > 0 such that for all k, l ∈ Fn with k 6= l and for t ∈ [0, δ0], we
have

∀x ∈ Ul ∩ON,ǫ, |xk + tνk − xl − tνl|
2 ≥ ǫ2 + c0ǫt (4.12) sl0

Proof. This lemma means that we can select an arbitrary number of balls n, and that
moving only these balls by a vector in Γ+(ν, δ0) while keeping the other balls fixed, results
in an admissible configuration. We shall proceed by induction on N ≥ 1. For N = 1, this
is true since Ω is Lipschitz. Let N ≥ 2 and suppose that the property is true until rank
N − 1 and let ǫ̃0 be the corresponding parameter. For ǫ ∈]0, ǫ̃0[ and β > 0, we have the
partition

ON,ǫ = UN,ǫ,β ∪ VN,ǫ,β (4.13)

with UN,ǫ,β = {x ∈ ON,ǫ, supi6=j |xi − xj | < ǫ + β}. Using the induction hypothesis, it

is easy to see that for any β > 0, there exists ǫ̃1(β) < ǫ̃0 and δ̃0(β) > 0 such that the
conclusion of the Lemma holds true on VN,ǫ,β, ∀ǫ ∈]0, ǫ̃1(β)]. Hence it remains to find a
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suitable covering of UN,ǫ,β. For any α > 0, choosing β and ǫ̃1 small enough we can suppose
that

UN,ǫ,β ⊂ ∪y0∈Fα
B(y0, α)N (4.14)

for some finite set Fα ⊂ Ω. Moreover, since Ω is Lipschitz, we can suppose that α is
sufficiently small so that

∃δ′0 > 0, ∀y0 ∈ Fα, ∃v(y
0) ∈ Sd−1, ∀y ∈ B(y0, α), y + Γ+(v(y0), 2δ′0) ⊂ Ω. (4.15) sl1

Moreover, we can suppose that δ′0 is sufficiently small so that the following holds true:

∀v, u1, . . . , uN ∈ Sd, s.t. ∀j, 〈v, uj〉 = 0, ∃v′ ∈ Γ+(v, 2δ′0),

∀ξ ∈ Γ+(v′, δ′0), ∀j, 〈ξ, uj〉 6= 0.
(4.16) sl2

Indeed, the set A = {v ∈ Sd, 〈v, uj〉 = 0, ∀j} is contained in a finite union of equators
and thus (

sl2
4.16) is obvious by taking v′ close to v in the complementary.

Condition (
sl1
4.15) gives us a critical value for ǫ̃1 and we now suppose that ǫ ∈]0, ǫ̃1]. By

compactness, it remains to show that y0 ∈ Fα being fixed the following property holds
true:

∀x0 ∈ B(y0, α)N ∩ON,ǫ, ∀n ∈ NN , ∃Fn ⊂ NN s.t. ♯Fn = n, ∃ν ∈ Snd−1, ∃r > 0, s.t.

∀x ∈ B(x0, r) ∩ ON,ǫ, ∀ξ ∈ Γ+(ν, δ′0), ∀k 6= j, |(x+ σF (ξ))j − (x+ σF (ξ))k| > ǫ
(4.17) sl3

Let x0 ∈ B(y0, α)N and n ∈ NN being fixed. We construct Fn and ν ∈ Snd−1 by induction
on n. We look for ν under the form ν = λ(v, (1 − 1/N)v, . . . , (1 − (n − 1)/N)v), where
v ∈ Sd−1 and λ is a normalizing constant. We claim that we can find Fn = {j1, . . . jn}
and v ∈ Sd−1 such that

〈v, x0
j1〉 > . . . > 〈v, x0

jn〉 > 〈v, x0
s〉, ∀s /∈ Fn (4.18) sl4

If n = 1 we denote F ′ the set of index i such that the map s ∈ NN 7→ 〈v(y0), x0
s〉 has

a maximum in s = i. If ♯F ′ = 1 then we can take (F1, v) = (F ′, v(y0)). If ♯F ′ ≥ 2, thanks
to (

sl3
4.17) we can find v close to v(y0) such that s 7→ 〈v, x0

s〉 has a unique maximum for
some s = j1 and we set F1 = {j1}.

Suppose now that n ≥ 1 and that (Fn, v) satisfies (
sl4
4.18). Let F ′′ be the set of index

i /∈ Fn such that the map s /∈ Fn 7→ 〈v, x0
s〉 has a maximum in s = i. If ♯F ′′ = 1 then

(Fn+1, v) = (Fn ∪ F
′′, v) satisfies the expected property. If ♯F ′′ ≥ 2 we can find v′′ close

to v so that we still have

〈v′′, x0
j1
〉 > . . . > 〈v′′, x0

jn〉 > 〈v′′, x0
s〉, ∀s /∈ Fn (4.19)

and additionally 〈xk, v
′′〉 6= 〈xl, v

′′〉 for all k, l ∈ F ′′ with k 6= l, and 〈xk, v
′′〉 > 〈xs, v

′′〉
for all k ∈ F ′′, s /∈ Fn ∪ F ′′. This permits to find easily jn+1 ∈ F ′′ such that setting
Fn+1 = Fn ∪ {jn+1}, (

sl4
4.18) holds true at rank n + 1.

