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This paper gives geometric tools: comparison, Nash and Sobolev inequalities for pieces of the relevent Markov operators, that give useful bounds on rates of convergence for the Metropolis algorithm. As an example, we treat the random placement of N hard discs in the unit square, the original application of the Metropolis algorithm.
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Introduction and results

sec1

Let Ω be a bounded, connected subset of R d . We assume that its boundary, ∂Ω has Lipschitz regularity. Let B 1 be the unit ball of R d and ϕ(z) = 1 V ol(B 1 ) 1 B 1 (z) so that ϕ(z)dz = 1. Let ρ(x) be a measurable positive bounded function on Ω such that Ω ρ(x)dx = 1. For h ∈]0, 1], set K h,ρ (x, y) = h -d ϕ(

xy h )min( ρ(y) ρ(x) , 1) (1.1) 2.1 and let T h,ρ be the () Metropolis operator associated to these data, that is

T h,ρ (u)(x) = m h,ρ (x)u(x) + Ω K h,ρ (x, y)u(y)dy m h,ρ (x) = 1 - Ω K h,ρ (x, y)dy ≥ 0 (1.2) 1.2
Then the Metropolis kernel T h,ρ (x, dy) = m h,ρ (x)δ x=y + K h,ρ (x, y)dy is a Markov kernel, the operator T h,ρ is self-adjoint on L 2 (Ω, ρ(x)dx), and thus the probability measure ρ(x)dx on Ω is stationary. For n ≥ 1, we denote by T n h,ρ (x, dy) the kernel of the iterate operator (T h,ρ ) n . For any x ∈ Ω, T n h,ρ (x, dy) is a probability measure on Ω, and our main goal is to get some estimates on the rate of convergence, when n → +∞, of the probability T n h,ρ (x, dy) toward the stationary probability ρ(y)dy.

A good example to keep in mind is the random placement of N non-overlapping discs of radius ε > 0 in the unit square. This was the original motivation for the work of Metropolis et al ( MRRTT [MRR + 53]). One version of their algorithm goes as follows: from a feasable configuration, pick a disc (uniformly at random) and a point within distance h of the center of the chosen disc (uniformly at random). If recentering the chosen disc at the chosen point results in a feasable configuration, the change is made. Otherwise, the configuration is kept as it started. If N is fixed and ε and h are small, this gives a Markov chain with a uniform stationary distribution over all feasable configurations. The state space consists of the N centers corresponding to feasible configurations. It is a bounded domain with a Lipshitz boundary (see section sec4 4, proposition prop7 4.1). It is non-convex (because of the non-overlaping constraints). The scientific motivation for the study of random packing of hard discs is clearly described in Uhlenbeck ( Uhl [?], section 5, pg 18). An overview of the large literature is in Lowen ( Low [?]). Entry to the zoo of modern algorithms to do the simulation (particularly in the dense case) with many examples is in [German guy, reference coming] . Further discussion, showing that the problem is still of current interest, is in Radin ( Rad [?]). We shall denote by g(h, ρ) the spectral gap of the Metropolis operator T h,ρ . It is defined as the best constant such that the following inequality holds true for all u ∈ L 2 (ρ) = L 2 (Ω, ρ(x)dx)

u 2 L 2 (ρ) -(u|1) 2 L 2 (ρ) ≤ 1 g(h, ρ) (u -T h,ρ u|u) L 2 (ρ) (1.3) gap
or equivalently Ω×Ω |u(x)u(y)| 2 ρ(x)ρ(y)dxdy ≤ 1 g(h, ρ) Ω×Ω K h,ρ (x, y)|u(x)u(y)| 2 ρ(x)dxdy (1.4) gap2 def1 Definition 1.1 We say that an open set Ω ⊂ R d is Lipschitz if it is bounded and for all a ∈ ∂Ω there exists an orthonormal basis R a of R d , an open set V = V ′ ×]α, α[ and a Lipschitz map η : V ′ →]α, α[ such that in the coordinates of R a , we have

V ∩ Ω = {(y ′ , y d < η(y ′ )), (y ′ , y d ) ∈ V ′ ×] -α, α[} V ∩ ∂Ω = {(y ′ , η(y ′ )), y ′ ∈ V ′ }.
(1.5)

Our first result is the following:

thm1 Theorem 1.1 Let Ω be an open, connected, bounded and Lipschitz subset of R d . Let 0 < m ≤ M < ∞ be given numbers. There exists h 0 > 0, δ 0 ∈]0, 1/2[ and constants C i > 0 such that for any h ∈]0, h 0 ], and any probability density ρ on Ω which satisfies for all x, m ≤ ρ(x) ≤ M, the following holds true.

i) The spectrum of T h,ρ is a subset of [-1 + δ 0 , 1], 1 is a simple eigenvalue of T h,ρ , and Spec(T h,ρ ) ∩ [1δ 0 , 1] is discrete. Moreover, for any 0 ≤ λ ≤ δ 0 h -2 , the number of eigenvalues of T h,ρ in [1h 2 λ, 1] (with multiplicity) is bounded by

C 1 (1 + λ) d/2 .
ii) The spectral gap satisfies

C 2 h 2 ≤ g(h, ρ) ≤ C 3 h 2 (1.6) gap3
and the following estimate holds true for all integer n sup x∈Ω T n h,ρ (x, dy)ρ(y)dy T V ≤ C 4 e -ng (h,ρ) (1.7) 1.7

The next result will give some more information on the behavior of the spectral gap g(h, ρ) when h → 0. To state this result, let

α d = ϕ(z)z 2 1 dz = 1 d ϕ(z)|z| 2 dz = 1 d + 2
(1.8) 1.1 and let us define ν(ρ) as the best constant such that the following inequality holds true for all u in the Sobolev space H 1 (Ω)

u 2 L 2 (ρ) -(u|1) 2 L 2 (ρ) ≤ 1 ν(ρ) α d 2 Ω |∇u| 2 (x)ρ(x)dx (1.9) nu1
or equivalently

Ω×Ω |u(x) -u(y)| 2 ρ(x)ρ(y)dxdy ≤ α d ν(ρ) Ω |∇u| 2 (x)ρ(x)dx (1.10) nu2
Observe that for a Lipschitz domain Ω, the constant ν(ρ) is well-defined thanks to Sobolev embedding. For a smooth density ρ, this number ν(ρ) > 0 is strongly related to the unbounded operator L ρ acting on on L 2 (ρ)

L ρ (u)(x) = -α d 2 (△u + ∇ρ ρ .∇u) D(L ρ ) = {u ∈ H 1 (Ω), -∆u ∈ L 2 (Ω), ∂ n u| ∂Ω = 0}
(1.11) 1.3

When Ω has smooth boundary, standard elliptic regularity results show that for any u ∈ H 1 (Ω) such that -∆u ∈ L 2 (Ω), the normal derivative of u at the boundary, ∂ n u = -→ n (x).∇u| ∂Ω is well define and belongs to the Sobolev space H 1/2 (Ω). Here, we denote by -→ n (x) the incoming unitary normal vector to ∂Ω at a point x. In the case where ∂Ω has only Lipschitz regularity, the normal -→ n (x) is well defined for allmost every x ∈ ∂Ω (with respect to the measure σ induced on the boundary). Using a suitable covering of Ω it is possible to define a trace operator γ 0 : H 1 (Ω) → L 2 (∂Ω) which is equal to the usual trace in the case of a smooth boundary. We sometimes denote γ 0 (u) = u| ∂Ω . The space defined by H 1/2 (∂Ω) = Ran(γ 0 ) doesn't depend on the charts used to define γ 0 , and equipped with the norm u H 1/2 = inf{ v H 1 , γ 0 (v) = u} it is a reflexif Banach space. Then, we can set H -1/2 (∂Ω) = H 1/2 (∂Ω) * and for u ∈ H -1/2 (∂Ω), the support of u can be defined in a standard way. The trace operator acting on vector fields u ∈ L 2 , div(u) ∈ L 2

γ 1 : {u ∈ (L 2 (Ω)) d , div(u) ∈ L 2 (Ω)} → H -1/2 (∂Ω) (1.12) 1.3.2
is then defined by the formula

Ω div(u)(x)v(x)dx = - Ω u(x).∇v(x)dx - ∂Ω γ 1 (u)v| ∂Ω dσ(x) (1.13) 1.3.3 In particular, for u ∈ H 1 (Ω) satisfying -∆u = div∇u ∈ L 2 (Ω) we can define ∂ n u| ∂Ω = γ 1 (∇u) ∈ H -1/2 (∂Ω) and the set D(L ρ ) is well defined. From ( 1.3.3
1.13) we deduce that for any u ∈ H 1 (Ω) with ∆u ∈ L 2 and any v ∈ H 1 (Ω) we have

(L ρ + 1)u, v L 2 (ρ) = α d 2 ∇u, ∇v L 2 (ρ) + ∂ n u, ρv H -1/2 (∂Ω),H 1/2 (∂Ω) + u, v L 2 (ρ) (1.14) 1.3.4
Then, it is standard that L ρ is the self-adjoint realisation of the Dirichlet form

α d 2 Ω |∇u(x)| 2 ρ(x)dx.
(1.15) 1.4 Sobolev embeddings show that L ρ has a compact resolvant and we denote its spectrum by ν 0 = 0 < ν 1 < ν 2 < ... and by m j the multiplicity of ν j . In particular, ν(ρ) = ν 1 .

Observe also that m 0 = 1 since KerL is spaned by the constant function equal to 1 .

To state our theorem, we need

def2 Definition 1.2 Let Ω be a Lipschitz open set of R d . We say that ∂Ω is stratified if ∂Ω = Γ reg ∪ Γ sing , Γ reg ∩ Γ sing = ∅ with Γ reg reunion of smooth hypersurfaces, relatively open in ∂Ω, and Γ sing a closed subset of R d such that v ∈ H -1/2 (∂Ω) and support(v) ⊂ Γ sing =⇒ v = 0 (1.16) uniq Observe that uniq 1.16 is obviously satisfied if ∂Ω is smooth, since in that case one can take Γ sing = ∅. More generally, if Ω is a Lipschitz open set of R d such that ∂Ω = Γ reg ∪ Γ sing , Γ reg ∩ Γ sing = ∅, where Γ reg is a smooth hypersurface of R d ,
relatively open in ∂Ω, and Γ sing a closed subset of R d such that Γ sing = ∪ j≥2 S j where the S j are smooth disjoints submanifolds of R d such that

codim R d S j ≥ j, ∪ k≥j S k = S j (1.17)
then Ω is stratified, since in that case, if v ∈ H -1/2 (∂Ω) is such that near a point x 0 , the support of v is contained in a submanifold S of codimension ≥ 2 in R d , then v = 0 near x 0 . This follows from the fact that S has codimension ≥ 1 in ∂Ω, and if

u ∈ D ′ (R p ) is such that u ∈ H -1/2 loc (R p
) and support(u) ⊂ {x 1 = 0}, then u = 0 . As an example, a cube in R d is stratified.

thm2 Theorem 1.2 Let Ω be an open, connected, bounded and Lipschitz subset of R d , such that ∂Ω is stratified. Assume that the positive density ρ is continuous on Ω. Then

lim h→0 h -2 g(h, ρ) = ν(ρ) (1.18) 1.6
Moreover, if the density ρ is smooth up to the regular part Γ reg of the boundary ∂Ω, then for any R > 0 and ε > 0 such that ν j+1ν j > 2ε for ν j+2 < R, there exists h 1 > 0 such that one has for all h ∈]0, h 1 ]

Spec( 1 -T h,ρ h 2 )∩]0, R] ⊂ ∪ j≥1 [ν j -ε, ν j + ε] (1.19) 1.5
and the number of eigenvalues of

1-T h,ρ h 2 in the interval [ν j -ε, ν j + ε] is equal to m j . Theorem thm1 1.1 is proved in section sec2
2. This is done from the spectrum of the operator by comparison with a 'ball walk' on a big box B containing Ω. One novelty is the use of 'normal extensions' of functions from Ω to B. When the Dirichlet forms and stationary distributions for random walk on a compact group are comparible, the rates of convergence are comparable as well ( DSC2[?], lemma ??). Here, the Metropolis Markov chain is far from a random walk on a group. Indeed, because of the holding implicit in the Metropolis algorithm, the operator doesnt have any smoothing properties. The transfer of information is carried out by a Sobolev inequality for a spectraly truncated part of the operator. This is transfered to a Nash inequality and then an inductive argument of Hebisch (see also[ ]) is used to get decay bounds on iterates of the kernel. A further technique is the use of crude Weyl type estimates to get bounds on the number of eigenvalues close to 1. All of these enter the proof of the total variation estimate 1.7 1.7. All of these techniques seem broadly applicable. Theorem thm2 1.2 is proved in section sec3 3. It gives rigourous underpinnings to a general picture of the spectrum of the Metropolis algorithm based on small steps. This was observed and proved in special cases ( LM [?], DL07 [START_REF] Diaconis | Microlocal analysis for the metropolis algorithm[END_REF]). The picture is this: because of the holding (or presence of the multiplier m h,ρ in 1.2 1.2) in the Metropolis algorithm, the operator always has continuous spectrum. This is well isolated from 1 and can be neglected in bounding rates of convergence. The spectrum near 1 is discrete and for h small, merges with the spectrum of an associated Neumann problem. This is an analytic version of the convergence of the discrete time Metropolis chain to the Langevin diffusion with generator 

