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Abstract

This paper gives geometric tools: comparison, Nash and Sobolev inequalities for
pieces of the relevent Markov operators, that give useful bounds on rates of conver-
gence for the Metropolis algorithm. As an example, we treat the random placement
of N hard discs in the unit square, the original application of the Metropolis algo-
rithm.
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1 Introduction and results

Let Q be a bounded, connected subset of RY. We assume that its boundary, 9 has
Lipschitz regularity. Let B; be the unit ball of R and ¢(z2) = mlgl(Z) so that

[ (= = 1. Let p(x) be a measurable positive bounded function on Q such that
Jo (@) d;z: = 1 For h €]0, 1], set

r—y
h

and let 7T}, , be the () Metropolis operator associated to these data, that is

Thp0)(o) = o (a)ule) + [ Kl )y

mpp(x) =1 — /QKh,p(a:,y)dy >0

Then the Metropolis kernel 7}, ,(z, dy) = my, p(x)y=y + Kp ,(x, y)dy is a Markov ker-
nel, the operator 7}, , is self-adjoint on L*(2, p(z)dx), and thus the probability measure
p(z)dx on  is stationary. For n > 1, we denote by T}’ (z,dy) the kernel of the iterate
operator (Ty,)". For any x € Q, T}! (x,dy) is a probability measure on 2, and our main
goal is to get some estimates on the rate of convergence, when n — +o0, of the probability
13 ,(z, dy) toward the stationary probability p(y)dy.

i) = It D pmin( 50 1 (1)

(1.2)

A good example to keep in mind is the random placement of N non-overlapping discs
of radius ¢ > 0 i R’ﬁ%}(} unit square. This was the original motivation for the work of
Metropolis et al ékm‘nﬁs:%]). One version of their algorithm goes as follows: from a
feasable configuration, pick a disc (uniformly at random) and a point within distance h
of the center of the chosen disc (uniformly at random). If recentering the chosen disc
at the chosen point results in a feasable configuration, the change is made. Otherwise,
the configuration is kept as it started. If IV is fixed and € and h are small, this gives
a Markov chain with a uniform stationary distribution over all feasable conﬁgurations
The state space consists of the N centers correspondlng to feas iale configu atIO]?S
is a bounded domain with a Lipshitz boundary (see section W, proposition It is
non-convex (because of the non-overlaping constraints). The scientific moti ion for the
study of random packing of hard discs is clearly descrﬂ%g% in Uhlenbeck (lﬁ section 5,
pg 18). An overview of the large literature is in Lowen ([7]). Entry to the zoo of modern
algorithms to do the simulation (particularly in the dense case) with many examples is
in [German guy, reference comi . Further discussion, showing that the problem is
still of current interest, is in Radin 3%%

We shall denote by g(h,p) the spectral gap of the Metropolis operator Tj ,. It is
defined as the best constant such that the following inequality holds true for all u €
L2(p) = LA(Q, plx)de)

1
2oy — (u]1)2s,) < -1 1.3
[l T2 — (w172, < g(h,p)(u h,p U ) £2(p) (1.3)
or equivalently
/ lu(z) — u(y)p(x)py)dedy < K p(x,y)|u(z) — u(y) *p(e)dedy (1.4)
axQ 9(}%/7) axQ
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Definition 1.1 We say that an open set Q0 C R? is Lipschitz if it is bounded and for all
a € 09 there exists an orthonormal basis R, of RY, an open set V =V'x]| —a,al and a
Lipschitz map n : V' —] — «, af such that in the coordinates of R, we have

VNQ={" ya<n)), (¥ va) € V'x] = a,al}
VNnoQ={(' n)).y eV'}.

Our first result is the following:

(1.5)

Theorem 1.1 Let Q be an open, connected, bounded and Lipschitz subset of RY. Let
0<m < M < oo be given numbers. There exists hg > 0, 0y €]0,1/2] and constants
C; > 0 such that for any h €]0, ho|, and any probability density p on  which satisfies for
all z, m < p(x) < M, the following holds true.

i) The spectrum of T}, , is a subset of [—1 4 do, 1], 1 is a simple eigenvalue of Ty, ,,
and Spec(Ty,,) N [1 — b, 1] is discrete. Moreover, for any 0 < X\ < §oh™2, the number of
eigenvalues of Ty, , in [1 — h2X, 1] (with multiplicity) is bounded by Cy (1 + \)¥/2.

ii) The spectral gap satisfies
Cgh2 S g(h, p) S Cgh2 (16)
and the following estimate holds true for all integer n
supzeal| Tyt ,(x, dy) — p(y)dyllrv < Cae™ 9P (1.7)

The next result will give some more information on the behavior of the spectral gap
g(h, p) when h — 0. To state this result, let

ca= [ e@)stdz =3 [ o) = (1.8)

and let us define v(p) as the best constant such that the following inequality holds true
for all u in the Sobolev space H'()

2 2 1 ad/ 2
20, — 2 < —— .
[ullz2(,) = (ul1)72() < S0 2 o [Vul*(z)p(x)dz (1.9)

or equivalently
/Q ) = ) Fplaloto)dedy < 2 / V(@) p(z)dz (1.10)

Observe that for a Lipschitz domain €, the constant v(p) is well-defined thanks to Sobolev
embedding. For a smooth density p, this number v(p) > 0 is strongly related to the
unbounded operator L, acting on on L?(p)

Lyu)a) = =5 (bu+~L.90 (1.11)

D(L,) ={ue€ H'(Q), —Au € L*(Q), 0,ulan = 0}
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When €2 has smooth boundary, standard elliptic regularity results show that for any
u € H'(Q) such that —Au € L?(2), the normal derivative of u at the boundary, 9,u =
T (2).Vulsq is well define and belongs to the Sobolev space H'/2(Q2). Here, we denote by
7 (z) the incoming unitary normal vector to 9§ at a point z. In the case where 9§ has
only Lipschitz regularity, the normal 7 (z) is well defined for allmost every x € 9Q (with
respect to the measure ¢ induced on the boundary). Using a suitable covering of €2 it is
possible to define a trace operator o : H'(§2) — L*(02) which is equal to the usual trace
in the case of a smooth boundary. We sometimes denote vo(u) = u|gn. The space defined
by HY2(0Q) = Ran(v,) doesn’t depend on the charts used to define o, and equipped
with the norm ||ul| 12 = inf{||v|| g1, 70(v) = u} it is a reflexif Banach space. Then, we
can set H1/2(0Q) = H'/?(0Q)* and for u € H~/2(92), the support of u can be defined

in a standard way. The trace operator acting on vector fields u € L?, div(u) € L?
v {u e (L2(Q)Y, div(u) € LX(Q)} — HY2(09Q) (1.12)

is then defined by the formula

/ div(u)(z)v(x)de = — / u(z).Vo(x)de —/ y(w)v|sado(x) (1.13)
Q Q o9

In particular, for u € H'(Q) satisfying —Au = divVu € LQ(Q)1W§ gan define J,uloq =
11(Vu) € H7Y2(0Q) and the set D(L,) is well defined. From (T.T3) we deduce that for
any u € H*(Q)) with Au € L? and any v € H'(Q) we have

Qg

i ((Vu, VU>L2(p) + (8nu, pU>H—1/2(8Q),H1/2(8Q)> + <’LL, U)LQ(p) (114)

(Lp + Du,v) 2y = 5

Then, it is standard that L, is the self-adjoint realisation of the Dirichlet form

% /Q (Vu(x)|?p(z)dx. (1.15)

Sobolev embeddings show that L, has a compact resolvant and we denote its spectrum
by vy = 0 < 11 < 1p < ... and by m; the multiplicity of v;. In particular, v(p) = v4.
Observe also that mg = 1 since KerlL is spaned by the constant function equal to 1 .

To state our theorem, we need

Definition 1.2 Let Q be a Lipschitz open set of RY. We say that 0N is stratified if
00 =Ty Ul g0, Dieg N Dging = 0 with T'yey reunion of smooth hypersurfaces, relatively
open in 0N, and I's;ng a closed subset of RY such that

v e HY20Q) and support(v) C Typg = v =0 (1.16)

Observe that hlgllg is obviously satisfied if 0€) is smooth, since in that case one can
take Ty = 0. More generally, if Q is a Lipschitz open set of R? such that 9Q =
Lreg Ulsing, Treg M Tging = 0, where T, is a smooth hypersurface of R?, relatively open
in 09, and Iy, a closed subset of R< such that ['sing = U;j>25; where the S; are smooth
disjoints submanifolds of R? such that

codimgaS; > j, Ups;jSp = S; (1.17)

uniq
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then () is stratified, since in that case, if v € H~'/2(9€) is such that near a point x¢, the
support of v is contained in a submanifold S of codimension > 2 in R?, then v = 0 near
xo. This follows from the fact that S has codimension > 1 in 99, and if u € D'(RP) is
such that u € ngcl/Q (RP) and support(u) C {x; = 0}, then u = 0. As an example, a cube
in R? is stratified.

Theorem 1.2 Let §2 be an open, connected, bounded and Lipschitz subset of R?, such
that 0X) is stratified. Assume that the positive density p is continuous on 2. Then

limp—.oh™2g(h, p) = v(p) (1.18)

Moreover, if the density p is smooth up to the reqular part I';ey of the boundary OSY, then
for any R > 0 and € > 0 such that vy, — v; > 2 for vj1o < R, there exists hy > 0 such
that one has for all h €]0, hy]

1-1T,
Spec(Th’p)ﬂ]O, R] C Ujsa[v; —e,vj + €] (1.19)

: 1-T,
and the number of eigenvalues of —5*

thml sec2

Theorem hfl_ls proved in section b._This is done from the spectrum of the operator
by comparison with a ’ball walk’ on a big box B containing ). One novelty is the
use of 'mormal extensions’ of functions from 2 to B. When the Dirichlet forms and
stationary distributions for random Wall%élz a compact group are comparible, the rates
of convergence are comparable as well ([7], lemma ?7). Here, the Metropolis Markov
chain is far from a random walk on a group. Indeed, because of the holding implicit
in the Metropolis algorithm, the operator doesnt have any smoothing properties. The
transfer of information is carried out by a Sobolev inequality for a spectraly truncated
part of the operator. This is transfered to a Nash inequality and then an inductive
argument of Hebisch (see also[ ]) is used to get decay bounds on iterates of the kernel. A
further technique is the use of crude Weyl type estimates to get bounds on the nu, ger of
eigenvalues close to 1. All of these enter the proof of t &;cngtal variation estima%% L7 All
of these techniques seem broadly applicable. Theorem [T-Zis proved in section E_If gives
rigourous underpinnings to a general picture of the spectrum of the Metrop E&algorithm
based on small steps. This was observed and proved in special cases ([7], %Dﬁi_);) The
picture is this: because of the holding (or presence of the multiplier my, , in . é} in the
Metropolis algorithm, the operator always has continuous spectrum. This is well isolated
from 1 and can be neglected in bounding rates of convergence. The spectrum near 1 is
discrete and for h small, merges with the spectrum of an associated Neumann problem.
This is an analytic version of the conyergence of the discrete time Metropolis chain to
the Langevin diffusion with generator I.T1. See Lepingle ([7]) Paper of Burdzy and
Chen reference coming COAEI&I{ORS SAY A SENTENCE OR TWO ABOUT THE
IDEA OF PROOF? In section A, we return to the hard disc problem showi ghat the
operators and domains involved s%‘iil'gﬂy our hypoth tsél%Q Precisely, in theorem . T we shall
prove that the results of theorem [T.T and theorem [T.Z holds true in this case.

