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THE BAND SPECTRUM OF THE PERIODIC

AIRY-SCHRÖDINGER OPERATOR ON THE REAL LINE

H. BOUMAZA AND O. LAFITTE

A tribute to Louis Boutet de Monvel (1941-2014)

Abstract. We introduce the periodic Airy-Schrödinger operator and we study

its band spectrum. This is an example of an explicitely solvable model with a
periodic potential which is not differentiable at its minima and maxima. We

define a “classical regime”, a “semiclassical regime” and a “semiclassical limit”.

We prove that there exists an explicit constant, which is a zero of a classical
function, which marks the transition between the classical and semiclassical

regimes. We completely determine the behaviour of the edges of the first spec-

tral band with respect to our semiclassical parameter. Then, we investigate
the spectral bands situated in the range of the potential. In the semiclassical

regime, we prove precise estimates on the widths of the spectral bands and

the spectral gaps and we determine an upper bound on the spectral density in
this range. Finally, in the semiclassical limit, we get asymptotics expansions

of the edges of the spectral bands and thus of the widths of the spectral bands

and the spectral gaps.
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1. The model, its canonical solutions and the semiclassical
parameter

1.1. The periodic Airy-Schrödinger operator. Let 2L0 ∈ R∗+ be a character-
istic length modelling the distance between two ions in a one dimensional periodic
lattice of ions. The motion of electrons in this lattice can be studied through the
following 2L0-periodic Schrödinger operator acting on the Sobolev space H2(R),

H = − ~2

2m

d2

dx2
+ V, (1)

where V is the 2L0-periodic function on R defined by

∀x ∈ [−L0, L0], V (x) = V0

( |x|
L0
− 1
)
,

V0 ∈ R∗+ being a reference potential. The ions, in this model, are located at points
2nL0 for n ∈ Z, this points corresponding to the minima of the potential V .
A first important observation is that V is not differentiable on its minima and
maxima points.

We call H the periodic Airy-Schrödinger operator on R.

The classical theory (Reed and Simon, [26]) asserts that the operator H, like any pe-
riodic operator, has purely absolutely continuous spectrum and that this spectrum
is the union of spectral bands:

σ(H) =
⋃
p≥0

[Epmin, E
p
max] ,

where Epmin and Epmax are the spectral band edges and the intervals (Epmax, E
p+1
min )

are the spectral gaps. We will precise these notations and characterize these spectral
band edges in Section 3.

A classical analysis is the calculation of the bands near the minimum of the poten-
tial, −V0. We will describe, more precisely, the bands whose intersection with the
range of V is not empty. We are able to count the number of spectral bands in
[−V0, 0], the range of the potential V , for any value of a dimensionless parameter
defined in (4), and to describe precisely these spectral bands.
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1.2. The semiclassical parameter. As V is continuous and bounded, a solution
ψ of the equation:

− ~2

2m
ψ′′ + V (x)ψ = Eψ (2)

satisfies ψ ∈ C1(R).
A crucial remark is the following: as V ′ is piecewise constant, in our case V ′(x) =
± V0

L0
for all x /∈ L0Z, one recognizes in (2), after rescaling, the celebrated Airy

equation : u′′ = xu.

On the interval [0, L0], the rescaling is done through a parameter θ given as the
unique real number such that

− ~2

2m
θ2
V 2
0

L2
0

(θ(V (x)− E)) + V (x)− E = 0,

namely

θ =

(
2mL2

0

~2V 2
0

) 1
3

. (3)

Note that θV (x) is dimensionless for all values of x ∈ R and thus we introduce our
dimensionless semiclassical parameter:

θV0 =

(
2mL2

0V0
~2

) 1
3

. (4)

This semiclassical parameter θV0 allows to define different types of regimes and
limits in which we study the spectral properties of the periodic Airy-Schrödinger
operator. Recall that the range of the potential V is the interval [−V0, 0].

Definition 1. The operator H is said to be:

(1) in the semiclassical limit when the semiclassical parameter θV0 tends to
infinity ;

(2) in the semiclassical regime when there exists E ∈ [E0
min, 0] such that

E /∈ σ(H) ;

(3) in the classical limit when the semiclassical parameter θV0 tends to 0 ;

(4) in the classical regime when σ(H) ∩ [−V0, 0] = [E0
min, 0].

Note that this definition of the semiclassical limit corresponds to the usual semi-
classical limit for which “~ tends to 0”, since θV0 and ~ satisfy (4).

For any E > −V0, an electron admits a classical trajectory which is solution of the
ordinary differential equation 1

2mẋ
2 + V (x) = E (see [2]). In the classical regime,

the equation (2) also has a non-trivial solution for any E ∈ [E0
min, 0]. This solution

corresponds to an electron which scatters through the lattice since the spectrum
of H is absolutely continuous. Although the classical trajectory of this electron
is trapped (since E ≤ 0), the tunneling effect allows the quantum diffusion of the
electron.

In the semiclassical regime, there exists an energy E ∈ [E0
min, 0] which lies in a

spectral gap of H. For this “forbidden” energy, one could still have solutions of (2),
but these solutions are no longer in H2(R) and not even in L2(R). To be able to
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interpret these solutions as probability densities of presence of a particle, one need
to perform a cut-off localized closely to a minimum of the potential. It leads to the
existence of quantum trapped modes for which there is no quantum diffusion since
there is no tunneling effect.

In the classical regime there is quantum diffusion at every energy in the range of
the potential while in this range, in the semiclassical limit, there is no longer any
quantum diffusion and there remain only trapped modes (Corollary 2 and Appendix
C). Since the semiclassical regime marks the appearance of some trapped mode in
the range of the potential, it is an intermediate regime between the classical one
and the semiclassical limit.

Differences between the classical regime and the quantum regime are discussed
through two examples in [24]. For general references about semiclassical analysis
we refer to the textbooks [8, 18, 30].

We use the semiclassical parameter θV0 to rewrite the periodic Airy-Schrödinger
operator in two different forms which recall operators studied in the classical liter-
ature ([13, 19]). If f is a function defined on an interval I of length T , let f#T be
the periodic function of period T which coincide with f on T . Then, the equation
(2) is equivalent to

− d2

dx2
ψ + (|x+ θV0| − θV0)#(2θV0)ψ = θEψ (5)

or

−h2 d2

dz2
φ+ (|z + 1| − 1)#2φ =

θE

θV0
φ with h = (θV0)−

1
3 . (6)

We will study in the sequel two different cases: −θE bounded and θV0 tends to
infinity for the first case and −θV0 − θE bounded and θV0 tends to infinity for the
second one. The first case studies the spectrum of H near the maximum of the
potential V and corresponds to [19]. The second case is the study of the bottom of
the spectrum and corresponds to [13].

Our study of the semiclassical regime of the periodic Airy-Schrödinger operator was
first motivated by giving a rigourous treatment of the numerical results in [5], a
paper which deals with the question of quark confinement. It was also motivated by
previous results of one of the authors on the semiclassical analysis of the Rayleigh-
Taylor instability [7, 14, 17]. Note that the periodic Airy-Schrödinger model is
also closely related with an infinite periodized sawtooth junction PN in photonic
crystals, giving an explicitly solvable situation in a quantum setting (see [20]).

After a thorough study of the periodic Airy-Schrödinger operator, we deduced that
this model gives, up to our knowledge, a first example of an operator for which
one can give an explicit value of the semiclassical parameter for which a transition
between the classical and the semiclassical regimes occurs. This special value of
the semiclassical parameter is characterized as a zero of the derivative of one of
the canonical solution of the Airy equation. Moreover, we identified a sequence
of values of this semiclassical parameter which counts the number of bands in the
range of the potential.
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1.3. The canonical solutions of the Airy equation. Let u and v be the canon-
ical solutions of the Airy equation, satisfying

u(0) = 1, u′(0) = 0 and v(0) = 0, v′(0) = 1.