A proof of theorem

thm1 1.1 sec2 Let us recall that K h,ρ (x, y) = h -d ϕ( x -y h )min( ρ(y) ρ(x) , 1) (2.1) so that T h,ρ (u) = u -Q h,ρ (u) Q h,ρ (u)(x) = Ω K h,ρ (x, y)(u(x) -u(y))dy ((1 -T h,ρ )u|u) L 2 (ρ) = 1 2 Ω×Ω |u(x) -u(y)| 2 K h,ρ (x, y)ρ(x)dxdy (2.2) 2.2
For the proof of theorem thm1

1.1, we will not really care on the precise choice of the density ρ. In fact, if ρ 1 , ρ 2 are two densities such that m ≤ ρ i (x) ≤ M for all x, then

ρ 2 (x) ≤ ρ 1 (x)(1 + ρ 1 -ρ 2 ∞ m ) K h,ρ 1 (x, y)ρ 1 (x) ≤ K h,ρ 2 (x, y)ρ 2 (x)(1 + ρ 1 -ρ 2 ∞ m ) (2.3) comp1
and this implies using the definition gap2 1.4 of the spectral gap and of ν ρ

g h,ρ 1 g h,ρ 2 ≤ (1 + ρ 1 -ρ 2 ∞ m ) 3 ν ρ 1 ν ρ 2 ≤ (1 + ρ 1 -ρ 2 ∞ m ) 3 (2.4) comp2
In particular, it is sufficient to prove gap3 1.6 for a constant density. Observe that since Ω is Lipschitz, from 1.2 1.2 and comp1 2.3, there exists h 0 > 0, δ 0 > 0 such that for any density ρ with m ≤ ρ(x) ≤ M one has sup x∈Ω m h,ρ (x) ≤ 1 -2δ 0 . Thus the essential spectrum of T h is a subset of [0, 1 -2δ 0 ]. The proof that for some δ 0 > 0, independent of ρ, one has Spec(T h,ρ ) ⊂ [-1 + δ 0 , 1] for all h ∈]0, h 0 ] is the following: one has

(u + T h,ρ u|u) L 2 (ρ) = 1 2 Ω×Ω K h,ρ (x, y)|u(x) + u(y)| 2 ρ(x)dxdy + 2(m h,ρ u|u) L 2 (ρ) (2.5) inf1
Therefore, it is sufficient to prove that there exists h 0 , C 0 > 0 such that the following inequality holds true for all h ∈]0, h 0 ] and all u ∈ L 2 (Ω)

Ω×Ω h -d ϕ( x -y h )|u(x) + u(y)| 2 dxdy ≥ C 0 u 2 L 2 (Ω) (2.6) inf2
Let ω j ⊂ Ω, ∪ j ω j = Ω be a covering of Ω such that diam(ω j ) < h and for some C i > 0 independent of h, vol(ω j ) ≥ C 1 h d , and for any j, the number of k such that ω j ∩ ω k = ∅ is less than C 2 . Such a covering exists as Ω is Lipschitz. Then

C 2 Ω×Ω h -d ϕ( x -y h )|u(x) + u(y)| 2 dxdy ≥ j ω j ×ω j h -d ϕ( x -y h )|u(x) + u(y)| 2 dxdy ≥ j h -d 1 |B 1 | ω j ×ω j |u(x) + u(y)| 2 dxdy ≥ j 2h -d 1 |B 1 | vol(ω j ) u 2 L 2 (ω j ) ≥ 2C 1 |B 1 | u 2 L 2 (Ω)
(2.7) inf4 From inf4 2.7, we get that inf2 2.6 holds true.

For the proof of ( gap3 1.6) we need a suitable covering of Ω. Given ǫ > 0 small enough, there exists some open sets Ω 0 , . . . , Ω N such that {x ∈ R d , dist(x, Ω) ≤ ǫ 2 } ⊂ ∪ N j=0 Ω j , where the Ω j 's have the following properties:

1. Ω 0 = {x ∈ Ω, d(x, ∂Ω) > ǫ 2 }
2. For j = 1, . . . , N, there exists r j > 0, an affine isometry R j of R d and a Lipschitz map ϕ j : R d-1 → R such that, denoting φj (x ′ , x d ) = (x ′ , x d +ϕ j (x ′ )) and φ j = R j • φj , we have φ j is injective on B(0,

2r j )×] -2ǫ, 2ǫ[ Ω j = φ j (B(0, r j )×] -ǫ, ǫ[) Ω j ∩ Ω = φ j (B(0, r j )×]0, ǫ[) φ j (B(0, 2r j )×]0, 2ǫ[) ⊂ Ω (2.8) recouv
We put our open set Ω in a large box B =] -A/2, A/2[ d and for j = 0, . . . , N we let χ j ∈ C ∞ 0 (Ω j ) be such that j χ j (x) = 1 for dist(x, Ω) ≤ ǫ 2 . For any function u ∈ L 2 (Ω), let u j , j = 0, . . . , N be defined in a neighbourhood of Ω j by

u j = u • φ j • S • φ -1 j , where S(x ′ , x d ) = (x ′ , -x d ) if x d < 0 and S(x ′ , x d ) = (x ′ , x d ) if x d ≥ 0. For x ∈ Ω ∩ Ω j , one has u j (x) = u(x) and we define E(u)(x) = N j=0 χ j (x)u j (x)
(2.9) 2.3

We observe that φ-1 j (x) = (x ′ , x d -ϕ j (x ′ )). Consequently, as ϕ j is Lipschitz-continuous, then φ j and φ -1 j are also Lipschitz-continuous. Hence, formula ( 2.3 2.9), gives us an extension map from L 2 (Ω) into L 2 (B), which is also bounded from

H 1 (Ω) into H 1 (B). For u ∈ L 2 (Ω), v ∈ L 2 (B), set E h,ρ (u) = ((1 -T h,ρ )u|u) L 2 (ρ) E h (v) = B×B,|x-y|≤h h -d |v(x) -v(y)| 2 dxdy (2.10) 2.4
Since for A large, E(u) vanishes near the boundary of B, we can extend v = E(u) as a A-periodic function on R d , and write its Fourier serie v

(x) = E(u)(x) = k∈Z d c k (v)e 2iπkx/A with c k (v) = A -d B e -2iπkx/A v(x)dx. Then E(u) 2 L 2 (B) = A d k |c k | 2 ≃ u 2 L 2 (Ω) E(u) 2 H 1 (B) = A d k (1 + 4π 2 k 2 /A 2 )|c k | 2 ≃ u 2 H 1 (Ω) (2.11) 2.5
Moreover, one gets

E h (v) = A d k |c k | 2 θ(hk) θ(ξ) = |z|≤1 |e 2iπξz/A -1| 2 dz
(2.12) 2.6

Observe that the function θ is non-negative, quadratic near 0 and has a positive lower bound for |ξ| ≥ 1 .

lem0 Lemma 2.1 For all α > 1, there exists C > 0 and h 0 > 0 such that

∀u ∈ L 2 (Ω), ∀h ∈]0, h 0 ], E αh,ρ (u) ≤ CE h,ρ (u). (2.13) Proof. Using 2.2
2.2 and comp1 2.3, we observe that it suffices to prove the lemma in the case where ρ(x) = ρ is constant, and we first we show the result when Ω is convex. In that case, since |u

(x) -u(y)| ≤ |u(x) -u( x+y 2 )| + |u( x+y 2 ) -u(y)|, one has E αh,ρ (u) = (hα) -d 2V ol(B 1 ) Ω Ω 1 |x-y|≤αh |u(x) -u(y)| 2 ρdxdy ≤ (hα) -d V ol(B 1 ) Ω Ω 1 |x-y|≤αh |u(x) -u( x + y 2 )| 2 ρdxdy ≤ 2 2-d (hα/2) -d V ol(B 1 ) φ(Ω×Ω) 1 |x-y|≤ αh 2 |u(x) -u(y)| 2 ρdxdy (2.14)
where φ(x, y) = (x, x+y 2 ). As Ω is convex φ(Ω×Ω) ⊂ Ω×Ω and we get E αh,ρ (u) ≤ 2E αh 2 ,ρ (u). Iterating this process we obtain the anounced result for convex domains.

In the general case, we use the local covering introduced in

recouv 2.8. Let Ω + i = Ω i ∩ Ω (respectively Ω - i = Ω i ∩ (R d \ Ω)) and U i (h) = {(x, y) ∈ Ω + i × Ω, |x -y| ≤ αh}. Since by 2.2 2.2, Ω ⊂ ∪ i Ω + i , we have E αh,ρ (u) ≤ N i=0 E i αh,ρ (u) with E i αh,ρ (u) = (αh) -d 2V ol(B 1 ) U i (h) 1 |x-y|≤αh |u(x) -u(y)| 2 ρdxdy.
(2.15)

Let us estimate E 0 αh,ρ (u). For h ∈]0, ǫ 2 /α[ and (x, y) ∈ U 0 (h), we have [x, y] ⊂ Ω. Therefore, the change of variable φ(x, y) = (x, x+y

2 ) maps U 0 (h) into Ω 0 × Ω and we get as above

E 0 αh,ρ (u) ≤ (αh) -d V ol(B 1 ) U 0 (h) 1 |x-y|≤αh |u(x) -u( x + y 2 )| 2 ρdxdy ≤ 2E αh 2 ,ρ (u).
(2.16)

For i = 0 and h > 0 small enough, we remark that

U i (h) ⊂ Ω+ i × Ω+ i , where Ω± i = φ i (B(0, 2r i ) × {0 < ±x d < 2ǫ}). Denoting Q i = B(0, r i )×]0, ǫ[, Qi = B(0, 2r i )×]0, 2ǫ[, we can use the Lipschitz-continuous change of variable φ i : Qi → Ω+ i ⊂ Ω to get E i αh,ρ (u) ≤ (αh) -d 2V ol(B 1 ) Qi Qi J φ i (x)J φ i (y)1 |φ i (x)-φ i (y)|≤αh |u•φ i (x)-u•φ i (y)| 2 ρdxdy (2.17)
where the Jacobian J φ i of φ i is a bounded function defined almost everywhere. As both φ i , φ -1 i are Lipschitz-continuous, there exists M i , m i > 0 such that for all x, y ∈ Qi we have

m i |x -y| ≤ |φ i (x) -φ i (y)| ≤ M i |x -y|. Therefore, E i αh,ρ (u) ≤ Ch -d Qi Qi 1 |x-y|≤ αh m i |u • φ i (x) -u • φ i (y)| 2 ρdxdy, (2.18)
where C denotes a positive constant changing from line to line. As Qi is convex, it follows from the study of the convex case that

E i αh,ρ (u) ≤ Ch -d Qi Qi 1 |x-y|≤ h M i |u • φ i (x) -u • φ i (y)| 2 ρdxdy ≤ Ch -d
Qi Qi

1 |φ i (x)-φ i (y)|≤h |u • φ i (x) -u • φ i (y)| 2 dxdyρ ≤ Ch -d Ω+ i Ω+ i 1 |x-y|≤h |u(x) -u(y)| 2 ρdxdy ≤ C i E h,ρ (u) (2.19)
and the proof is complete.

lem1 Lemma 2.2 There exist C 0 , h 0 > 0 such that the following holds true for any h ∈]0, h 0 ] and any u ∈ L 2 (ρ)

E h,ρ (u)/C 0 ≤ E h (E(u)) ≤ C 0 (E h,ρ (u) + h 2 u 2 L 2 ) (2.20) 2.7
As a byproduct, there exists C 1 such that for all h ∈]0,

h 0 ], any function u ∈ L 2 (ρ) such that u 2 L 2 (ρ) + h -2 ((1 -T h,ρ )u|u) L 2 (ρ) ≤ 1 admits a decomposition u = u L + u H with u L ∈ H 1 (Ω), u L H 1 ≤ C 1 , and u H L 2 ≤ C 1 h.
Proof. Using the second line of comp1 2.3, we may assume that the density ρ is constant. The proof of the left inequality in 2.7 2.20 is obvious. For the upper bound, we remark that there exists

C > 0 such that E h (E(u)) ≤ C N j=0 (E j,1 h + E j,2 h ) with E j,1 h = h -d B×B 1 |x-y|≤h |χ j (x) -χ j (y)| 2 |u j (x)| 2 dxdy (2.21) and E j,2 h = h -d B×B 1 |x-y|≤h |χ j (y)| 2 |u j (x) -u j (y)| 2 dxdy (2.22)
As the functions χ j are regular, there exist some χj ∈ C ∞ 0 (B) equal to 1 near the support of χ j such that

E j,1 h ≤ Ch -d B χj (x)|u j (x)| 2 ( B 1 |x-y|≤h |x -y| 2 |dy)dx ≤ Ch 2 u 2 L 2 (Ω)
(2.23)

In order to estimate E j,2 h one has to estimate the contribution of the points x ∈ Ω, y / ∈ Ω and x /

∈ Ω, y / ∈ Ω. All the terms are treated in the same way and we only examine

E j,3 h = h -d Ω×(B\Ω) 1 |x-y|≤h |χ j (y)| 2 |u j (x) -u j (y)| 2 dxdy = h -d Ω+ j ×Ω - j 1 |x-y|≤h |χ j (y)| 2 |u(x) -u • φ j • S • φ -1 j (y)| 2 dxdy (2.24)
Let σ : R d → R d be the symetry with respect to {y d = 0}, so that Sσ = Id on {y d < 0}.

