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Introduction

Let ρ ∈ C 1 (R d ) be a strictly positive bounded function such that dµ = ρ(x)dx is a probability measure. Let h > 0 be a small parameter and B h (x) be the ball of radius h and center x. We consider the natural random walk associated to the density ρ with step h: if the walk is in x at time n, then the position y at time n + 1 is determined by choosing y ∈ R d uniformly with respect to the measure (1.1) t h (x, dy) = ρ(y) µ(B h (x))

1l |x-y|<h dy

The associated random-walk operator is defined by

(1.2) T h f (x) = 1 µ(B h (x)) B h (x) f (x )dµ(x )
for any continuous function f , and the kernel of T h is t h (x, dy). This is clearly a Markov kernel. Introduce the measure

dν h = µ(B h (x))ρ(x) Z h dx
where Z h is chosen so that dν h is a probability on R d . Then, the operator T h is self-adjoint on L 2 (M, dν h ) and the measure dν h is stationary for the kernel t h (x, dy) (this means that T t h (dν h ) = dν h , where T t h is the transpose operator of T h acting on Borel measures).

The aim of this article is to describe the spectrum ot T h and to address the problem of convergence of the iterated operator to the stationary measure. Such problems have been investigated in compact cases in [START_REF] Diaconis | Microlocal analysis for the Metropolis algorithm[END_REF], [START_REF] Lebeau | Semiclassical analysis of a random walk on a manifold[END_REF] and [START_REF] Diaconis | Geometric analysis for the Metropolis algorithm on Lipschitz domains[END_REF], and the link between the spectrum of T h and the Laplacian (with Neumann boundary condition in [START_REF] Diaconis | Microlocal analysis for the Metropolis algorithm[END_REF] and [START_REF] Diaconis | Geometric analysis for the Metropolis algorithm on Lipschitz domains[END_REF]) was etablished. In this paper we investigate the case of such operators on the whole Euclidean space. The main difference with the previous works comes from the lack of compactness due to the fact that R d is unbounded. We will consider densities satisfyng the following assumptions: Case 1: tempered density. A density ρ ∈ C 1 (R d ) is said tempered if there exists a constant C > 0 such that for all x ∈ R d

(1.3) |dρ(x)| ≤ Cρ(x)
We shall say that it is smooth tempered of exponential type if ρ is smooth and if there are some positive numbers (C α ) α∈N d , R > 0, κ 0 > 0, such that

(1.4) ∀|x| ≥ R, |∂ α x ρ(x)| ≤ C α ρ(x) and, if ∆ := - d i=1 ∂ 2
xi is the positive Laplacian, (1.5) ∀|x| ≥ R, -∆ρ(x) ≥ κ 0 ρ(x).

Densities verifying these assumptions can be easily constructed. For instance, if ρ is a smooth non vanishing function such that there exists α, β > 0 such that for any |x| > R we have ρ(x) = βe -α|x| , then the above assumptions are satisfied with κ 0 = α 2 . For densities satisfying (1.4), (1.5), we will define

(1.6) κ = lim R→∞ inf |x|≥R -∆ρ(x) ρ(x) .
The second type of densities we shall consider is the following Case 2: Gaussian density. We assume that ρ(x) = ( α π )

d 2 e -α|x| 2 for some α > 0.

It can be shown that that if ρ satisfies (1.3) or is Gaussian, there exists a constant C > 0 and h 0 > 0 such that (1.7) ∀x ∈ R d , ∀h ∈]0, h 0 ], µ(B h (x)) ≥ Ch d ρ(x).

Let us set m h (x) = µ(B h (x)) and define the functions We will show that A h = 1 -κ 2(d+2) h 2 + O(h 4 ) with κ defined in (1.6).

In order to describe the eigenvalues of T h , let us also introduce the operator (1.10)

L ρ = ∆ + V (x)
with V (x) := -∆ρ(x) ρ(x) . Observe that the essential spectrum of this operator is included in [κ, +∞[ in the tempered case, and empty in the Gaussian case. Moreover, we have the following factorisation:

(1.11) L ρ = d j=1 * j j where j = -∂ xj + ∂x j ρ ρ . This shows that L ρ is non-negative on L 2 (R d ). Moreover, since j u = 0 iff u is proportional to ρ, then 0 is a simple eigenvalue associated to the eigenfunction ρ ∈ L 1 ∩ L ∞ ⊂ L 2 .
We first prove the following result in the tempered case Theorem 1.1. Suppose that ρ is tempered in the sense of (1.3), then:

(i) the essential spectrum of T h on L 2 (R d , dν h ) is contained in [A h M, A h ] where M and A h are defined in (1.9). If in addition A h = lim |x|→∞ a 2 h (x), then σ ess (T h ) = [A h M, A h ]. (ii) If (1.4) and (1.5) hold, then A h = 1 -κ 2(d+2) h 2 + O(h 4
) with κ defined in (1.6), and for all α ∈]0,

1[ there exist C > 0, h 0 > 0 such that, if 0 = µ 0 < µ 1 ≤ µ 2 ≤ . . . ≤ µ k denote the L 2 (R d , dx) eigenvalues of L ρ in [0, ακ] counted with multiplicities, and if 1 = λ 0 (h) > λ 1 (h) ≥ . . . ≥ λ k (h) denote the k largest eigenvalues of T h on L 2 (R n , dν h ) counted
with multiplicities, then for all h ∈]0, h 0 ] and any j = 1, . . . , k,

1 - 1 2(d + 2) µ k h 2 -λ k (h) ≤ Ch 4 .
Observe that if ρ is only tempered, the statement (i) shows that the essential spectrum can be the whole interval [M, 1]: for instance, take a density ρ such that ρ(x) = |x| -m in {|x| > R} for some R > 0 and m > d, then it is easy to check that m h (x)/ρ(x) → 1 as |x| → ∞ and therefore A h = 1 in this case.

Notice also that there are examples of smooth densities of exponential type ρ such that the discrete spectrum of L ρ below its continuous spectrum is non-empty. Indeed, take for instance ρ = e -τ α(x) where τ > 0 and α(x) is smooth, equal to |x| for |x| > 1 and ∇α(0) = 0, then [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF][START_REF] Evans | Lectures on semi-classical analysis[END_REF][START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF] for the theory of semi-classical pseudodifferential operators). Since |∇α| = 1 in |x| > 1 and ∆α = 0 in |x| > 1, the essential spectrum of P τ is [1, ∞), then we can apply Theorem 9.6 of [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF] and the fact that Vol{(x, ξ) ∈ R 2d ; p(x, ξ) ∈ [0, 1 2 ]} > 0 (since ∇α(0) = 0) to conclude that, if τ > 0 is large enough, there exist Cτ d eigenvalues of P τ in [0, 1 2 ] for some C > 0. We also emphasize that the result in Theorem 1.1 is used in a fundamental way in the recent paper [START_REF] Christianson | Random walk on surfaces with hyperbolic cusps[END_REF] to analyze random walks on surface with hyperbolic cusps.