in the interval [v; — e, v; + €] is equal to m;.

thml
2 A proof of theorem 1.1

Let us recall that

Kipl.) = he (o Dymin( 22 1) 2.)

p(z)’
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so that
Th,p(u )—U_th

Qusl / K. )(u(z) — uly))dy 0
(1= Ty )ul) 2o / / w(y) P K o, ) pla) dedy

For the proof of theorem We will not really care on the precise choice of the density
p. In fact, if py, po are two densmes such that m < p;(x) < M for all x, then

”pl - p2H00)
m (2.3)

o1 — p2lloo
Ky (2,y)p1(x) < Ky (2, 9) p2(2) (1 + T)

2
and this implies using the definition FEof the spectral gap and of v,

pa() < po2)(1 +

Gh,p1 < (1 + ||p1 - p2||00)3

Ghop2 mn (2.4)
Yp1 < (1 + ”Pl —/)2"00)3
Vp, m

In particular, it is sufficient to prove }%_g_for onst n §n81ty

Observe that since 2 is Lipschitz, from and here exists hy > 0,09 > 0 such
that for any density p with m < p(z) < M one has supxegmhvp(x) < 1—29y. Thus
the essential spectrum of T}, is a subset of [0,1 — 2dp]. The proof that for some dy > 0,
independent of p, one has Spec(T},,) C [—1 + dy, 1] for all h €]0, hy| is the following: one
has

1
(u+ Thpulu)rz) = 5 /Q . K p(, y)u(z) +uly)’p(x)dedy + 2(mp pulu) 2y (2.5)
X

Therefore, it is sufficient to prove that there exists hg,Cy > 0 such that the following
inequality holds true for all  €]0, ho] and all u € L?(Q)

/Qﬂh dp(=2 . e @) + u(y)Pdedy > CollullZ2(q) (2.6)

Let w; C Q, Ujw; = Q be a covering of Q such that diam(w;) < h and for some C; > 0
independent of h, vol(w;) > C1h?, and for any j, the number of k such that w; Nwy #
is less than C5. Such a covering exists as () is Lipschitz. Then

02/ (XY fu(z) + uly 2da:dy>Z/
QxQ
> Z h‘
1| wj Xwj
inf4d inf2
From 211.17, we get that E%G—holds true.

3
For the proof of ( aéi we need a suitable covering of {2. Given € > 0 small enough,
there exists some open sets €, ..., Qy such that {x € RY dist(z,Q) < €2} C Uj-V:OQj,
where the €2;’s have the following properties:

=) lu(w) + uly) Pdady

2C
[u(z) + u(y)*dzdy > Z% dmvol(%)IIUIliz( |Bl|||u||L2(Q

(2.7)
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1. Qo ={z € Q,d(z,00) > ¢}

2. For j =1,..., N, there exists 7; > 0, an affine isometry R; of R? and a Lipschitz
map ¢, : Rd . R such that, denoting ¢;(2/, z4) = (2, xd+g0j( ') and ¢; = Rj09;,

we have
¢; is injective on B(0, 2r;) x] — 2¢, 2¢]

Q; = ¢;(B(0,7;)x] — €, ¢€[)
Q; N = ¢;(B(0,7;)x]0, €])
¢;(B(0,2r;)x]0,2¢[) C 2

(2.8)

We put our open set € in a large box B =] — A/2, A/2[¢ and for j = 0,..., N we let
X; € C5°(€2;) be such that 3 x;(z) =1 for dist(z,Q) < €. For any function u € L?(Q),
let u;,7 =0,...,N be defined in a neighbourhood of Q; by u; = uwo¢;joSo <;5j’1, where
S(2!,xq) = (:L’ —xd) if g <0 and S(2,24) = (2, 24) 1f zq > 0. For z € QN Q;, one has
uj(x) = u(zr) and we define

E(u)(r) = > xj(@)u;(x) (2.9)

M-

We observe that gg;l(x) = (o', zq—p;(x")). Consequently, as p; Is 3Lipschitz—continuous,
then ¢; and gbj_l are also Lipschitz-continuous. Hence, formula (2.9), gives us an exten-
sion map from L?(Q) into L?(B), which is also bounded from H'() into H'(B). For
u € L*(Q),v € L*(B), set

&w( (1 =T, p)u|u)L2(p)

// h™?fu(z) —v(y)Pdady (2.10)
BxB,|z—y|<h

Since for A large, E(u) vanishes near the boundary of B, we can extend v = E(u) as a
A-periodic function on R?, and write its Fourier serie v(z) = E(u)(x) = Y cza cx(v)e?™ /4
with ¢ (v) = A™¢ [, e7%™k*/Ay(z)dz. Then

1) Z2(5) = AdZICkF lullZ2 @)

1E @) () = A Z(l +AT K (A7) er|* = [Jullip @)
k

(2.11)

Moreover, one gets

= A" "o |*0(hk)
k

0(5) — / |62i7r§z/A . 1|2d2
|z|<1

Observe that the function # is non-negative, quadratic near 0 and has a positive lower
bound for [£| > 1 .

(2.12)

Lemma 2.1 For all o > 1, there exists C' > 0 and hg > 0 such that
Yu € L*(Q),Vh €]0, hgl, Eanp(u) < CE p(u). (2.13)
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s B an B ‘ ~
Proof. Using 2.7 and 237 we observe that it suffices to prove the lemma in the case where
p(x) = p is constant, and we first we show the result when ) is convex. In that case,
since |u(z) — u(y)| < |u(:c) — u(x—”)\ + u(2) — u(y)|, one has

gahyp(u) = 2VOl Bl //1x y\<ah|u —U( )| pdl‘d’y

< 1 — .
< / emspzonlu(@) = u(EY) Ppardy (2.14)
22-4(ha /2)~ /
< ——————— Ly, jcan|u(z pdxdy
VOl(Bl) H(Ox0) | y‘< ‘ ( ) ( )‘

where ¢(z,y) = (z, ). As Qis convex ¢(Q2xQ) C xQ and we get Eup p(u) < 25“74)(“)'
Iterating this process we obtain the anounced result for convex domains.

In the general case, we use the local covering introduced in B et QFf = nQ
(respectively €27 = ;N (R?\ ©)) and U( ) ={(z,y) € Qf xQ |z —y| < ah} Since by
570 C U, we have S, (1) < Y0 £, (u) with

i @)—M/ | () — u(y)pdaed (2.15)
ah,p _QVOZ(Bl) Ui(h) lz—y|<ah y)I paray. .

Let us estimate £, (u). For h €]0,€*/a[ and (z,y) € Up(h), we have [z,y] C Q. There-
fore, the change of variable ¢(z,y) = (x,%¥) maps Uy(h) into Q x Q and we get as
above

(ah)~
VOZ(Bl)

Tr+y
€0, ,(u) < / o Uezanu(e) = uC ) Podady < 26 (0. (210
0

For i # 0 and h > 0 small enough, we remark that U;(h) C QF x Qf, where QFf =

¢i(B(0,2r;) x {0 < x4 < 2¢}). Denoting Q; = B(0,7;)x]0, € [~QZ = B(0, 2r;) x]0, 26[
can use the Lipschitz—continuous change of variable ¢, : Q; — Q0 C Q to get

00000 < gyt [ etz oo (o) o)y (217)

where the Jacobian J,, of ¢; is a bounded function defined almost everywhere. As both
¢, ¢; * are Lipschitz-continuous, there exists M;, m; > 0 such that for all z,y € Q; we
have m;|z — y| < |¢i(z) — ¢i(y)| < M;|x — y|. Therefore,

o) <O [ 1 emluo 0@ —uo b)Ppdsdy, (215)

where C' denotes a positive constant changing from line to line. As Q; is convex, it follows
from the study of the convex case that

bun) < 00 [ [ 0y o ) — o o) pdady

IA

h_d/ /@ Lgu(a)—ss(y)<nl © i(w) — wo ¢y(y)[*dzdyp (2.19)

VAN

_d[ / Lig—y<nlu(z) — u(y)*pdady < Ci&p p(u)
Qf Jaof



Metropolis Algorithm on Lipshitz Domains 9

and the proof is complete. (l

Lemma 2.2 There exist Cy, hg > 0 such that the following holds true for any h €0, ho|
and any u € L*(p)

Enp(1)/Co < En(E(u)) < Co(Enp(u) + h¥||ull7:) (2.20)

As a byproduct, there exists Cy such that for all h €]0, hy|, any function u € L*(p) such
that

||U||%2(p) +h72 (1= Ty p)ulu) 2y < 1
admits a decomposition u = ug +ug with up, € HY(Q), ||ugllm < C1, and ||ug| 2 < Cih.

compl
Proof. Using the second line , we may assume that the density p is constant. The

ol
proof of the left inequality in b_ZO is obvious. For the upper bound, we remark that there
exists C' > 0 such that &,(F(u)) < C’ijzo(gi’l + &%) with

=1 [t (o) )Py 2:21)
X

and
& = hd/B  eui=n P 9) Plus (@) — s (y) Pdody (2.22)
X

As the functions x; are regular, there exist some y; € C§°(B) equal to 1 near the support
of x; such that

&' < n [ Gl Vagenle — oPldg)de < CHJullag,  (223)
B B

In order to estimate 52’2 one has to estimate the contribution of the points x € Q,y ¢ Q)
and x ¢ Q,y ¢ Q. All the terms are treated in the same way and we only examine

& = h_d/g 0 Layi<nlXg () Pluy () = uy(y)|*dedy

x(B\Q) (2.24)

- hd/ Lomyi<nl X () lu(@) —wo ¢j0 S 0 67 (y)*dudy
QF Q7

J

Let o : R — R? be the symetry with respect to {ys = 0}, so that So = Id on {yy; < 0}.
We use the Lipschitz-continuous change of variable 9; : y € Q;L — ¢j000 ¢;1<y> €0
to get
gron [ lewmaly o b)) - u)Pdedy (229
Qj ><Qj

We claim that there exists G > 0 such that,
V(w,y) € QF x QO [¢(y) — x| > 67z —yl. (2.26)

2.8
Inded, as both ¢; and ¢;1 are Lipschitz-continuous, }‘2726 is equivalent to find § > 0 such
that .
V(z,y) € O x QF, |o(z) —y| > 87 |z —y| (2.27)
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2.8
wich is obvious with # = 1. From (b_ZG) it follows that for some « > 1, one has
Gl On [ Naeanlu(s) -~ u)Pdedy < Comylu) (229
aF <t

and the upper bound is then a straightforward consequence of Lemma 5T,
The byproduct is obtain by projecting the extension v = F(u) on low frequencies
h|k| <1 and high frequencies h|k| > 1 and the fact that the functign  is quadratic near
eml
0 and has a positive lower bound for [{| > 1 . The proof of lemma ?ZL 2 1s complete.