We use the Lipschitz-continuous change of variable

ψ j : y ∈ Ω + j → φ j • σ • φ -1 j (y) ∈ Ω - j to get E j,3 h ≤ Ch -d Ω+ j ×Ω + j 1 |x-ψ j (y)|≤h |χ j • ψ j (y)| 2 |u(x) -u(y)| 2 dxdy (2.25)
We claim that there exists β > 0 such that,

∀(x, y) ∈ Ω+ j × Ω + j , |ψ j (y) -x| ≥ β -1 |x -y|. (2.26) 2.8
Inded, as both φ j and φ -1 j are Lipschitz-continuous,

2.8 2.26 is equivalent to find β > 0 such that ∀(x, y) ∈ Ω+ j × Ω + j , |σ(x) -y| ≥ β -1 |x -y| (2.27)
wich is obvious with β = 1. From ( 2.8

2.26) it follows that for some α > 1, one has

E j,3 h ≤ Ch -d Ω+ j ×Ω + j 1 |x-y|≤αh |u(z) -u(y)| 2 dzdy ≤ CE αh,ρ (u) (2.28)
and the upper bound is then a straightforward consequence of Lemma lem0 2.1. The byproduct is obtain by projecting the extension v = E(u) on low frequencies h|k| ≤ 1 and high frequencies h|k| > 1 and the fact that the function θ is quadratic near 0 and has a positive lower bound for |ξ| ≥ 1 . The proof of lemma lem1 2.2 is complete.

We are in position to prove the estimate ( gap3 1.6) on the spectral gap. To show the right inequality, it suffices to plug a function u

∈ C ∞ 0 (Ω) into ( gap 1.3) with support contained in a small ball Q ⊂ Ω and such that Ω u(x)ρ(x)dx = 0. As Q is convex, it follows from Taylor formula that for such u, we have u -T h u, u = O(h 2 ).
To show the left inequality in ( gap3 1.6) we first observe that it is clearly satisfied when Ω is convex. Indeed, given u ∈ L 2 (Ω) we have

u 2 L 2 (Ω) -u, 1 2 ≤ Ch -1 K(h) k=0 Ω×Ω (u(x + kh(y -x)/α) -u(x + (k + 1)h(y -x)/α)) 2 dxdy (2.29) where α = diam(Ω) and K(h) = O(h -1 ). With the new variables x ′ = x + kh(y -x)/α, y ′ = x + (k + 1)h(y -x)/α it comes u 2 L 2 (Ω) -u, 1 2 ≤ Cαh -d-1 K(h) Ω×Ω 1 |x ′ -y ′ |<h (u(x ′ ) -u(y ′ )) 2 dx ′ dy ′ (2.30)
which proves the left inequality in ( gap3 1.6) in the case where Ω is convex. In the general case, we can find some open sets contained in Ω, ω j ⊂⊂ Ω + j ⊂⊂ Ω+ j , j = 1, . . . , N + M such that for j = 1, . . . , N, Ω + j , Ω+ j are given in the previous lemma,

(Ω + j ) j=N +1,...,N +M are convex Ω 0 ⊂ ∪ M j=N +1 Ω + j , Ω ⊂ ∪ N +M j=1 ω j , and where A ⊂⊂ B that A Ω ⊂ B. Hence for h > 0 small enough E h,ρ (u) ≥ C N +M j=1 h -d Ω + j × Ω+ j 1 |x-y|<h (u(x) -u(y)) 2 dxdy ≥ C N j=1 h -d Q j × Qj 1 |φ j (x)-φ j (y)|<h (u • φ j (x) -u • φ j (y)) 2 dxdy + C N +M j=N +1 h -d Ω + j × Ω+ j 1 |x-y|<h (u(x) -u(y)) 2 dxdy
(2.31) eq2.9

From the estimate proved precedently in the convex case, we know that there exists a > 0 independant on h such that the second sum in ( eq2.9

2.31) is bounded from below by

Ch 2 N +M j=N +1 ω j ×Ω + j (u(x)-u(y)) 2 dxdy ≥ Ch 2 N +M j=N +1 ω j ×Ω,|x-y|<a (u(x)-u(y)) 2 dxdy. (2.32) eq2.10
On the other hand, thanks to the fact that φ j is Lipschitz diffeomorphism, there exists α > 0 such that 1 x-y|<h/α ≤ 1 |φ j (x)-φ j (y)|<h ≤ 1 |x-y|<αh . Using the convexity of Q i and Lemma lem0 2.1 it follows that the first sum in the right hand side of ( eq2.9

2.31) is bounded from below by

Ch 2 N j=1 ω j ×Ω,|x-y|<a (u(x) -u(y)) 2 dxdy (2.33) eq2.11
Combining ( eq2.9

2.31),( eq2.10

2.32) and ( eq2.11

2.33), we get

E h,ρ (u) ≥ Ch 2 Ω×Ω,|x-y|<a (u(x) -u(y)) 2 dxdy (2.34)
for some fixed a > 0 independant on h. Using Lemma lem0

2.1 with h = a we achieve the proof of (

gap3 1.6). lem3 Lemma 2.3 There exists δ 0 ∈]0, 1/2[ such that Spec(T h,ρ ) ∩ [1 -δ 0 , 1] is discrete, and for any 0 ≤ λ ≤ δ 0 /h 2 , the number of eigenvalues of T h in [1 -h 2 λ, 1] (with multiplicity) is bounded by C 1 (1 + λ) d/2 . Moreover, any eigenfuntion T h (u) = λu with λ ∈ [1 -δ 0 , 1] satisfies the bound u L ∞ ≤ C 2 h -d/2 u L 2 (2.35) eq2.12
Proof. To get eq2.12 2.35, we just write that since λ is not in the range of m h , one has

u(x) = 1 λ -m h (x) Ω h -d ϕ( x -y h )min( ρ(y) ρ(x)
, 1)u(y)dy and we apply Cauchy-Schwarz. The important point here is the estimate on the number of eigenvalues in [1h 2 λ, 1] by a power of λ. This is obtain by the min-max and uses 2.7

2.20. The min-max gives: if for some closed subspace

F of L 2 (ρ) with codim(F ) = N one has for all u ∈ F , h -2 ((1 -T h )u|u) L 2 (ρ) ≥ λ u 2 L 2 (ρ)
, then the number of eigenvalues of T h in [1h 2 λ, 1] (with multiplicity) is bounded by codim(F ) = N. Then, we fix c > 0 small enough, and we choose for F the subspace of functions u such that their extension v = E(u) is such that the Fourier coefficients satisfy c k (E(u)) = 0 for |k| ≤ D with hD ≤ c. The codimension of this space F is exactly the number of k ∈ Z d such that |k| ≤ D, since if p is a trigonometric polynomial such that E * (p) = 0, we will have Ω p(x)u(x)dx = 0 for any function u with compact support in Ω and such that E(u) = u, and this implies p = 0. Thus codim(F ) ≃ (1 + D) d . On the other hand, the right inequality in

2.7 2.20 gives for u ∈ F , h -2 ((1 -T h )u|u) L 2 (ρ) ≥ C 0 (D 2 -C 1 ) u 2 L 2 (ρ) for universal C 0 , C 1 , since by 2.6
2.12, there exists C 0 > 0 such that one has θ(hk)h -2 ≥ C 0 D 2 for all D ≤ c/h and all |k| > D. The proof of our lemma is complete.

We are now ready to prove the total variation estimate 1.7 1.7. Let Π 0 be the orthogonal projector in L 2 (f ) on the space of constant functions

Π 0 (u)(x) = 1 Ω (x) Ω u(y)ρ(y)dy (2.36) T1 Then 2sup x 0 ∈Ω T n h,x 0 -ρ(x)dx T V = T n h -Π 0 L ∞ →L ∞ (2.37) T2
Thus, we have to prove that there exist C 0 , h 0 , such that for any n and any h ∈]0, h 0 ], one has

T n h -Π 0 L ∞ →L ∞ ≤ C 0 e -ng h,ρ (2.38) T3
Observe that since we know that for h 0 small, the estimate gap3 1.6 holds true for any ρ, we may assume n ≥ Ch -2 . In order to prove T3 2.38, we split T h in 3 pieces, according to the spectral theory.

Let 0 < λ 1,h ≤ ... ≤ λ j,h ≤ λ j+1,h ≤ ... ≤ h -2 δ 0 be such that the eigenvalues of T h in the interval [1δ 0 , 1[ are the 1h 2 λ j,h , with associated orthonormals eigenfunctions e j,h

T h (e j,h ) = (1 -h 2 λ j,h )e j,h , (e j,h |e k,h ) L 2 (ρ) = δ j,k
(2.39) T4

Then we write

T h -Π 0 = T h,1 + T h,2 + T h,3 with T h,1 (x, y) = λ 1,h ≤λ j,h ≤h -α
(1h 2 λ j,h )e j,h (x)e j,h (y)

T h,2 (x, y) = h -α <λ j,h ≤h -2 δ 0 (1 -h 2 λ j,h )e j,h (x)e j,h (y) 
T h,3 = T h -Π 0 -T h,1 -T h,2
(2.40) T5

Here α > 0 is a small constant that will be chosen later. One has

T n h -Π 0 = T n h,1 +T n h,2 +T n h,3
, and we will get the bound T3 2.38 for each of the 3 terms. We start by very rough bounds. Since there is at most Ch -d eigenvalues λ j,h and using the bound ( eq2.12 2.35), we get that there exists C independent of n ≥ 1 and h such that

T n 1,h L ∞ →L ∞ + T n 2,h L ∞ →L ∞ ≤ Ch -3d/2 (2.41) T6 Since T n h is bounded by 1 on L ∞ , we get from T n h -Π 0 = T n h,1 + T n h,2 + T n h,3 T n 3,h L ∞ →L ∞ ≤ Ch -3d/2 (2.42) T7 Next we use 1.2 1.2 to write T h = m h + R h with m h L ∞ →L ∞ ≤ γ < 1 R h L 2 →L ∞ ≤ C 0 h -d/2 (2.43) T8
From this, we deduce that for any p = 1, 2, ..., one has

T p h = A p,h + B p,h , with A 1,h = m h , B 1,h = R h and the recurrence relation A p+1,h = m h A p,h , B p+1,h = m h B p,h + R h T p h . Thus one gets since T p h is bounded by 1 on L 2 A p,h L ∞ →L ∞ ≤ γ p B p,h L 2 →L ∞ ≤ C 0 h -d/2 (1 + γ + ... + γ p ) ≤ C 0 h -d/2 /(1 -γ) (2.44) T9 Let θ = 1 -δ 0 < 1 so that T 3,h L 2 →L 2 ≤ θ.
Then one has

T n 3,h L ∞ →L 2 ≤ T n 3,h L 2 →L 2 ≤ θ n
and for n ≥ 1, p ≥ 1, one gets using T9 2.44 and T7

2.42

T p+n 3,h L ∞ →L ∞ = T p h T n 3,h L ∞ →L ∞ ≤ A p,h T n 3,h L ∞ →L ∞ + B p,h T n 3,h L ∞ →L ∞ ≤ Ch -3d/2 γ p + C 0 h -d/2 θ n /(1 -γ) (2.45) T10
Thus we get for some C > 0, µ > 0,

T n 3,h L ∞ →L ∞ ≤ Ce -µn , ∀h, ∀n ≥ 1/h (2.46) T11
and thus the contribution of T n 3,h is far smaller than the bound we have to prove in T3 2.38. Next, for the contribution of T n 2,h , we just write, since there is at most Ch -d eigenvalues λ j,h and using the bound ( eq2.12 2.35)

T n h,2 (x, y) = h -α <λ j,h ≤h -2 δ 0 (1 -h 2 λ j,h
) n e j,h (x)e j,h (y)

T n 2,h L ∞ →L ∞ ≤ Ch -3d/2 (1 -h 2-α ) n (2.47) T12
Thus we get for some C α > 0,