P τ := τ -2 L ρ = τ -2 ∆ + |∇α| 2 + τ -1 ∆α is a τ -1 semi-classical elliptic differential operator with semi-classical principal sym- bol p(x, ξ) = |ξ| 2 + |∇α| 2 (see
If instead ρ is Gaussian, then L ρ = ∆+4α 2 |x| 2 -2dα and its spectrum is discrete σ(L ρ ) = 4αN and the eigenfunctions associated to 4αk have the form H k (x)e -2α|x| 2 for some explicit polynomial H k . We then have Theorem 1.2. Suppose that ρ is Gaussian, then the operator T h is compact and

if 0 = µ 0 < µ 1 ≤ µ 2 ≤ . . . ≤ µ k . . . denote the L 2 (R d , dx) eigenvalues of L ρ and 1 = λ 0 (h) > λ 1 (h) ≥ . . . λ k (h) ≥ . . . those of T h ,
then for K ≥ 0 fixed, there exists C > 0 and h 0 > 0 such that for all h ∈]0, h 0 ] and any k = 1, . . . , K,

(1.12) 1 - 1 2(d + 2) µ k h 2 -λ k (h) ≤ Ch 4 .
Moreover, there exists δ 0 > 0 such that for any λ ∈ [0, δ 0 ], the number

N (λ, h) of eigenvalues of T h in [1 -λ, 1] satisfies (1.13) N (λ, h) ≤ C(1 + λh -2 ) d .
In the last section of this paper, we also give some consequences on the convergence of the kernel of T n h to the stationary measure dν h as n → ∞. In particular we show that, contrary to the compact setting [START_REF] Lebeau | Semiclassical analysis of a random walk on a manifold[END_REF], the convergence in L ∞ norm fails, essentially due to the non-compactness of the space.

These theorems, will be proved by using microlocal analysis. We refer to the books, [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF], [START_REF] Evans | Lectures on semi-classical analysis[END_REF] and [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF] for standard results in this theory. The organisation of the paper is the following. In the next section we study the essential spectrum of T h on L 2 (R d , dν h ). In section 3, we collect some a priori estimates (regularity and decay) on the eigenfunctions of T h . Following the strategy of [START_REF] Lebeau | Semiclassical analysis of a random walk on a manifold[END_REF], we use these estimates in section 4 to prove the above theorems. In last section, we adress the problem of total variation estimates: we show that the convergence to stationarity can not be uniform with respect to the starting point. Considering the case where the starting point x belongs to a ball of radius τ we prove total variation bounds in term of the spectral gap and τ .
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Essential spectrum

We start by studying the essential spectrum of T h in the tempered and Gaussian cases. From the definition of dν h , it is easy to see that there exists some constant

c 1 , c 2 > 0 such that c 1 h d ≤ Z h ≤ c 2 h d . Let us define the operator Ω : L 2 (R d , dx) → L 2 (R d , dν h ) by (2.1) Ωf (x) = Z h m h (x)ρ(x) f (x).
which is unitary, and let Th defined by Th = Ω * T h Ω so that Th f (x) = a h (x)T h (a h f ) with a h defined in (1.8) and (with

α d = Vol(B R d (0, 1))) (2.2) T h g(x) := 1 α d h d |x-y|<h f (y)dy.
Using the semiclassical Fourier transform it is easy to see that

T h = G d (hD x ), with G d (ξ) = 1 α d |z|≤1 e izξ dz.
This function depends only on |ξ|, it is clearly real valued and 

-1 < M ≤ G d (ξ) ≤ 1 for all ξ if M is defined in (1.9).
, y ∈ R d with |x -y| ≤ h -Ch sup z∈B h (x) ρ(z) ≤ ρ(x) -ρ(y) ≤ Ch sup z∈B h (x) ρ(z) and therefore if Ch < 1 (1 -Ch) sup z∈B h (x) ρ(z) ≤ ρ(x) ≤ sup z∈B h (x) ρ(z) which implies ρ(x) 1 - Ch 1 -Ch ≤ ρ(y) ≤ ρ(x) 1 + Ch 1 -Ch .
and thus (1.7).

The function a h is then bounded and A h of (1.9) is well defined. We first prove Proposition 2.1. Suppose that ρ is tempered in the sense of (1.3), then 2 . It then suffices to take the limit as R → ∞. Now if in addition a 2 h (x) has a limit A h when |x| → ∞, we can write

σ ess (T h ) ⊂ [M A h , A h ]. If moreover A h = lim |x|→∞ a 2 h (x),
= b R h T h b R h with b R h = 1l |x|>R a h (x) and since T h is a bounded self-adjoint operator satisfying M ||f || 2 L 2 ≤ T h f, f L 2 , ||T h f || L 2 ≤ ||f || L 2 and a h (x) > 0 we deduce easily that σ ess (S R h ) ⊂ [-M A R h , A R h ] where A R h := sup |x|≥R a h (x)
(2.3) Th = A h T h + h (x)T h a h (x) + A 1 2 h T h h (x) with h (x) := a h (x) -A 1 2
h converging to 0 as |x| → ∞. In particular, using that |G d (ξ)| → 0 when |ξ| → ∞, we deduce that the last two operators in (2.3) are compact on L 2 . Since, T h is a function of the Euclidean Laplacian (or radial Fourier multiplier) the spectrum of T h on L 2 (R d , dx) is absolutely continuous and consists of [M, 1], which is the range of G d (ξ). This achieves the proof since the essential spectrum of T h is that of A h T h by (2.3).

We also describe the asymptotic behaviour of A h : Lemma 2.2. If ρ satisfies (1.4) and (1.5), then the following asymptotic holds as h → 0

A h = 1 - κ 2(d + 2) h 2 + O(h 4 ) where κ = lim inf |x|→∞ -∆ρ(x) ρ(x) . Proof. If ρ is tempered, we expand m h (x) = µ(B h (x)
) with respect to h and use assumption (1.4):

m h (x) = h d |z|<1 ρ(x + hz)dz = α d h d ρ(x) + 1 2 h d+2 i,j ∂ xi ∂ xj ρ(x) |z|≤1 z i z j dz + O(h d+4 ρ 4 ) = α d h d ρ(x) - β d 2d h d+2 ∆ρ(x) + O(h d+4 ρ 4 ) with |ρ 4 (x)| ≤ ρ(x) and β d := |z|<1 |z| 2 dz. Using the definition of a h , it follows from Lemma 3.2 below that (2.4) a 2 h (x) = 1 + h 2 γ d ∆ρ(x) ρ(x) + O(h 4 ) with γ d = β d 2dα d = 1 2(d+2) and the O(h 4 ) is uniform in x ∈ R d . Hence, it follows from (1.6) that A = lim sup |x|→∞ a 2 h (x) = 1 + γ d h 2 lim inf |x|→∞ ∆ρ(x) ρ(x) + O(h 4 )
and the proof is complete.

Remark 2.3. In the tempered case, the operator

γ d L ρ = 1 2(d+2) (∆ + -∆ρ ρ ) has essential spectrum contained in [ κ 2(d+2) , ∞). If in addition κ = lim |x|→∞ -∆ρ ρ , then the essential spectrum is exactly σ ess (L ρ ) = [ κ 2(d+2)
, ∞) by Theorem 13.9 of [START_REF] Hislop | Introduction to spectral theory. With applications to Schrödinger operators[END_REF]. Now for the Gaussian case

Proposition 2.4. If ρ is Gaussian, then T h is a compact operator. Proof. The symbol G d (ξ) of T h is decaying to 0 as |ξ| → 0, a standard argument shows that if lim |x|→∞ a h (x) → 0, then T h a h is compact on L 2 . We write (2.5) m h (x) h d ρ(x) = |z|≤1 e -2hx.z-h 2 |z| 2 dz
and by bounding below this integral by a dz integral on a conic region -z.x > |z|.|x|/2, we see that it converges to ∞ when |x| → ∞, which proves the claim.