We turn back to the proof of (
sl3
4.17). Let x ∈ B(x0, r) and ξ = (ξj1, . . . , ξjn) ∈ Γ+(ν, δ′0)

with δ′0 given by the above construction and r > 0 to be chosen small enough. We denote
ν = (νj1 , . . . , νjn) so that νjk = λ(1 − (k − 1)/N)v. The fact that x + σFn(ξ) ∈ ΩN is a
straightforward consequence of (

sl1
4.15) and it remains to show that the distance between

two different balls remains bounded from below by ǫ. Let j, k ∈ NN with j 6= k. If
j, k /∈ Fn, there is nothing to prove.
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In the case where j, k ∈ Fn, we can write j = jp and k = jq with p < q and we have

|(x+ σF (ξ))j − (x+ σF (ξ))k|
2 ≥ ǫ2 + 2〈xjp − xjq , ξjp − ξjq〉

≥ ǫ2 + 2|ξ|〈x0
jp − x0

jq , νjp − νjq〉 − 4r(|ξjp| + |ξjq |)

− 2|ξ||x0
jp − x0

jq |(|
ξjp
|ξ|

− νjp| + |
ξjq
|ξ|

− νjq |)

≥ ǫ2 + 2
λ

N
(q − p)|ξ|〈v, x0

jp − x0
jq〉 − 8r|ξ| − 4|ξ|δ′0|x

0
jp − x0

jq |

(4.20)

Thanks to (
sl4
4.18), 〈v, x0

jp − x0
jq〉 > c1|x

0
jp − x0

jq |, for some c1 > 0 independant on ǫ. Hence,
taking δ′0 ∈]0, λc1/(8N)] and r ∈]0, λǫ/(16N)], we get

|(x+ σF (ξ))j − (x+ σF (ξ))k|
2 > ǫ2 + c1

λǫ

N
|ξ| (4.21)

so that (
sl00
4.11) is satisfied. Moreover, as λ is of order n−1/2, (

sl0
4.12) holds true with c0 = c1

N
√
n
.

In the case j ∈ Fn and k /∈ Fn, similar computation leads to the same result. Taking
δ0 = min((̃δ0(β), δ′0), the proof of the lemma is complete. �

sublemma1 Lemma 4.3 There exists ǫ1 > 0 and m ≥ 1 such that ∀ǫ ∈]0, ǫ1], ∀x, y ∈ ON,mǫ satisfiying
infj,k |xj − yk| > mǫ, there exists a continuous path γ : [0, 1] → ON,ǫ such that γ(0) = x
and γ(1) = y.

Proof. For z′ = (z2, . . . , zN) ∈ ΩN−1 and k ≥ 1 we denote Ω̃k(z
′) = Ω \ ∪Nj=2B(zj, kǫ).

We claim that there exists ǫ1 > 0 such that for ǫ ∈]0, ǫ1] and m ≥ 1 large enough, the
following property holds true:

∀x′ ∈ ON−1,mǫ, ∀u, v ∈ Ω̃m(x′), ∃γ ∈ C([0, 1], Ω̃1(x
′)), s.t. γ(0) = u, γ(1) = v (4.22) sl5

Indeed, Ω being connected, for any u, v ∈ Ω̃m(x′) there exists a continous path γ : [0, 1] →
Ω from u to v. Moreover, using the fact that ∂Ω is Lipschitz and taking m sufficiently
large, we can modify the path γ in a path γ̃ that avoids the balls B(xj , ǫ) and remains in
Ω.

Now, let x, y ∈ ON,mǫ with infj,k |xj − yk| > mǫ. Thanks to (
sl5
4.22), we can find a

continous path from x to (y1, x2, . . . , xN ) with values in ON,ǫ. As |y1 − xj | > λ for all
j, we can apply (

sl5
4.22) with z′ = (y1, x3, . . . , xN ) so that we can find a continuous path

in ON,ǫ joining (y1, x2, . . . , xN) and (y1, y2, x3, . . . , xN). Iterating this process we obtain a
continous path from x to y, with values in ON,ǫ. �

We are now in position to prove that ON,ǫ is connected for ǫ small enough. Let
ǫ0, δ0 > 0 be given by Lemma

lem7ter
4.2 and m, ǫ1 be given by Lemma

sublemma1
4.3. We can also

decrease ǫ1 so that ∀ǫ ∈]0, ǫ1[, ∀x ∈ ON,ǫ, ∃y ∈ ON,mǫ s.t. infi,j |xi − yj| > 2mǫ. Let
ǫ ≤ min(ǫ1, ǫ0, c0δ0/(m

2 − 1)) with c0 given by Lemma
lem7ter
4.2.