T n 2,h L ∞ →L ∞ ≤ C α e -nh 2-α 2 , ∀h, ∀n ≥ h -2+α/2 (2.48) T13
and thus this contribution is still neglectible for h ∈]0, h 0 ] for h 0 small. It remains to study the contribution of T n h,1 . Let E α be the (finite dimensional) subspace of L 2 (ρ) span by the eigenvectors e j,h , λ j,h ≤ h -α . By lemma

lem3 2.3, one has dim(E α ) ≤ Ch -dα/2 .
lem4 Lemma 2.4 There exist α > 0, p > 2 and C independent of h such that for all u ∈ E α , the following inequality holds true

u 2 L p ≤ Ch -2 ((E Ω,h (u) + h 2 u 2 L 2 ) (2.49) T14
Proof. Clearly, one has for

u = λ 1,h ≤λ j,h ≤h -α a j e j,h ∈ E α E Ω,h (u) + h 2 u 2 L 2 = λ 1,h ≤λ j,h ≤h -α h 2 (1 + λ j,h )|a j | 2 Take u ∈ E α such that h -2 ((E Ω,h (u)+h 2 u 2 L 2 ) ≤ 1. Then by 2.7 2.20, one has h -2 E h (E(u)) ≤ C 0 . Let ψ(t) ∈ C ∞ 0 (R) equal to 1 near t = 0, and for v(x) = k∈Z d c k (v)e 2iπkx/A , set v = v L + v H , v L (x) = k∈Z d ψ(h|k|)c k (v)e 2iπkx/A (2.50) LH Then v = v L + v H is a decomposition of the extension v = E(u) in low frequencies (v L ) and high frequencies (v H ). One has v L (x) = R d h -d θ( x-y h )v(y)
dy, where θ is the function in the Schwartz space defined by θ(2πz/A) = ψ(|z|). Hence, the map v → v L is bounded uniformly in h on all the space L q for 1 ≤ q ≤ ∞. Then, from 2.6 2.12 we get

v L H 1 (B) ≤ C (2.51) T15 Thus, with u L = v L | Ω and u H = v H | Ω , we get u L H 1 (Ω) ≤ C so by Sobolev for p < 2d d-2 u L L p ≤ C (2.52) T16
One the other hand, one has also by 2.7

2.20

h -2 E h (E(e j,h )) ≤ C 0 (1 + λ j,h ) (2.53) T17
and this implies by 2.6

2.12

h -2 E(e j,h ) H 2 L 2 ≤ C 0 (1 + λ j,h ) ≤ C 0 (1 + h -α ) (2.54) T18
Thus for α ≤ 1, we get E(e j,h ) H L 2 ≤ Ch 1/2 . On the other hand, since e j,h L ∞ ≤ Ch -d/2 , using the definition of the low frequency cut-off we get ,

E(e j,h ) H L ∞ ≤ E(e j,h ) L ∞ + E(e j,h ) L L ∞ ≤ C E(e j,h ) L ∞ ≤ Ch -d/2
By interpolation we can find some p > 2 such that

E(e j,h ) H L p ≤ C 0 h 1/4 (2.55) T19 Thus, one get for u = λ 1,h ≤λ j,h ≤h -α a j e j,h ∈ E α with h -2 ((E Ω,h (u) + h 2 u 2 L 2 ) ≤ 1 u H L p ≤ λ 1,h ≤λ j,h ≤h -α |a j | E(e j,h ) H L p ≤ C 0 h 1/4 dim(E α ) 1/2 u L 2 ≤ Ch 1/4 h -dα/4
(2.56) T20

Our lemma follows from T16 2.52 and T20

2.56 if one takes α small. Observe that here, the estimate on the number of eigenvalues (i.e the estimation of the dimension of E α ) is crucial. The proof of lemma lem4 2.4 is complete.

From lemma lem4 2.4, using the interpolation inequality

u 2 L 2 ≤ u p p-1 L p u p-2 p-1
L 1 , we deduce the Nash inequality, with 1/D = 2 -4/p > 0

u 2+1/D L 2 ≤ Ch -2 ((E Ω,h (u) + h 2 u 2 L 2 ) u 1/D L 1 , ∀u ∈ E α (2.57) T20bis
For λ j,h ≤ h -α , one has h 2 λ j,h ≤ 1, and thus for any

u ∈ E α , one gets E Ω,h (u) ≤ u 2 L 2 -T h u 2 L 2 , thus we get from T20bis 2.57 u 2+1/D L 2 ≤ Ch -2 (( u 2 L 2 -T h u 2 L 2 + h 2 u 2 L 2 ) u 1/D L 1 , ∀u ∈ E α (2.58) T21 From T11
2.46 and T13

2.48, and

T n h -Π 0 = T n h,1 + T n h,2 + T n h,3 , we get that there exists C 2 such that T n 1,h L ∞ →L ∞ ≤ C 2 , ∀h, ∀n ≥ h -2+α/2 (2.59) T22
and thus since

T 1,h is self adjoint on L 2 T n 1,h L 1 →L 1 ≤ C 2 , ∀h, ∀n ≥ h -2+α/2
(2.60) T23

Fix p ≃ h -2+α/2 . Take g ∈ L 2 such that g L 1 ≤ 1 and consider the sequence c n , n ≥ 0

c n = T n+p 1,h g 2 L 2
(2.61) T24

Then, 0 ≤ c n+1 ≤ c n and from T21 2.58 and T23

2.60, we get

c 1+ 1 2D n ≤ Ch -2 (c n -c n+1 + h 2 c n ) T n+p 1,h g 1/D L 1 ≤ CC 1/D 2 h -2 (c n -c n+1 + h 2 c n ) (2.62) T25
From this inequality, we deduce that there exist

A ≃ CC 2 sup 0≤n≤h -2 (2 + n)(1 + h 2 - (1 -1 n+2 ) 2D
) which depends only on C, C 2 , D, such that for all 0 ≤ n ≤ h -2 , one has c n ≤ ( Ah -2 1+n ) 2D , and thus there exist C 0 which depends only on C, C 2 , D, such that for N ≃ h -2 , one has c N ≤ C 0 . This implies

T N +p 1,h g L 2 ≤ C 0 g L 1 (2.63) T26
and thus taking adjoints

T N +p 1,h g L ∞ ≤ C 0 g L 2 (2.64) T27
and so we get for any n and with

N + p ≃ h -2 T N +p+n 1,h g L ∞ ≤ C 0 (1 -h 2 λ 1,h ) n g L 2 (2.65) T28
And thus for n ≥ h -2

T n 1,h L ∞ →L ∞ ≤ C 0 e -(n-h -2 )h 2 λ 1,h = C 0 e λ 1,h e -ngap , ∀h, ∀n ≥ h -2 (2.66) T29
This conclude the proof of theorem thm1 1.1.

rem1 Remark 2.5 Observe that ( eq2.12 2.35) is certainly true with a power of Λ instead of a power of h with λ = 1h 2 Λ, but we have no proof for this; thats why we use for T 1,h a Nash inequality.

rem2 Remark 2.6 The above proof seems to apply for a more general choice of the elementary Markov kernel h -d ϕ( x-y h ). Replace ϕ by a positive symmetric measure of total mass 1 with support in the unit ball, and let T h be the Metropolis with this data. Assume that one is able to prove that for some δ 0 > 0 one has Spec(T h ) ⊂ [-1 + δ 0 , 1] for all h ≤ h 0 , and that for some power M, one has for some C, c > 0

T M h (x, dy) = µ h (x, dy) + Ch -d 1 |x-y|≤ch ρ(y)dy, µ h (x, dy) ≥ 0
Then there exist γ < 1 such that µ h L ∞ ≤ γ. Moreover, the right inequality in 2.7

2.20 and eq2.12 2.35 are still valid for T M h . Also, the spectral gap of T M h is given by formula gap2 1.4 with T M h (x, dy) in place of K h,ρ (x, y)dy, and therefore the left inequality in gap3 1.6 holds true, and the right one is true , since if ρ is constant, for any θ ∈ C ∞ 0 (Ω), one has u -T h u ∈ O(h 2 ). We shall use these remark later in the study of the hard disc problem, in section In all this section, we suppose additionaly that Ω is stratified. For a given continuous density ρ, using ( comp2 2.4) and an approximation of ρ in L ∞ by a sequence of smooth density ρ k , one sees that the first assertion ( 1.7). Assume now that ρ is smooth.

lem5 Lemma 3.1 Let θ ∈ C ∞ (Ω) be such that supp(θ) ∩ Γ sing = ∅ and ∂ n θ| Γreg = 0. Then Q h,ρ (θ) = h 2 L ρ (θ) + r, r L 2 ∈ O(h 5/2 ) (3.1) 3.1
Proof. For θ ∈ C ∞ (Ω) and x ∈ Ω, we can use the Taylor formula to get

Q h,ρ (θ)(x) = 1 V ol(B 1 ) A(x,h) min(1 + h ∇ρ(x) ρ(x) .z + O(h 2 |z| 2 ), 1) (-h∇θ(x).z - h 2 2 i,j z i z j ∂ x i ∂ x j θ(x) + O(h 3 |z| 3 ))dz (3.2) with A(x, h) = {z ∈ R d , |z| < 1, x + hz ∈ Ω}. As A(x, h) = A + (x, h) ∪ A -(x, h), with A ± (x, h) = {z ∈ A(x, h), ±(ρ(x + hz) -ρ(x)) ≥ 0}
, it follows by an easy computation that

Q h,ρ (θ)(x) = - h V ol(B 1 ) ∇θ(x). A(x,h) zdz - h 2 2V ol(B 1 ) d i,j=1 ∂ x i ∂ x j θ(x) A(x,h) z i z j dz - h 2 V ol(B 1 ) A -(x,h) ∇ρ(x) ρ(x) .z ∇θ(x).zdz + r(x) = f 1 (x) + f 2 (x) + f 3 (x) + r(x) (3.3) with r L ∞ (Ω) = O(h 3 ). Let χ = 1 d(x,∂Ω)<2h , then for j = 2, 3 χf j L 2 (Ω) ≤ χ L 2 (Ω) f j L ∞ (Ω) = O(h 5/2 ) (3.4) 3.1bis
thanks to the support properties of χ. Moreover, for

x ∈ supp(1 -χ), A(x, h) = {|z| < 1} and the change of variable z → -z shows that (1 -χ)f 2 = -(1 -χ) α d 2 h 2 ∆θ(x) thanks to 1.1 1.8. Hence, f 2 (x) = - α d 2 h 2 ∆θ(x) + r(x) (3.5) with r L 2 = O(h 5/2 ).
To compute f 3 , we first observe that |f 3 (x)| ≤ Ch 2 |∇ρ(x)||∇θ(x)|. We thus get

1 |∇ρ|≤h 1/2 f 3 L ∞ ≤ Ch 5/2 ∇θ L ∞ . At a point x where |∇ρ(x)| ≥ h 1/2 , we may write z = t ∇ρ(x) |∇ρ(x)| + z ⊥ , t = z.∇ρ(x) |∇ρ(x)| , z ⊥ .∇ρ(x) = 0. In these coordinates, one has A -(x, h) = {(t, z ⊥ ), t|∇ρ(x)| + O(h(t 2 + |z ⊥ | 2 )) ≤ 0}. From |∇ρ(x)| ≥ h 1/2 we get that the symmetric difference R between A -(x, h) and {t ≤ 0} satisfies meas(R) = O(h 1/2 ) (the symmetric difference of two sets A, B is A ∪ B \ A ∩ B). Therefore 1 |∇ρ|≥h 1/2 (1 -χ)f 3 (x) = -h 2 1 |∇ρ|≥h 1/2 (1 -χ)(x) {|z|<1,∇ρ(x).z≤0} ∇ρ(x) ρ(x)
.z ∇θ(x).zdz + r(x)

(3.6) with r L ∞ = O(h 5/2 ). Using the change of variable z → z -2z ⊥ we get 1 |∇ρ|≥h 1/2 (1 -χ)f 3 (x) = -h 2 1 |∇ρ|≥h 1/2 α d 2 (1 -χ)(x) ∇ρ(x) ρ(x) .∇θ(x) + r(x) (3.7)
and therefore using 3.1bis

3.4 we get

f 3 (x) = -h 2 α d 2 ∇ρ(x) ρ(x) .∇θ(x) + r(x) (3.8) with r L 2 = O(h 5/2 ). It remains to show that f 1 L 2 (Ω) = O(h 5/2
). Using the change of variable z → -z we easily obtain (1χ)f 1 = 0. Hence, it suffices to show that f

′ 1 (x, h) = A(x,h) z.∇θ(x)dz satisfies f ′ 1 L ∞ (Ω) = O(h).
As Γ sing is compact and supp(θ) ∩ Γ sing = ∅, dist(Γ sing , supp(θ)) > 0, this is a local problem near any point x 0 of the regular part Γ reg of the boundary . Let φ be a smooth diffeomorphism as in recouv 2.8 so that locally near x 0 , one has φ -1 (Ω) = {x d > 0}. For x close to x 0 one has

A(x, h) = {z ∈ R d , |z| < 1, (φ -1 (x) + hD x φ -1 (z) + O(h 2 )) d > 0} (3.9) Set A 1 (x, h) = {z ∈ R d , |z| < 1, (φ -1 (x) + hD x φ -1 (z)) d > 0} (3.10)
then the symmetric difference R between A(x, h) and A 1 (x, h) satisfies meas(R) = O(h) uniformly in x close to x 0 . This yields

f ′ 1 (x, h) = ∇θ(x).v(x, h) + r(x), v(x, h) = A 1 (x,h) zdz (3.11)
with r L ∞ = O(h). Let ν(x) be the vector field defined by ν(x).z = (D x φ -1 (x)(z)) d .

Observe that v(x, h) is collinear to ν(x), vanish for dist(x, ∂Ω) > Ch and that for x ∈ ∂Ω, ν(x) is collinear to the unit normal to the boundary -→ n (x). Since ∂ n θ| Γreg = 0, we thus get f ′ 1 L ∞ = O(h). The proof of our lemma is complete.