4

We are in position to prove the estimate (E%J'% on the s <,_gectraul gap. To show the right
inequality, it suffices to plug a function u 6 C’OO(Q) into (}g'f) with support contained in
a small ball @ C € and such that fQ (x)dr = 0. As @ is convex, it follows from
Taylor formula that for such u, we haye (u — Thu u) = O(h?).

To show the left inequality in ( }%_E%We first observe that it is clearly satisfied when €2
is convex. Indeed, given u € L?(Q2) we have

K(h)
|Wﬁam—ﬁuw2§0h1}:1;Juw+kMy—@ﬂ@—UQﬁ%k+Dh@—xW®dey

(2.29)
where o = diam(§2) and K(h) = O(h™!). With the new variables 2/ = x + kh(y — ) /a,
v =x+ (k+1)h(y — x)/a it comes

HUH%Q(Q) —(u,1)? < C’ozh_d_lK(h)/ L —y<n(u(@’) — u(y'))?da’dy’ (2.30)
QxQ
. . o ap3. .
which proves the left inequality in (Ié} in the case where () is convex. )
In the general case, we can find some open sets contained in €, w; CC Qj CcC Qj,
j=1,...,N+ M such that for j =1,...,N, Qf, Q;r are given in the previous lemma,
Q+ _N+1. Nan are convex g C UM Q-, Q c UMMy and where A CC B that
+ + Jj=N+1 Jj=1 =

-----

A’ C B. Hence for h > 0 small enough

Enplu) > C 3 he / A yren(u(@) — uly))2dady
=1 Qf xQf
N
>C) hd/Q 5 L, ()65 () <n (1 0 ¢5(2) — w0 ¢;(y))*dwdy (2.31)

j=1 i %@

N+M
+C h~ / 1o w(z) — u(y))*dedy

2 T g Neenlu@) = @)

From the estimate proved precedently in the conyex case, we know that there exists a > 0
independant on h such that the second sum in (2.!3 [] is bounded from below by

N+M N+M
Ch? Z / . (u(z)—u(y))*dzdy > Ch? Z / . (u(z)—u(y))*dzdy. (2.32)
J=N+1 wj X j=N+1 wj X |z—y|<a
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On the other hand, thanks to the fact that ¢; is Lipschitz diffeomorphism, there exists

a>0s ghothat Lo—yl<n/a < Lig;@)—;w)<h < ljz—y|<an- Using the (iogvemty of (); and
Lemma % ['1t follows that the first sum in the right hand side of ( is bounded from
below by

Ch? ;/w o y|<a(u(x) —u(y))*dxdy (2.33)

.9 leq2.10 leq2.11
Combining ( ) ( dZ) and (u 33), we get

Enplu) > C’hZ/ (u(z) — u(y))*dzdy (2.34)
QxQ,|z—y|<a
1emO
for some ﬁg{(ﬂéi a > 0 independant on h. Using Lemma Z.T with h = a we achieve the
proof of (T

Lemma 2.3 There exists §y €]0,1/2] such that Spec(T},) N [1 — 0o, 1] is discrete, and
for any 0 < X\ < &y/h?, the number of eigenvalues of Ty, in [1 — b2\, 1] (with multiplicity)
is bounded by C1(1 + \)¥2. Moreover, any eigenfuntion Ty(u) = A with A\ € [1 — &, 1]
satisfies the bound

full = < Coh~ 2 a2 (2.35)

629325- 12 . . . . .
Proof. To get 2.35, we just write that since A is not in the range of my,, one has

! a =Yy PY)

) = s [ el min( 48 uty)dy

and we apply Cauchy-Schwarz. The important point here is the estimate on the number
9 7elgenvaulues in [1 — h?), 1] by a power of A\. This is obtain by the min-max and uses
570, The min-max g1ves if for some closed subspace F of L*(p) with codim(F) = N
one has for all uw € F, h™2((1 — Tp,)ulu)r2(,) > )\||u||L2(p , then the number of eigenvalues
of Ty, in [1 — h?\, 1] (with multiplicity) is bounded by codim(F) = N. Then, we fix
¢ > 0 small enough, and we choose for F' the subspace of functions u such that their
extension v = E(u) is such that the Fourier coeflicients satisfy ¢, (E(u)) = 0 for |k| < D
with hD < ¢. The codimension of this space F is exactly the number of k € Z? such
that |k| < D, since if p is a trigonometric polynomial such that E*(p) = 0, we will have
fﬂ p(z)u(x)dz = 0 for any function v with compact support in  and such that F(u) = u,
and thls implies p = 0. Thus codzm(F) ~ (14 D)% On the other hand, the right in-
equality innE}_)'ZU gives foru € F, h™ 2((1=Th)ulu)r2(p) > Co(D? = C1)|[ull72 ) for universal
Cy, C, since by , there exists Cy > 0 such that one has (hk)h > > CoD? for all
D < ¢/h and all |k:| > D. The proof of our lemma is complete. O

1.7
We are now ready to prove the total variation estimate h_T Let 11y be the orthogonal
projector in L?(f) on the space of constant functions

Mo (u) () = a(x) / w(y)o(y)dy (2.36)

Then
25upsyen| Tty — p(@)da iy = 1T = Toll oo (2.37)
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Thus, we have to prove that there exist Cy, hg, such that for any n and any h €]0, ho),
one has
Ty~ Ty e < Coem0hs (2.38)

Observe that since we know that for hg small, the estimate }%%)éholds true for any p, we
may assume n > Ch™2. In order to prove 2.38, we split T}, in 3 pieces, according to the
spectral theory.

Let 0 <A < o SN <A < < h=25, be such that the eigenvalues of T}, in
the interval [1 — dp, 1] are the 1 — A%\, j,, with associated orthonormals eigenfunctions e,

Th<ej,h) = (1 — h2)\j,h>€j,h7 (ej,h|€k,h>L2(p) =05k (239)

Then we write T}, — Il = T}, 1 + Th 2 + T} 3 with

Tha(z,y) = Z (1= RN n)ejn(x)ejn(y)
AL <A p<he
Tholw,y) = Y. (L=hNu)en(@)e;n(y) (2.40)

h=e<\; <h—25

Thg =Ty —1lyg —Th1 —Tho

Here a > 0 is a small constapf that will be chosen later. One has Tj'—Ily = T + T}, + 155,
and we will get the bound .38 for each of the 3 terms. We start go ey rough bounds.
Since there is at most Ch~? eigenvalues \;;, and using the bound (2.35], we get that there
exists C' independent of n > 1 and A such that

Tl ez + T3l e < CRT32 (2.41)
Since T} is bounded by 1 on L>, we get from T} — Iy = T}y + T}y + T3

T3l e < CRT32 (2.42)
1.2
Next we use h_Z to write 1), = my, + Rj, with

) (2.43)
| Rl 20 < Coh™?

From this, we deduce that for any p = 1,2, ..., one has 7} = A, + By, with A, ), =
mp, Bip = Ry and the recurrence relation A,y = mpApp, Bprin = mpBpn + RiT}.
Thus one gets since T} is bounded by 1 on L?

[ Appll oo poe <77

||Bp,h||L2~>L°° S Coh_d/2(1 + Y T ’)/p) S Coh_d/z/(l — ’y)
Let § =1 — 6y < 1 so that ||T5||z2—2 < 6. Then one has

(2.44)

1750 o2 < (T35 2212 < 6"

g Bt an
and for n > 1,p > 1, one gets using 2.44 and 2.42
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T3 oo = I TR T3 | poo -
S N Ap Tl oo + [ Bpn T3y || Lo e (2.45) [T10
< CN91297 4 Col~2g7 (1~ )

Thus we get for some C' > 0, u > 0,

T30l oo < CeT™, Vh,  ¥n > 1/h (2.46) [T11

T
and thus the contribution of 73, is far smaller than the bound we have to prove in b738.
Next, for the contribution onT?:‘@, we just write, since there is at most Ch~¢ eigenvalues
Ajn and using the bound (I2:

Tro(ry) = > (L=hNn)"ejn(x)en(y)
h=a <X, <h=28 (2.47) |T12
T3 || oo < CRTH2(1— B2

Thus we get for some C,, > 0,

Tl re < Coe™ ™2, Wh, Vn > h 2o/ (2.48) [T13

and thus this contribution is still neglectible for h €]0, hy] for hg small. It remains to
study the contribution of 7). Let E, be the (finite dimensional) subspace of L*(p) span

by the eigenvectors e;5,, A\j, < h™%. By lemma 2.3, one has dim(E,) < Ch=9/2,

Lemma 2.4 There exist « > 0, p > 2 and C independent of h such that for all u € E,,
the following inequality holds true

lullZe < Ch7*((Ean(u) + h?[lulZ2) (2.49)

Proof. Clearly, one has for u = E/\th/\j’hgh_a ajejn € o

Eon(w) + Pllulfa = D AL+ Ayl

AL SN p<h™e

2.7
Take u € E, such that h=2((Eqpn(w)+h?||ull3,) < 1. Then by bTZD, one has h 28, (E(u)) <
Co. Let 1(t) € C5°(R) equal to 1 near t = 0, and for v(x) = >, 5 cx(v)e*™ /4, set

v=vp g, o) =Y P(hlk])ck(v)e* ™A (2.50)
kezd

Then v = vy, 4+ vy is a decomposition of the extension v = E(u) in low frequencies (vy)
and high frequencies (vg). One has vp(x) = [, h™0(52)v(y)dy, where 6 is the function

in the Schwartz space defined by é(?ﬂ'Z/A) =1(]z]). Hence, ths map v — vy, is bounded
uniformly in A on all the space L7 for 1 < ¢ < oo. Then, from 2.12 we get

loLllmm) < C (2.51)