Thanks to Lemma
sublemma1
4.3, it suffices to show that for any x ∈ ON,ǫ there exists a continuous

path γ : [0, 1] → ON,ǫ such that γ(0) = x and γ(1) ∈ ON,mǫ.
Let x ∈ ON,ǫ be fixed. Thanks to Lemma

lem7ter
4.2, there exists ν ∈ SNd−1 such that the

segment x+ [0, δ0]ν is contained in ΩN and moreover for any k 6= l and any t ∈ [0, δ0],

|xk + tνk − xl − tνl|
2 ≥ ǫ2 + c0ǫt. (4.23)
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Hence, the path t ∈ [0, 1] 7→ γ(t) = x+ tδ0ν has the required properties. This achieves to
prove that ON,ǫ is connected.

Let us now prove that ON,ǫ is stratified. Let u ∈ H−1/2(ON,ǫ) be supported in Γreg. We
have to show that u is identically zero. This is a local problem and we can suppose that u
is supported in a small open set U ⊂ RNd such that Ũ := U∩ON,ǫ = {(x1+ϕ(x′), x′), x1 ∈
]0, α[, x′ ∈ V }, δU := U ∩ ∂ON,ǫ = {(ϕ(x′), x′), x′ ∈ V } , where ϕ : V ⊂ R

Nd−1 → R is a
Lipschitz function. Denote

κ :]0, α[×V → Ũ , k : V → δU

(x1, x
′) 7→ (x1 + ϕ(x′), x′) x′ 7→ (ϕ(x′), x′)

(4.24)

and for χ ∈ C∞
0 (V ), let φχ(u) be defined by

〈φχ(u), f〉 = 〈u, (χf) ◦ k−1〉H−1/2(∂ON,ǫ),H1/2(∂ON,ǫ)
(4.25)

for any f ∈ H1/2(RNd−1). Then φχ(u) ∈ H−1/2(RNd−1) and supp(φχ(u)) ⊂ k−1(supp(u)).
Moreover, the distribution ṽ = δx1=0 ⊗ φχ(u) belongs to H−1(RNd) and supp(ṽ) ⊂
κ−1(supp(u)).

Let x ∈ δU ∩ supp(u) and denote DN,ǫ = {x ∈ (Rd)N , |xi − xj | > ǫ, ∀1 ≤ i < j ≤ N}.
Then, either r(x) + s(x) ≥ 2, either x ∈ DN,ǫ, R(x) = {j0} (say j0=1) and xj0 ∈ ∂Ωsing.
Suppose that we are in the second case and let χ be a cut-off function supported near x

such that supp(χ) ⊂ Rd ×ΩN−1 ∩DN,ǫ. Then, for any ψ ∈ C∞
0 (Ω

N−1
) the linear form uψ

defined on H1/2(∂Ω) by

〈uψ, f〉 = 〈χu, f(x1)ψ(x2, . . . , xN )〉H−1/2(δU),H1/2(δU) (4.26)

is continuous and supported in ∂Ωsing. As ∂Ω is stratified, it follows that uψ is equal to
zero for all ψ and hence, χu = 0. Therefore, we can suppose that u is supported in the
set {r(x) + s(x) ≥ 2}. For n ∈ N, n ≥ 2, let us introduce the following property

(Pn) : for any x ∈ δU s.t. r(x) + s(x) = n, we have u = 0 near x. (4.27)

We prove this property by induction on n. We first assume n = 2 and suppose that
r(x) = s(x) = 1 (the cases r = 2, s = 0 and r = 0, s = 2 are similar and left to the
reader). By lower semicontinuity of the functions r and s, for any x ∈ supp(u) close to x
we have also r(x) = s(x) = 1 and hence R(x) = R(x) and S(x) = S(x). Hence, we can
suppose without loosing generality, that u is supported in G = ∂Ω×ΩN−1∩{|xi−x2| = ǫ}
for some i ∈ {1, 3, . . . , N}. Denoting xi = (xi,1, . . . , xi,d) and using the fact that ∂DN,ǫ

is invariant under any transformation of the form x 7→ (ρ(x1), . . . , ρ(xN )) where ρ is an
affine isometry of Rd, there exists a linear map L on RNd such that L(G) is given by two
equations

x1,1 = α(x′1)

x2,1 = β(x′2, xi).
(4.28)

with α Lipschitz and β smooth and where x′j = (xj,2, . . . , xj,d). Hence, ν(x) = (x1,1 −
α(x′1), x2,1 −β(x′2, xi), x

′
1, x

′
2, x3, . . . , xN ) defines a local homeomorphism of RNd such that

ν ◦ L(G) ⊂ {0}2 × RNd−2. Consequently, w̃ ∈ H−1(RNd) defined by

〈w̃, f〉 = 〈ṽ, f ◦ ν ◦ L ◦ κ〉 (4.29)
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satisfies supp(w̃) ⊂ {0}2 × RNd−2. Therefore, w̃ vanishes identically and hence u is null
near x.