Let us recall that we denote 1 = ν 0 < ν 1 < . . . < ν j < ... the eigenvalues of L ρ and m j the associated multiplicities. We introduce the bilinear form

a ρ (u, v) = α d 2 ∇u, ∇v L 2 (ρ) + u, v L 2 (ρ) .
(3.12)

It defines an Hilbertian structure on H 1 (Ω) which is equivalent to the usual one. We denote . H 1 ρ the norm induced by a ρ . For j ∈ N we denote F j = Ker(L ρν j ), F <N = ⊕ j<N F j and by F ≥N = ⊕ j≥N F j the orthogonal complement of F <N in H 1 for teh scalarr product a ρ . Observe that since we assume here ρ smooth, by the classical theory of elliptic boundary problems, any function in F j is smooth in Ω and smooth up to the regular part Γ reg of the boundary. We also denote Π j the orthogonal projection for a ρ on F j and

D N = {θ ∈ C ∞ (Ω), θ = 0 near Γ sing , ∂ n θ |Γreg = 0, θ, v L 2 (ρ) = 0 ∀v ∈ F <N } (3.13)
where we use the convention F <0 = ∅. One has D N ⊂ F ≥N , since for any θ ∈ D N and any v ∈ F j with j < N one has by

1.3.4 1.14, a ρ (v, θ) = (L ρ + 1)v, θ L 2 (ρ) = (ν j + 1)v, θ L 2 (ρ) = 0.
lem6 Lemma 3.2 For all N ∈ N and all u ∈ F ≥N there exists a sequence

(u k ) in D N converging to u in H 1 .
Proof. We proceed by induction. Let us first verify the property for N = 0, i.e that D 0 is dense in H 1 . Let f ∈ H 1 (Ω) be orthogonal to D 0 for a ρ . Then, it is orthogonal to C ∞ 0 (Ω) so that (L ρ + 1)f = 0 in the sense of distributions. In particular -∆f ∈ L 2 (Ω). Hence we can use the Green formula (

1.3.4 1.14) to get for any θ ∈ D 0 , since a ρ (f, θ) = 0, ∂ n f, ρθ H -1/2 ,H 1/2 = 0 (3.14)
For any ψ ∈ C ∞ 0 (Γ reg ), using smooth local coordinates we can find ψ in D 0 such that ψ|∂Ω = ψ . Consequently,

∂ n f, ρψ H -1/2 ,H 1/2 = ∂ n f, ρ ψ H -1/2 ,H 1/2 = 0 (3.15)
Hence, ∂ n f |Γreg = 0. This shows that ∂ n f |∂Ω ∈ H -1/2 is supported in Γ sing . From uniq 1.16 this implies ∂ n f |∂Ω = 0. This shows that f ∈ D(L ρ ). As the operator L ρ + 1 is strictly positive this implies f = 0.

For N ≥ 1 and f ∈ F ≥N , we consider a familly (f ǫ ) in

D 0 such that f -f ǫ H 1 ≤ ǫ. Let Q be an open ball such that Q ⊂ Ω. We look for h ∈ C ∞ 0 (Q) such that fǫ = f ǫ + h satisfies the lemma. Let θ ∈ C ∞ 0 (Q)
, with θ ≥ 0 and θ = 0. We look for h under the form h = J k=1 β k θe k , where (e j ) j∈{1,...,J} denote the eigenfunctions of L ρ such that F <N = span(e j , j ∈ {1, . . . , J}) and β = (β 1 , . . . , β J ) ∈ C J . The condition

f ǫ + h ∈ D N reads h, e j L 2 (ρ) = α j with α j = -f ǫ , e j L 2 (ρ) = O(ǫ). Denoting β = (β 1 , . . . , β J ) and u, v Q,ρθ = Q u(x)v(x)ρ(x)θ(x)dx, this is equivalent to Mβ = α where M is the J × J matrix M = ( e j , e k Q,ρθ ) j,k=1,...,J .
We claim that , Q,ρθ is definite positive on F <N . If not, there will exist a non zero function v ∈ F <N such that Q |v(x)| 2 ρ(x)θ(x)dx = 0. This implies that v(x) = 0 on the non void open set θ(x) > 0. Since v satisfies Π j<N (L ρν j )v = 0, the uniqueness theorem for second order elliptic operators implies v(x) = 0 for all x ∈ Ω. As a consequence, the matrix M is invertible, so that β = M -1 α = O(ǫ). Hence h H 1 = O(ǫ). The proof of our lemma is complete.

We are now in position to achieve the proof of Theorem thm2 1.2. We first observe that if

ν h ∈ [0, M] and ψ h ∈ L 2 (ρ) satisfy ψ h L 2 = 1, h -2 Q h ψ h = ν h ψ h , then thanks to Lemma lem1
2.2 the family (ψ h ) h∈]0,1] is relatively compact in L 2 (ρ) so that we can suppose (extracting a subsequence h k ) that ν h → ν and ψ h → ψ in L 2 (ρ), ψ L 2 = 1, and moreover by Lemma lem1 2.2, the limit ψ belongs to H 1 (ρ). Given θ ∈ D 0 , it follows from self-ajointness of Q h and Lemma

lem5 3.1 that 0 = (h -2 Q h -ν h )ψ h , θ L 2 (ρ) = ψ h , (L ρ -ν h )θ L 2 (ρ) + O(h 1/2 ) (3.16)
Making h → 0 we obtain ψ, (L ρ -ν)θ L 2 (ρ) = 0 for all θ ∈ D 0 . It follows that (L ρ -ν)ψ = 0 in the distribution sense, and integrating by parts that ∂ n ψ vanish on Γ reg . Since ψ ∈ H 1 (ρ), we get as above using uniq 1.16 that ∂ n ψ = 0 , and it follows that ψ ∈ D(L ρ ) . This shows that ν is an eigenvalue of L ρ , and thus ( 1.5 1.19) is satisfied. Moreover, by compactness in L 2 of the sequence ψ h , one gets that for any ǫ > 0 small enough, there exists

h ǫ > 0 such that ♯Spec(h -2 Q h ) ∩ [ν j -ǫ, ν j + ǫ] ≤ m j (3.17) ppm
for h ∈]0, h ǫ ] with h ǫ > 0 small enough. It remains to show that there is equality in ppm 3.17, and we shall proceed by induction on j.

Let ǫ > 0 small be given such that for 0 ≤ ν j ≤ M + 1, the intervals I ǫ j = [ν jǫ, ν j + ǫ] are disjoint. Let (µ j ) j≥0 the increasing sequence of eigenvalues of h -2 Q h , σ N = N j=1 m j and (e k ) k≥0 the eigenfunctions of L ρ such that for all k ∈ {1 + σ N , . . . , σ N +1 }, one has (L ρν N +1 )e k = 0. As 0 is a simple eigenvalue of both L ρ and Q h , we have clearly

ν 0 = µ 0 = 0 and m 0 = 1 = ♯Spec(h -2 Q h ) ∩ [ν 0 -ǫ, ν 0 + ǫ].
Suppose that for all n ≤ N,

m n = ♯Spec(h -2 Q h ) ∩ [ν n -ǫ, ν n + ǫ].
Then, one has by

1.5 1.19, for h ≤ h ε , µ 1+σ N ≥ ν N +1 -ǫ (3.18) min1 By min-max principle, if G is a finite dimensional subspace of H 1 with dim(G) = 1+σ N +1 , one has µ σ N+1 ≤ sup ψ∈G, ψ =1 h -2 Q h ψ, ψ L 2 (ρ) (3.19) min2
Thanks to Lemma lem6 3.2, for all e k , 0 ≤ k ≤ σ N +1 and all α > 0, there exists e k,α ∈ D 0 such that e ke k,α H 1 ρ ≤ α. Let G α be the vector space span by the e k,α , 0 ≤ k ≤ σ N +1 . For α small enough, one has dim(G α ) = 1 + σ N +1 . From Lemma lem5 3.1, one has

h -2 Q h e k,α , e k ′ ,α L 2 (ρ) = L ρ e k,α , e k ′ ,α L 2 (ρ) + O α (h 1/2 ) (3.20) Since e k,α ∈ D 0 , one has L ρ e k,α , e k ′ ,α L 2 (ρ) = α d 2 ∇e k,α , ∇e k ′ ,α L 2 ρ , and ∇e k,α , ∇e k ′ ,α L 2 ρ = ∇e k , ∇e k ′ L 2 ρ + O(α). Therefore, for ψ ∈ G α , ψ = 1, we get h -2 Q h ψ, ψ L 2 (ρ) ≤ ν N +1 + Cα + O α (h 1/2 ) (3.21) min3
Taking α > 0 small enough and h < h α we obtain from 

N +1 = ♯Spec(h -2 Q h ) ∩ [ν N +1 -ǫ, ν N +1 + ǫ].
The proof of Theorem 

O N,ǫ = {x = (x 1 , . . . , x N ) ∈ Ω N , ∀ 1 ≤ i < j ≤ N, |x i -x j | > ǫ}
We introduce the kernel

K h (x, dy) = 1 N N j=1 δ x 1 ⊗ . . . ⊗ δ x j-1 ⊗ h -d ϕ( x j -y j h )dy j ⊗ δ x j+1 ⊗ . . . ⊗ δ x N (4.1) eq4.1
and the associated Metropolis operator on L 2 (O N,ǫ )

T h (u)(x) = m h (x)u(x) + O N,ǫ u(y)K h (x, dy) (4.2) eq4.2 with m h (x) = 1 - O N,ǫ K h (x, dy). (4.3) eq4.3
The operator T h is Markov and self -adjoint on L 2 (O N,ǫ ). The configuration space O N,ǫ is the set of N disjoints closed balls of radius ǫ/2 in R d , with centers at the x j ∈ Ω. The topology of this set, and the geometry of its boundary is in general hard to understand (references a trouver), but since d ≥ 2, O N,ǫ is clearly non void and connected for a given N if ǫ is small enough. The metropolis kernel T h is associated to the following algorithm: at each step, we choose uniformly at random a ball, and we move it center uniformly at random in R d in a ball of radius h. If the new configuration is in O N,ǫ , the change is made. Otherwise, the configuration is kept as it started.

In order to study the random walk associated to T h in in Proposition 4.1 we prove that the open set O N,ǫ is Lipschitz stratified for ǫ > 0 small enough, and in lemma lem7bis 4.5 we prove that the kernel of the iterated operator T M h (with M large, but independent of h) admits a suitable lower bound, so that we will be able to use our remark rem2 2.6. We define Γ reg and Γ sing the set of regular and singular points of ∂O N,ǫ as follows. Let us denote N N = {1, . . . , N}. For x ∈ O N,ǫ we set

R(x) = {i ∈ N N , x i ∈ ∂Ω} S(x) = {τ = (τ 1 , τ 2 ) ∈ N N , τ 1 < τ 2 and |x τ 1 -x τ 2 | = ǫ} r(x) = ♯R(x), s(x) = ♯S(x) (4.4)
The functions r and s are lower semi-continuous and any x ∈ O N,ǫ belongs to ∂O N,ǫ iff r(x) + s(x) ≥ 1. We define

Γ reg = {x ∈ O N,ǫ , s(x) = 1 and r(x) = 0} ∪ {x ∈ O N,ǫ , s(x) = 0, R(x) = {j 0 } and x j 0 ∈ ∂Ω reg } (4.5)
and Γ sing = ∂O N,ǫ \Γ reg . Then, Γ sing is clearly close, and the Γ reg is the reunion of smooth disjoint hypersurfaces in R N d .

prop7 Proposition 4.1 For ǫ > 0 small enough, the set O N,ǫ is connected, Lipschitz and stratified.

Proof. For ν ∈ S p-1 , p ≥ 1 and δ ∈]0, 1[ we denote

Γ ± (ν, δ) = {ξ ∈ R p , ± ξ, ν > (1 -δ)|ξ|, | ξ, ν | < δ}. (4.6)
We remark also that an open set O ⊂ R p is Lipschitz if it satisfies the cone property:

∀a ∈ ∂O, ∃δ > 0, ∃ν a ∈ S p-1 , ∀b ∈ B(a, δ) ∩ ∂O we have b + Γ + (ν a , δ) ⊂ O and b + Γ -(ν a , δ) ⊂ R p \ O. (4.7) Let x ∈ ∂O N,ǫ .
The equivalence relation i ≃ j iff x i and x j can be connected by a path lying in the union of the closed balls, give us a partition {1, . . . , N} = ∪ r k=1 F k such that

∀k = l, ∀i ∈ F k , ∀j ∈ F l , |x i -x j | > ǫ ∀k, ∀i = j ∈ F k , ∃(n l ) ∈ F k , 1 ≤ l ≤ m, n 1 = i, n m = j, |x n l -x n l+1 | = ǫ. (4.8)
Observe that in the case where ♯F k = 1 the second condition is empty. We look for ν ∈ S N d-1 such that the cone property at x holds with ν. We construct the coordinates of ν according to the partition (F k ) k . Let k ∈ {1, . . . , r}.