Thus, with u;, = vz|q and uy = vgla, we get [|up||m @) < C so by Sobolev for p < 24

lurllr < C (2.52)
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2.7
One the other hand, one has also by b_ZU

h_25h(E(6j7h)) S Co(l + )\jﬁ) (253)

2.6

and this implies by bTZ
2| E(ejn)ull2e < Co(1+ \u) < Co(1 4+ h™%) (2.54)

Thus for a < 1, we get ||[E(ejn)ullrz < ChY2. On the other hand, since |le;n|z= <
Ch~2 using the definition of the low frequency cut-off we get ,

1E(esn)mllee < 1E(ejn)llie + 1E(ejn)illie < CllE(ejn)llre < Ch™?
By interpolation we can find some p > 2 such that
IE(ejn)mllr < Coh* (2.55)
Thus, one get for u = Zx\l,hékj,héh*“ ajejn € Ey with h2((Eqp(u) + h?|ul]?,) <1

lumlle < Y0 lagllElesn)allee

)\1 h<)‘] h<h70‘ (256)
< CohM*dim(Ey)'?||ul| > < ChM R4/

Our lemma follows from }‘2_52 and }‘2_56 if one takes o small. Observe that here, the esti-
mate on the number of cigenvalues (i.e the estimation of the dimension of E,) is crucial.
The proof of lemma 2 Tis complete. O

lem L p=2
From lemma 2.4, using the interpolation inequality ||ul|3. < [Jul|7," Jull7:", we deduce
the Nash inequality, with 1/D =2 —4/p >0
lul[75"7 < Ch>((Ean(u) + B ullZa) el Vu € Eq (2.57)

For A\, < h™®, one has h?)\;; <

Sotis and thus for any v € E,, one gets Eqp(u) <
|3, — [|[Thul32, thus we get from 2257

lul[252 < Ch2((lul|2e — | Thul| 22 + B2 |ul|2)|[u| )P, Vu € E, (2.58)

T11 T13
From b7[6 and b?[& and Ty — o = T3' + T}y + T}, we get that there exists Cy such
that
| TVl —pee < Cy, Yh,  Vn > h2tal? (2.59)

and thus since T} 5, is self adjoint on L?
1Ty < Co, VR, Wn > h2T/? (2.60)
Fix p ~ h=2t%/2, Take g € L? such that ||g|z: < 1 and consider the sequence c,,n > 0
e = 757 g2 (2.61)

Then, 0 < ¢,11 < ¢, and from E%S and b?gO, we get
" < Ch2 (e — eyt + W) || TP g 4P

0 (2.62)
< OCy"h (e, — cny1 + hPey)

T17

T18

T19

T20bis

I
N

1

—
N
N

T24
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From this inequality, we deduce that there exist A ~ CChsupycn,<p-2(2 + n)(1 + h? —
(1— -t )QD) which depends only on C,Cy, D, such that for all 0 < n < h™2, one has

+2
cn < ( )2D , and thus there exist Cy which depends only on C,Cs, D, such that for
N ~ h=2 one has ¢y < Cy. This implies

I35 gl 2 < Collgllen (2.63)

and thus taking adjoints
1T P9l < Collgllre (2.64)

and so we get for any n and with N 4+ p ~ h=2
1T gl < Co(1 = BAup)" ||l 2 (2.65)
And thus for n > h=2
Tyl oo < Coe™h A = Cpetine=m99 b, W > b (2.66)
This conclude the proof of theorem E%m,l

2 2
Remark 2.5 Observe that is certainly true with a power of A instead of a power
of h with A\ = 1 — h%A, but we have no proof for this; thats why we use for 11, a Nash
inequality.

Remark 2.6 The above proof seems to apply for a more general choice of the elementary
Markov kernel h=%p(*%). Replace ¢ by a positive symmetric measure of total mass 1
with support in the unit ball, and let T}, be the Metropolis with this data. Assume that one
is able to prove that for some &y > 0 one has Spec(Ty,) C [—1 + do, 1] for all h < hy, and
that for some power M, one has for some C,c > 0

Tliw (I‘, dy) = /Lh(.r, dy) =+ Ch7d1|m—y|§chp<y)dy7 Mh<x7 dy) > 0

They, therg exist v < 1 such that \pnll e < 7. Moreover, the right inequality, in

and are still valid for TM. Also, the spectral gap of TN is given grmula }%—%wzth
TM(:L‘ dy) in place of th(x y)dy, and therefore the left mequalzty in holds true, and
the right one is true , since if p is constant, for any 0 € C§°(S2), one has u—"Thu %%{12)

We shall use these remark later in the study of the hard disc problem, in section

thm2
3 A proof of theorem 1.2

In all this sectio L, _We SUppose additionaly that €2 is stratified. For a given continuous
density p, using (TZ%nd an approxﬁl_'l?;lon of pin L% ¥ a sequence of smooth density
Pk OEE;Sees that the first assertion (II.18) of theorem h_Zﬁs a consequence of the second
one (II.7). Assume now that p is smooth.

Lemma 3.1 Let § € C*(Q) be such that supp(d) N Dying = 0 and 0,0|r,., = 0. Then

Qupl0) = WLy(0) + 7, 7]z € O(W*?) (3.1)

T26

T27

T28

T29
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Proof. For § € C=(Q) and x € Q, we can use the Taylor formula to get

1 Vp(z)

Qnp(0)(x) = W /A(x’h) min(1 + hm'z +O(hY2]3), 1)

2 (3.2)
(—hVl(z).2 — 5 Z 22j05,05,0(x) + O(R?|2))d=

with A(z,h) = {z € R, |2| < 1,2+ hz € Q}. As A(z,h) = AT (x,h) U A= (z,h), with

Ax(x,h) = {z € A(x,h), £(p(x + hz) — p(z)) > 0}, it follows by an easy computation
that

h h2 d
0)(z) =— Vo(x / zdz — ———— 0. 0,.0(x / zi2:dz
Qh,ﬁ( )( ) VOl(Bl) ( ) A(%h) 2V0l<Bl) Z i Ly ( ) A(x7h) J

i,j=1

- i Vp@)z x).zdz +r(z) = fi(z x )+ r(x
Vol(B) /A(aah) p(z) Vi(z).2dz +r(x) = fi(z) + fo(z) + f3(2) + ()
(3.3)

with [|7f] ) = O(h%). Let x = Li(z,00)<2n, then for j = 2,3

||ij||L2(Q) < ||X||L2(Q)||fj||L°°(Q) = O(h5/2) (3-4)

thanks to the support properties of x. Moreover, for z € supp(1 —x), A(x, h) = {|z| < 1}
nd the change of variable z — —z shows that (1 —x)f, = —(1 - X)%h?Af(z) thanks to

g_.g. Hence,

folz) = —%hQAH(x) +r(2) (3.5)

with ||r]|2 = O(h%/?).

To compute f3, we first observe that |fs3(z)] < Ch*/Vp(x)||VO(z)|. We thus get
11 vp1<nizfallLe < ChY2|VO|| L. At a point z where [Vp(z)| > h'/?, we may write
z = téﬁg; +2t, t= T.vvpﬁg\)’ 2+ Vp(z) = 0. In these coordinates, one has A~ (x, h) =
{(t, 21), t|Vp(x)| +O(h(t?>+|2+|?)) < 0}. From |Vp(x)| > h'/? we get that the symmetric
difference R between A~ (x,h) and {t < 0} satisfies meas(R) = O(h'/?) (the symmetric
difference of two sets A, Bis AU B\ AN B). Therefore

Vp(x
1|vp\2h1/2<1 —x)f3(x) = —h21|vp\2h1/2(1 —x)(x) / pz) 2 Vl(z).zdz+r(x)
{|z|<1,Vp(z).2<0} p(ﬂf)
(3.6)
with ||r||ze = O(h®?). Using the change of variable z — z — 2z we get
32 Qq Vp(z)
1|Vp\2h1/2<1 — X)fg(ﬂf) =—h 1|Vp\2h1/27<1 — X)(l’)mV@(l’) + 7’(1’) (37)
and therefore using 233.'41bv%7(83 get
_ 22 Vp(x)
f3(x) = —h 2 o) NO(z) + r(z) (3.8)

with ||r||r2 = O(h%?). It remains to show that || fi]|z2) = O(h*?). Using the change of
variable z — —z we easily obtain (1 — x)f1 = 0. Hence, it suffices to show that f{(z,h) =
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fA(%h) 2.VO(x)dz satisfies || f{| ) = O(h). As Ty is compact and supp(0) NTging = 0,
dist(Lsing, supp(f)) > 0, this is a local problem near any point o of the regular part I,
of the boundary . Let ¢ be a smooth diffeomorphism as in 550 that locally near xg, one
has ¢~ 1(Q2) = {x4 > 0}. For x close to zy one has

Az, h) = {z € R, |2] < 1, (¢~ (x) + hD,p~(2) + O(h?))q > 0} (3.9)

Set
Ai(z, h) ={z e R |z| < 1,(¢7 () + hDyd ' (2))g > 0} (3.10)

then the symmetric difference R between A(z, h) and A;(z, h) satisfies meas(R) = O(h)
uniformly in x close to xy. This yields

fi(z,h) = VO(z).v(x,h) +r(x), v(z,h)= /A ;. zdz (3.11)

with ||r||z= = O(h). Let v(z) be the vector field defined by v(z).z2 = (D¢~ (2)(2))a-
Observe that v(z, h) is collinear to v(z), vanish for dist(z, 0§2) > Ch and that for z € 9S2,
v(z) is collinear to the unit normal to the boundary 7'(z). Since 9,0|r,., = 0, we thus
get || fillz = O(h). The proof of our lemma is complete. O

Let us recall that we denote 1 =1y <1, < ... <v; < ... the eigenvalues of L, and m;
the associated multiplicities. We introduce the bilinear form

«
a,(u,v) = 7d<Vu, VY120 + (U, 0) [2()- (3.12)

It defines an Hilbertian structure on H'(€) which is equivalent to the usual one. We
denote ||.|[z1 the norm induced by a,. For j € N we denote I; = Ker(L, — v;), Foy =
@j<nIj and by Fsy = @;>nF; the orthogonal complement of F.y in H! for teh scalarr
product a,. Observe that since we assume here p smooth, by the classical theory of elliptic
boundary problems, any function in Fj is smooth in €2 and smooth up to the regular part
I';¢q4 of the boundary. We also denote II; the orthogonal projection for a, on F; and

DN = {9 c COO(Q),Q = 0 near Fsmg,ﬁn@meg = 0, <07U>L2(p) =0 Ywe F<N} (313)

where we use the convention F_q.=,0. One has Dy C Fy, since for any 6 € Dy and any
v € Fj with j < N one has by T.T4, a,(v,0) = (L, + 1)v,0) 12(,) = ((v; + 1)v, 0) 12(,) = 0.