Suppose now that (Pk) holds for k ≤ n and let x be such that r(x)+s(x) = n+1. The
lower semicontinuity of r, s and the induction hypothesis show that for any x ∈ supp(u)
close enough to x, we have r(x) + s(x) = n + 1 and hence R(x) = R(x), S(x) = S(x).
Suppose that r(x) = 0, then s(x) = n + 1 and near x, supp(u) is contained in G =
ΩN ∩ (∩τ∈R(x){|xτ1 −xτ2 | = ǫ}. In particular, there exists σ, τ ∈ R(x) such that σ 6= τ . As
in the case n = 2, we can suppose that near x, the set {r(x)+s(x) = n+1} is contained in
{xτ1,1 = α(x′τ1 , xτ2), xσ1,1 = α(x′σ1

, xσ2
)} for some Lipschitz functions α, β (here we forget

some information). Hence, we can construct as precedently an homeomorphism ν on RNd

such that ν(G) ⊂ {0}2 × RNd−2 and the same proof as for n = 2 still works. The cases
s = 0, r = n+ 1 and s ≥ 1, r ≥ 1 are similar and left to the reader.

The proof of proposition
prop7
4.1 is complete. �

remk5 Remark 4.4 Observe that in the above lemma, the smallness condition on ǫ is Nǫ < c
where c > 0 depends only on Ω. The condition Nǫd < c, which say that the density of
the balls is small enough, does not implies that the set ON,ǫ has Lipschitz regularity. As
an example, if Ω =]0, 1[2 is the unit square in the plane, then x = (x1, ..., xN), xj =
((j − 1)ǫ, 0), j = 1, ..., N , with ǫ = 1

N−1
is a configuration point in the boundary ∂ON,ǫ.

However, ∂ON,ǫ is not Lipschitz at x: otherwise, there will exist νj = (aj , bj) such that
(x1 + tν1, ..., xN + tνN) ∈ ON,ǫ for t > 0 small enough, and this implies a1 > 0, aj+1 > aj
and aN < 0 which is impossible.

For k ∈ N
∗ we denote Bk = BRk(0, 1) the unit euclidian ball and ϕk(z) = 1

V ol(Bk)
1Bk

(z).

lem7bis Lemma 4.5 Let ǫ be small. There exists h0 > 0, c0, c1 > 0 and M ∈ N∗ such that for all
h ∈]0, h0], one has

TMh (x, dy) = µh(x, dy) + c0h
−NdϕNd(

x− y

c1h
)dy (4.30) eq4.5

where for all x ∈ ON,ǫ, µh(x, dy) is a positive Borel measure.

Proof. For x, y ∈ ON,ǫ, we set dist(x, y) = sup1≤i≤N |xi − yi|. For N ≥ 1, let us denote
by Kh,N the kernel given in

eq4.1
4.1. It is sufficient to prove the following: for ǫ small, there

exists h0 > 0, c0, c1 > 0 and M(N) ∈ N∗ such that for all h ∈]0, h0], one has for all non
negative function f

K
M(N)
h,N (f)(x) ≥ c0h

−Nd
∫

y∈ON,ǫ,dist(y,x)≤c1h
f(y)dy (4.31) g4

We first remark that it is sufficient to prove the weaker version: for all x0 ∈ ON,ǫ, there
exist M(N, x0), α = α(x0) > 0, c0 = c0(x0) > 0, c1 = c1(x0) > 0, h0 = h0(x0) > 0 such
that for all h ∈]0, h0], all x ∈ ON,ǫ and all non negative function f

dist(x, x0) ≤ 2α =⇒ K
M(N,x0)
h,N (f)(x) ≥ c0h

−Nd
∫

y∈ON,ǫ,dist(y,x)≤c1h
f(y)dy (4.32) g5
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Let us verify that
g5
4.32 implies

g4
4.31. Decreasing α(x0) if necessary, we may assume that

any set {dist(x, x0) ≤ 2α(x0)} is contained in one of the open set Ul of lemma
lem7ter
4.2.

There exists a finite set F such that ON,ǫ ⊂ ∪x0∈F{dist(x, x
0) ≤ α(x0)}. Let M(N) =

supx0∈FM(N, x0), c
′
i = minx0∈F ci(x0) and h′0 = minx0∈Fh0(x0). One has to check that

for any x0 ∈ F and any x with dist(x, x0) ≤ α(x0), the right inequality in
g5
4.32 holds true

with M(N) = M(N, x0) + n in place of M(N, x0), and for some constants c0, c1, h0 . Let
Ul be such that dist(x, x0) ≤ α implies x ∈ Ul. Let j and Γ+(ν, δ) be given by lemma

lem7ter
4.2.