Suppose that F k = {j k } for some j k ∈ {1, . . . , N}. If x j k ∈ Ω, we set ξ j k = 0. If x j k ∈ ∂Ω, thanks to the cone property satisfied by Ω we can find ξ j k ∈ S d-1 and δ k > 0 such that

x j k + Γ + (ξ j k , δ k ) ⊂ Ω and x j k + Γ -(ξ j k , δ k ) ⊂ R d \ Ω. (4.9)
Suppose that ♯F k ≥ 2. If x j ∈ Ω for all j ∈ F k we fix y k ∈ R d and for all j ∈ F k we set ξ j = x jy k . Hence x j (t) = x j + tξ j is obtained from x j by homothety centered in y k , with ratio 1 + t. Consequently, for all i, j ∈ F k and t close to 0, we have |x i (t)x j (t)| > ǫ for t > 0 and there exists at least two distinct indices i, j ∈ F k such that |x i (t)x j (t)| < ǫ for t < 0.

If there exists i 0 ∈ F k such that x i 0 ∈ ∂Ω, the cone property provides us η i 0 ∈ S d-1 and δ i 0 > 0. Moreover, taking ǫ > 0 sufficiently small, we can suppose that all the x i , i ∈ F k are close to x i 0 , since |x i -x i 0 | ≤ ǫ(N -1). Thus, for all i ∈ F k , we have b+Γ

+ (η i 0 , δ i 0 ) ⊂ Ω for all b ∈ Ω, |b -x i | ≤ δ i 0 . Let y i 0 (z) = x i 0 -z eta i 0 and for i ∈ F k , ξ ′ i (z) = x i -y i 0 (z).
Then, for z > 0 large enough and α > 0 sufficiently small, we have

ξ i = αξ ′ i (z) ∈ Γ(η i 0 , δ i 0 ).
In particular, for i ∈ F k and t > 0 close to 0, x i + tξ i belongs to Ω, while for t < 0, one has x i 0 + tξ i 0 /

∈ Ω. Moreover, the same argument as above shows that for i = j, the functions t → |x ix j + t(ξ iξ j )| are strictly increasing near t = 0.

Observe that ξ = (ξ 1 , . . . , ξ N ) = 0, since if ξ i = 0 for all i, then ♯F k = 1 and x j k ∈ Ω for all k which contradicts x ∈ ∂O N,ǫ . Finally, we take ν = ξ |ξ| . Then for δ > 0 small enough, the cone property is satisfied at x with (ν, δ). Thus O N,ǫ is Lipschitz.

Let us show that O N,ǫ is connected for ǫ small enough. We define for j ∈ N N the two applications π j from R N d to R N d and σ j from R d to R N d by π j (x 1 , ..., x j , ..., x N ) = (x 1 , ...,0, ..., x N ) σ j (y) = (0, ...,y, ..., 0) (4.10) g0 so that x = π j (x) + σ j (x j ). For F ⊂ N N we define σ F : Π j∈F R d → R N d by σ F (x) = j∈F σ j (x j ). We have the following geometric lemma.

lem7ter Lemma 4.2 There exists ǫ 0 > 0 and δ 0 > 0 such that for all ǫ ∈]0, ǫ 0 ] and all n ∈ N N , there exists a finite covering (U l ) l of O N,ǫ such that for all l there exists a subset

F n ⊂ N N with ♯F n = n, there exists ν ∈ S nd-1 such that ∀x ∈ U l ∩ O N,ǫ , x + σ Fn (Γ + (ν, δ 0 )) ⊂ O N,ǫ (4.11) sl00
Moreover, there exists c 0 > 0 such that for all k, l ∈ F n with k = l and for t ∈ [0,

δ 0 ], we have ∀x ∈ U l ∩ O N,ǫ , |x k + tν k -x l -tν l | 2 ≥ ǫ 2 + c 0 ǫt (4.12) sl0
Proof. This lemma means that we can select an arbitrary number of balls n, and that moving only these balls by a vector in Γ + (ν, δ 0 ) while keeping the other balls fixed, results in an admissible configuration. We shall proceed by induction on N ≥ 1. For N = 1, this is true since Ω is Lipschitz. Let N ≥ 2 and suppose that the property is true until rank N -1 and let ǫ0 be the corresponding parameter. For ǫ ∈]0, ǫ0 [ and β > 0, we have the partition

O N,ǫ = U N,ǫ,β ∪ V N,ǫ,β (4.13) with U N,ǫ,β = {x ∈ O N,ǫ , sup i =j |x i -x j | < ǫ + β}.
Using the induction hypothesis, it is easy to see that for any β > 0, there exists ǫ1 (β) < ǫ0 and δ0 (β) > 0 such that the conclusion of the Lemma holds true on V N,ǫ,β , ∀ǫ ∈]0, ǫ1 (β)]. Hence it remains to find a suitable covering of U N,ǫ,β . For any α > 0, choosing β and ǫ1 small enough we can suppose that U N,ǫ,β ⊂ ∪ y 0 ∈Fα B(y 0 , α) N (4.14)

for some finite set F α ⊂ Ω. Moreover, since Ω is Lipschitz, we can suppose that α is sufficiently small so that

∃δ ′ 0 > 0, ∀y 0 ∈ F α , ∃v(y 0 ) ∈ S d-1 , ∀y ∈ B(y 0 , α), y + Γ + (v(y 0 ), 2δ ′ 0 ) ⊂ Ω. (4.15) sl1
Moreover, we can suppose that δ ′ 0 is sufficiently small so that the following holds true:

∀v, u 1 , . . . , u N ∈ S d , s.t. ∀j, v, u j = 0, ∃v ′ ∈ Γ + (v, 2δ ′ 0 ), ∀ξ ∈ Γ + (v ′ , δ ′ 0 ), ∀j, ξ, u j = 0. (4.16) sl2
Indeed, the set A = {v ∈ S d , v, u j = 0, ∀j} is contained in a finite union of equators and thus ( sl2 4.16) is obvious by taking v ′ close to v in the complementary. Condition ( sl1 4.15) gives us a critical value for ǫ1 and we now suppose that ǫ ∈]0, ǫ1 ]. By compactness, it remains to show that y 0 ∈ F α being fixed the following property holds true: N and n ∈ N N being fixed. We construct F n and ν ∈ S nd-1 by induction on n. We look for ν under the form ν = λ(v, (1 -1/N)v, . . . , (1 -(n -1)/N)v), where v ∈ S d-1 and λ is a normalizing constant. We claim that we can find

∀x 0 ∈ B(y 0 , α) N ∩ O N,ǫ , ∀n ∈ N N , ∃F n ⊂ N N s.t. ♯F n = n, ∃ν ∈ S nd-1 , ∃r > 0, s.t. ∀x ∈ B(x 0 , r) ∩ O N,ǫ , ∀ξ ∈ Γ + (ν, δ ′ 0 ), ∀k = j, |(x + σ F (ξ)) j -(x + σ F (ξ)) k | > ǫ (4.17) sl3 Let x 0 ∈ B(y 0 , α)
F n = {j 1 , . . . j n } and v ∈ S d-1 such that v, x 0 j 1 > . . . > v, x 0 jn > v, x 0 s , ∀s / ∈ F n (4.18) sl4
If n = 1 we denote F ′ the set of index i such that the map s ∈ N N → v(y 0 ), x 0 s has a maximum in s = i. If ♯F ′ = 1 then we can take (F 1 , v) = (F ′ , v(y 0 )). If ♯F ′ ≥ 2, thanks to ( sl3 4.17) we can find v close to v(y 0 ) such that s → v, x 0 s has a unique maximum for some s = j 1 and we set F 1 = {j 1 }.

Suppose now that n ≥ 1 and that (F n , v) satisfies (

sl4 4.18). Let F ′′ be the set of index i / ∈ F n such that the map s / ∈ F n → v, x 0 s has a maximum in s = i. If ♯F ′′ = 1 then (F n+1 , v) = (F n ∪ F ′′ , v) satisfies the expected property. If ♯F ′′ ≥ 2 we can find v ′′ close to v so that we still have v ′′ , x 0 j 1 > . . . > v ′′ , x 0 jn > v ′′ , x 0 s , ∀s / ∈ F n (4.19)
and additionally x k , v ′′ = x l , v ′′ for all k, l ∈ F ′′ with k = l, and x k , v ′′ > x s , v ′′ for all k ∈ F ′′ , s / ∈ F n ∪ F ′′ . This permits to find easily j n+1 ∈ F ′′ such that setting F n+1 = F n ∪ {j n+1 }, ( sl4 4.18) holds true at rank n + 1. We turn back to the proof of ( sl3 4.17). Let x ∈ B(x 0 , r) and ξ = (ξ j 1 , . . . , ξ jn ) ∈ Γ + (ν, δ ′ 0 ) with δ ′ 0 given by the above construction and r > 0 to be chosen small enough. We denote ν = (ν j 1 , . . . , ν jn ) so that ν j k = λ(1 -(k -1)/N)v. The fact that x + σ Fn (ξ) ∈ Ω N is a straightforward consequence of ( sl1 4.15) and it remains to show that the distance between two different balls remains bounded from below by ǫ. Let j, k ∈ N N with j = k. If j, k / ∈ F n , there is nothing to prove.

In the case where j, k ∈ F n , we can write j = j p and k = j q with p < q and we have

|(x + σ F (ξ)) j -(x + σ F (ξ)) k | 2 ≥ ǫ 2 + 2 x jp -x jq , ξ jp -ξ jq ≥ ǫ 2 + 2|ξ| x 0 jp -x 0 jq , ν jp -ν jq -4r(|ξ jp | + |ξ jq |) -2|ξ||x 0 jp -x 0 jq |(| ξ jp |ξ| -ν jp | + | ξ jq |ξ| -ν jq |) ≥ ǫ 2 + 2 λ N (q -p)|ξ| v, x 0 jp -x 0 jq -8r|ξ| -4|ξ|δ ′ 0 |x 0 jp -x 0 jq | (4.20) Thanks to ( sl4 4.18), v, x 0 jp -x 0 jq > c 1 |x 0 jp -x 0 jq |, for some c 1 > 0 independant on ǫ. Hence, taking δ ′ 0 ∈]0, λc 1 /(8N)] and r ∈]0, λǫ/(16N)], we get |(x + σ F (ξ)) j -(x + σ F (ξ)) k | 2 > ǫ 2 + c 1 λǫ N |ξ| (4.21)
so that ( sl00 4.11) is satisfied. Moreover, as λ is of order n -1/2 , ( sl0 4.12) holds true with c 0 = c 1 N √ n . In the case j ∈ F n and k / ∈ F n , similar computation leads to the same result. Taking δ 0 = min( (δ 0 (β), δ ′ 0 ), the proof of the lemma is complete.

sublemma1 Lemma 4.3 There exists ǫ 1 > 0 and m ≥ 1 such that ∀ǫ ∈]0, ǫ 1 ], ∀x, y ∈ O N,mǫ satisfiying inf j,k |x j -y k | > mǫ, there exists a continuous path γ : [0, 1] → O N,ǫ such that γ(0) = x and γ(1) = y. Proof. For z ′ = (z 2 , . . . , z N ) ∈ Ω N -1 and k ≥ 1 we denote Ωk (z ′ ) = Ω \ ∪ N j=2 B(z j , kǫ
). We claim that there exists ǫ 1 > 0 such that for ǫ ∈]0, ǫ 1 ] and m ≥ 1 large enough, the following property holds true:

∀x ′ ∈ O N -1,mǫ , ∀u, v ∈ Ωm (x ′ ), ∃γ ∈ C([0, 1], Ω1 (x ′ )), s.t. γ(0) = u, γ(1) = v (4.22) sl5
Indeed, Ω being connected, for any u, v ∈ Ωm (x ′ ) there exists a continous path γ : [0, 1] → Ω from u to v. Moreover, using the fact that ∂Ω is Lipschitz and taking m sufficiently large, we can modify the path γ in a path γ that avoids the balls B(x j , ǫ) and remains in Ω. Now, let x, y ∈ O N,mǫ with inf j,k |x jy k | > mǫ. Thanks to ( sl5 4.22), we can find a continous path from x to (y 1 , x 2 , . . . , x N ) with values in O N,ǫ . As |y 1x j | > λ for all j, we can apply ( sl5 4.22) with z ′ = (y 1 , x 3 , . . . , x N ) so that we can find a continuous path in O N,ǫ joining (y 1 , x 2 , . . . , x N ) and (y 1 , y 2 , x 3 , . . . , x N ). Iterating this process we obtain a continous path from x to y, with values in O N,ǫ .

We are now in position to prove that O N,ǫ is connected for ǫ small enough. Let ǫ 0 , δ 0 > 0 be given by Lemma 4.2 and m, ǫ 1 be given by Lemma sublemma1 4.3. We can also decrease ǫ 1 so that ∀ǫ ∈]0, ǫ 1 [, ∀x ∈ O N,ǫ , ∃y ∈ O N,mǫ s.t. inf i,j |x iy j | > 2mǫ. Let ǫ ≤ min(ǫ 1 , ǫ 0 , c 0 δ 0 /(m 2 -1)) with c 0 given by Lemma 4.2, there exists ν ∈ S N d-1 such that the segment x + [0, δ 0 ]ν is contained in Ω N and moreover for any k = l and any t ∈ [0, δ 0 ],

|x k + tν k -x l -tν l | 2 ≥ ǫ 2 + c 0 ǫt. (4.23)
Hence, the path t ∈ [0, 1] → γ(t) = x + tδ 0 ν has the required properties. This achieves to prove that O N,ǫ is connected.