In particular, the Wronskian of u and v, uv′ − u′v, is constant and equal to 1.
The Airy function Ai plays a very special role for the ordinary differential equation
u′′ = xu. It generates the unique family of subdominant solutions of this Sturmian
equation. It is also the unique solution of the Airy equation which is in S ′(R) and

such that Âi(0) = 1. The function Bi is the solution of the Airy equation satisfying

the initial conditions Bi(0) =
√

3Ai(0) and Bi′(0) = −
√

3Ai′(0). One has the
expression of u and v in terms of the classical Airy functions Ai and Bi:

∀x ∈ R, u(x) = π(Bi′(0)Ai(x)−Ai′(0)Bi(x))

and

∀x ∈ R, v(x) = π(Ai(0)Bi(x)−Bi(0)Ai(x))

Both u and v are analytic functions on R. Moreover, u is strictly decreasing and
negative on [0,+∞[ and v is strictly increasing and positive on (0,+∞). Thus, the
zeroes of u, v and their derivatives are all non-positive real numbers.

Notation. We denote by

• {−c̃2j}j≥0 the set of the zeroes of u,
• {−c̃2j+1}j≥0 ∪ {0} the set of the zeroes of u′,
• {−c2j+1}j≥0 ∪ {0} the set of the zeroes of v,
• {−c2j}j≥0 the set of the zeroes of v′.

This definition is precised in Section 4.2.

An important property of these zeroes, which is proven in Corollary 3, is:

∀k ≥ 0, −c̃k < −ck.

Approximate values of the ck and c̃k can be given. For example,

c0 ' 1.515, c̃0 ' 1.986, c1 ' 2.666, c̃1 ' 2.948.

2. Main results

2.1. The first spectral band in the classical and semiclassical regimes. For
the parameter θV0, the value c0 marks the transition between two different regimes
of the system: the classical and the semiclassical regimes. The following result gives
a precise version of this statement.

Theorem 1. For θV0 ≤ c0, the only gap in [−V0, 0] is the ”ground state gap”
[−V0, E0

min]. The first non trivial gap intersects [−V0, 0] as soon as θV0 > c0.

Thus, the semiclassical regime is characterized by the inequality 1
θV0

< 1
c0

while the

classical regime is characterized by 1
θV0
≥ 1

c0
.

Two θV0-dependent integers are of interest in this paper:
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(1) the unique integer p0 such that

c̃p0+1 − c̃p0 < θV0 ≤ c̃p0 − c̃p0−1 when θV0 < c0; (7)

(2) the unique integer k0 such that

ck0 < θV0 < c̃k0 or c̃k0 < θV0 < ck0+1 when θV0 > c0. (8)

The integers p0 and k0 determine the regions in which the spectral bands are,
respectively in the classical and the semiclassical regimes.

In the classical limit, the first spectral band tends to cover all the interval [−V0

2 ,+∞).

Theorem 2. When V0 is fixed,

lim
θ→0

E0
min = −V0

2
and lim

θ→0
E0

max = +∞.

One can actually get much more precise estimates of the rescaled ground state
θE0

min in both classical and semiclassical regimes. Before stating them, we need to
introduce notations for the zeroes of the Airy function Ai and its derivative.

Notation. We denote by {−aj}j≥1 the set of the zeroes of Ai and by {−ãj}j≥1
the set of the zeroes of Ai′ where the real numbers −aj and −ãj are arranged in
decreasing order. These sets are both subsets of (−∞, 0]. Moreover, for every j ≥ 1,
−aj ∈ (−ãj+1,−ãj).

We set α = − Ai(0)
Ai′(0) > 0. The number α is the inverse of the slope at 0 of the Airy

function Ai. An approximate value of α is: α ' 1, 372.

Theorem 3. We have the following estimates on θE0
min:

(1) For every θV0 > 0

−θV0 < θE0
min < min

(
− θV0

2
, −θV0 + ã1

)
. (9)

(2) When θV0 tends to +∞,

θE0
min = −θV0 + ã1 − α

√
3

(u′(−ã1))2

ã1
e−

4
3 (θV0−ã1)

3
2
(

1 +O
(

(θV0 − ã1)−
3
2

))
.

(3) When θV0 tends to 0,

θE0
min = −θV0

2
− 1

120
(θV0)4 +O((θV0)7). (10)

The proof of this Theorem is described in Section 6.2.

Remark. The value −V0

2 which appears in the last point is the mean value of the
periodic potential V .

2.2. An associated multidimensional model. Let d ≥ 1 an integer. The results
on E0

min give us a precise description of the spectrum of the following periodic
operator on Rd associated to H:

Hd = − ~2

2m
∆d + Vd acting on H2(Rd), (11)
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where ∆d is the Laplacian on Rd and Vd is the maximal multiplication operator by
the function defined by

∀(x1, . . . xd) ∈ Rd, Vd(x1, . . . , xd) = V (x1).

Proposition 1. If σac(Hd) denote the absolutely continuous spectrum of Hd, then

σ(Hd) = σac(Hd) = [E0
min,+∞).

Since σ(Hd) depends only on E0
min, Theorem 3 gives us a complete description of

the behaviour of this spectrum with respect to θV0.

2.3. Spectral bands in the range of V in the semiclassical regime. We
have estimates on the widths of the spectral bands and the spectral gaps which are
located in the range of V .

Let p ≥ 0 an integer and denote by δp the width of the p-th spectral band and by γp
the width of the p-th spectral gap with δp = Epmax − E

p
min and γp = Ep+1

min − Epmax.

Let I be the strictly decreasing function defined on [1,+∞) by

∀y ≥ 1, I(y) =
(

9

4

) 2
3 y

3
2 + 1

y2 + y + 1
.

Theorem 4. Let θV0 > c0 and k0 introduced in (8).

(1) The k0 first spectral bands are included in the range of V , [−V0, 0].
(2) One has, for every p ∈ {2, . . . , k0},

0 < θδp ≤
(
π

3
+

7

3π

p+ 1
3

p(p+ 2
3 )

)(
3

π

) 1
3 1

p
1
3

, (12)

and for every p ∈ {2, . . . , k0 − 1},

0 < I

((
7

6

) 2
3

)
2

1
3π

2
3

9

1

(p+ 1)
1
3

< θγp ≤
(
π +

7

3π

p

p2 − 1

)(
3

π

) 1
3 1

(p− 1)
1
3

. (13)

In particular, all the gaps in σ(H) are open.

Note that we do not have a lower bound of θδp. A still open conjecture is wether
or not θδp has an exponential lower bound.
The fact that all the gaps are open is also a consequence of general results which
states that the potentials for which one has a finite number of gaps are analytic
functions (see [28] for references on the topic and a discussion of the results of
Skriganov).
One cannot expect an upper bound in (13) which is smaller than any power of p
since, by results of Hochstadt, it would imply that V is a smooth function (see
[16]). Moreover, an exponentially small upper bound of θγp is characteristic from
the analyticity of V (see [29]). For general results on singular potentials for the Hill
equation, we refer to [9].

The inequality (12) implies an upper bound for the spectral density in the range
of the potential V in the semiclassical limit. Let k0(θV0) be the integer defined in
(8). For any θV0 > c0 we denote by DθV0

the sum of the lengths of the k0(θV0) first
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rescaled spectral bands (which are all included in the range of θV ) divided by the
length of the range of θV :

∀θV0 > c0, DθV0
=

1

θV0

k0(θV0)∑
p=2

θδp.

Corollary 1. When θV0 tends to infinity, DθV0
admits a limit denoted by DV .