Clearly, if f is non negative, one has

K
M(N,x0)+1
h,N (f)(x) ≥

1

N
h−d

∫

x+σj(z)∈ON,ǫ

ϕ(z/h)K
M(N,x0)
h,N (f)(x+ σj(z))dz (4.33) g6

For dist(x, x0) ≤ 2α(x0) − c′1h/2, and |z| ≤ c′1h/2, z ∈ Γ+(ν, δ), one has dist(x +
σj(z), x

0) ≤ 2α(x0) and by
g1
??, x + σj(z) ∈ ON,ǫ. Moreover, dist(y, x) ≤ c′1h/2 =⇒

dist(y, x+ σj(z)) ≤ c′1h. From
g6
4.33 and

g5
4.32 we thus get, with a constant Cδ depending

only on the δ given by lemma
lem7ter
4.2, and for h ≤ h′0,

dist(x, x0) ≤ 2α(x0) − c′1h/2 =⇒

K
M(N,x0)+1
h,N (f)(x) ≥

Cδ
N
c′0h

−Nd
∫

y∈ON,ǫ,dist(y,x)≤c′1h/2
f(y)dy

(4.34) g7

By induction on n, we thus get

dist(x, x0) ≤ 2α(x0) − c′1h =⇒

K
M(N,x0)+n
h,N (f)(x) ≥ (

Cδ
N

)nc′0h
−Nd

∫

y∈ON,ǫ,dist(y,x)≤c′1 h
2n

f(y)dy
(4.35) g7

Since n is bounded, we get the desired result with h0 = min(minx0∈Fαx0/c′1, h
′
0).

To complete the proof, let us show (
g5
4.32) by induction on N . The cas N = 1 is

obvious. Suppose that (
g5
4.32) holds for N − 1 discs. Let x0 ∈ ON,ǫ being fixed. Thanks to

Lemma
lem7ter
4.2, we can suppose that there exists an open neighbourhood U of x0 a direction

ν ∈ Sd−1 and δ > 0 such that (
g1
??) holds with j = 1. Let us denote x = (x1, x

′) and

Kh,N = Kh,N,1 +Kh,N,> (4.36)

with

Kh,N,1f(x) =
h−d

N

∫

(y1,x′)∈ON,ǫ

ϕ(
x1 − y1

h
)f(y1, x

′)dy1. (4.37)

We also denote G(ν, δ) = Γ+(ν, δ) ∩ {|x1| >
δ
2
}. Then, we have the following

sublem7bis Lemma 4.6 For any δ′ ∈]0, δ/2], there exists C > 0, α > 0, h0 > 0 and r0 > 0 such
∀r ∈]0, r0], ∀h ∈]0, h0], ∀x ∈ U ∩ON,ǫ, ∀x̃ ∈ x+h(G(ν, δ′)×B(0, r)N−1) with x̃′ ∈ ON−1,ǫ,
we have x̃ ∈ ON,ǫ and

Kh,N,>f(x̃) ≥ CKαh,N−1(f(x̃1, .))(x̃
′) (4.38) eq:m1

for any non-negative function f . In particular, for all M ∈ N∗, there exists C, r0, h0, a as
above such that ∀x ∈ U ∩ ON,ǫ, ∀x̃ ∈ x+ h(G(ν, δ′) ×B(0, r)N−1), we have

KM
h,N,>f(x̃) ≥ CKM

αh,N−1(f(x̃1, .))(x̃
′) (4.39) eq:m2
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Proof. Inequality (
eq:m2
4.39) is obtained easily from (

eq:m1
4.38) by induction on M . To prove

(
eq:m1
4.38), we observe that for non-negative f and α ∈]0, 1[ we have

Kh,N,>f(x̃) ≥
h−d

N

N
∑

j=2

∫

Aj,α,h(x̃)

f(x̃1, . . . , yj, . . . , x̃N)dyj (4.40)

with Aj,α,h(x̃) = {z ∈ Ω, |x̃j − z| < αh and ∀k 6= j, |x̃k − z| > ǫ}. Let Bj,α,h(x̃) = {z ∈
Ω, |x̃j − z| < αh and ∀k 6= 1, j, |x̃k − z| > ǫ}. Then Aj,α,h ⊂ Bj,α,h and we claim that for
α, r > 0 small enough and x̃ ∈ x + h(G(ν, δ′) × B(0, r)N−1) with x̃′ ∈ ON−1,ǫ, we have
Bj,α,h(x̃) = Aj,α,h(x̃). Indeed, let x̃1 = x1 + hu1 with u1 ∈ G(ν, δ′) and x̃′ ∈ ON−1,ǫ be
such that |x̃j − xj | < hr. Then for z ∈ Bj,α,h(x̃) we have

|x̃1 − z| = |x1 − xj + hv1| (4.41)

with v1 = u1 +
xj−x̃j

h
+

x̃j−z
h

. Taking α, r small enough (w.r.t. δ) it follows that v1 ∈
Γ+(ν, δ). Consequently, Lemma

lem7ter
4.2 shows that |x̃1 − z| > ǫ and hence z ∈ Aj,α,h(x̃) (the

same argument shows that x̃ ∈ ON,ǫ). Therefore,

Kh,N,>f(x̃) ≥
h−d

N

N
∑

j=2

∫

Bj,α,h(x̃)

f(x̃1, . . . , yj, . . . , x̃N )dyj =
N

N − 1
Kαh,N−1(f(x̃1, .))(x̃

′)