Let us now prove that O N,ǫ is stratified. Let u ∈ H -1/2 (O N,ǫ ) be supported in Γ reg . We have to show that u is identically zero. This is a local problem and we can suppose that u is supported in a small open set

U ⊂ R N d such that Ũ := U ∩O N,ǫ = {(x 1 +ϕ(x ′ ), x ′ ), x 1 ∈ ]0, α[, x ′ ∈ V }, δU := U ∩ ∂O N,ǫ = {(ϕ(x ′ ), x ′ ), x ′ ∈ V } , where ϕ : V ⊂ R N d-1 → R is a Lipschitz function. Denote κ :]0, α[×V → Ũ , k : V → δU (x 1 , x ′ ) → (x 1 + ϕ(x ′ ), x ′ ) x ′ → (ϕ(x ′ ), x ′ ) (4.24)
and for χ ∈ C ∞ 0 (V ), let φ χ (u) be defined by

φ χ (u), f = u, (χf ) • k -1 H -1/2 (∂O N,ǫ ),H 1/2 (∂O N,ǫ ) (4.25) for any f ∈ H 1/2 (R N d-1 ). Then φ χ (u) ∈ H -1/2 (R N d-1
) and supp(φ χ (u)) ⊂ k -1 (supp(u)). Moreover, the distribution ṽ = δ x 1 =0 ⊗ φ χ (u) belongs to H -1 (R N d ) and supp(ṽ

) ⊂ κ -1 (supp(u)). Let x ∈ δU ∩ supp(u) and denote D N,ǫ = {x ∈ (R d ) N , |x i -x j | > ǫ, ∀1 ≤ i < j ≤ N}.
Then, either r(x) + s(x) ≥ 2, either x ∈ D N,ǫ , R(x) = {j 0 } (say j 0 =1) and x j 0 ∈ ∂Ω sing . Suppose that we are in the second case and let χ be a cut-off function supported near x such that supp(χ) ⊂ R d × Ω N -1 ∩ D N,ǫ . Then, for any ψ ∈ C ∞ 0 (Ω N -1 ) the linear form u ψ defined on H 1/2 (∂Ω) by

u ψ , f = χu, f (x 1 )ψ(x 2 , . . . , x N ) H -1/2 (δU ),H 1/2 (δU ) (4.26)
is continuous and supported in ∂Ω sing . As ∂Ω is stratified, it follows that u ψ is equal to zero for all ψ and hence, χu = 0. Therefore, we can suppose that u is supported in the set {r(x) + s(x) ≥ 2}. For n ∈ N, n ≥ 2, let us introduce the following property (P n ) : for any x ∈ δU s.t. r(x) + s(x) = n, we have u = 0 near x. (4.27)

We prove this property by induction on n. We first assume n = 2 and suppose that r(x) = s(x) = 1 (the cases r = 2, s = 0 and r = 0, s = 2 are similar and left to the reader). By lower semicontinuity of the functions r and s, for any x ∈ supp(u) close to x we have also r(x) = s(x) = 1 and hence R(x) = R(x) and S(x) = S(x). Hence, we can suppose without loosing generality, that u is supported in G = ∂Ω×Ω N -1 ∩{|x i -x 2 | = ǫ} for some i ∈ {1, 3, . . . , N}. Denoting x i = (x i,1 , . . . , x i,d ) and using the fact that ∂D N,ǫ is invariant under any transformation of the form x → (ρ(x 1 ), . . . , ρ(x N )) where ρ is an affine isometry of R d , there exists a linear map L on R N d such that L(G) is given by two equations

x 1,1 = α(x ′ 1 ) x 2,1 = β(x ′ 2 , x i ).
(4.28)

with α Lipschitz and β smooth and where x ′ j = (x j,2 , . . . , x j,d ). Hence,

ν(x) = (x 1,1 - α(x ′ 1 ), x 2,1 -β(x ′ 2 , x i ), x ′ 1 , x ′ 2 , x 3 , . . . , x N ) defines a local homeomorphism of R N d such that ν • L(G) ⊂ {0} 2 × R N d-2 . Consequently, w ∈ H -1 (R N d ) defined by w, f = ṽ, f • ν • L • κ (4.29) satisfies supp( w) ⊂ {0} 2 × R N d-2
. Therefore, w vanishes identically and hence u is null near x. Suppose now that (P k ) holds for k ≤ n and let x be such that r(x) + s(x) = n + 1. The lower semicontinuity of r, s and the induction hypothesis show that for any x ∈ supp(u) close enough to x, we have r(x) + s(x) = n + 1 and hence R(x) = R(x), S(x) = S(x). Suppose that r(x) = 0, then s(x) = n + 1 and near x, supp(u) is contained in G = Ω N ∩ (∩ τ ∈R(x) {|x τ 1x τ 2 | = ǫ}. In particular, there exists σ, τ ∈ R(x) such that σ = τ . As in the case n = 2, we can suppose that near x, the set {r(x)+s(x) = n+1} is contained in

{x τ 1 ,1 = α(x ′ τ 1 , x τ 2 ), x σ 1 ,1 = α(x ′ σ 1 , x σ 2 )
} for some Lipschitz functions α, β (here we forget some information). Hence, we can construct as precedently an homeomorphism ν on R N d such that ν(G) ⊂ {0} 2 × R N d-2 and the same proof as for n = 2 still works. The cases s = 0, r = n + 1 and s ≥ 1, r ≥ 1 are similar and left to the reader.

The proof of proposition prop7 4.1 is complete.

remk5 Remark 4.4 Observe that in the above lemma, the smallness condition on ǫ is Nǫ < c where c > 0 depends only on Ω. The condition Nǫ d < c, which say that the density of the balls is small enough, does not implies that the set O N,ǫ has Lipschitz regularity. As an example, if Ω =]0, 1[ 2 is the unit square in the plane, then x = (x 1 , ..., x N ), x j = ((j -1)ǫ, 0), j = 1, ..., N, with ǫ = 1 N -1 is a configuration point in the boundary ∂O N,ǫ . However, ∂O N,ǫ is not Lipschitz at x: otherwise, there will exist ν j = (a j , b j ) such that (x 1 + tν 1 , ..., x N + tν N ) ∈ O N,ǫ for t > 0 small enough, and this implies a 1 > 0, a j+1 > a j and a N < 0 which is impossible.

For k ∈ N * we denote B k = B R k (0, 1) the unit euclidian ball and ϕ k

(z) = 1 V ol(B k ) 1 B k (z).
lem7bis Lemma 4.5 Let ǫ be small. There exists h 0 > 0, c 0 , c 1 > 0 and M ∈ N * such that for all h ∈]0, h 0 ], one has

T M h (x, dy) = µ h (x, dy) + c 0 h -N d ϕ N d ( x -y c 1 h )dy (4.30) eq4.5
where for all x ∈ O N,ǫ , µ h (x, dy) is a positive Borel measure.

Proof. For x, y ∈ O N,ǫ , we set dist(x, y) = sup 1≤i≤N |x iy i |. For N ≥ 1, let us denote by K h,N the kernel given in eq4.1

4.1. It is sufficient to prove the following: for ǫ small, there exists h 0 > 0, c 0 , c 1 > 0 and M(N) ∈ N * such that for all h ∈]0, h 0 ], one has for all non negative function f

K M (N ) h,N (f )(x) ≥ c 0 h -N d y∈O N,ǫ ,dist(y,x)≤c 1 h f (y)dy (4.31) g4
We first remark that it is sufficient to prove the weaker version: for all x 0 ∈ O N,ǫ , there exist M(N, x 0 ), α = α(x 0 ) > 0, c 0 = c 0 (x 0 ) > 0, c 1 = c 1 (x 0 ) > 0, h 0 = h 0 (x 0 ) > 0 such that for all h ∈]0, h 0 ], all x ∈ O N,ǫ and all non negative function f 

dist(x, x 0 ) ≤ 2α =⇒ K M (N,x 0 ) h,N (f )(x) ≥ c 0 h -N d y∈O N,ǫ ,dist(y,x)≤c 1 h f ( 
N,ǫ ⊂ ∪ x 0 ∈F {dist(x, x 0 ) ≤ α(x 0 )}. Let M(N) = sup x 0 ∈F M(N, x 0 ), c ′ i = min x 0 ∈F c i (x 0
) and h ′ 0 = min x 0 ∈F h 0 (x 0 ). One has to check that for any x 0 ∈ F and any x with dist(x, x 0 ) ≤ α(x 0 ), the right inequality in g5 4.32 holds true with M(N) = M(N, x 0 ) + n in place of M(N, x 0 ), and for some constants c 0 , c 1 , h 0 . Let U l be such that dist(x, x 0 ) ≤ α implies x ∈ U l . Let j and Γ + (ν, δ) be given by lemma lem7ter 4.2. Clearly, if f is non negative, one has 4.32 we thus get, with a constant C δ depending only on the δ given by lemma lem7ter

K M (N,x 0 )+1 h,N (f )(x) ≥ 1 N h -d x+σ j (z)∈O N,ǫ ϕ(z/h)K M (N,x 0 ) h,N (f )(x + σ j (z))dz (4.33) g6 For dist(x, x 0 ) ≤ 2α(x 0 ) -c ′ 1 h/2, and |z| ≤ c ′ 1 h/2, z ∈ Γ + (ν, δ), one has dist(x + σ j (z), x 0 ) ≤ 2α(x 0 ) and by g1 ??, x + σ j (z) ∈ O N,ǫ . Moreover, dist(y, x) ≤ c ′ 1 h/2 =⇒ dist(y, x + σ j (z)) ≤ c ′ 1 h. From

4.2, and for

h ≤ h ′ 0 , dist(x, x 0 ) ≤ 2α(x 0 ) -c ′ 1 h/2 =⇒ K M (N,x 0 )+1 h,N (f )(x) ≥ C δ N c ′ 0 h -N d y∈O N,ǫ ,dist(y,x)≤c ′ 1 h/2 f (y)dy (4.34) g7
By induction on n, we thus get

dist(x, x 0 ) ≤ 2α(x 0 ) -c ′ 1 h =⇒ K M (N,x 0 )+n h,N (f )(x) ≥ ( C δ N ) n c ′ 0 h -N d y∈O N,ǫ ,dist(y,x)≤c ′ 1 h 2 n f (y)dy (4.35) g7
Since n is bounded, we get the desired result with h 0 = min(min x 0 ∈F α x 0 /c ′ 1 , h ′ 0 ). To complete the proof, let us show ( 4.2, we can suppose that there exists an open neighbourhood U of x 0 a direction ν ∈ S d-1 and δ > 0 such that ( g1 ??) holds with j = 1. Let us denote x = (x 1 , x ′ ) and

K h,N = K h,N,1 + K h,N,> (4.36) with K h,N,1 f (x) = h -d N (y 1 ,x ′ )∈O N,ǫ ϕ( x 1 -y 1 h )f (y 1 , x ′ )dy 1 . (4.37) We also denote G(ν, δ) = Γ + (ν, δ) ∩ {|x 1 | > δ 2 }.
Then, we have the following sublem7bis Lemma 4.6 For any δ ′ ∈]0, δ/2], there exists C > 0, α > 0, h 0 > 0 and r 0 > 0 such

∀r ∈]0, r 0 ], ∀h ∈]0, h 0 ], ∀x ∈ U ∩ O N,ǫ , ∀x ∈ x + h(G(ν, δ ′ ) × B(0, r) N -1 ) with x′ ∈ O N -1,ǫ , we have x ∈ O N,ǫ and K h,N,> f (x) ≥ CK αh,N -1 (f (x 1 , .))(x ′ ) (4.38) eq:m1
for any non-negative function f . In particular, for all M ∈ N * , there exists C, r 0 , h 0 , a as above such that ∀x ∈ U ∩ O N,ǫ , ∀x ∈ x + h(G(ν, δ ′ ) × B(0, r) N -1 ), we have

K M h,N,> f (x) ≥ CK M αh,N -1 (f (x 1 , .))(x ′ ) (4.39) eq:m2
Proof. Inequality ( eq:m2

4.39) is obtained easily from ( eq:m1 4.38) by induction on M. To prove ( eq:m1 4.38), we observe that for non-negative f and α ∈]0, 1[ we have

K h,N,> f (x) ≥ h -d N N j=2 A j,α,h (x) 
f (x 1 , . . . , y j , . . . , xN )dy j (4.40)

with A j,α,h (x) = {z ∈ Ω, |x j -z| < αh and ∀k = j, |x k -z| > ǫ}. Let B j,α,h (x) = {z ∈ Ω, |x j -z| < αh and ∀k = 1, j, |x k -z| > ǫ}. Then A j,α,h ⊂ B j,α,h and we claim that for α, r > 0 small enough and x ∈

x + h(G(ν, δ ′ ) × B(0, r) N -1 ) with x′ ∈ O N -1,ǫ , we have B j,α,h (x) = A j,α,h (x). Indeed, let x1 = x 1 + hu 1 with u 1 ∈ G(ν, δ ′ ) and x′ ∈ O N -1,ǫ be such that |x j -x j | < hr. Then for z ∈ B j,α,h (x) we have |x 1 -z| = |x 1 -x j + hv 1 | (4.41) with v 1 = u 1 + x j -x j h + xj -z h .
Taking α, r small enough (w.r.t. δ) it follows that v 1 ∈ Γ + (ν, δ). Consequently, Lemma lem7ter 4.2 shows that |x 1 -z| > ǫ and hence z ∈ A j,α,h (x) (the same argument shows that x ∈ O N,ǫ ). Therefore,