Remark 2.5. In the Gaussian case, the operator L ρ = ∆ + 4α 2 |x| 2 -2dα has compact resolvent and discrete spectrum.

Notational convention: For the following sections, all the tempered densities we shall consider will be smooth tempered densities of exponential type (ie. satisfying (1.4) and (1.5)), and therefore we will abuse notation and just call them tempered.

Spectral analysis of T h

We recall here some notations. Let a = a(x, ξ; h) be an h-dependent family of C ∞ (R 2d ) function and m(x, ξ) be an order function as in [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF]. We say that a belongs to the symbol class S(m) if there exists some h 0 > 0 and constants C α,β such that for any α, β ∈ N d , any 0

< h ≤ h 0 |∂ α x ∂ β ξ a(x, ξ; h)| ≤ C α,β m(x, ξ) For any a ∈ S(m), we define Op h (a) by Op h (a)f (x) = 1 (2πh) d e i(x-y).ξ h a(x, ξ; h)f (y)dydξ
The standard theory of such operators is developped in [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF], [START_REF] Evans | Lectures on semi-classical analysis[END_REF], [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF].

3.1. Preliminary estimates. Let us start by some estimates on the symbols of the operator Th , which will be useful to study its eigenfunctions.

Lemma 3.1. The function G d (ξ) belongs to S( ξ -max(1, d-1 2 ) ). Proof. Suppose first that d ≥ 2. It is clear that the function G d is smooth. When |ξ| ≥ 1, one has ∂ β ξ G d (ξ) = 1 α d |z|≤1 (iz) β e izξ dz. Let χ ∈ C ∞ 0 (B R d (0, 1)) be a radial cut-off equal to 1 on B R d (0, 1 2
). Then the non-stationary phase theorem shows that

|z|≤1 χ(z)z β e izξ dz = O(|ξ| -∞ ).
On the other hand,

I χ := |z|≤1 (1 -χ(z))z β e izξ dz = 1 1 2 (1 -χ)(r)r d-1+|β| S d-1
e irωξ ω β dω dr.

For any r ≥ 1 2 the phase ω → ωξ has only two stationary points: these points are non-degenerate so that the stationary phase theorem implies

I χ = O(|ξ| -d-1
2 ). In the case d = 1, the computation is simpler since

G d (ξ) = sin(ξ)
ξ . We leave it to the reader.

We will also need the following result on the function a h . Lemma 3.2. The function a h is smooth and the following estimates hold true:

• if ρ is tempered, then

(3.1) ∀α ∈ N d \ {0}, ∃C α > 0, ∀h ∈]0, 1], |∂ α x a h (x)| ≤ C α h 2 and there exists C > 0 such that (3.2) ∀x ∈ R d , 1 a 2 h (x) -1 - h 2 2(d + 2) -∆ρ ρ ≤ Ch 4
• if ρ is Gaussian, then

(3.3) ∀α ∈ N d , ∃C α > 0, ∀h ∈]0, 1], |∂ α x a h (x)| ≤ C α h |α| . and (3.4) ∀M > 0, ∃C M > 0, ∀|x| < M h -1 , 1 a 2 h (x) -1 - (4α 2 |x| 2 -2dα) 2(d + 2) h 2 ≤ C M |x| 4 h 4 , (3.5) ∃C, R > 0, ∀|x| ≥ R, 1 a 2 h (x) ≥ max(1 + Ch 2 |x| 2 , Ce h|x| ) Proof. It follows from (1.8) that a h (x) = F • g h (x) with F (z) = z -1/2 and g h (x) = m h (x) α d h d ρ(x)
. Following the arguments of the proof of Lemma 2.2, we have when ρ is tempered (using

|z|<1 z i dz = |z|<1 z i z j z k dz = 0) g h (x) = 1 - h 2 2(d + 2) ∆ρ ρ + h 4 α d ρ(x) |z|<1 ρ 4 (x, z)dz = 1 - h 2 2(d + 2) ∆ρ ρ + h 4 r 4 (x) (3.6)
where ρ 4 (x, z) is a function which satisfies for all α ∈ N d :

|∂ α x ρ 4 (x, z)| ≤ C α ρ(x)
uniformly with respect to x ∈ R d , |z| ≤ 1 and r 4 (x) has all its derivatives uniformly bounded on R d . In particular, for any α ∈ N d \ {0}, ∂ α x g h (x) = O(h 2 ). Hence, for h > 0 small enough, Faà di Bruno formula combined with (3.6) shows that a h is a smooth bounded function such that

(3.7) ∀α ∈ N d \ {0}, ∂ α x a h (x) = O(h 2 )
. This shows that a h enjoys estimate (3.1) while (3.2) is a direct consequence of (3.6).

Suppose now that ρ(x) is Gaussian. To enlight the notations, we consider the case α = 1, i.e. ρ(x) = π -d 2 e -|x| 2 . It follows from (2.5) that

g h (x) = 1 α d |z|≤1 e -2hx.z-h 2 |z| 2 dz.
Hence, there exists c 0 > 0 such that for all

x ∈ R d , h ∈]0, 1], g h (x) ≥ c 0 . Moreover, for all α ∈ N d we have ∂ α x g h (x) = 1 α d |z|<1 (-2hz) α e -2hz.
x-h 2 |z| 2 dz so that there exists C α > 0 such that 

(3.8) ∀h ∈]0, 1], ∀x ∈ R d , |∂ α x g h (x)| ≤ C α h |α| |g h (x)|. Using again Faà di Bruno formula, we easily get that a h is a smooth function such that for any α ∈ N d , (3.9) ∂ α x a h (x) = π∈Π |α| C |π| g h (x) -1 2 (2|π|+1) Π B∈π ∂ |B| g h (x
C |π| |g h (x)| -1 2 (2|π|+1) Π B∈π |hg h (x)| |B| ≤ C|a h (x)|h |α| which proves (3.3).
Let us now prove the estimates on a -2 h = g h . The same computation as in the tempered case remains valid if we assume that |hx.z| is bounded, which holds true if h|x| is bounded. This shows (3.4). In order to prove (3.5), we observe that there exist constants c, C > 0 such that for all 0 < h < 1

a h (x) -2 =α -1 d S d-1 0<r≤1 e -2hrx.θ-h 2 r 2 r d-1 drdθ =α -1 d S d-1 0<r≤1 1 + 4r 2 h 2 (x.θ) 2 1 0 (1 -t)e -2thrx.θ dt e -h 2 r 2 r d-1 drdθ ≥1 + 4h 2 α -1 d S d-1 0<r≤1 r 2 (x.θ) 2 1 0 (1 -t)e -2thrx.θ dt e -h 2 r 2 r d-1 drdθ -ch 2 a h (x) -2 ≥1 + Ch 2 |x| 2 -ch 2
for |x| > R with R > 0 large, the last inequality being proved by the same argument as for Proposition 2.4. Enlarging R and modifying C > 0 if necessary, this shows the quadratic bound in (3.5). The exponential bound in (3.5) follows easily from the inequality above, by bounding below the integral by an integral on a region {θ.x/|x| < -(1 -), r ≥ 1 -} for some small > 0.