Moreover,

0 < DV ≤
(

2

3

) 1
3

. (14)

The limit DV can be interpreted as the spectral density in the range of the potential
V in the semiclassical limit.

Note that the number of gaps intersecting [−V0, 0] has a jump for the semiclassical
parameter at any number of the sequence (ck)k≥0. To complete the first point
of Theorem 4 we observe that the roots of the canonical solutions of the Airy
equation and their derivatives characterize the values of the asymptotic parameter
θV0 for which a spectral band either enters in the range of the potential [−V0, 0] or
completes its entrance:

Theorem 5. There exists a unique spectral band for which either the upper or the
lower edge is equal to 0 if and only if θV0 ∈ {cp, c̃p}p≥0.

For any function f , let Z(f) denotes the set of the zeroes of f . Then, Theorem 5
implies that:

Z (θV0 7→ θEpmax(θV0)) = Z(v) ∪ Z(v′)

and

Z
(
θV0 7→ θEp+1

min (θV0)
)

= Z(u) ∪ Z(u′).

2.4. Spectral bands and spectral gaps in the semiclassical limit. Thanks
to the explicit form of the bands, other asymptotic formulas can be proven.

Notation. Let j ≥ 0 and define the real numbers a2j = −ãj+1 and a2j+1 = −aj+1.

Theorem 6. Let p ≥ 0. The rescaled and shifted p-th spectral band,

[θV0 + θEpmin, θV0 + θEpmax]

asymptotically approaches the value ap. Moreover, in the limit when θV0 tends to
infinity, its width is,

θδ2j = 2α
√

3
(u′(−ãj+1))2

ãj+1
e−

4
3 (θV0−ãj+1)

3
2
(

1 +O
(

(θV0 − ãj+1)−
3
2

))
, (15)

and

θδ2j+1 = 2α
√

3(u(−aj+1))2e−
4
3 (θV0−aj+1)

3
2
(

1 +O
(

(θV0 − aj+1)−
3
2

))
. (16)
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The widths of two consecutive bands θδ2j and θδ2j+1 are of the same order in j
since

(u′(−ãj+1))2

ãj+1
= 4π(Ai′(0))2(ãj+1)−

1
2 +O

(
(ãj+1)−

5
2

)
, (17)

(u(−aj+1))2 = 4π(Ai′(0))2(aj+1)−
1
2 +O

(
(aj+1)−

3
2

)
, (18)

ãj+1 = O
(
j

2
3

)
and aj+1 = O

(
j

2
3

)
. Estimates (17) and (18) are proven in Section

4.1.

We can interpret the first statement of Theorem 6 as a convergence of the band
spectrum of the periodic Airy-Schrödinger operator to the pure point spectrum of
the Schrödinger operator for a linear potential well.

Corollary 2. For every p ≥ 0, the p-th rescaled spectral band of the periodic Airy-
Schrödinger operator tends to the singleton {ap} when θV0 tends to +∞.

We prove this corollary in Appendix C.

Theorem 6 compares with the result of Harrell [13, Theorem 1.1], since−2Re
∫ θV0

0
|x−

aj+1|
1
2 dx = − 4

3 (θV0− aj+1)
3
2 (and the same expression with ãj+1 instead of aj+1).

Indeed, the operator studied by Harrel is the operator described in (5), where
θV0 = 1

κ :

− d2

dx2
+ κ−2q(κx), κ > 0,

acting on H2(R), where q is a potential which is periodic of period 2, having a non-
degenerate smooth minimum at 0, is symmetric about 1 and its maximum value is
positive.
In particular q is assumed to be at least two times differentiable at its minima
and maxima points, thus our result is stated for a potential which satisfies weaker
assumptions than those of Harrell since it is not even differentiable at its maxima
and minima points.
Moreover, Harrel, for homotethy reasons, assumes that q′′(0) = 1

2 . The leading
order term of the operator is thus

− d2

dx2
+

1

2
x2

and its spectrum is the classical spectrum of the harmonic oscillator {2n+ 1}n≥0.
For results on the spectrum of the perturbed harmonic oscillator, one can read [3].

The asymptotic result of Harrel on the width of the spectral bands concerns thus the
eigenvalues E close to a fixed odd number 2n+ 1, which corresponds to eigenvalues

of − ~2

2m
d2

dy2 + q(y) close to 2n+1√
m

~ (since q′′(0) = 1
2 ), hence extremely close to the

minimum of the potential. In our asymptotic results, this corresponds to θV0 tends

to +∞, −θE tends to +∞ and θE+ θV0 close to an eigenvalue of − ~2

2m
d2

dx2 +V0|x|,
hence to the values in {ap}p≥0.

The result of Harrel was later precised in [15] and generalized for the first spectral
band in the multidimensional case (see [22, 27]).
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The formulas (15) and (16) show that the rescaled spectral bands have exponentially
small widths. On the contrary, the rescaled spectral gaps in the spectrum of H have
constant widths.

Theorem 7. When θV0 tends to +∞, for every p ≥ 0,

θγp = ap − ap+1 +O
(
e−

4
3 (θV0+ap+1)

3
2

)
. (19)

More precise asymptotics for the width of the gaps can be found in Proposition 17.

The rescaled gaps have constant widths which are given by the differences between
two consecutives zeroes of Ai and Ai′.

Theorems 6 and 7 are stated in the case where θV0 +θE remains bounded and close
to one of the ap for p fixed, and θV0 tends to +∞. It corresponds to looking at
spectrals bands and gaps close to the bottom of the potential, −V0, and thus to the
bottom of the spectrum in the semiclassical limit.
We can prove similar asymptotic expansions in the case where θE remains bounded
and close to one of the ap for p fixed, and θV0 + θE tends to +∞. This second case
corresponds to energy bands close to the maximum of the potential. In this second
case, we number the bands starting with the band of highest energy in [−V0, 0],
labeled as the band 1 while the lowest band is labeled by k0 defined in (8).
Another case which can be dealt with, is when one assume that θE is closed to

ap

(θV0)
1
2

for some fixed p and there exists constants C1 > 0 and C2 > 0 such that

ap

(θV0)
1
2
∈ [C1, C2]. In this case our bootstrap technique detailed in the proof of

Theorem 3 applies since e−
4
3 (θV0+ap)

3
2 · e 4

3 (θV0)
3
2 ∈ [eC1 , eC2 ]. This proves a result

similar to Theorem 8.1 of März (in the case µ ∈ [−Ch, 0] with the notations of [19])
for the widths of the gaps and the bands, but with a different order of magnitude
of these widths. These differences are due to the fact that in [19, Theorem 8.1], the
potential is supposed to be analytic, which is not the case for us.

2.5. Some open questions. We address some open questions which naturally
arose in our research on the periodic Airy-Schrödinger operator.

(1) A first question is to generalize our results for a potential which is no longer
our explicit potential. We consider a function V which is analytic, such that
V (0) = 0 and V ′(0) 6= 0 and then we consider the 2L0-periodic function W
defined on [−L0, L0] by:

∀x ∈ [−L0, L0], W (x) = V (|x|).
Using perturbation theory techniques like those developed in [3] or [4], one
would like to obtain similar results as Theorem 1, 3, 6 or 7.

(2) Another question is to look at our model no longer on the real line but on
the space Rd for d ≥ 1. A first result was obtained in the very simple case
of Hd introduced in (11), but one hopes to use our results on the spectrum
of H to study other periodic operators at least in dimension 2. In this case,
we could be able to tackle the case where our operator decompose into a
tensor product of two periodic Airy-Schrödinger operators with eventually
two different characteristic lengths L0 and L1. In this case the spectrum of
the two-dimensional operator is the superposition of the band spectra of the
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two one-dimensional operators. It would certainly lead to difficulties linked
to the compared arithmetic natures of L0 and L1, like those presented in
[10].