(4.42)
and the proof of Lemma

sublem7bis
4.6 is complete. �

Using this Lemma we can complete the proof of (
g5
4.32). Let p ∈ N, α ∈]0, α0] and x ∈ ON,ǫ,

then

Kp+1
h,N f(x) ≥ Kh,N,1K

p
h,N,>f(x)

≥
h−d

N

∫

(z1,x′)∈ON,ǫ,z1∈x1+hG(ν,δ′)

Kp
h,N,>f(z1, x

′)dz1

≥ C
h−d

N

∫

(z1,x′)∈ON,ǫ,z1∈x1+hG(ν,δ′)

Kp
αh,N−1(f(z1, .))(x

′)dz1

(4.43)

thanks to Lemma
sublem7bis
4.6. From the induction hypothesis we can choose p ∈ N so that

Kp+1
h,N f(x) ≥ Ch−Nd

∫

(z1,x′)∈ON,ǫ,z1∈x1+hG(ν,δ)

∫

|x′−y′|<αh,y′∈ON−1,ǫ

f(z1, y
′)dy′dz1 (4.44)

Hence, for any β ∈]0, 1] we get

Kp+2
h,N f(x) ≥ Kp+1

h,NKh,N,1f(x) ≥ Ch−Nd
∫

Dα,β,h(x)

f(y1, y
′)γh(x, y1)dydy

′ (4.45) eq4.38

with
Dα,β,h(x) = {y ∈ ON,ǫ, |x

′ − y′| < αh, |x1 − y1| < βh} (4.46)

and

γh(x, y1) = h−d
∫

(z1,x′)∈ON,ǫ,z1∈x1+hG(ν,δ′)

1|z1−y1|<hdz1 (4.47)
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We have to show that γh is bounded from below by a positive constant, uniformly with
respect to (x, y1). For this purpose, we observe that for y ∈ Dα,β,h(x) and β, δ′ small
enough we have

γh(x, y1) ≥ Ch−d
∫

(z1,x′)∈ON,ǫ,z1∈x1+hG(ν,δ′)

dz1 =

∫

|u|<α,u∈G(ν,δ′)

1(x1+hu,x′)∈ON,ǫ
du (4.48)

Using again Lemma
lem7ter
4.2, we get

γh(x, y1) ≥ C

∫

|u|<α,u∈G(ν,δ′)

du = C0 > 0. (4.49)

Plugging this lower bound into (
eq4.38
4.45), we obtain

Kp+2
h,N ≥ Ch−Nd

∫

Dα,β,h(x)

f(y)dy (4.50)

and the proof of (
g5
4.32) is complete. This achieves the proof of lemma

lem7bis
4.5. �

By proposition
prop7
4.1, we can consider the Neumann Laplacian |∆|N on ON,ǫ defined by

|∆|N = −
αd
2N

∆, D(|∆|N) = {u ∈ H1(ON,ǫ), −∆u ∈ L2(ON,ǫ), ∂nu|∂ON,ǫ
= 0} (4.51)

We still denote 0 = ν0 < ν1 < ν2 < . . . the spectrum of |∆|N and mj the multiplicity of
νj . Our main result is the following.

thm3 Theorem 4.1 Let N ≥ 2 be fixed. Let ǫ > 0 be small enough such that proposition
prop7
4.1

and lemma
lem7bis
4.5 holds true. Let R > 0 be given and β > 0 such that νj+1 − νj > 2β for all

j such that νj+2 ≤ R.
There exists h0 > 0, δ0 ∈]0, 1/2[ and constants Ci > 0 such that for any h ∈]0, h0], the

following holds true.

i) The spectrum of Th is a subset of [−1 + δ0, 1], 1 is a simple eigenvalue of Th, and
Spec(Th) ∩ [1 − δ0, 1] is discrete. Moreover,

Spec(
1 − Th
h2

)∩]0, R] ⊂ ∪j≥1[νj − β, νj + β]

♯Spec(
1 − Th
h2

) ∩ [νj − β, νj + β] = mj ∀νj ≤ R

(4.52) 4.3bis

and for any 0 ≤ λ ≤ δ0h
−2, the number of eigenvalues of Th in [1 − h2λ, 1] (with multi-

plicity) is bounded by C1(1 + λ)dN/2.

ii) The spectral gap g(h) satisfies

lim
h→0+

h−2g(h) = ν1 (4.53) gap4

and the following estimate holds true for all integer n

supx∈ON,ǫ
‖T nh (x, dy) −

dy

V ol(ON,ǫ)
‖TV ≤ C4e

−ng(h) (4.54) 4.4
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The rest of this section is devoted to the proof of theorem
thm3
4.1.