Lemma 3.2 Forall N € N and allu € Fsy there ezists a sequence (uy) in Dy converging
tow in H'.

Proof. We proceed by induction. Let us first verify the property for N = 0, i.e that Dy is

dense in H'. Let f € H'(Q2) be orthogonal to Dy for a,. Then, it is orthogonal to C§°(2)

so that (L, +1)f = 0 in the sepsg of distributions. In particular —Af € L*(). Hence
(TT4)

we can use the Green formula to get for any 6 € Dy, since a,(f,0) = 0,
<8nf, p0>H—1/2,H1/2 =0 (314)

For any ¢ € C§° (Iyeg), using smooth local coordinates we can find 1/; in Dy such that
Yjaq = 1 . Consequently,

<8nf, pw>H—1/2,H1/2 = <8nf, p@[~1>H_1/27H1/2 =0 (315)



Metropolis Algorithm on Lipshitz Domains 18

uni
Hence, 0, fir,., = 0. This shows that 0, faq € H~'/2 is supported in [ging. From h_ﬂ%{
this implies 0, fiso = 0. This shows that f € D(L,). As the operator L, + 1 is strictly
positive this implies f = 0.

For N > 1 and f € Fsy, we consider a familly (f.) in Dy such that || f — fe|g < e.
Let Q be an open ball such that @ C €. We look for h € C§°(Q) such that fo=Ff.+h
satisfies the lemma. Let 0 € C§°(Q), with 6 > 0 and 6 # 0. We look for h under
the form h = Zizl Brber, where (e;)jeq,....sy denote the eigenfunctions of L, such that
F_n = span(e;,j € {1,...,J}) and 3 = (41,...,3;) € C’. The condition f. +h € Dy
reads (h,e;j)r2,) = oy with a; = —(fc,ej)12() = O(¢). Denoting 8 = (31,...,8;) and
(U, )0 = fQ u(z)v(z)p(x)(x)dr, this is equivalent to M3 = o where M is the J x J
matrix M = ({e;, ex)Q,p0)jk=1,....J-

We claim that (), is definite positive on F.y. If not, there will exist a non zero
function v € F_y such that fQ |v(z)|?p(2)0(x)dz = 0. This implies that v(x) = 0 on the
non void open set f(x) > 0. Since v satisfies I1,« 5 (L, — vj)v = 0, the uniqueness theorem
for second order elliptic operators implies v(x) = 0 for all z € Q. As a consequence, the
matrix M is invertible, so that 3 = M~'a = O(¢). Hence ||h]|z1 = O(€). The proof of
our lemma is complete.

g

We are now in position to achieve the proof of Theorem E_.hggWe first observe that if

€ [0, M] and ¢y, € L?(p) satisfy ||¢nllz2 = 1, h2Quibn, = vptby, then thanks to Lemma

b‘Z‘the family (¢n,)nejo1] is relatively compact in L?(p) so that we can suppose (extracting

g sybsequence f;) that v, — v and ¢, — ¢ in L*(p), ||¥]|2 = 1, and moreover by Lemma

, the Hlm]st 1 belongs to H'(p). Given 6 € Dy, it follows from self-ajointness of @, and
Lemma hat

= ((h°Qn — vn)n, 0) 12p) = (Wn, (Lp — v4)0) 12() + O(R'/?) (3.16)

Making h — 0 we obtain (¢, (L,—v)0)12¢,) = 0 for all @ € Dy. It follows that (L,—v)y =0
in the distribution sense, and 1ntegrat1ng by parts that 0,1 vanish on I',.,. Since ¢ €
H'(p), we get as above using h_l’g that 0,¢ = 0, and it follows that 1 € D(L,) . This
shows that v is an eigenvalue of L,, and thus (h_[9) is satisfied. Moreover, by compactness
in L? of the sequence ,, one gets that for any e > 0 small enough, there exists h, > 0
such that

tSpec(h2Qn) N[v; — e, vj + €] < m; (3.17) [ppm

for h €]0, h] with h. > 0 small enough. It remains to show that there is equality in E%l?,
and we shall proceed by induction on j.

Let € > 0 small be given such that for 0 < v; < M +1, the intervals I§ = [v; — ¢, v; + €]
are disjoint. Let (y;);>0 the increasing sequence of eigenvalues of h~ Qh, oN = Z;VZI m;
and (ey)r>o the eigenfunctions of L, such that for all k € {1+ on,...,0n41}, one has

(L, — vni1)er = 0. As 0 is a simple eigenvalue of both L, and @, we have clearly
= o =0 and my = 1 = £Spec(h2Qn) N [vo — €, 15 + €.
Suppose that for all n < N, m,, = §Spec(h 2Qh) [V — €,V + €]. Then, one has by

1.5
59, for h < h,.
i > st — 18)
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By min-max principle, if G is a finite dimensional subspace of H* with dim(G) = 1+oy,1,
one has

/J/O'N+1 S sup <h72Qhw7 1/}>L2(p) (319>
YeG,||lv]|=1

1em6
Thanks to Lemma &3.2, for all e;,0 <k < onyq and all o > 0, there exists ey, € Dy such
that |ley — ek@HH; < a. Let G, be the vector space span by 1€ L1, 0<k<ony For
a small enough, one has dim(G,) =1+ ony1. From Lemma BT, one has

<h72Qh6k,a7 L o >L2(p) <L Ck,a; €K/, > L2(p) + Oa(hl/z) (320)

Since €k,a € Dy, one has <Lp€k:,a7 €k',a>L2(p) = %<V6k,au vek/,a>L%7 and <V€k,a7 Vek/,a>Lg =
(Ver, Vey)rz + O(a). Therefore, for ¢ € Gy, ||| = 1, we get

(h2Qutb, ) 12(p) < Ung1 + Ca+ Oy (R'?) (3.21)

Taking o > 0 small enoPgh and h < hq we obtain from %lnlg ?311211 Hoyiy < Ung1 T €

Combining this with 4 BT 7, we get my 1 = tSpec(h 2Qh) [UNt1 — €, VN1 + €]
The proof of Theorem I 2 1S comple

min2

min3

4 Application to random placement of non-overlapping

balls

In this section, we suppose that §2 is a bounded Lipschitz stratified connected open subset
of R with d > 2. Let N € N, N > 2 and € > 0 be given. Let On.e be the open bounded
subset of RV?

One={z=(21,...,25) €EQV V1 <i<j<N,|z;— x| > €}

We introduce the kernel
1 & R
n(z,dy) = N g 0 ®0g,, ® h*dgp(%)dyj ® 0z, @ ... ® gy (4.1)

and the associated Metropolis operator on L*(Oy )

T (1) (&) = mn(@)u(e) + / w(y) Kl dy) (4.2)
with
mp(z) =1— 5 Ky (z,dy). (4.3)

The operator T}, is Markov and self -adjoint on L?*(Oy.). The configuration space Oy,
is the set of N disjoints closed balls of radius €¢/2 in R, with centers at the z; € Q. The
topology of this set, and the geometry of its boundary is in general hard to understand
(references a trouver), but since d > 2, Oy, is clearly non void and connected for
a given N if € is small enough. The metropolis kernel T}, is associated to the following
algorithm: at each step, we choose uniformly at random a ball, and we move it center

eqd.2
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uniformly at random in R? in a ball of radius h. If the new configuration is in Oy, the
change is made. Otherwise, the configuration is kept as it started. ronT

In order to study the random walk associated to 7}, in in Proposition ETPVve Rrove
that the open set Oy is Lipschitz stratified for € > 0 small enough, and in lemma Erm
prove that the kernel of the iterated operator TM (with M large, but inc%egégndent of h)
admits a suitable lower bound, so that we will be able to use our remark 2.6.

We define I, and Iy the set of regular and singular points of 0Oy . as follows. Let

us denote Ny = {1,...,N}. For z € 5]\776 we set

R(z) = {i € Ny, z; € 0Q}
S(z)={r=(n,m) €Ny, n <1 and |z, — x| =€} (4.4)
r(z) = §R(z), s(x) = 45(z)

The functions 7 and s are lower semi-continuous and any x € Oy, belongs to Oy . iff
r(z) + s(z) > 1. We define

[y = {2 € Ong,s(x) =1 and 7(z) = (())} (4.5)

U{z € 61\/,6, s(x) =0,R(z) = {jo} and z;, € 0Qy¢y}

and Iying = 00N, \I'vey. Then, Iy, is clearly close, and the I',., is the reunion of smooth
disjoint hypersurfaces in RV

Proposition 4.1 For e > 0 small enough, the set Oy . is connected, Lipschitz and strat-
ified.

Proof. For v € SP~1 p > 1 and ¢ €]0, 1] we denote

[1(v,0) ={£ € R?, £(§,v) > (1= 0)[¢], [(€,v)| < 0} (4.6)

We remark also that an open set O C RP is Lipschitz if it satisfies the cone property:
Va € 00,36 > 0,3y, € SP71, Vb € B(a,§) N IO we have

b+ T (ve,6) C O and b+T_(vy,5) C R?\ O, (4.7)

Let © € 00n,. The equivalence relation 7 ~ j iff Z; and Z; can be connected by a
path lying in the union of the closed balls, give us a partition {1,..., N} = U;_, F} such
that

Vk #1,Vi € Fy,,Vj € B, [T — 7] > ¢

.. , o _ (4.8)
Vk,Vi# j € Fy,3(m) € Fi, 1 <1 <m, ny =i,n, =j, |xnz_xnz+1‘ =6

Observe that in the case where $F; = 1 the second condition is empty. We look for
v € SN4=1 guch that the cone property at  holds with v. We construct the coordinates
of v according to the partition (F),. Let k € {1,...,r}.

Suppose that Fj, = {j;} for some j, € {1,....N}. If 7, € Q, weset {;, = 0. If
T, € 09, thanks to the cone property satisfied by 2 we can find &;, € ¢! and &, > 0
such that

T, + F+<§jk7 5k> C Q and T, + F,(fjk, 5k> C R4 \ Q. (49)
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Suppose that §F), > 2. If T, € Q for all j € F), we fix y, € R? and for all j € F}, we
set & = T; — yx. Hence x;(t) = T, + t§; is obtained from Z; by homothety centered in yy,
with ratio 14¢. Consequently, for all 7, j € F}, and t close to 0, we have |z;(t) —x;(t)| > €
for t > 0 and there exists at least two distinct indices 4, j € F}, such that |x;(t) —z;(t)| <€
for t < 0.