(3) Another interesting generalization would be to obtain asymptotic results
like Theorem 6 or Theorem 7 for our non-analytic potential, in all the
regimes considered in [19].

(4) One last open question is the one of the eventual meromorphic continuation
of the resolvent of the periodic Airy-Schrödinger operator to the spectral
bands, using techniques like those in [11, 23]. It would lead to the question
of the existence and the description of the resonances for the periodic Airy-
Schrödinger operator.

2.6. Outline of the paper. In Section 3, we recall the classical theory of periodic
operators and their band spectra. It allows us to get the equations to be solved to
determine the edges of the spectral bands. In Section 4, we study the asymptotics of
the canonical solutions, their derivatives and the asymptotics of their zeroes. These
very precise asymptotics imply an important result of separation and ordering of
the zeroes of the canonical solutions and their derivatives (Corollary 3). This result
is the key result which allows to distinguish the upper edge of a spectral band
from the lower edge of the next spectral band among the solutions of the equations
obtained in Section 3. This identification of the spectral edges is performed in
Sections 6 and 7.
The Section 5 is devoted to the study of families of strictly monotonuous and
continuous functions which allows to prove in Sections 6 and 7 the existence of
solutions to the equations which define the spectral edges. Section 5 describes also

the graphical interpretation of these equations, in terms of the functions v
u and v′

u′ ,
which has guided our analysis throughout this paper.
Section 6.2 is devoted to the proof of Theorem 3. This proof contains most of the
ideas used later in Section 4 to get all the asymptotics of the width of the spectral
bands and of the spectral gaps in the semiclassical limit. We also investigate in
Section 6.3 the behaviour of the upper edge of the first spectral band in both
semiclassical and classical limits. In the classical limit, the integer p0 introduced in
(7) plays a crucial role. In Section 7 we characterize the spectral edges of all the
spectral bands in the range of V , we count these bands and we prove Theorem 4.
We also prove the result on the spectral density in the range of V .
In Appendix B, the monotonicity of the functions zk introduced in Lemma 4 is
proven. This monotonicity result is particularly technical and requires a version
of the Sturm Picone’s lemma about interlacing of zeroes of solutions of ordinary
differential equations adapted to our setting ([6]). Such result is proven in Appendix
A.

3. The band structure of the spectrum of H

In this section we recall the equations characterizing the spectral edges of the spec-
trum of the operator H, using the general theory of periodic Schrödinger operators
([26]). Let ω ∈ [−L0, L0]. We start by considering the restriction H(ω) of H to



12 H. BOUMAZA AND O. LAFITTE

H2([−L0, L0]), the Sobolev space of functions ψ ∈ H2(R) which satisfy

∀x ∈ R, ψ(x+ 2L0) = ei(
π
L0
ω+π)ψ(x). (20)

Note that, as H2([−L0, L0]) ⊂ C1([−L0, L0]), this condition is equivalent to the
boundary conditions:

ψ(L0) = ei(
π
L0
ω+π)ψ(−L0) and ψ′(L0) = ei(

π
L0
ω+π)ψ′(−L0). (21)

The operator H(ω) is self-adjoint. It is Hilbert-Schmidt and thus compact. Its spec-
trum is pure point and the eigenvalues of H(ω) are solutions of explicit equations.
According to [26], H is the direct integral of the operators H(ω):

H =

∫ ⊕
[−L0,L0]

H(ω)dω.

This decomposition in direct integral allows to recover the spectrum of H from the
spectra of the H(ω)’s.

From the canonical solutions u and v of the Airy equation, one defines the
canonical pair of odd and even solutions of (2) on the interval [−L0, L0]. These
functions, denoted by Uθ and Vθ are defined, for every x ∈ [−L0, L0], by

Uθ(x) = −v′(−θV0 − θE)u(θ(V (x)− E)) + u′(−θV0 − θE)v(θ(V (x)− E))

and

Vθ(x) = sign(x) (−v(−θV0 − θE)u(θ(V (x)− E)) + u(−θV0 − θE)v(θ(V (x)− E))) .

They form a basis of even and odd C1 solutions of the equation (2) on the interval
[−L0, L0]. Their wronskian satisfies

∀x ∈ [L0, L0], (UθV
′

θ − U
′

θVθ)(x) = 1.

Since any solution of (2) is a linear combination of Uθ and Vθ, the boundary con-
ditions (21) rewrite:

AUθ(L0) +BVθ(L0) = −ei(
π
L0
ω) (AUθ(L0)−BVθ(L0)) (22)

AU
′

θ(L0) +BV
′

θ (L0) = −ei(
π
L0
ω)
(
−AU

′

θ(L0) +BV
′

θ (L0)
)
, (23)

for A,B ∈ R. Thus, A and B are solution of the linear system: Uθ(L0)
(

1 + ei(
π
L0
ω)
)
A+ Vθ(L0)

(
1− ei(

π
L0
ω)
)
B = 0

U
′

θ(L0)
(

1− ei(
π
L0
ω)
)
A+ V

′

θ (L0)
(

1 + ei(
π
L0
ω)
)
B = 0

. (24)

Considering the system (24), one gets that E ∈ R is an eigenvalue of H(ω) if and
only if ∣∣∣∣∣Uθ(L0)(1 + ei(

π
L0
ω)) Vθ(L0)(1− ei(

π
L0
ω))

U
′

θ(L0)(1− ei(
π
L0
ω)) V

′

θ (L0)(1 + ei(
π
L0
ω))

∣∣∣∣∣ = 0. (25)

The determinant in (25) being analytic in E, equation (25) has only a discrete set
of solutions in E (since this determinant is not equal to 0 for every E) which is
consistent with the fact that H(ω) is a compact operator. For ω = −L0, we get
that (25) is equivalent to

−4U
′

θ(L0) · Vθ(L0) = 0. (26)

For ω = 0, we get that (25) is equivalent to

4Uθ(L0) · V
′

θ (L0) = 0. (27)
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Since the expression in the left member of (26) is analytic in E we can denote by
E0

min ≤ E1
max ≤ E2

min ≤ E3
max ≤ . . . the elements of the spectrum of H(−L0),

σ(H(−L0)) := {E0
min, E

1
max, E

2
min, E

3
max, . . .} =

{
E ∈ R, U

′

θ(L0) · Vθ(L0) = 0
}

and we denote by E0
max ≤ E1

min ≤ E2
max ≤ E3

min ≤ . . . the elements of the spectrum
of H(0)

σ(H(0)) := {E0
max, E

1
min, E

2
max, E

3
min, . . .} =

{
E ∈ R, Uθ(L0) · V

′

θ (L0) = 0
}
.

Then, using [26, Theorem XIII.90], we finally get the description of the spectrum
of H as a band spectrum:

σ(H) =
⋃
p≥0

[Epmin, E
p
max] .

Moreover σ(H) is purely absolutely continuous and H has no eigenvalues. To
compute the spectrum of H, it remains to determine the edges of the spectral
bands Epmin and Epmax for p ≥ 0.

Remark. Recall that the result here applies for any periodic potential and thus
our computations and the description of the spectrum as a band spectrum are valid
for any symmetric potential.

4. Asymptotics of the canonical solutions and of their zeroes

The aim of this Section is to obtain precise estimates of the roots of u, v, u′ and v′.
This will be a consequence of the asymptotic expansions of the canonical solutions
of the Airy equation on R−.