3.2. Regularity and decay of eigenfunctions. We are now in position to prove the first estimates on the eigenfunctions of Th .

Observe that for any 1/2 > δ > 0 small, there exists

s δ > 0 such that |G d (ξ)| ≤ 1 -2δ when |ξ| 2 ≥ s δ . Lemma 3.3. Let C > 0 and λ h ∈ [1 -Ch 2 , 1
] be an eigenvalue of T h (which can belong to the essential spectrum) in the tempered case, and

λ h ∈ [1 -δ, 1], δ > 0 in the Gaussian case. Let e h ∈ L 2 (R d , dx) satisfy Th e h = λ h e h , e h L 2 (R d ) = 1.
Then e h belongs to all Sobolev spaces and for all s ∈ R

(3.11) e h H s (R d ) = O 1 + 1 -λ h h 2 s 2
.

Moreover,

(3.12) (1 -χ)(h 2 ∆)e h H s (R d ) = O(h ∞ )
where χ ∈ C ∞ 0 (R) is equal to 1 near 0 in the tempered case and χ = 1 on [-s δ , s δ ] in the Gaussian case.

Proof. We use arguments similar to those of [START_REF] Lebeau | Semiclassical analysis of a random walk on a manifold[END_REF], the difference is that now we are working in R d instead of a compact manifold: let us write λ h = 1 -h 2 z h with 0 < z h < κγ d in the tempered case and 0 < z h < δh -2 in the Gaussian case; and start from ( Th -λ h )e h = 0. Since Th = a h T h a h , it follows from Lemmas 3.1 and 3.2 that Th is a semiclassical pseudodifferential operator on R d of order m ≤ -1. In particular, it maps 

L 2 (R d ) into H 1 (R d ) and Th L 2 →H 1 = O(h -1
p h (x, ξ) = a 2 h (x)G d (ξ) + h m r h (x, ξ) for some symbol r h ∈ S( ξ -max(1, d-1 2 ) ) with m = 3 if ρ is tempered and m = 2 if ρ is Gaussian. Suppose that ρ is smooth tempered and let χ ∈ C ∞ 0 (R) be equal to 1 near 0. Since |G d (ξ)| ≤ 1 with G d (ξ) → 0 as |ξ| → ∞ and G d (ξ) = 1 ⇐⇒ ξ = 0,
we deduce that for any cut-off function χ equal to 1 near 0, we have

(1 -χ(ξ))G d (ξ) ≤ (1 -)(1 -χ(ξ))
for some > 0 depending on χ. Since

λ h = 1 + O(h 2 ) and a h = 1 + O(h 2 ), the symbol q h (x, ξ) = (1 -χ(ξ))(λ h -p h (x, ξ)
) is bounded from below by 2 (1 -χ(ξ)) for h > 0 small enough. Moreover it is, up to a lower order symbol, equal to the symbol of (1 -χ(h 2 ∆))(λ h -Th ) and thus by taking (1 -χ) = 1 on the support of (1 -χ), we can construct a parametrix L h with symbol h (x, ξ) ∈ S(1) such that

L h (1 -χ(h 2 ∆))(λ h -Th ) = (1 -χ(h 2 ∆)) + h ∞ Op h (w h )
for some symbol w h ∈ S(1). This clearly shows that

(3.15) (1 -χ(h 2 ∆))e h L 2 = O(h ∞ )
and by interpolation with (3.13) we get

(3.16) (1 -χ(h 2 ∆))e h H s = O(h ∞ ).
It remains to show that χ(h 2 ∆)e h is bounded in H s . We have

(Op h (p h ) -1 + h 2 z h )e h = 0. Let b h (x, ξ) = p h (x, ξ) -1 + h 2 z h , then since z h is bounded, we know from (3.14) that (3.17) b h (x, ξ) = a 2 h (x)G d (ξ) -1 + h 2 r h (x, ξ) for some r h ∈ S 0 (1)
. By Taylor expansion of G d (ξ) at ξ = 0, we see that there exists a smooth function F on R + , strictly positive and such that 1

-G d (ξ) = |ξ| 2 F (|ξ| 2 ). Since a 2 h (x) = 1 + O(h 2 ), we get b h (x, ξ) = -|ξ| 2 F (|ξ| 2 ) + h 2 rh (x, ξ)
with rh ∈ S 0 (1). Combined with (3.15), this shows that for any

χ ∈ C ∞ 0 (R d ) h 2 ∆F (h 2 ∆)χ(h 2 ∆ g )e h = O L 2 (h 2 ).
Since F is strictly positive on the support of χ, we can construct a parametrix like above and obtain that χ(h 2 ∆ g )e h H 2 = O(1). Iterating this process, it follows that the above bounds hold in all Sobolev spaces. Consider now the case of a Gaussian density and let us prove (3.12). For χ ∈ C ∞ 0 (R) equal to 1 on [-s δ , s δ ] (and 0 ≤ χ ≤ 1) we get

(1 -χ)(|ξ| 2 )G d (ξ) ≤ (1 -2δ)(1 -χ)(|ξ| 2 ).
Since we have a h ≤ 1 + O(h 2 ) and λ h ≥ 1 -δ for small h > 0, this shows that 

(1 -χ(|ξ| 2 ))(λ h -p h (x, ξ)) ≥ δ 2 (1 -χ)(|ξ| 2 )
h 2 ∆F (h 2 ∆)e h = (1 -λ h a -2 h (x) + h 2 Op h (r h
))e h for some symbol r ∈ S(1). Taking the scalar product with χ(h 2 ∆) 2 e h and using the fact that Op h (r h ) is bounded on L 2 , we get

h 2 ∆F (h 2 ∆)χ(h 2 ∆)e h , χ(h 2 ∆)e h = (1 -λ h a -2 h (x))χ(h 2 ∆)e h , χ(h 2 ∆)e h + O(h 2 ) = I R (h) + J R (h) + O(h 2 ) (3.19) where I R (h) := ψ R (x)(1 -λ h a -2 h (x))χ(h 2 ∆)e h , χ(h 2 ∆)e h J R (h) := (1 -ψ R (x))(1 -λ h a -2 h (x))χ(h 2 ∆)e h , χ(h 2 ∆)e h with ψ R (x) := 1l |x|≤R . Hence, it follows from (3.4) that I R (h) = O(h 2 R 2 + 1 -λ h ).
On the other hand, setting R 2 = (1 -λ h )/(h 2 ) with > 0 small enough but independent of h, (3.5) gives that 1 -λ h a -2 h (x) ≤ -λ h Ch 2 |x| 2 + (1 -λ h ) < 0 if |x| ≥ R, and hence J R (h) ≤ 0. Combined with the estimate on I R , this shows that

h 2 ∆F (h 2 ∆)χ(h 2 ∆)e h , χ(h 2 ∆)e h = O(1 -λ h ).
Dividing by h 2 and using again the fact that F > 0 we obtain ∆χ(h 2 ∆)e h L 2 = O(1+ 1-λ h h 2 ). Iterating this argument and using interpolation, we obtain the desired estimates for any H s .