K h,N,> f (x) ≥ h -d N N j=2 B j,α,h (x) f (x 1 , . . . , y j , . . . , xN )dy j = N N -1 K αh,N -1 (f (x 1 , .))(x ′ )
(4.42) and the proof of Lemma sublem7bis 4.6 is complete. Using this Lemma we can complete the proof of ( g5 4.32). Let p ∈ N, α ∈]0, α 0 ] and x ∈ O N,ǫ , then

K p+1 h,N f (x) ≥ K h,N,1 K p h,N,> f (x) ≥ h -d N (z 1 ,x ′ )∈O N,ǫ ,z 1 ∈x 1 +hG(ν,δ ′ ) K p h,N,> f (z 1 , x ′ )dz 1 ≥ C h -d N (z 1 ,x ′ )∈O N,ǫ ,z 1 ∈x 1 +hG(ν,δ ′ ) K p αh,N -1 (f (z 1 , .))(x ′ )dz 1 (4.43)
thanks to Lemma sublem7bis 4.6. From the induction hypothesis we can choose p ∈ N so that

K p+1 h,N f (x) ≥ Ch -N d (z 1 ,x ′ )∈O N,ǫ ,z 1 ∈x 1 +hG(ν,δ) |x ′ -y ′ |<αh,y ′ ∈O N-1,ǫ f (z 1 , y ′ )dy ′ dz 1 (4.44)
Hence, for any β ∈]0, 1] we get

K p+2 h,N f (x) ≥ K p+1 h,N K h,N,1 f (x) ≥ Ch -N d D α,β,h (x)
f (y 1 , y ′ )γ h (x, y 1 )dydy ′ We have to show that γ h is bounded from below by a positive constant, uniformly with respect to (x, y 1 ). For this purpose, we observe that for y ∈ D α,β,h (x) and β, δ ′ small enough we have We still denote 0 = ν 0 < ν 1 < ν 2 < . . . the spectrum of |∆| N and m j the multiplicity of ν j . Our main result is the following.

thm3 Theorem 4.1 Let N ≥ 2 be fixed. Let ǫ > 0 be small enough such that proposition prop7 4.1 and lemma lem7bis 4.5 holds true. Let R > 0 be given and β > 0 such that ν j+1ν j > 2β for all j such that ν j+2 ≤ R.

There exists h 0 > 0, δ 0 ∈]0, 1/2[ and constants C i > 0 such that for any h ∈]0, h 0 ], the following holds true.

i) The spectrum of T h is a subset of [-1 + δ 0 , 1], 1 is a simple eigenvalue of T h , and Spec(T h ) ∩ [1δ 0 , 1] is discrete. Moreover,

Spec( 1 -T h h 2 )∩]0, R] ⊂ ∪ j≥1 [ν j -β, ν j + β] ♯Spec( 1 -T h h 2 ) ∩ [ν j -β, ν j + β] = m j ∀ν j ≤ R (4.52) 4.3bis
and for any 0 ≤ λ ≤ δ 0 h -2 , the number of eigenvalues of T h in [1h 2 λ, 1] (with multiplicity) is bounded by C 1 (1 + λ) dN/2 .

ii) The spectral gap g(h) satisfies The rest of this section is devoted to the proof of theorem Let µ h (x, dy) be given by eq4.5

4.30 and µ h (f )(x) = O N,ǫ f (y)µ h (x, dy). Thanks to the positivity of µ h (x, dy), using the Markov property of T M h and Lipschitz-continuity of the boundary, we get for some δ ′ 0 > 0 independant on h > 0 small enough

µ h L ∞ ,L ∞ ≤ 1 -inf x∈O N,ǫ O N,ǫ c 0 h -N d ϕ N d ( x -y c 1 h )dy < 1 -δ ′ 0 (4.55) eq4.8
Since by eq4.5

4.30 µ h is selfadjoint on L 2 (O N,ǫ ), we get also

µ h L 1 ,L 1 ≤ 1 -δ ′ 0 (4.56) eq4.9
and by interpolation it follows that µ h L 2 ,L 2 ≤ 1-δ ′ 0 . In particular the essential spectrum of T M h is contained in [0, 1δ ′ 0 ] so that σ ess (T h ) ⊂ [0, 1 -2δ 0 ] with 2δ 0 = 1 -(1δ ′ 0 ) 1/M . Thus Spec(T h ) ∩ [1δ 0 , 1] is discrete. Let us verify that decreasing δ 0 > 0, we may also assume Spec(T h ) ⊂ [-1 + δ 0 , 1]. (4.57) eq4.10

Thanks to the Markov property of T M h , to prove this, it suffices to find M ∈ 2N + 1 such that Ω Ω (u(x) + u(y)) 2 T M h (x, dy)dx ≥ δ 0 u 2 L 2 (4.58)

for any u ∈ L 2 (Ω). Moreover, thanks to the proof of Lemma 4.1 we define an extension map E : L 2 (O N,ǫ ) → L 2 (B) wich is also bounded from H 1 (O N,ǫ ) into H 1 (B). We denote and the proof is complete.

E h,k (u) = (1 -T k h )u,
Let χ 0 (x) = 1 dist(x,∂O N,ǫ )<2h . The same proof as in section sec3 3 shows that

(1 -χ 0 )Q j,h θ(x) = - α d 2 h 2 ∂ 2 j θ(x) + O L ∞ (h 3 ) (4.73) so that (1 -χ 0 )Q h θ(x) = h 2 |∆| N θ(x) + O L 2 (h 3 ). (4.74)
We study χ 0 Q h θ. As χ 0 L 2 = O(h 1/2 ) it suffices to show that χ 0 Q h θ L ∞ = O(h 2 ). On the other hand, by Taylor expansion, we have Π k =j 1 |x j +hz-x k |>ǫ 1 x j +hz∈Ω z.∂ j θ(x)dy j (4.76) satisfies v L ∞ = O(h). Since dist(support(θ), Γ sing ) > 0, there exists disjoints compact sets F l ⊂ Γ reg,ext,l , and F i,j ⊂ Γ reg,int,(i,j) such that support(θ) ⊂ ∪ l {x, dist(x, F l ) ≤ 4h} ∪ i,j {x, dist(x, F i,j ) ≤ 4h}

χ 0 Q j,
If x ∈ support(θ) is in {x, dist(x, F 1 ) ≤ 4h}, then the same parity arguments as in section 

  Paper of Burdzy and Chen reference coming COAUTHORS SAY A SENTENCE OR TWO ABOUT THE IDEA OF PROOF? In section sec4 4, we return to the hard disc problem showing that the operators and domains involved satisfy our hypothesis. Precisely, in theorem thm3 true in this case.

  µ σ N+1 ≤ ν N +1 + ǫ.Combining this with min1 3.18 and ppm 3.17, we get m
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  Application to random placement of non-overlapping balls sec4 In this section, we suppose that Ω is a bounded Lipschitz stratified connected open subset of R d with d ≥ 2. Let N ∈ N, N ≥ 2 and ǫ > 0 be given. Let O N,ǫ be the open bounded subset of R N d

  prop7

  lem7ter

  it suffices to show that for any x ∈ O N,ǫ there exists a continuous path γ : [0, 1] → O N,ǫ such that γ(0) = x and γ(1) ∈ O N,mǫ .Let x ∈ O N,ǫ be fixed. Thanks to Lemma

  lem7ter

g5 4 .

 4 32) by induction on N. The cas N = 1 is obvious. Suppose that ( g5 4.32) holds for N -1 discs. Let x 0 ∈ O N,ǫ being fixed. Thanks to Lemma

  lem7ter

  (4.45) eq4.38 with D α,β,h (x) = {y ∈ O N,ǫ , |x ′y ′ | < αh, |x 1y 1 | < βh} (4.46) and γ h (x, y 1 ) = h -d (z 1 ,x ′ )∈O N,ǫ ,z 1 ∈x 1 +hG(ν,δ ′ )1 |z 1 -y 1 |<h dz 1 (4.47)

  γ h (x, y 1 ) ≥ Ch -d (z 1 ,x ′ )∈O N,ǫ ,z 1 ∈x 1 +hG(ν,δ ′ ) dz 1 = |u|<α,u∈G(ν,δ ′ ) 1 (x 1 +hu,x ′ )∈O N,ǫ du (4we can consider the Neumann Laplacian |∆| N on O N,ǫ defined by |∆| N = -α d 2N ∆, D(|∆| N ) = {u ∈ H 1 (O N,ǫ ), -∆u ∈ L 2 (O N,ǫ ), ∂ n u| ∂O N,ǫ = 0} (4.51)

  lim h→0 + h -2 g(h) = ν 1 (4.53) gap4and the following estimate holds true for all integer n sup x∈O N,ǫ T n h (x, dy) -dy V ol(O N,ǫ ) T V ≤ C 4 e -ng(h) (4.54) 4.4

  exists M ∈ N such that for any n ∈ N, Ω Ω (u(x) + u(y)) 2 T M +n h (x, dy)dx ≥ c 0 (n)h -N d Ω×Ω (u(x) + u(y)) 2 ϕ N d ( O N,ǫ in a large box B =] -A/2, A/2[ N d and thanks to proposition

  prop7

  h θ(x) = -hχ 0 (x) V ol(B 1 ) |z|<1 Π k =j 1 |x j +hz-x k |>ǫ 1 x j +hz∈Ω z.∂ j θ(x)dy j + O L ∞ (h 2 ) (4.75)Hence, it suffices to show thatv(x) = χ 0 (x) N j=1 |z|<1

  1 θ(x)dz = O(h) (4.77) If x ∈ support(θ) is in {x, dist(x, F 1,2 ) ≤ 4h}, then v(x) = χ 0 (x) |z|<1 z.(∂ 1 θ(x)1 |x 1 +hz-x 2 |>ǫ + ∂ 2 θ(x)1 |x 2 +hz-x 1 |>ǫ )dz (4.78)and the result follows from (x 1x 2 ).(∂ 1 θ -∂ 2 θ)(x) = 0(h) for {x, dist(x, F 1,2 ) ≤ 4h}, since ∂ n θ vanish on the boundary |x 1x 2 | = ǫ.The proof of lemma lem10 4.9 is complete.

  Decreasing α(x 0 ) if necessary, we may assume that any set {dist(x, x 0 ) ≤ 2α(x 0 )} is contained in one of the open set U l of lemma

	Let us verify that	g5 4.32 implies	g4 4.31. lem7ter 4.2.
	There exists a finite set F such that O
			y)dy	(4.32) g5

  u L 2 (O N,ǫ ) (4.60) eq4.12 and we define E h as in section There exist C 0 , h 0 > 0 such that the following holds true for any h ∈]0, h 0 ] and anyu ∈ L 2 (O N,ǫ ) E h (E(u)) ≤ C 0 (E h,M (u) + h 2 u 2 N,ǫ ×O N,ǫ (u(x)u(y)) 2 c 0 h -N d ϕ N d ( xy c 1 h )dydx + h 2 u L 2 (O N,ǫ) ) (4.62) eq4.14

			sec2 2. Moreover the identities ( 2.11), ( 2.5	2.6 2.12) remain true with
	obvious modifications.		
	Proof. Thanks to Lemma	lem1 2.2 we have	L 2 )	(4.61) 4.13
	E h (E(u)) ≤ C 0 (		
	Combined with (	eq4.5 4.30) , this shows that	
	E			

lem8 Lemma 4.7 O h (E(u)) ≤ C 0 ( O N,ǫ ×O N,ǫ (u(x)u(y)) 2 T M h (x, dy)dx + h 2 u L 2 (O N,ǫ ) ) (4.63) eq4.15

(4.64) eq4.16

Proof. Suppose that T h (u) = λu with λ ∈ [1δ 0 , 1], then T M h u = λ M u and thanks to ( eq4.5 4.30), we get 2.4, we can find α > 0 small enough and C > 0 such that the following Nash inequality holds with 1/D = 2 -4/p > 0

From this inequality, we deduce that for k ≥ h -2 , h) . (4.69) eq4.20 and this implies for k ≥ h -2 , since the contributions of T kM 2,h , T kM 3,h are neglectible,

As T h is bounded by 1 on L ∞ we can replace kM by n ≥ h -2 in ( 4.52).The proof of ( 4.3bis 4.52) is the same as the one of Theorem thm2 1.2. Thus, the following lemma will end the proof of theorem thm3 4.1.

) be such that supp(θ) ∩ Γ sing = ∅ and ∂ n θ| Γreg = 0 and denote

) Ω 1 |x j -y|<h Π k =j 1 |x k -y|>ǫ (f (x)f (π j (x) + σ j (y)))dy (4.72)