4.1. Asymptotics of the canonical solutions. In order to obtain asymptotic
expansions of the canonical solutions of the Airy equation, we start with asymptotic
expansions of the Airy functions Ai, Bi and their derivatives which are deduced
from Bessel functions for which asymptotic expansions are well known.
For this purpose, one defines functions P (ν, ·) and Q(ν, ·) for any real number ν
through the Bessel functions Jν and Yν (see [21])

P (ν, ξ) =

√
πξ

2

(
Jν(ξ) cos

(
ξ − 1

2νπ −
1
4π
)

+ Yν(ξ) sin
(
ξ − 1

2νπ −
1
4π
))

and

Q(ν, ξ) =

√
πξ

2

(
Yν(ξ) cos

(
ξ − 1

2νπ −
1
4π
)
− Jν(ξ) sin

(
ξ − 1

2νπ −
1
4π
))
.

The functions P (ν, ·) and Q(ν, ·) have known expansions which are used to get
asymptotic expansions of the canonical solutions and their derivatives. Note that,

when ξ tends to +∞, P (ν, ξ) ∼ 1 and Q(ν, ξ) ∼ 4ν2−1
8ξ .
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Proposition 2. For every x > 0, we set ξ = 2
3x

3
2 . We have:

u(−x) = 2π
1
2x−

1
4Ai′(0)

(
sin
(
ξ − 7π

12

)
P
(
1
3 , ξ
)

+ cos
(
ξ − 7π

12

)
Q
(
1
3 , ξ
))
, (28)

u′(−x) = −2π
1
2x

1
4Ai′(0)

(
cos
(
ξ − 7π

12

)
P
(
2
3 , ξ
)
− sin

(
ξ − 7π

12

)
Q
(
2
3 , ξ
))
, (29)

v(−x) = −2π
1
2x−

1
4Ai(0)

(
sin
(
ξ + π

12

)
P
(
1
3 , ξ
)

+ cos
(
ξ + π

12

)
Q
(
1
3 , ξ
))
, (30)

v′(−x) = −2π
1
2x

1
4Ai(0)

(
− cos

(
ξ + π

12

)
P
(
2
3 , ξ
)

+ sin
(
ξ + π

12

)
Q
(
2
3 , ξ
))
. (31)

Before proving Proposition 2 we need the following technical lemma.

Lemma 1. For every ξ > 1√
26

, P ( 1
3 , ξ) > 0 and we have

∀ξ > 1√
13
,

∣∣∣∣Q( 1
3 , ξ)

P ( 1
3 , ξ)

∣∣∣∣ < 5

36ξ
. (32)

For every ξ > 1√
22

, P ( 2
3 , ξ) > 0 and we have

∀ξ > 1√
11
,

∣∣∣∣Q( 2
3 , ξ)

P ( 2
3 , ξ)

∣∣∣∣ < 7

12ξ
. (33)

Proof: Using [1, 9.2.9 and 9.2.10], we have

∀ξ > 0,
∣∣P ( 13 , ξ)− 1

∣∣ ≤ 5× 77

81× 128× ξ2
<

1

26ξ2
(34)

and

∀ξ > 0,

∣∣∣∣Q ( 13 , ξ)+
5

72ξ

∣∣∣∣ ≤ 5× 77× 221

6× 93 × 83 × ξ3
<

1

26ξ3
. (35)

In particular, we deduce from (34) that for every ξ > 1√
26

, P ( 1
3 , ξ) > 0. Then, (34)

and (35) imply

∀ξ > 1√
13
,

∣∣∣∣Q( 1
3 , ξ)

P ( 1
3 , ξ)

∣∣∣∣ < 5
72ξ −

1
26ξ3

1− 1
26ξ2

<
5

36ξ
,

which proves (32). Indeed, for ξ > 1√
13

, 1
1− 1

26ξ2
< 2.

Using again [1, 9.2.9 and 9.2.10], we also have

∀ξ > 0,
∣∣P ( 23 , ξ)− 1

∣∣ ≤ 7× 65

81× 128× ξ2
<

1

22ξ2
(36)

and

∀ξ > 0,

∣∣∣∣Q ( 23 , ξ)− 7

72ξ

∣∣∣∣ ≤ 7× 65× 209

6× 93 × 83 × ξ3
<

1

22ξ3
. (37)

In particular, for every ξ > 1√
22

, P ( 2
3 , ξ) > 0. Then, (36) and (37) imply

∀ξ > 1√
11
,

∣∣∣∣Q( 2
3 , ξ)

P ( 2
3 , ξ)

∣∣∣∣ < 7
72ξ + 1

22ξ3

1− 1
22ξ2

<
7

36ξ
+

1

11ξ3
<

7

12ξ
,

which proves (33). Indeed, for ξ > 1√
11

, 1
1− 1

22ξ2
< 2 and 7

36ξ + 1
11ξ3 <

7
12ξ .

2
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With (28), (34) and (35), we get

u(−aj+1) = 2π
1
2 (aj+1)−

1
4Ai′(0) +O

(
(aj+1)−

3
2

)
which implies (18). Similarly, with (29), (36) and (37), we get

u′(−ãj+1) = 2π
1
2 (ãj+1)

1
4Ai′(0) +O

(
(ãj+1)−

3
2

)
which implies (18).

We turn to the proof of Proposition 2.

Proof: Let x > 0 and ξ = 2
3x

3
2 . The functions Ai, Bi and their derivatives are

related to the Bessel functions through the relations (see [1, 10.4.15 and after])

Ai(−x) =
1

3

√
x
(
J 1

3
(ξ) + J− 1

3
(ξ)
)
, Bi(−x) =

√
x

3

(
J− 1

3
(ξ)− J 1

3
(ξ)
)

and

Ai′(−x) = −1

3
x
(
J− 2

3
(ξ)− J 2

3
(ξ)
)
, Bi′(−x) =

x√
3

(
J− 2

3
(ξ) + J 2

3
(ξ)
)
.

Thus, we have the following expressions for the Airy functions and their derivatives
on the negative half-line:

Ai(−x) = π−
1
2x−

1
4

(
cos
(
ξ − π

4

)
P
(
1
3 , ξ
)
− sin

(
ξ − π

4

)
Q
(
1
3 , ξ
))
, (38)

Ai′(−x) = π−
1
2x

1
4

(
sin
(
ξ − π

4

)
P
(
2
3 , ξ
)

+ cos
(
ξ − π

4

)
Q
(
2
3 , ξ
))
, (39)

Bi(−x) = −π− 1
2x−

1
4

(
sin
(
ξ − π

4

)
P
(
1
3 , ξ
)

+ cos
(
ξ − π

4

)
Q
(
1
3 , ξ
))
, (40)

Bi′(−x) = π−
1
2x

1
4

(
cos
(
ξ − π

4

)
P
(
2
3 , ξ
)
− sin

(
ξ − π

4

)
Q
(
2
3 , ξ
))
. (41)

Before getting similar epressions for the canonical solutions u and v, let us start by

rewriting u and v, observing that Bi′(0)
Ai′(0) = −

√
3 = − tan(π3 ):

∀x ∈ R, u(x) = π(Bi′(0)Ai(x)−Ai′(0)Bi(x))

= −2πAi′(0)
(
cos
(
π
3

)
Bi(x) + sin

(
π
3

)
Ai(x)

)
.

(42)

Similarly,

∀x ∈ R, v(x) = 2πAi(0)
(
cos
(
π
3

)
Bi(x)− sin

(
π
3

)
Ai(x)

)
. (43)

Combining (42), (38) and (40) one gets, for every x > 0,

u(−x) = −2πAi′(0)
(
cos
(
π
3

)
Bi(−x) + sin

(
π
3

)
Ai(−x)

)
= −2π

1
2x−

1
4Ai′(0)

((
− cos

(
π
3

)
sin
(
ξ − π

4

)
+ sin

(
π
3

)
cos
(
ξ − π

4

))
P
(
1
3 , ξ
)

+(
− cos

(
π
3

)
cos
(
ξ − π

4

)
− sin

(
π
3

)
sin
(
ξ − π

4

))
Q
(
1
3 , ξ
))

= −2π
1
2x−

1
4Ai′(0)

(
sin
(
−ξ + π

4 + π
3

)
P
(
1
3 , ξ
)
− cos

(
−ξ + π

4 + π
3

)
Q
(
1
3 , ξ
))

= 2π
1
2x−

1
4Ai′(0)

(
sin
(
ξ − 7π

12

)
P
(
1
3 , ξ
)

+ cos
(
ξ − 7π

12

)
Q
(
1
3 , ξ
))
.