In order to control the multiplicity of the eigenvalues as in [START_REF] Lebeau | Semiclassical analysis of a random walk on a manifold[END_REF], we need some compactness of the family (e h ) h . Since R d is not bounded, the regularity of the eigenfunctions is not sufficient and we need some decay property of the eigenfunctions near infinity. For R > 0, let χ R be a smooth function equal to 1 for |x| ≥ R+1 and zero for |x| ≤ R.

Lemma 3.4. Let us assume that ρ is tempered and let

α ∈]0, 1[. Suppose that λ h ∈ [1 -αh 2 κ 2(d+2) , 1] and that e h ∈ L 2 (R d , dx) satisfies Th e h = λ h e h and ||e h || L 2 (R d ) = 1. Let φ ∈ C ∞ 0 (R), then there exists R > 0 such that χ R (x)φ(h 2 ∆)e h L 2 (R d ) = O(h 2 ).
As a by-product, for any s ∈ R, χ R e h goes to 0 in H s (R d ) when h goes to 0, for any s ≥ 0.

Proof. From the preceding Lemma, we know that

(∆F (h 2 ∆) + Op h ( r h ))φ(h 2 ∆ g )e h = O(h ∞ ).
for some r h ∈ S(1). On the other hand, this term can be made more precise : it follows from Lemma 3. 

O(h) = -∆F (h 2 ∆) - 1 2 γ d (V (x)Op h (G d (ξ)) + Op h (G d (ξ))V (x)) + z h φ(h 2 ∆)e h = -(∆F (h 2 ∆) + γ d V (x) -z h )e h + O(h 2 ||e h || H 2 )
with λ h = 1 -h 2 z h and using (3.11), we obtain

(∆ F (h 2 ∆) + V (x) -zh ) fh = O(h) with fh := φ(h 2 ∆ g )e h , zh := z h /γ d and F = F/γ d . Let q h (x, ξ) := |ξ| 2 F (|ξ| 2 ) + V (x) -zh .
Since F ≥ 0, it follows from assumption (1.5) that there exists R > 0 such that for any ξ ∈ R d and any |x| ≥ R, we have

q h (x, ξ) ≥ (1 -α)κ/2 if 1 -λ h ≤ ακh 2 /2(d + 2
). Hence we can build a parametrix for q h on the support of χ R and this shows that χ R fh L 2 = O(h). Using interpolation and the fact that (e h ) h is bounded in H s , we obtain directly the same bounds in H s .

Lemma 3.5. Suppose that ρ is Gaussian. Let δ > 0 and χ ∈ C ∞ 0 (R) be equal to 1 on [-s δ , s δ ], then there exists h 0 such that, for any k, s ∈ N there exists C k,s > 0 such that for all h ≤ h 0 and any eigenfunction

e h ∈ L 2 (R d ) of T h with eigenvalue λ h ∈ [1 -h 2 δ, 1], we have (3.20) x k χ(h 2 ∆)e h H s (R d ) ≤ C k,s χ(h 2 ∆)e h H s+k (R d )
Proof. It follows from (3.18) and (3.12) that

(3.21) (1 -λ h a -2 h (x))χ(h 2 ∆)e h = h 2 Op h (r h )χ(h 2 ∆)∆e h for some r h ∈ S(1). Let R > 0 be sufficiently large so that a -2 h (x) ≥ 1 + Ch 2 |x| 2 for |x| ≥ R. Then, if λ h = 1 -h 2 z h , one has for |x| > R (3.22) -1 + λ h a -2 h (x) ≥ h 2 (C|x| 2 -z h ) ≥ C h 2 (1 + |x| 2 ) for some C > 0 independent of h. We take ψ R ∈ C ∞ 0 (R d
) be equal to 1 for |x| ≥ R + 1 and 0 for |x| ≤ R , then by (3.22) and (3.3), we deduce easily that 1) and therefore

x 2 h 2 (-1 + λ h a -2 h ) -1 ψ R ∈ S(
x 2 ψ R (x)χ(h 2 ∆)e h = Op h ( r h )χ(h 2 ∆)∆e h
for some rh ∈ S(1). Therefore, for any s ≥ 0, we have

x 2 χ(h 2 ∆)e h H s (R d ) ≤ C χ(h 2 ∆)e h H s+2 (R d ) .
Iterating this argument k/2 times and using (3.11), we get (3.20).

4. Proof of Theorem 1.1 and 1.2

4.1. Spectrum localisation. We work as in [START_REF] Lebeau | Semiclassical analysis of a random walk on a manifold[END_REF] and we only give a sketch of the proof since it is rather similar. The main difference with the situation in [START_REF] Lebeau | Semiclassical analysis of a random walk on a manifold[END_REF] is that we work on unbounded domains, so that Sobolev embedding do not provide directly compactness. In both tempered and Gaussian case, we will use the following observation: suppose that ϕ is a smooth function, then it follows from Lemma 3.2 and the expansion

G d (ξ) = 1 -γ d |ξ| 2 + O(|ξ| 4 ) as |ξ| → 0 that (4.1) 1 -Th h 2 ϕ = γ d L ρ ϕ + h 2 ψ where ψ L 2 (R d ) = O( ϕ H 4 (R d ) ) in the tempered case and ψ L 2 (B(0,M h -1 )) = O( |x| 4 ϕ H 4 (B(0,M h -1 +1))
) for any h-independent M > 0 in the Gaussian case.

We start with the case of a tempered density and follow the strategy of [START_REF] Lebeau | Semiclassical analysis of a random walk on a manifold[END_REF]. Since T h and Th are unitarily conjugated by Ω : L 2 (R d , dx) → L 2 (R d , dν h ), the eigenvalues of T h on L 2 (R d , dν h ) (and their multiplicities) are exactly those of Th on L 2 (R d , dx). First, assume that (L ρ -µ)e = 0 for some µ ∈ [0, κ) and e ∈ H 2 (R d ), e L 2 (dx) = 1. Then, e is in fact in C ∞ and using (4.1) with ϕ = e, we get easily

1 -Th h 2 e = γ d µe + O L 2 (h 2 ). Since Th is self-adjoint, this shows that dist(γ d µ, σ(∆ h )) = O(h 2 ) with ∆ h := 1 -T h h 2 , and that there exist C 0 > 0, C 1 > 0, h 0 > 0 such that for all 0 < h ≤ h 0 and µ ∈ σ(L ρ )∩[0, κ-C 1 h 2 ), the number of eigenvalues of ∆ h in [γ d µ-C 0 h 2 , γ d µ+C 0 h 2 ]
is bounded below by the multiplicity of µ.