Let µh(x, dy) be given by
eq4.5
4.30 and µh(f)(x) =

∫

ON,ǫ
f(y)µh(x, dy). Thanks to the

positivity of µh(x, dy), using the Markov property of TMh and Lipschitz-continuity of the
boundary, we get for some δ′0 > 0 independant on h > 0 small enough

‖µh‖L∞,L∞ ≤ 1 − inf
x∈ON,ǫ

∫

ON,ǫ

c0h
−NdϕNd(

x− y

c1h
)dy < 1 − δ′0 (4.55) eq4.8

Since by
eq4.5
4.30 µh is selfadjoint on L2(ON,ǫ), we get also

‖µh‖L1,L1 ≤ 1 − δ′0 (4.56) eq4.9

and by interpolation it follows that ‖µh‖L2,L2 ≤ 1−δ′0. In particular the essential spectrum
of TMh is contained in [0, 1− δ′0] so that σess(Th) ⊂ [0, 1− 2δ0] with 2δ0 = 1− (1− δ′0)

1/M .
Thus Spec(Th) ∩ [1 − δ0, 1] is discrete. Let us verify that decreasing δ0 > 0, we may also
assume

Spec(Th) ⊂ [−1 + δ0, 1]. (4.57) eq4.10

Thanks to the Markov property of TMh , to prove this, it suffices to find M ∈ 2N + 1 such
that

∫

Ω

∫

Ω

(u(x) + u(y))2TMh (x, dy)dx ≥ δ0‖u‖
2
L2 (4.58)

for any u ∈ L2(Ω). Moreover, thanks to the proof of Lemma
lem7bis
4.5 there exists M ∈ N such

that for any n ∈ N,
∫

Ω

∫

Ω

(u(x) + u(y))2TM+n
h (x, dy)dx ≥ c0(n)h−Nd

∫

Ω×Ω

(u(x) + u(y))2ϕNd(
x− y

c1(n)h
)dxdy.

(4.59) eq4.11

Hence, (
eq4.10
4.57) follows from (

eq4.11
4.67) and (

inf2
2.6).

Following the strategy of section
sec2
2 we put ON,ǫ in a large box B =]−A/2, A/2[Nd and

thanks to proposition
prop7
4.1 we define an extension map E : L2(ON,ǫ) → L2(B) wich is also

bounded from H1(ON,ǫ) into H1(B). We denote

Eh,k(u) = 〈(1 − T kh )u, u〉L2(ON,ǫ) (4.60) eq4.12

and we define Eh as in section
sec2
2. Moreover the identities (

2.5
2.11), (

2.6
2.12) remain true with

obvious modifications.

lem8 Lemma 4.7 There exist C0, h0 > 0 such that the following holds true for any h ∈]0, h0]
and any u ∈ L2(ON,ǫ)

Eh(E(u)) ≤ C0(Eh,M(u) + h2‖u‖2
L2) (4.61) 4.13

Proof. Thanks to Lemma
lem1
2.2 we have

Eh(E(u)) ≤ C0(

∫

ON,ǫ×ON,ǫ

(u(x) − u(y))2c0h
−NdϕNd(

x− y

c1h
)dydx+ h2‖u‖L2(ON,ǫ)) (4.62) eq4.14

Combined with (
eq4.5
4.30) , this shows that

Eh(E(u)) ≤ C0(

∫

ON,ǫ×ON,ǫ

(u(x) − u(y))2TMh (x, dy)dx+ h2‖u‖L2(ON,ǫ)) (4.63) eq4.15

and the proof is complete. �
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lem9 Lemma 4.8 For any 0 ≤ λ ≤ δ0/h
2, the number of eigenvalues of Th in [1−h2λ, 1] (with

multiplicity) is bounded by C1(1 + λ)Nd/2. Moreover, any eigenfuntion Th(u) = λu with
λ ∈]1 − δ0, 1] satisfies the bound

‖u‖L∞ ≤ C2h
−Nd/2‖u‖L2 (4.64) eq4.16

Proof. Suppose that Th(u) = λu with λ ∈ [1 − δ0, 1], then TMh u = λMu and thanks to
(
eq4.5
4.30), we get