If there exists iy € F}, such that 7;, € 9, the cone property provides us 7;, € S9! and
0;, > 0. Moreover, taking e > 0 sufficiently small, we can suppose that all the 7;,7 € Fj
are close to T;,, since |T;—T;,| < e(N —1). Thus, for all i € F},, we have b-+T" (n;,, ;) C
for all b€ Q, |b—Z;| < &;,. Let y;,(2) = Ty — 2
eta;, and for i € Fy, &(z) = T; — yiy(2). Then, for z > 0 large enough and o > 0
sufficiently small, we have & = afl(z) € I'(n;,, ;). In particular, for i € Fj, and ¢ > 0
close to 0, T; + t& belongs to 2, while for ¢ < 0, one has T;, + t&, ¢ . Moreover, the
same argument as above shows that for ¢ # j, the functions ¢ — |7, — T; + t(§;, — &;)| are
strictly increasing near ¢ = 0.

Observe that £ = (&,...,&v) # 0, since if § = 0 for all 4, then §F}, = 1 and 7;, €
for all k£ which contradicts 7 € 0Oy,. Finally, we take v = % Then for § > 0 small
enough, the cone property is satisfied at  with (v,0). Thus Oy is Lipschitz.

Let us show that Oy is connected for € small enough. We define for j € Ny the two
applications 7; from RY? to RV and o; from R? to RN by

i(z1, .z, o) = (21, ...,0, ., 2N)
oi(y) =(0,...y,...,0)

so that z = m;(z) + 0;(z;). For F C Ny we define op : IjcpR? — RN by op(z) =
> jer 0j(x;). We have the following geometric lemma.

(4.10)

Lemma 4.2 There exists €g > 0 and dg > 0 such that for all € €]0, €] and all n € Ny,
there exists a finite covering (Uy); of On.e such that for alll there exists a subset F,, C Ny
with $F, = n, there exists v € S"™~1 such that

Ve e U N 0N7€, x +0Fn(F+(1/, 50)) C ON,E (411)

Moreover, there exists co > 0 such that for all k,l € F,, with k # 1 and for t € [0, 0y, we
have
Ve € UNOng, |z + tvg —x — tyl|2 > €2 4 et (4.12)

Proof. This lemma means that we can select an arbitrary number of balls n, and that
moving only these balls by a vector in I'; (v, dy) while keeping the other balls fixed, results
in an admissible configuration. We shall proceed by induction on N > 1. For N = 1, this
is true since () is Lipschitz. Let N > 2 and suppose that the property is true until rank
N — 1 and let € be the corresponding parameter. For e €]0, [ and 3 > 0, we have the
partition

One=UNepUVnNes (4.13)

with Un.ep = {7 € One, sup,y; |z — 25| < € + B}. Using the induction hypothesis, it

is easy to see that for any 3 > 0, there exists € (3) < & and dy(3) > 0 such that the
conclusion of the Lemma holds true on Vy . g, Ve €]0,€,(5)]. Hence it remains to find a

sl0
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suitable covering of Uy 3. For any a > 0, choosing (# and €; small enough we can suppose
that
Un.ep C Uper, B(y", o) (4.14)

for some finite set F,, C 2. Moreover, since €2 is Lipschitz, we can suppose that «a is
sufficiently small so that
36, >0, Vy° € F,, J(y®) € 471 Wy € B(y°, ), y + Ty (v(y°),26)) C Q. (4.15)

Moreover, we can suppose that d; is sufficiently small so that the following holds true:

Yo, uy, .. uy € S st Vi, (v,uy) =0, T € Ty (v,26)),
v§ € F+(UI,56),\V/j, <€7uj> 7& 0.

Indeed, the.set A = {v € 5S4, (v,u;) = 0,Vj} is contained in a finite union of equators
and thus ( iZlT6Llisr50bvious by taking v’ close to v in the complementary.

Condition (H.15) gives us a critical value for €; and we now suppose that € €]0, ¢;]. By
compactness, it remains to show that yo € F, being fixed the following property holds
true:

va' € B(y°, o)V N One,¥n € Ny, 3F, C Ny s.t. §F, =n, Jv € Sl 3 >0, s.t.
Vo € B(ZL‘O,T) NOne, VE €T (1,60),Vk # j, (x4 0r(€)); — (x + op(§))k| > €

(4.16)

(4.17)

Let 2° € B(y°, ) and n € Ny being fixed. We construct F,, and v € S"¥~! by induction

on n. We look for v under the form v = A(v, (1 — 1/N)v,...,(1 — (n — 1)/N)v), where

v € S9! and ) is a normalizing constant. We claim that we can find F, = {j1,... .}
and v € S ! such that

(0,29) > ... > (v,29 ) > (v,2°), Vs ¢ F, (4.18)

7 In

If n = 1 we denote F’ the set of index i such that the map s € Ny +— (v(y°), 2%) has
a maximum in s = 4. If fF” =1 then we can take (F3,v) = (F’ v(y°)). If fF" > 2, thanks
to (1.17) we can find v close to v(y°) such that s — (v,2?%) has a unique maximum for
some s = j; and we set F; = {j;}. a1
Suppose now that n > 1 and that (F},, v) satisfies (iZlTS) Let F" be the set of index
i ¢ F, such that the map s ¢ F, — (v,z?) has a maximum in s = 4. If fF” = 1 then
(Fhi1,v) = (F, U F" v) satisfies the expected property. If §F” > 2 we can find v” close
to v so that we still have
Wha))> ... > @) )> (W, al), Vs ¢ F, (4.19)

7

and additionally (zg,v”) # (x;,0") for all k,l € F” with k # [, and (x4, 0") > (x,,0")
for all k € F" s ¢ by o) F"”. This permits to find easily j,.1 € F” such that setting
Foiy1=F,U{jns1}s (iZlTS) holds tyye at rank n + 1.

We turn back to the proof of (121_17) Let x € B(2%,r) and £ = (&, ...,&,) € T (v, 8))
with §}, given by the above construction and r > 0 to be chosen small enough. We denote
v = (Vj,..,v,) so that v, = A(L — (k — 1)/N)v. The fact that v + op, () € QY is a
straightforward consequence of (1.15) and it remains to show that the distance between
two different balls remains bounded from below by e. Let j,k € Ny with j # k.

J, k & F,, there is nothing to prove.

sl1

sl2

sl3

sl4
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In the case where j, k € F,, we can write j = j, and k = j, with p < ¢ and we have

(x4 0p(€)); — (x4 or(©))l* = € + 2(x), — x),, &, — &,)
> ¢ 4 20¢)(2, — 2§ vy, — v, — 4r(1€, ] + 1€5,])

~2leled, — 1% = vy |+ 155 = ) (1.20)

(a = p)lg|(v, 25, — a7,) — 8r[¢] — 4I¢|6g |5, — T |

]p|+|

> 42—
_6+N

sl4
Thanks to (iZlTS), (v, 2 —af ) > crla) —af |, for some ¢; > 0 independant on e. Hence,
taking o €]0, Ac;/(8N)] and 7 €]0, )\e/(IGN)] we get

2+ 0r(@)); — 2+ or (Nl > &+ e 3ole (4.21)

100 10
so that (E_H) is satisfied. Moreover, as \ is of order n=1/2 (ETZ) holds true with ¢o = 72~
In the case j € F,, and k ¢ F),, similar computation leads to the same result. Taking
8o = min((do(3), d(), the proof of the lemma is complete. O

Lemma 4.3 There exists €, > 0 and m > 1 such that Ve €]0, 1], Vo, y € Oy e satisfiying
inf; j, [x; — yi| > me, there exists a continuous path y : [0,1] — Oy, such that v(0) =
and y(1) = y.

Proof. For 2 = (23,...,2y) € QV"1 and k > 1 we denote Q(2') = Q\ U, B(zj, ke).
We claim that there exists e; > 0 such that for € €]0,¢;] and m > 1 large enough, the
following property holds true:

V' € On_1me, Yu,v € Q(2)), Iy € C([0,1], Q (")), s.t. y(0) =u,y(1) =v  (4.22)

Indeed, © being connected, for any u, v € Q,,(z') there exists a continous path ~ : [0,1] —
Q2 from u to v. Moreover, using the fact that 02 is Lipschitz and taking m sufficiently
large, we can modify the path v in a path 4 that avoids the balls B(x;,€) and remains in
. s15

Now, let z,y € Onme with inf;, |x; — yx| > me. Thanks to (iTZ‘Z), we can find a
continous path fr%%})z:c to (y1,x2,...,on) with values in Oy.. As |y — z;| > A for all

J, we can apply (A.22) with 2/ = (y;,x3,...,2y) so that we can find a continuous path
in O joining (y1, z2,...,zn) and (y1,y2, T3, ..., Ty). lterating this process we obtain a
continous path from x to y, with values in Oy . U

We are now in position to DQve that On, is connected for € s %]} enongh. Let
te 1
€9,00 > 0 be given by Lemma iZLZ and m, €; be given by Lemma Esug e can also
decrease € so that Ve €]0,¢1[, Vo € On,, Jy € Oy, i Sbie mf” lz; — y;| > 2me.
e < min(eq, €9, codo/( 1}2}2} with ¢y given by Lemma lZ‘[ 2.
suble . .

Thanks to Lemma% 3,1t sufﬁ ces to show that for any x € Oy there exists a continuous
path v : [0,1] — Oy such that v(0) = z and 71@976 ON me-

Let x € Oy, be fixed. Thanks to Lemma iZI A there exists v € SN41 such that the
segment z + [0, do]v is contained in QY and moreover for any k # [ and any t € [0, d),

Let

|z + tvy — 2 — ty]? > €2 + coet. (4.23)

slb



Metropolis Algorithm on Lipshitz Domains 24

Hence, the path ¢ € [0, 1] — ~(t) = = + tdov has the required properties. This achieves to
prove that Oy is connected.

Let us now prove that Oy is stratified. Let u € H‘l/z((’)N,e) be supported in I',.,. We
have to show that u is identically zero. This is a local problem and we can suppose that u
is supported in a small open set U € RV? such that U := UNOy, = {(z1+p(z'),2'), 2, €
10,al,2 € V}, U :=U N3Oy, = {(p(z'),2"), 2" € V} , where p: V C RV - Risa
Lipschitz function. Denote

k)0, a[xV — U, k:V —oU

4.24
(a1,4) o (11 + (), 2) Y (pla!). ) -

and for y € C5°(V), let ¢, (u) be defined by
(dx (), f) = (u, (XF) 0 k™) 12000, ) 11/2 (00 ) (4.25)

for any f € HY/?(RN4-1). Then ¢, (u) € H-2(RN4"1) and supp(¢, (v)) C k= (supp(u)).
Moreover, the distribution o = d,,—0 ® ¢,(u) belongs to H'(RY?) and supp(v) C
K (supp(u)).