Conversely, consider an eigenfunction e h of ∆ h corresponding to an eigenvalue z h ∈ [0, γ d κ), then using Lemma (3.3), we get

z h e h = ∆ h e h = γ d L ρ e h + O L 2 (h 2 ).
This shows that all the eigenvalues of ∆ h are at distance at most Ch 2 of the spectrum of γ d L ρ . Let us now consider an orthonormal set of eigenfunctions e j h of ∆ h associated to the eigenvalues

z j h contained in [γ d µ -C 0 h 2 , γ d µ + C 0 h 2 ] for some µ ∈ σ(L ρ ) ∩ [0, ακ],
where with C 0 , C 1 are the constants given above. Let R > 0 be fixed as in Lemma 3.4. From Lemmas 3.4 and 3.3, each eigenfunction can be decomposed as e j h = u j h + v j h with u j h bounded in any H s and supported in B(0, R) and v j h converging to 0 in H s when h goes to 0. Since H s (B(0, R)) is compactly embedded in H 2 for s larger than 2, we can assume (extracting a subsequence if necessary) that the e j h converge to some f j in H 2 (R d , dx) and z j h converges to µ/γ d . Hence, the (f j ) j provide an orthonormal family of eigenfunctions of L ρ associated to the eigenvalue µ. This shows that the number of eigenvalues of

∆ h in [γ d µ -C 0 h 2 , γ d µ + C 0 h 2 ]
is exactly the multplicity of µ as an eigenvalue of L ρ , and achieves the proof of Theorem 1.1.

Notice in particular that our proof does not rule out the possibility of an infinite sequence of eigenvalues z j h for ∆ h converging to the bottom of the essential spectrum κ.

Assume now that ρ is Gaussian and start with (L ρ -µ)e = 0 with e L 2 = 1. It follows from (4.1) that

∆ h e = 1l |x|<h -1 γ d L ρ e + 1l |x|≥h -1 ∆ h e + h 2 ψ with ψ supported in B(0, M h -1 ) and ψ L 2 = O( x 4 e H 4 (B(0,M h -1 +1)) )
. Since e = p(x)e -α|x| 2 for some polynomial p, then ψ L 2 is bounded uniformly with respect to h. The same argument and 1l

|x|≥h -1 ∆ h = 1l |x|≥h -1 ∆ h 1l |x|≥h -1 -h shows that 1l |x|≥h -1 ∆ h e L 2 = O(h -2 e -ch -2 ). This implies that ∆ h e = γ d µe + O L 2 (h 2 ).
Like in the tempered case, it follows that dist(γ d µ, σ(∆ h )) = O(h 2 ) and that for any given L > 0 there exists C 0 > 0, h 0 > 0 such that for all 0 < h ≤ h 0 and all

µ ∈ σ(L ρ ) with µ ≤ L, the number of eigenvalues of ∆ h in [γ d µ -C 0 h 2 , γ d µ + C 0 h 2 ]
is bounded by the multiplicity of µ.

Conversely, suppose now that Th e h = (1 -h 2 γ d z h )e h for some e h ∈ L 2 (R d ) such that e h L 2 = 1 and z h ∈ [0, L], L > 0 being fixed. From Lemmas 3.3 and 3.5, we know that

z h e h = ∆ h e h = L ρ e h + O L 2 (h 2 ), this shows that the distance of the eigenvalues of ∆ h (less than L) to σ(L ρ ) is of order O(h 2 ).
To get the equality between the multiplicities, we work as in the tempered case and consider an orthonormal family of eigenfunctions e j h of ∆ h associated to the eigenvalues

z j h contained in [γ d µ -C 0 h 2 , γ d µ + C 0 h 2 ]
. It follows from Lemmas 3.4 and 3.5 that e j h = u j h + O(h ∞ ) with u j h := χ(h 2 ∆)e j h bounded uniformly with respect to h in x -k H s (R d ) for any k, s ≥ 0. Then the family (u j h ) h>0 is compact in H 2 (R d ) and extracting a subsequence if necessary, we can then assume that both u j h and e j h converge to some

f j in H 2 and z h converges to z ∈ [0, L]. We split u j h into ψ h (x)u j h + (1 -ψ h (x))u j h
where ψ h is smooth, supported in |x| ≤ 1/h and equal to 1 in |x| ≤ 1/2h. In particular we have that

||(1 -ψ h )u j h || H 4 = O(h ∞ ).
On the other hand, it follows from (4.1) that

z j h e j h = ∆ h e j h = ∆ h (ψ h u j h ) + O(h ∞ ) = γ d L ρ (ψ h u j h ) + O(h 2 x 4 ψ h u j h H 4 ) + O(h ∞ ) = γ d L ρ (e j h ) + O(h 2 x 4 e j h L 2 ) + O(h ∞ ) z j h e j h = γ d L ρ (e j h ) + O(h 2 e j h L 2 ) + O(h ∞ )
where we used Lemma 3.5 in the last line. Making h → 0, we show that (f j ) j is an orthonormal family of eigenfunctions of L ρ associated to the eigenvalue z = µ/γ d . This achieves the proof of (1.12). 4.2. The Weyl estimate. It remains to prove the Weyl estimate on the number of eigenvalues in the Gaussian density case. Fix δ > 0 small, then for τ > 0, let us define the operator on R d

P τ = τ (χ 2 ( ∆/τ ) + χ 2 ( |x| 2 /τ ))
where χ ∈ C ∞ ((0, ∞)) is a positive increasing function which satisfies χ(x) = x for x < 1 -δ and χ(x) = 1 for x > 1. Clearly P τ is a self-adjoint bounded operator on L 2 (R d ) with norm less or equal to 2τ and since for any function

f ∈ L 2 such that f is supported in |x| > τ or f is supported in |ξ| > τ , one has P τ f, f ≥ τ ||f || 2 L 2
, the essential spectrum is contained in the interval [τ, 2τ ]. Let Π τ /2 = 1l [0,τ /2] (P τ ) be the orthogonal spectral projector, it is then finite rank by what we just said. For f in the range of 1 -Π τ /2 , we shall prove that there is > 0, C > 0 independent of τ, h such that for τ ≤ h -2 (4.2)

T h f, f ≤ (1 -Cτ h 2 )||f || 2 L 2 . Notice that if (1 -Π τ 2 )f = f , we have P τ f, f ≥ 1 2 τ ||f || 2 L 2 and thus (4.3) ||χ( ∆/τ )f || 2 + ||χ( |x| 2 /τ )f || 2 ≥ 1 2 ||f || 2 .
We first assume that ||χ( |x| 2 /τ )f || 2 ≥ 1 4 ||f || 2 , then using that Th has L 2 → L 2 norm bounded by 1 we deduce (3.4) and (3.5), we also have that there is > 0

a h Th a h f, f = Th a h f, a h f ≤ ||a h f || 2 L 2 . But from
, C > 0 independent of τ, h such that if τ ≤ h -2 , a 2 h (x) ≤ 1 -Ch 2 τ χ( |x| 2 /τ ) 2 .
Thus we obtain by combining with (4.3)

(4.4) a h Th a h f, f ≤ (1 -Ch 2 τ /4)||f || 2 L 2 . Assume now that (4.3) is not true, then since (1 -Π τ /2 )f = f this implies that (4.5) ||χ( ∆/τ )f || 2 ≥ 1 4 ||f || 2
and we shall prove that (4.4) holds as well in that case. Using a 2 h ≤ 1 + Ch 2 for some C > 0, let us write for f ∈ L 2

a h Th a h f, f = a 2 h Th f, f + a h [ Th , a h ]f, f ≤(1 + Ch 2 )|| Th f || L 2 ||f || L 2 + a h [ Th , a h ]f, f . (4.6)
Using the fact that Th = G d (hD x ) is a semiclassical pseudo-differential operator with symbol G d ∈ S(1) defined in (1.8) 

a h [ Th , a h ]f, f ≤ Ch 2 ||f || 2 L 2
for some C > 0 uniform in h and independent of τ . Now using Plancherel,