By derivating (42) and doing similar computations as in (28) one gets:

∀x > 0, u′(−x) = −2π
1
2x

1
4Ai′(0)

(
cos
(
ξ − 7π

12

)
P
(
2
3 , ξ
)
− sin

(
ξ − 7π

12

)
Q
(
2
3 , ξ
))
.

The expressions for v and v′ are obtained the same way.

2
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Remark. Note that x 7→ π−
1
2x−

1
4 cos(ξ − π

4 ) and x 7→ π−
1
2x−

1
4 sin(ξ − π

4 ) are

solutions of the equation y′′ =
(
−x+ 5

16x2

)
y and thus are approximate solutions

of y′′ = −xy. Hence the existence of P and Q can be seen as an application of the
Duhamel principle.

4.2. Asymptotics and ordering of the zeroes of the canonical solutions.
Before having precise intervals in which we can localize the zeroes of u, u′, v and v′,
we localize them between zeroes of the classical Airy function Ai and its derivative.
Since the zeroes of Ai and Ai′ are known, it will guide us to choose the good
intervals in which we will verify that u, u′, v and v′ do vanish and outside of which
they do not.

We start by looking at the variations of the functions Bi
Ai and Bi′

Ai′ . The functions
Bi
Ai and Bi′

Ai′ have the following behaviours:

• On every interval (−aj+1,−aj), the function Bi
Ai is continuous, increasing

and is a bijection from (−aj+1,−aj) to R. Moreover, Bi
Ai is continuous,

increasing and is a bijection from (−a1,+∞) to R.

• On every interval (−ãj+1,−ãj), the function Bi′

Ai′ is continuous, increasing

and is a bijection from (−ãj+1,−ãj) to R. Moreover, Bi
′

Ai′ is continuous and
increasing on (−ã1, 0] from −∞ to 0. It is also continuous, decreasing and
a bijection from (−∞, 0] to [0,+∞).
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Note that the roots of u, v, u′ and v′ are exactly the solutions of the equations
Bi
Ai (x) = Bi′

Ai′ (0), Bi
Ai (x) = Bi

Ai (0), Bi′

Ai′ (x) = Bi′

Ai′ (0) and Bi′

Ai′ (x) = Bi
Ai (0), respec-

tively. We will identify the solutions of these equations and the sequences of zeroes
introduced in Section 1.

The equation in x

Bi

Ai
(x) =

Bi′

Ai′
(0) = −

√
3

has a countable number of solutions which are negative and no positive solution.
Let us denote by (−c̃2j)j≥0 the sequence of all the solutions arranged in decreasing
order with, for every j ≥ 0, −c̃2j ∈ (−aj+1,−ãj+1). Since the sets of the zeroes of
Ai and of u are disjoints, the set of the zeroes of u is exactly {−c̃2j}j≥0.

Similarly, the equation in x

Bi′

Ai′
(x) =

Bi′

Ai′
(0) = −

√
3

has a countable number of solutions which are negative and no positive solution
except 0. Let us denote by (−c̃2j+1)j≥0 the sequence of all the solutions arranged
in decreasing order with, for every j ≥ 0, −c̃2j+1 ∈ (−ãj+2,−aj+1). Since the sets
of the zeroes of Ai′ and of u′ are disjoints, the set of the zeroes of u′ is exactly
{−c̃2j+1}j≥0 ∪ {0}.

The equation in x
Bi

Ai
(x) =

Bi

Ai
(0) =

√
3

has a countable number of solutions which are negative and no positive solution
except 0. Let us denote by (−c2j+1)j≥0 the sequence of all the solutions arranged
in decreasing order with, for every j ≥ 0, −c2j+1 ∈ (−ãj+2,−aj+1). Since the sets
of the zeroes of Ai and of v are disjoints, the set of the zeroes of v is exactly
{−c2j+1}j≥0 ∪ {0} .

Finally, the equation in x

Bi′

Ai′
(x) =

Bi

Ai
(0) =

√
3

also has a countable number of solutions which are negative and no positive solution.
Let us denote by (−c2j)j≥0 the sequence of all the solutions arranged in decreasing
order with, for every j ≥ 0, −c2j ∈ (−aj+1,−ãj+1). Since the sets of the zeroes of
Ai′ and of v′ are disjoints, the set of the zeroes of v′ is exactly {−c2j}j≥0.

From the asymptotic expansions (28), (29), (30) and (31) and the distribution of
the sequences of zeroes of Ai and Ai′, we can get intervals in which we localize the
constants −ck and −c̃k. We also obtain the variations of u and v.

Proposition 3. (1) For every j ≥ 0, the function v′ has a unique zero in the

interval (−
(
3
2 (jπ + π

2 )
) 2

3 ,−
(
3
2 (jπ + π

3 )
) 2

3 ) and does not vanish outside of
these intervals. Thus,

−c2j ∈
(
−
(
3
2 (jπ + π

2 )
) 2

3 ,−
(
3
2 (jπ + π

3 )
) 2

3

)
. (44)

(2) For every j ≥ 0, the function u has a unique zero in the interval
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(−
(
3
2 (jπ + 2π

3 )
) 2

3 ,−
(
3
2 (jπ + π

2 )
) 2

3 ) and does not vanish outside of these
intervals. Thus,

−c̃2j ∈
(
−
(
3
2 (jπ + 2π

3 )
) 2

3 ,−
(
3
2 (jπ + π

2 )
) 2

3

)
. (45)

(3) For every j ≥ 0, the function v has a unique zero in the interval

(−
(
3
2 (jπ + π)

) 2
3 ,−

(
3
2 (jπ + 5π

6 )
) 2

3 ) and does not vanish outside of these
intervals. Thus,

−c2j+1 ∈
(
−
(
3
2 (jπ + π)

) 2
3 ,−

(
3
2 (jπ + 5π

6 )
) 2

3

)
. (46)

(4) For every j ≥ 0, the function u′ has a unique zero in the interval

(−
(
3
2 (jπ + 7π

6 )
) 2

3 ,−
(
3
2 (jπ + π)

) 2
3 ) and does not vanish outside of these

intervals. Thus,

−c̃2j+1 ∈
(
−
(
3
2 (jπ + 7π

6 )
) 2

3 ,−
(
3
2 (jπ + π)

) 2
3

)
. (47)

Proposition 4. The variations of u and v and their signs between two consecutive
zeroes are:

• u is positive on (−c̃0,+∞) and for every j ≥ 0, (−1)ju is negative on
[−c̃2j+2,−c̃2j ]. It is strictly increasing on (−c̃1,+∞), and for every j ≥ 0,
(−1)ju is strictly decreasing on [−c̃2j+3,−c̃2j+1].
• v is positive on [0,+∞), negative on [−c1, 0] and for every j ≥ 0, (−1)jv

is positive on [−c2j+3,−c2j+1]. It is strictly increasing on (−c0,+∞), and
for every j ≥ 0, (−1)jv is strictly decreasing on [−c2j+2,−c2j ].

The respective behaviour of u and v on respectively the intervals (−c̃0,+∞) and
(−c1,+∞) are different than their respective behaviour on respectively the intervals
(−∞,−c̃0] and (−∞,−c1].