‖(µh − λM)u‖L∞ = O(h−Nd/2) (4.65) eq4.17

and estimate (
eq4.16
4.64) follows from (

eq4.8
4.55). On the other hand, thanks to Lemma

lem8
4.7, we

can mimick the proof of Lemma
lem3
2.3 to get

ζM(λ, h) ≤ C(1 + λ)Nd/2. (4.66) eq4.18

Let ζk(λ, h) be the number of eigenvalues of T kh in the interval [1 − h2λ, 1] for h2λ < δ0.
Then from

eq4.10
4.57, one has

ζ1(λ, h) = ζk(
1 − (1 − h2λ)k

h2
, h) (4.67) eq4.11

Combining (
eq4.18
4.66) and (

eq4.11
4.67) we get easily the anounced estimate. The proof of lemma

lem9
4.8 is complete. �

The rest of the proof of Theorem
thm3
4.1 follows the strategy of sections

sec2
2 and

sec3
3. Using the

spectral decomposition (
T4
2.39), (

T5
2.40) we get easily the estimates (

T11
2.46) and (

T13
2.48), and

it remains to estimate T nh,1. Following the proof of Lemma
lem4
2.4, we can find α > 0 small

enough and C > 0 such that the following Nash inequality holds with 1/D = 2− 4/p > 0

‖u‖
2+1/D
L2 ≤ Ch−2((Eh,M(u) + h2‖u‖2

L2)‖u‖
1/D
L1 , ∀u ∈ Eα (4.68) eq4.19

From this inequality, we deduce that for k ≥ h−2,

‖T kM1,h ‖L∞,L∞ ≤ Ce−kMg(h). (4.69) eq4.20

and this implies for k ≥ h−2, since the contributions of T kM2,h , T
kM
3,h are neglectible,

‖T kMh ‖L∞,L∞ ≤ C ′e−kMg(h). (4.70) eq4.20bis

As Th is bounded by 1 on L∞ we can replace kM by n ≥ h−2 in (
eq4.20bis
4.70) and (

4.4
4.54) is

proved. Assertion (
gap4
4.53) is an obvious consequence of (

4.3bis
4.52).The proof of (

4.3bis
4.52) is the

same as the one of Theorem
thm2
1.2. Thus, the following lemma will end the proof of theorem

thm3
4.1.

lem10 Lemma 4.9 Let θ ∈ C∞(ON,ǫ) be such that supp(θ) ∩ Γsing = ∅ and ∂nθ|Γreg = 0. Then

(1 − Th)θ = h2|∆|Nθ + r, ‖r‖L2 = O(h5/2). (4.71)

Proof. Let θ ∈ C∞(ON,ǫ) be such that supp(θ) ∩ Γsing = ∅ and ∂nθ|Γreg = 0 and denote

Qh = 1 − Th. Then Qh = 1
N

∑N
j=1Qj,h with

Qj,hθ(x) =
h−d

V ol(B1)

∫

Ω

1|xj−y|<hΠk 6=j1|xk−y|>ǫ(f(x) − f(πj(x) + σj(y)))dy (4.72)
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Let χ0(x) = 1dist(x,∂ON,ǫ)<2h. The same proof as in section
sec3
3 shows that

(1 − χ0)Qj,hθ(x) = −
αd
2
h2∂2

j θ(x) +OL∞(h3) (4.73)

so that
(1 − χ0)Qhθ(x) = h2|∆|Nθ(x) +OL2(h3). (4.74)

We study χ0Qhθ. As ‖χ0‖L2 = O(h1/2) it suffices to show that ‖χ0Qhθ‖L∞ = O(h2). On
the other hand, by Taylor expansion, we have

χ0Qj,hθ(x) = −
hχ0(x)

V ol(B1)

∫

|z|<1

Πk 6=j1|xj+hz−xk|>ǫ1xj+hz∈Ωz.∂jθ(x)dyj +OL∞(h2) (4.75)

Hence, it suffices to show that

v(x) = χ0(x)

N
∑

j=1

∫

|z|<1

Πk 6=j1|xj+hz−xk|>ǫ1xj+hz∈Ωz.∂jθ(x)dyj (4.76)

satisfies ‖v‖L∞ = O(h). Since dist(support(θ),Γsing) > 0, there exists disjoints compact
sets Fl ⊂ Γreg,ext,l, and Fi,j ⊂ Γreg,int,(i,j) such that

support(θ) ⊂ ∪l{x, dist(x, Fl) ≤ 4h} ∪i,j {x, dist(x, Fi,j) ≤ 4h}

If x ∈ support(θ) is in {x, dist(x, F1) ≤ 4h}, then the same parity arguments as in section
sec3
3 show that

v(x) = χ0(x)

∫

|z|<1,x1+hz∈Ω

z.∂1θ(x)dz = O(h) (4.77)

If x ∈ support(θ) is in {x, dist(x, F1,2) ≤ 4h}, then

v(x) = χ0(x)

∫

|z|<1

z.(∂1θ(x)1|x1+hz−x2|>ǫ + ∂2θ(x)1|x2+hz−x1|>ǫ)dz (4.78)

and the result follows from (x1 − x2).(∂1θ − ∂2θ)(x) = 0(h) for {x, dist(x, F1,2) ≤ 4h},
since ∂nθ vanish on the boundary |x1 − x2| = ǫ. The proof of lemma

lem10
4.9 is complete. �
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