T 2 h f, f = R d G 2 d (hξ)| f (ξ)| 2 dξ where G d is defined in (1.8). Now since G d (ξ) → 0 as ξ → ∞ and G 2 d (ξ) ≤ 1 -C|ξ| 2
for some C when ξ is small, we directly obtain that there is > 0 independent of τ, h such that if τ ≤ h -2 , the bound

G 2 d (hξ) ≤ 1-Ch 2 τ χ( |ξ| 2 /τ ) 2 . Combined with (4.5), this implies that || Th f || L 2 ≤ (1 -Ch 2 τ )||f || L 2 and
thus, by combining this with (4.6) and (4.7), (4.4) holds if τ > τ 0 for some τ 0 > 0 independent of h and we have proved (4.2).

By the min-max principle, one deduces from (4.2) that the number of eigenvalues of T h in [1 -Ch 2 τ, 1] counted with multiplicites is bounded by the rank of Π τ /2 . Now, to prove the Weyl estimate (1.13), it remains to show that Rank(Π τ /2 ) = O(τ d ). This is a rather standard result (see for instance [4, page 115] for a comparable estimate), but we write some details Let us consider := 1/ √ τ as a semiclassical parameter. The operator P ( ) := 2 P -2 is a semi-classical operator with a symbol in the class S(1) given by p (x, ξ) = χ 2 (|ξ|) + χ( |x|), more precisely P ( ) is the Weyl quantization of the symbol p (x, ξ). Let f ∈ C ∞ 0 (R) be such that f (s) = 1 for |s| ≤ 1, f (s) = 0 for |s| ≥ 2 and 0 ≤ f ≤ 1. Consider the harmonic oscillator on R d , H = ∆ + |x| 2 and define the operator

(4.8) Π H = f ( 2 H).
Then Π H is a non-negative self-adjoint operator, its norm is bounded by 1, its rank satisfies rank(Π H ) = O( -2d ). From the min-max principle, to prove a Weyl estimate for P ( ), it suffices to show that for all u ∈ L 2 (4.9)

P ( )u, u + Π H u, u ≥ c
for some c > 0. First, we claim that the operator Π H can be written under the form

(4.10) Π H = Op (f ( 2 |x| 2 + |ξ| 2 )) + R , where ||R || L 2 →L 2 = O( ).
Let Ω be a fixed compact subset of C whose intersection with R contains supp(f ). Then, it is easy to check that for all s ∈ Ω ∩ (C \ R)

( 2 H -s)Op 1 2 |x| 2 + |ξ| 2 -s = 1 + Op (q (x, ξ; s))
for some symbol q (x, ξ; s) ∈ S(1), satisfying for any α, β

|∂ α x ∂ β ξ q (x, ξ; s)| ≤ C α,β |Im(s)| -3-|α|-|β|
for some C α,β uniform in h, s. Then this implies

( 2 H -s) -1 = Op 1 2 |x| 2 + |ξ| 2 -s -( 2 H -s) -1 Op (q (x, ξ; s))
but by the Calderon-Vaillancourt theorem and the spectral theorem for H, we deduce that

(4.11) ( 2 H -s) -1 = Op 1 2 |x| 2 + |ξ| 2 -s + W
for some bounded operator W on L 2 with norm O( |Im(s)| -N ) for some N depending only on the dimension d. It remains to apply Helffer-Sjöstrand formula [4, Th 8

.1] with f ∈ C ∞ 0 (Ω) an almost analytic extension of f f ( 2 H) = 1 2iπ C ∂ f (s)( 2 H -s) -1 ds ∧ ds
and we deduce directly (4.10) from (4.11). Observe that the symbol of P ( ) + Π H satisfies that there exists C > 0 such that

χ 2 (|ξ|) + χ 2 ( |x|) + f ( 2 |x| 2 + |ξ| 2 ) ≥ C
for all 0 < ≤ 0 . Therefore, by Gärding inequality, (4.9) is satisfied for some c > 0, and using the min-max principle, this implies easily that the number of eigenvalues of P ( ) less or equal to C/2 is bounded above by rank(Π H ) = O( -2d ), and this concludes the proof of the Weyl estimate for T h .

Convergence to stationarity

In this section, we study the convergence of the iterated kernel T n h (x, dy) towards its stationnary measure dν h when n goes to infinity. The measure dν h is associated to the orthogonal projection Π 0,h onto constant functions in L 2 (dν h ):

(5.1) Π 0,h (f ) = R d f (y)dν h (y)
The following proposition gives a convergence result in L 2 norm.

Proposition 5.1. Let α > 0 be fixed. There exists C > 0 and h 0 > 0 such that for all h ∈]0, h 0 ] and all n ∈ N, we have CG:rappeler ce qu'est µ1

(5.2)

T n h -Π 0,h L 2 (dν h )→L 2 (dν h ) ≤ Ce -nh 2 min(µ1,(1-α)κ)
. Proof. This is a direct consequence of the spectral theorem and Theorems 1.1, 1.2.

Let us now introduce the total variation distance, which is much stronger than the L 2 norm. If µ and ν are two probability measures on a set E, their total variation distance is defined by

µ -ν T V = sup A |µ(A) -ν(A)|
where the sup is taken over all measurable sets. Then, a standard computation shows that

µ -ν T V = 1 2 sup f L ∞ =1 |µ(f ) -ν(f )|
The following theorem shows that the convegence in total variation distance can not be uniform with respect to the starting point x. This has to be compared with the results in the case of compact state space [START_REF] Diaconis | Microlocal analysis for the Metropolis algorithm[END_REF], [START_REF] Diaconis | Geometric analysis for the Metropolis algorithm on Lipschitz domains[END_REF] and [START_REF] Lebeau | Semiclassical analysis of a random walk on a manifold[END_REF] where the convergence is uniform in x.

Theorem 5.2. There exists C > 0 such that for any n ∈ N, h ∈]0, 1], τ > 0 and |x| ≥ τ + (n + 1)h, we have

(5.3) T n h (x, dy) -dν h T V ≥ 1 -Cp(τ )
where p(τ ) = e -2ατ (τ -h) if ρ = βe -α|x| 2 is Gaussian and p(τ ) = |y|≥τ ρ(y) 2 dy if ρ is tempered.

Proof. Let τ > 0 and n ∈ N. Consider the function

f τ (x) = 1l [τ,+∞[ (|x|) -1l [0,τ [ (|x|) = -1 + 2 1l [τ,+∞[ (|x|). (5.4)
For x ∈ R d such that |x| ≥ τ + (n + 1)h, thanks to finite speed propagation we have (5.5)

T n h f τ (x) = 1.

On the other hand, we also have with p(τ ) = e -2ατ (τ -h) . Using again (5.5), this shows the anounced result in the Gaussian case.