Let T € 6U N supp(u) and denote Dy, = {z € (RY)V, |z; — 2| > ¢, V1 <i < j < N},
Then, either r(Z) + s(T) > 2, either T € Dy, R(T) = {jo} (say jo=1) and T}, € Iyin-
Suppose that we are in the second case and let x be a cut-off function supported near T
such that supp(x) C R? x QY"1 N Dy .. Then, for any ¢ € C§° (ﬁNﬁl) the linear form wu,,
defined on H'2(0Q) by

(wy, f) = xw, f(@)(@a, -, 2N)) g-1/260), 117250 (4.26)

is continuous and supported in 0€;,,. As 0€ is stratified, it follows that w, is equal to
zero for all ¢ and hence, yu = 0. Therefore, we can suppose that u is supported in the
set {r(x)+ s(x) > 2}. For n € N, n > 2, let us introduce the following property

(P,) : for any T € 0U s.t. r(T) + s(T) = n, we have u = 0 near T. (4.27)

We prove this property by induction on n. We first assume n = 2 and suppose that
r(Z) = s(z) = 1 (the cases r = 2,s = 0 and r = 0,s = 2 are similar and left to the
reader). By lower semicontinuity of the functions r and s, for any x € supp(u) close to T
we have also r(x) = s(x) = 1 and hence R(z) = R(Z) and S(z) = S(T). Hence, we can
suppose without loosing generality, that u is supported in G = 9Qx QYN 1N {|z; — 22| = €}
for some ¢ € {1,3,..., N}. Denoting x; = (z;1,...,%;q4) and using the fact that 0Dy,
is invariant under any transformation of the form x +— (p(z1),...,p(xy)) where p is an
affine isometry of R?, there exists a linear map L on RY? such that L(G) is given by two
equations

1,1 = o(7})

(4.28)

Ty = B(h, ;).
with o Lipschitz and 3 smooth and where ) = (z2,...,2;4). Hence, v(z) = (211 —
a(z)), a1 — B(xh, 2:), 2y, @b, 23, . . ., ) defines a local homeomorphism of RV such that

vo L(G) C {0}? x RN4=2, Consequently, w € H~}(RN?) defined by

(W, f) = (0, fovoLok) (4.29)
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satisfies supp(w) C {0}* x RY4=2 Therefore, 1 vanishes identically and hence u is null
near .

Suppose now that (Py) holds for & < n and let T be such that 7(Z)+s(Z) = n+1. The
lower semicontinuity of r, s and the induction hypothesis show that for any = € supp(u)
close enough to T, we have r(z) + s(z) = n+ 1 and hence R(z) = R(Z), S(z) = S(7).
Suppose that 7(Z) = 0, then $(Z) = n + 1 and near 7, supp(u) is contained in G =
OV N (Nrer@ {|zn — 25| = €}. In particular, there exists o, 7 € R(T) such that o # 7. As
in the case n = 2, we can suppose that near T, the set {r(z)+s(z) = n+1} is contained in
{21 = a(a:Tl,:cTQ) Toyq = (@, ,%4,)} for some Lipschitz functions o, § (here we forget
some information). Hence, we can construct as precedently an homeomorphism v on R4
such that v(G) C {0}% x R¥¥"2 and the same proof as for n = 2 still works. The cases
s=0,r=n+1lands>1r> JLare similar and left to the reader.

The proof of proposition BII'PE complete. O

Remark 4.4 Observe that in the above lemma, the smallness condition on € is Ne < ¢
where ¢ > 0 depends only on Q. The condition Ne? < ¢, which say that the density of
the balls is small enough, does not implies that the set On . has Lipschitz reqularity. As
an ezample, if Q@ =|0,1[* is the unit square in the plane, then v = (x1,...,xy), T; =
((j — D€, 0), 7=1,...., N, with e = ﬁ is a configuration point in the boundary OOy .
However, 00y is not Lipschitz at x: otherwise, there will exist v; = (a;,b;) such that
(21 +tvr,...,on +tvy) € Oy, fort > 0 small enough, and this implies aq > 0,a41 > a;
and ay < 0 which is impossible.

For k € N* we denote B¥ = Bgx (0, 1) the unit euclidian ball and o, (z) = WlBk (2).

Lemma 4.5 Let ¢ be small. There exists hg > 0,co,c1 > 0 and M € N* such that for all
h €]0, ho], one has

:L‘ —
T,f”(:c, dy) = pn(z, dy) + coh’Ndde( clhy)dy (4.30)

where for all x € O, pn(z,dy) is a positive Borel measure.

Proof. For z,y € On,, we set dist(z,y) = sup;;<n |¥; — yi|. For N =1, let us denote
by Kj n the kernel given in lzlﬂl_lt is sufﬁ(nent to prove the following: for e small, there
exists hy > 0,¢p,c1 > 0 and M(N) € N* such that for all h €]0, hy], one has for all non
negative function f

KMO(f) () 2 coh™ / F(y)dy (4.31)

YyeON ¢, dist(y,x)<cih

We first remark that it is sufficient to prove the weaker version: for all 2° € 61\;,6, there
exist M(N,z%),a = a(2°) > 0, ¢y = co(zo) > 0,¢1 = ¢1(w0) > 0,hg = ho(zo) > 0 such
that for all h €]0, ko], all z € Oy, and all non negative function f

dist(z,2°) < 20 = K"V () () > coh™N / Fy)dy (4.32)

yEON ¢, dist(y,x)<c1h
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Let us verify that 532 implies 5_31 Decreasing «(x) if necessary, we may assume ‘j at,
any set {dist(z,2°) < 2a(xg)} is contained in one of the open set U; of lemma

There exists a finite set I such that Oy, C Uyep{dist(z,1°) < a(xg)}. Let M(N) =
supyoepM (N, z0), ¢; = ming,erci(xg) and hj = ming,cpho(zro). One has to check that
for any 2° € F and any x with dist(x, 2°) < a(xo), the right inequality in .32 holds true
with M(N) = M(N,z°) + n in place of M(N,x°), and for some constants cg, ¢y, hg . Let,
U, be such that dist(x,2") < « implies x € U;. Let j and T'; (v, d) be given by lemma 14_27
Clearly, if f is non negative, one has

$0 1 — 1‘0
K )H(f)(x)zﬁh d / o p(2/M KN ()@ +oj(2))dz (4.33)
:B+Uj 2)EON e

For dist(z,2°) < 2a(z’) — ¢ h/2 and |z| < dh/2,z € T (v,9), one has dist(z +
0;(2),2°) < 2a(2) and by 7 & T 0j(z) € One Moreover, dist(y,z) < cih/2 =
dist(y,x + 0j(z)) < cth. From .33 and 132 we thus get, with a constant Cs depending
only on the ¢ given by lemma iZI 2, and for h < hy,

dist(z,1") < 2a(2") — c|h/2 =

Cg,

Klzl\/[]S[N,:vO)Jrl(f)( ) > —coh” Nd/ f(y)dy 3
; - N yeONedZSt(y 1‘)<Clh/2

By induction on n, we thus get

dist(x,2°) < 20(2°) — fh =
2)+n Csvnyom 4.35) [g7
I () 2 (e fyay 4
VEOR . dist(y.)<c}

Since n is bounded, we get the desired result with hy = min(mingocpao/c), hp).

To complete the proaf, let us show (1.32) by induction on N. The cas N = 1 is
0bv1ous.1§1k1pt%(l;se that ( 2 holds for N - 1 discs. Let SL"O € Op, being ﬁxedo. Th‘anks' to
Lemma lZ,[.Z, We can suppose th%tl?there exists an open neighbourhood U of x” a direction
v € 8%t and ¢ > 0 such that (7?7) holds with j = 1. Let us denote x = (z1,2') and

Kyn=Kpni+ Kpn> (4.36)
with .
h~ ry—y
Kynaf(x) = N o(— 5 ) fyr, 2 )dyy. (4.37)
(y1,2")€ON

We also denote G(v,8) = 'y (v, 6) N {|z1| > £}. Then, we have the following

Lemma 4.6 For any ¢’ €]0,6/2|, there exists C > 0, a > 0, hg > 0 and ro > 0 such
Vr €]0, o], Vh €]0, ho], Vo € UNOn, VZ € 2+ h(G(v,8") x B(0,7)N1) with & € On_1,

we have T € Oy and

Knnsf(7) > CKaonn1(f(21,.))(2) (4.38)

for any non-negative function f. In particular, for all M € N*, there exists C,rg, hg,a as
above such that Vx € UN Oy, Vi € x + h(G(v,d') x B(0,r)N71), we have

Kty o (@) > K vy (£, ))(&) (439)
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: :ml
Pero:o A Inequality (E.E?Qm% is obtained'easily from (E.%%i by induction on M. To prove
(138, we observe that for non-negative f and « €]0, 1] we have

Knnsf(Z Z/ FE Y BN dy; (4.40)
]ah

with A ,(Z) = {2 € Q, |Z; — 2| < ah and Vk # j, |Z), — 2| > €}. Let B, ,(%) = {2z €
Q,|Z; — 2| < ah and Vk # 1, j, |2, — 2| > €}. Then A;, ) C Bj, and we clalm that for
a,r > 0 small enough and & € x + h(G(r,d") x B(0,r)N~1) with #’ € Oy_1., we have
B an(Z) = Ajon(z). Indeed, let 71 = z1 + huy with vy € G(v,0') and ¥ € Oy_;, be
such that |Z; — x;| < hr. Then for z € B, , (%) we have

|Zi‘1 — Z| = |l‘1 — Ty + h’U1| (441)

with v; = uy + xj;"i [aking o, r small enough (w.r.t. 4) it follows that vy €
'y (v,9). Consequently, Lemma shows that |7, — 2| > € and hence z € A;,,(Z) (the

same argument shows that z € ON,G) Therefore,

h - N - i
KhN>f Z WZ/MWC) x1,...,yj7...,xN)dyj:ﬁKah,N—l(fQL’h.))(x)
. (4.42)
blem7b
and the proof of Lemma 12181.16 1gmcorlnsplete. 5 O

Using this Lemma we can complete the proof of (E‘SQ) Letp € N, a €]0, ap) and = € On,
then

KZ?]L\} (2) > KnnaKp n o f()

> K}y f(21,27)dz

h d
N (21,2")EON ¢, 21 €21 +hG(W,8') (4.43)
h

—d
= CT/ Kf v (f(21,))(2")dz
(21,2")€ON ¢,z1€x1+hG(1,0")
sublem7bis
thanks to Lemma iZL6. From the induction hypothesis we can choose p € N so that

KIN f(z) > Ch /

/ Fley)dyds (444)
(z1,2")€EON ¢,21€x1+hG(1,0) J |/ -y |<ah,y'€ON_1 .