We prove simultaneously Proposition 3 and Proposition 4.
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Proof: Before starting the proof, since −(π2 )
2
3 > −ã1 > −c0, we stress that v′ does

not vanish in the interval (−(π2 )
2
3 ,+∞) which justifies the starting point for the

numbering of the −c2j . Similarly, the only root of v in the interval (−( 5π
4 )

2
3 ,+∞) is

0, which justifies the numbering of the −c2j+1, u does not vanish in (−( 3π
4 )

2
3 ,+∞)

and the only root of u′ in the interval (−( 3π
2 )

2
3 ,+∞) is 0, which justifies the num-

bering of respectively the −c̃2j and the −c̃2j+1.

We prove only the assertion on u and −c̃2j , the others are proved in a completely

similar way. We use the following method: thanks to the knowledge of Q
P for

ξ > 1√
11

, we are able to show that u changes its sign at the two boundary values of

the considered interval while u′ is of constant sign in the interval.

Let j ≥ 0. Using (28) for x =
(
3
2 (jπ + 2π

3 )
) 2

3 and thus ξ = jπ + 2π
3 , one gets:

u
(
−
(
3
2 (jπ + 2π

3 )
) 2

3

)
= 2π

1
2

(
3
2 (jπ + 2π

3 )
)− 1

6 Ai′(0)(−1)j sin( π12 )×

P ( 1
3 , jπ + 2π

3 )

(
1 + cotan( π12 )

Q( 1
3 , jπ + 2π

3 )

P ( 1
3 , jπ + 2π

3 )

)
.

But, cotan( π12 ) = 2 +
√

3 and since using (32),∣∣∣∣cotan( π12 )
Q( 1

3 , jπ + 2π
3 )

P ( 1
3 , jπ + 2π

3 )

∣∣∣∣ < 5(2 +
√

3)

36
<

2

3
,

we get that (
1 + cotan( π12 )

Q( 1
3 , jπ + 2π

3 )

P ( 1
3 , jπ + 2π

3 )

)
> 0.

Since sin( π12 ) > 0, P ( 1
3 , jπ + 2π

3 ) > 0 and Ai′(0) < 0,

(−1)ju
(
−
(
3
2 (2jπ + 9π

12 )
) 2

3

)
< 0.

Then, using (28) for x =
(
3
2 (jπ + π

3 )
) 2

3 and thus ξ = jπ + π
3 , one gets:

u
(
−
(
3
2 (jπ + π

3 )
) 2

3

)
= 2π

1
2

(
3
2 (jπ + π

3 )
)− 1

6 Ai′(0)(−1)j sin(− π
12 )×

P ( 1
3 , jπ + π

3 )

(
1 + cotan(− π

12 )
Q( 1

3 , jπ + π
3 )

P ( 1
3 , jπ + π

3 )

)
.

But, using (32), ∣∣∣∣cotan(− π
12 )

Q( 1
3 , jπ + π

3 )

P ( 1
3 , jπ + π

3 )

∣∣∣∣ < 5(2 +
√

3)

36
<

2

3
,

and we get that (
1 + cotan(− π

12 )
Q( 1

3 , jπ + π
3 )

P ( 1
3 , jπ + π

3 )

)
< 0.

Since P ( 1
3 , jπ + π

3 ) > 0,

(−1)ju
(
−
(
3
2 (jπ + π

3 )
) 2

3

)
> 0.
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If x ∈ [
(
3
2 (jπ + π

3 )
) 2

3 ,
(
3
2 (jπ + 2π

3 )
) 2

3 ] then ξ − 7π
12 ∈ [jπ− π

12 , jπ+ π
12 ] and one has

√
2

2
≤ (−1)j cos

(
ξ − 7π

12

)
≤
√

2 +
√

3

2
and

1

2 +
√

3
≤ tan

(
ξ − 7π

12

)
≤ 1.

Moreover, using (33) and ξ ≥ π
2 ,∣∣∣∣Q( 2
3 , ξ)

P ( 2
3 , ξ)

∣∣∣∣ < 7

12ξ
≤ 14

12π
<

1

2
.

Then, using (29), for every x ∈
[(

3
2 (jπ + π

3 )
) 2

3 ,
(
3
2 (jπ + 2π

3 )
) 2

3

]
,

(−1)ju′(−x) = 2π
1
2x

1
4Ai′(0) cos(ξ − 7π

12 )P
(
2
3 , ξ
)(

1− tan(ξ − 7π
12 )

Q( 2
3 , ξ)

P ( 2
3 , ξ)

)
> 0.

We deduce that u is continuous, strictly increasing for j even (respectively de-
creasing for j odd) from a negative value to a positive one (respectively from
a positive value to a negative one) and thus has a unique zero in the interval[
−
(
3
2 (jπ + 2π

3 )
) 2

3 ,−
(
3
2 (jπ + π

3 )
) 2

3

]
, for every j ≥ 0.

It remains to verify that u does not vanish on the interval(
−
(
3
2 ((j + 1)π + π

3 )
) 2

3 ,−
(
3
2 (jπ + 2π

3 )
) 2

3

)
.

If x ∈ (
(
3
2 (jπ + 2π

3 )
) 2

3 ,
(
3
2 ((j + 1)π + π

3 )
) 2

3 ) then ξ − 7π
12 ∈ [jπ + π

12 , jπ + 3π
4 ] and

one has

1

2
√

2 +
√

3
≤ (−1)j sin

(
ξ − 7π

12

)
≤
√

2

2
and 1 ≤ cotan

(
ξ − 7π

12

)
≤ 2 +

√
3.

Moreover, using (33) and ξ ≥ 2π
3 ,∣∣∣∣∣cotan

(
ξ − 7π

12

) Q ( 13 , ξ)
P
(
1
3 , ξ
) ∣∣∣∣∣ < (2 +

√
3) · 7

36ξ
<

2

3

and using (29), for every x ∈
((

3
2 (jπ + 2π

3 )
) 2

3 ,
(
3
2 ((j + 1)π + π

3 )
) 2

3

)
,

(−1)ju(−x) = 2π
1
2 x−

1
4Ai′(0)(−1)j sin(ξ − 7π

12
)P ( 1

3
, ξ)

(
1 + cotan(ξ − 7π

12
)
Q( 1

3
, ξ)

P ( 1
3
, ξ)

)
< 0.

As −c̃0 ∈ [−π 2
3 ,−

(
3π
4

) 2
3 ], we deduce (45) by counting the constants −c̃2j and the

intervals in which u vanishes.

2

From Proposition 3 we deduce immediatly the ordering of the zeroes of the canonical
solutions and their derivatives.

Corollary 3. For every k ≥ 0, −c̃k < −ck.

From Proposition 3, we also deduce asymptotics of the sequences (ck)k≥0 and
(c̃k)k≥0.

Corollary 4. One has

ck =

(
3kπ

4

) 2
3

+O
(

1

k
1
3

)
and c̃k − ck =

(
π

9
√

2

) 2
3 1

k
1
3

+O
(

1

k
4
3

)
. (48)
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Proof: The first estimate in (48) follows directly from the asymptotics proven in
Lemma 2. For the difference between ck and c̃k, one uses (50)-(54) and (52)-(56).
Indeed, for every j ≥ 0,

c̃2j − c2j =

(
3jπ

2

) 2
3

·
(

7

18j
− 5

18j
+O

(
1

j2

))
=
( π

18

) 2
3 1

j
1
3

+O
(

1

j
4
3

)
and similarly,

c̃2j+1 − c2j+1 =
( π

18

) 2
3 1

j
1
3

+O
(

1

j
4
3

)
,

which proves (48).