In the following theorem, g(h) = 1 -λ 1 (h) denotes the spectral gap of T h , whose asymptotics is given in Theorems 1.1 and 1.2. where q(τ, h) = e ατ (τ +3h) if ρ = βe -α|x| 2 is Gaussian and q(τ, h) = h -d 2 sup |x|<τ

1 ρ(x)
if ρ is tempered.

Proof. Assume that h 0 > 0 is such that the results of the previous section hold true for h ∈]0, h 0 ]. Observe that sup |x|≤τ T n h (x, dy) -

dν h T V = 1 2 sup |x|≤τ sup f L ∞ =1 |T n h f (x) -Π 0,h f | = 1 2 T n h -Π 0,h L ∞ (R d )→L ∞ (|x|≤τ ) .
(5.9)

Suppose first that ρ is tempered and denote B τ the ball of radius τ centred in 0 and

I n (τ, h) = T n h -Π 0,h L ∞ (R d )→L ∞ (Bτ ) .
Then, denoting L 2 (dν h ) for L 2 (R d , dν h ),

I n (τ, h) ≤ T h L 2 (dν h )→L ∞ (Bτ ) T n-2 h -Π 0,h L 2 (dν h )→L 2 (dν h ) T h L ∞ (R d )→L 2 (dν h )
≤ T h L 2 (dν h )→L ∞ (Bτ ) e -(n-2)g(h)

(5.10)

where we have used Proposition 5.1 and the fact that T h L ∞ (R d )→L 2 (dν h ) = 1.

To estimate T h from L 2 (dν h ) into L ∞ (B τ ) we consider f ∈ L 2 (dν h ) such that f L 2 (dν h ) = 1. Then,

|T h f (x)| ≤ 1 m h (x) ( |x-y|<h Z 2 h m h (y) 2 dν h ) 1 2
≤ Z Suppose now that ρ = βe -α|x| 2 is Gaussian. Since T h is Markov and g(h) is of order h 2 , we can assume n > h -2 . For k ∈ N let σ k (h) = 1-λ k (h)

h 2
, where 1 = λ 0 (h) > λ 1 (h) ≥ λ 2 (h) ≥ . . . ≥ λ k (h) denote the eigenvalues of T h . Denote also e k,h the eigenvector associated to λ k (h) normalized in L 2 (dν h ) and Π k,h =

., e k,h L 2 (dν h ) e k,h the associated projector. We write the eigenvalues under the form λ k (h) = 1 -h 2 σ k (h), then the spectral gap g(h) = h 2 σ 1 (h). Let δ > 0 and decompose T h = T h,1 + T h,2 with (5.12)

T h,1 = σ1(h)≤σ k (h)<(1-δ)h -2
(1 -h 2 σ k (h))Π k,h .

From the spectral theorem, we deduce that T n- 

(1. 8 )

 8 a h (x) := (α d h d ρ(x)/m h (x)) 1/2 , G d (ξ) = 1 α d |z|≤1 e izξ dz where α d := Vol(B R d (0, 1)). Notice that G d is a real valued function bounded above by 1 and below by some M > -1, then define (1.9) A h := lim R→∞ sup |x|≥R a 2 h (x), M := min ξ∈R n G d (ξ) > -1.

Π 2 |y|≥τ 6 )

 26 0,h f τ = R d f τ (y)dν h (y) = -1 + If ρ is tempered, then m h (y) ≤ Ch d ρ(y) for some constant C > 0. Hence, Π 0,h f τ ≤ -1 + Cp(τ ) with p(τ ) = |y|≥τ ρ(y)2 dy. Combined with(5.5), this shows the anounced result in the tempered case.Suppose now that ρ(x) = βe -α|x| 2 is Gaussian for some α, β > 0. Then m h (y) ≤ Ch d e -α|y| 2 +2hα|y| for any h ∈]0, 1]. Hence, (5.7) Π 0,h f τ ≤ -1 + C |y|≥τ e -2α(|y| 2 -h|y|) dy ≤ -1 + Cp(τ )
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 53 There exists C > 0 and h 0 > 0 such that for any n ∈ N, h ∈]0, h 0 ], dy) -dν h T V ≤ Cq(τ, h)e -ng(h) 

  ρ is tempered we have m h (z) ≥ Ch d ρ(z) for some C > 0 and we deduce from the above estimate that |T h f (x)| ≤ C/(h d 2 ρ(x)). Taking the supremum over x ∈ B τ we obtain the announced result in the tempered case.

  Let R > 0, then the operator Th can be written under the form Th = 1l |x|>R Th 1l |x|>R + 1l R<|x|<R+h Th 1l |x|<R + 1l |x|<R Th 1l R<|x|<R+h since Th increases support by a set of diameter at most h. The kernels of the last two operators in the right hand side is in L 2 (R d × R d , dx ⊗ dx), and thus these operators are compact. We thus deduce that the essential spectrum of Th is given by that of S R h = 1l |x|>R Th 1l |x|>R . Since S R h

	then the inclusion above is an equal-
	ity.
	Proof.

  for h small and (3.15), (3.16) are still valid. Let us prove (3.11). By definition, we have Op h (b h )e h = 0 with b h (x, ξ) = a 2

h (x)G d (ξ) -λ h + h 2 r h (x, ξ) for some r h ∈ S(1). Thanks to (3.10), we have

|∂ α x r h (x, ξ)| ≤ C α |a 2 h (x)| for any α and |∂ α x (a -2 h r h (x, ξ))| ≤ C α .

Using again the structure of G d and dividing by a 2 h , it follows that

(3.18) 

  and the estimates |∂ α x a h | = O(h) if |α| > 0 of Lemma 3.2, we deduce from the composition law of semiclassical pseudo-differential operators that [ Th , a h ] = h 2 Op h (c h ) where c h ∈ S(1) is a uniformly bounded symbol in h. Therefore by Calderón-Vaillancourt theorem, ||a h [ Th , a h ]|| L 2 →L 2 = O(h 2 ) and thus

	(4.7)

  →L 2 ≤ C(1 -δ) n . On the other hand, for ρ Gaussian, we have m h (z) ≥ Ch d ρ(z)e -2hα|z| . Combining this estimate with (5.11), we get (5.13)T h L 2 (R d )→L ∞ (Bτ ) ≤ Ch -d 2 e ατ (τ +3h) . = T h T n-2 h,2T h , we can combine this with the L 2 estimate, to get (5.14)T n h,2 L ∞ (R d )→L ∞ (Bτ ) ≤ Ch -d 2 e ατ (τ +3h) (1 -δ) n ≤ q(τ, h)e -ng(h) since h -d 2 (1 -δ) n e -ng(h) . Hence, it remains to study T n h,1 . Since dν h is a probability, then(5.15) Π k,h L ∞ (R d )→L ∞ (Bτ ) ≤ e k,h L ∞ (Bτ ) e k,h L 1 (dν h ) ≤ e k,h L ∞ (Bτ ) .

	1 L 2 Since T n h,2 h,2

From Lemma 3.3 and Sobolev embedding, we know that Ω

Using this estimate, we get (5.17)

Using the Weyl estimate (1.13) and the same argument as in [START_REF] Lebeau | Semiclassical analysis of a random walk on a manifold[END_REF], we get (5.18)

for some N > 0. This completes the proof in the Gaussian case.