Hence, for any ( €]0, 1] we get

KPR f(x) > K Kna f(x) > ChNd/ F v ), yo)dydy’ (4.45)
Da,ﬁ,h(x)
with
Dosn(x) ={y € Oy, |2’ — | < ah,|x1 — 11| < SR} (4.46)
and

(T, y1) = h—d/ 12y j<ndz (4.47)
(21,2)EON, e,21€21+hG (1,0")
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We have to show that v; is bounded from below by a positive constant, uniformly with
respect to (z,y1). For this purpose, we observe that for y € D, gn(z) and 30" small
enough we have

Y, 91) > Chd/ dz :/
(21,2")€ON ¢,21€x1+hG (1,8") |u|<o,ueG(v,d")

lem7ter
Using again Lemma 1.2 we get

’}/h(IL',yl) > C/ du = CO > 0. (449)

|u|<o,ueG(v,d8")

1(x1+hu,$’)€(91\r76du (448)

4.38
Plugging this lower bound into (iZ[e.%IB J, we obtain

Kp'y > Ch™ / f(y)dy (4.50)
D, g,n(x)
5 1lem7bi
and the proof of (5_32) is complete. This achieves the proof of lemma lZ[(.aSm. = O

By proposition f.T, we can consider the Neumann Laplacian |A|y on Oy, defined by
Ay = —;—]dVA, D(|A|y) = {u € H'(Ox,), —Au € L*(Ox..), Onulaoy, =0} (4.51)

We still denote 0 = 1y < 11 < 15 < ... the spectrum of |A|y and m; the multiplicity of
vj. Our main result is the following.

Theorem 'elm7é§§ N > 2 be fized. Let € > 0 be small enough such that proposition E%)ﬂ
and lemma 7.5 holds true. Let R > 0 be given and 3 > 0 such that vji, —v; > 203 for all
J such that vj4o < R.

There exists hg > 0, dy €]0,1/2[ and constants C; > 0 such that for any h €]0, ho|, the
following holds true.

i) The spectrum of Ty, is a subset of [—1+ o, 1], 1 is a simple eigenvalue of Ty, and
Spec(Ty,) N [1 — dg, 1] is discrete. Moreover,

— Th
h2

5P60(1 )NJ0, R} C Ujsilv; — B, v + B

(14.52)

1 -1
jjSpec(Th) Ny —p,v;+pl=m; Yv; <R

and for any 0 < X\ < §oh™2, the number of eigenvalues of Ty, in [1 — h?X, 1] (with multi-
plicity) is bounded by Cy(1 + \)4N/2.

ii) The spectral gap g(h) satisfies

. _9 o
;}E& h==g(h) =1 (4.53)

and the following estimate holds true for all integer n

7y < Cyemm9™ (4.54)

n dy
Ty (x,dy) — Vol(On)

SUDzeOy.
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The rest of this section is devoted to the proof of theorem H.T.

4.5
Let pp(z,dy) be given by lzle 53() and pp(f fON y)pn(x,dy). Thanks to the

positivity of pup(x,dy), using the Markov property of T,f” and Lipschitz-continuity of the
boundary, we get for some §) > 0 independant on h > 0 small enough

lilmam < 1= int [ cob pna Py < 1- (4.55)
LL‘EC)N6 ON,e 1h
4.5
Since by E%Tuh is selfadjoint on L*(Oy,), we get also
el <1 =6 (4.56)

and by interpolation it follows that || up |2, 22 < 1—4(. In particular the essential spectrum
of TM is contained in [0, 1 — &} so that c..(7,) C [0, 1 — 28] with 20p = 1 — (1 — &;)Y/M.
Thus Spec(T,) N [1 — &y, 1] is discrete. Let us verify that decreasing dp > 0, we may also
assume

Spec(Ty,) C [—1 + do, 1]. (4.57)
Thanks to the Markov property of T, to prove this, it suffices to find M € 2N + 1 such
that

/ / V2TM (&, dy)da > 6o ul|% (4.58)

lem7bi
for any u € L?(Q). Moreover, thanks to the proof of Lemma lZ‘[(.aSm thete exists M € N such
that for any n € N,

[ [+ B e = cain ™ [ o) + ) Poxal o
’ (4.59)

Hence, (ifg?“)l_follows from (l4 67 )llang@ngf

Following the strategy c}f section Zwe put Oy in a large box B =] — A/2, A/2[NV¢ and
thanks to proposition ETpWe define an extension map E : L?(Oy,) — L*(B) wich is also
bounded from H'(Oy,) into H'(B). We denote

Enp(u) = (1 = THu, u) 20y, (4.60)
2 2.5 2.6
and we define &, as in section 7. Nloreover the identities (b_l'l), (bTQ) remain true with

obvious modifications.

Lemma 4.7 There exist Cy, hg > 0 such that the following holds true for any h €0, ho|
and any u € L*(Oy)

En(E(u)) < Co(Ennr(u) + h?|lullz2) (4.61)
Proof. Thanks to Lemma 2.2 we have
l‘ p—
E(EW) <G [ o) = uln)Pah M oxd D dyds + 1l oy) (462)
4.,6>< N,e

Combined with (E.%UEE , this shows that

En(E(u)) < Co(/ (u(z) = u))*T," (z, dy)dz + h*|lull 12(04,)) (4.63)
ON,eXON e

and the proof is complete. (l

4.13
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Lemma 4.8 For any 0 < X\ < §y/h?, the number of eigenvalues of Ty, in [1 —h*\, 1] (with
multiplicity) is bounded by Cy(1 + N\)YN¥/2. Moreover, any eigenfuntion Ty, (u) = \u with
X €|1 — b, 1] satisfies the bound

[wl| e < Coh N2 |u)| 12 (4.64)

Propf. Suppose that T),(u) = Au with A € [1 — dp, 1], then TMu = Ay and thanks to

(lzl%Uf, we get

\ i [ Ceen = zMg)uHLoo = O(h=""?) (4.65)
and estimate (E%Zi')_follows fro IQZIZES ). On the other hand, thanks to Lemma (.em, we
can mimick the proof of Lemma 2.3 to get

Cur(A\, h) < C(14 A)N2, (4.66)

Let Cx(A, h)ebg %e number of eigenvalues of 7T} in the interval [1 — A%\, 1] for h2\ < dy.
Then from A.57, one has

(1 p2\\k
k) = G ) (1.67)

L. leq4.18 leq4.11 ) )
o) bining (A.66) and (A.67) we get easily the anounced estimate. The proof of lemma

(
1251378?18 complete. O

sec2 |sec3 .

thm3 , 2
The rest of the proof %i%T heog& lzl [ Tollows the strategy of sectl%n%s% and 3. T[ ]sq,lng the
spectral decomposition (2:39), (Z:40) we get easily the estiggn? s (2:46) and (}‘2758), and

it remains to estimate T}',. Following the proof of Lemma 2.4, we can find a > 0 small
enough and C' > 0 such that the following Nash inequality holds with 1/D =2—4/p > 0

lull 727 < Ch72((Enar(w) + B [lull ) [ull 4°, Yo € B, (4.68)
From this inequality, we deduce that for k > h=2,
TN || oo, e < Cle™FMoth), (4.69)

and this implies for k& > h™?, since the contributions of T3}, T}" are neglectible,

[T e g < e 80, (470)

4.20bi 4.4
As Tj, is bounded hy 1 on L* we can replace kM by n, %’b]hs_Q in (E.?()i aldssdzgsb‘él) is
proved. Assertion (1.53) is an gbvious consequence of ( -5Z). The proof of (%.'525 is the

E%gée as the one of Theorem [T.2.” Thus, the following lemma will end the proof of theorem

Lemma 4.9 Let 6 € C*(Oy,) be such that supp(6) N Dy = 0 and 0,0|r,., = 0. Then
(1 —=Tn)0 = B3| A|NO + 7, 7|2 = O(RY/?). (4.71)

Proof. Let 6§ € C*(Oy,) be such that supp(d) N Ly = 0 and 9,0]r,., = 0 and denote
Qn=1-"T,. Then Q, =~ >, Q;x with

h_d

@ind(w) = Vol(Br)

/Q Vo yl<nlliz Lo —yi>e(f (2) = f(m; (@) + 05(y)))dy — (4.72)

eq4.16

eq4.17

eq4.18

eqd.11

eq4.19

eq4. 20

N

eq4.20bis
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sec3
Let x0(2) = laist(z,005.)<2n- The same proof as in section lS shows that
Q
(1= x0)Qjaf(x) = = W*80(x) + Op () (4.73)
so that

(1 — x0)Qnl(x) = h*|A|nO(x) + Or2(h?). (4.74)

We study xoQnf. As ||xollz2 = O(h'/?) it suffices to show that || xoQn0||z~ = O(h?). On
the other hand, by Taylor expansion, we have

_ hxo(x)
Vol(B)

Xij7h(9(3?) = / Hk;ﬁj1|mj+hz,mk‘>Elmj+hzegz.0j9(x)dyj —+ OLoo(h2) (475)
|z]<1

Hence, it suffices to show that

N
v(x) :Xo(x)Z/ Whtj a4 he—ap|>ela; +hec0z-0;0(x)dy; (4.76)
—1 /21

J

satisfies ||v||L~ = O(h). Since dist(support(8),ging) > 0, there exists disjoints compact
sets Fy C I'vegextt, and Fjj C I'yegiine,i,j) such that

support(0) C U{x, dist(z, F;) < 4h} U, ; {x, dist(x, F; ;) < 4h}

s!fe:gse support(0) is in {z, dist(x, F1) < 4h}, then the same parity arguments as in section
show that

v(x) = xo(x) 2.010(x)dz = O(h) (4.77)

|z]<1,21+hz€Q
If © € support(0) is in {z, dist(z, F1 ) < 4h}, then

v(z) = Xo(l“)/ 2.(000(2) Lz  tha—asf>e + O20(2) Ljgyinzma|>e)d2 (4.78)
|z]<1

and the result follows from (z1 — x9).(010 — 020)(x) = 0(h) for {x,gzé%tl(ot, Fi5) < 4h},

since 0,60 vanish on the boundary |z; — 23| = €. The proof of lemma 1.9 1s complete. [
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