2

We introduce, for every k ≥ 0,

ξk =
2

3
c

3
2

k and ξ̃k =
2

3
c̃

3
2

k .

Lemma 2. Let j ≥ 0. One has

ξ2j ∈
[

5π

12
+ jπ − 7

12(jπ + π
3 )
,

5π

12
+ jπ +

7

12(jπ + π
3 )

]
(49)

and c2j =

(
3jπ

2

) 2
3

·
(

1 +
5

18j
+O

(
1

j2

))
, (50)

ξ2j+1 ∈
[

11π

12
+ jπ − 5

36(jπ + 5π
6 )
,

11π

12
+ jπ +

5

36(jπ + 5π
6 )

]
(51)

and c2j+1 =

(
3jπ

2

) 2
3

·
(

1 +
11

18j
+O

(
1

j2

))
, (52)

ξ̃2j ∈
[

7π

12
+ jπ − 5

36(jπ + π
2 )
,

7π

12
+ jπ +

5

36(jπ + π
2 )

]
(53)

and c̃2j =

(
3jπ

2

) 2
3

·
(

1 +
7

18j
+O

(
1

j2

))
, (54)

ξ̃2j+1 ∈
[

13π

12
+ jπ − 7

12(j + 1)π
,

13π

12
+ jπ +

7

12(j + 1)π

]
(55)

and c̃2j+1 =

(
3jπ

2

) 2
3

·
(

1 +
13

18j
+O

(
1

j2

))
. (56)

Proof: Let j ≥ 0. Applying (28) with x = c̃2j ,

2π
1
2 c̃
− 1

4
2j Ai

′(0)
(

sin(ξ̃2j − 7π
12 )P ( 1

3 , ξ̃2j) + cos(ξ̃2j − 7π
12 )Q( 1

3 , ξ̃2j)
)

= u(−c̃2j) = 0.

Thus, using Lemma 1 and ξ̃2j >
1√
13

(thanks to ã0 >
(

3
2
√
13

) 2
3

), we have

P ( 1
3 , ξ̃2j) > 0 and tan

(
ξ̃2j − 7π

12

)
=

sin(ξ̃2j − 7π
12 )

cos(ξ̃2j − 7π
12 )

= −
Q( 1

3 , ξ̃2j)

P ( 1
3 , ξ̃2j)

. (57)

With (32) and (57) we get: ∣∣∣tan
(
ξ̃2j − 7π

12

)∣∣∣ < 5

36 · ξ̃2j
. (58)
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From (45) and (58), it leads to∣∣∣∣ξ̃2j − 7π

12
− jπ

∣∣∣∣ < arctan

(
5

36 · ξ̃2j

)
≤ 5

36 · ξ̃2j
≤ 5

36(jπ + π
2 )
, (59)

which proves the assertion on the interval of localization of ξ̃2j .

Since ã0 >
(

3
2
√
11

) 2
3

, ξ2j >
1√
11

and, using Lemma 1, we have P ( 2
3 , ξ2j) > 0.

Applying (31) with x = c2j ,

−2π
1
2 c

1
4
2jAi(0)

(
− cos(ξ2j + π

12 )P ( 2
3 , ξ2j) + sin(ξ2j + π

12 )Q( 2
3 , ξ2j)

)
= v′(−c2j) = 0.

Thus,

Q( 2
3 , ξ2j)

P ( 2
3 , ξ2j)

= cotan
(
ξ2j + π

12

)
= − tan

(
ξ2j + π

12 −
π
2

)
= − tan

(
ξ2j − 5π

12

)
. (60)

Using (33) and (60) we get: ∣∣tan
(
ξ2j − 5π

12

)∣∣ < 7

12 · ξ2j
, (61)

and the rest of the proof of the interval of localization of ξ2j is similar to what we

have done for ξ̃2j , thanks to (44). The intervals of localization of ξ2j+1 and ξ̃2j+1

are obtained in a similar way.

In order to prove (50), we need a more precise estimate on ξ2j . Using (60) and [1,
9.2.9 and 9.2.10],

tan
(
ξ2j − 5π

12

)
=

7
72ξ2j

− 7×65×209
6×83×93ξ32j

+O
(

1
ξ52j

)
1− 7×65

2×82×92ξ22j
+O

(
1
ξ42j

)
=

(
7

72ξ2j
− 7×65×209

6×83×93ξ32j
+O

(
1

ξ52j

))(
1 + 7×65

2×82×92ξ22j
+O

(
1

ξ42j

))
=

7

72ξ2j
+O

(
1

ξ32j

)
.

Thus, thanks to ξ2j − 5π
12 − jπ ∈ [− π

12 ,
π
12 ],

ξ2j −
5π

12
− jπ = arctan

(
7

72ξ2j
+O

(
1

ξ32j

))
=

7

72ξ2j

(
1 +O

(
1

ξ22j

))
.

Since ξ2j ∈
[
jπ + π

3 , jπ + π
2

]
, there exists a constant C > 0 such that:

7

72(jπ + π
2 )

(
1− C

j2

)
≤ ξ2j −

5π

12
− jπ ≤ 7

72(jπ + π
3 )

(
1 +

C

j2

)
which proves that

ξ2j =
5π

12
+ jπ +

7

72(jπ + π
2 )

+O
(

1

j3

)
.
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Since c2j =
(
3
2ξ2j

) 2
3 ,

c2j =

(
3jπ

2
+

5π

8
+

7

48(jπ + π
2 )

+O
(

1

j3

)) 2
3

=

(
3jπ

2

) 2
3

·
(

1 +
5

12j
+

7

72jπ(jπ + π
2 )

+O
(

1

j4

)) 2
3

=

(
3jπ

2

) 2
3

·

(
1 +

5

18j
+

7

48jπ(jπ + π
2 )
− 1

9

(
5

12j

)2

+O
(

1

j4

))

=

(
3jπ

2

) 2
3

·
(

1 +
5

18j
+O

(
1

j2

))
,

which proves (50). Similarly, using ξ̃2j ∈
(
jπ + π

2 , jπ + 2π
3

)
, ξ2j+1 ∈

(
jπ + 5π

6 , jπ + π
)

and ξ̃2j+1 ∈
(
jπ + π, jπ + 7π

6

)
, one proves (54), (52) and (56).

2

Remark. From the proof of the asymptotic expansions of ck and c̃k, one could
obtain asymptotic expansion of these sequences at any order, using the develop-
ments of the functions P and Q ([1, 9.2.9 and 9.2.10]). One would then get similar
formula as those for the zeroes of the functions Ai, Ai′, Bi and Bi′ ([1, 10.4.94 and
below]).

5. Preliminaries to the computation of the band edges

5.1. Characterization of the spectral band edges. The band edges are char-
acterized by the functions Uθ, Vθ and their derivatives, through the equations (26)
and (27).

To find the band edges Ekmin and Ekmax for any k ≥ 0, we have to solve the four
equations:

U
′

θ(L0) = u′(−θV0 − θE)v′(−θE)− v′(−θV0 − θE)u′(−θE) = 0, (62)

Vθ(L0) = u(−θE)v(−θV0 − θE)− v(−θE)u(−θV0 − θE) = 0, (63)

Uθ(L0) = v(−θE)u′(−θV0 − θE)− u(−θE)v′(−θV0 − θE) = 0, (64)

V
′

θ (L0) = v′(−θE)u(−θV0 − θE)− u′(−θE)v(−θV0 − θE) = 0. (65)

We have the four equivalences:

(1) for θE /∈ {c̃2j+1 − θV0}j≥0 ∪ {c̃2j+1}j≥0,

u′(−θV0− θE)v′(−θE)− v′(−θV0− θE)u′(−θE) = 0 ⇔ v′(−θV0 − θE)

u′(−θV0 − θE)
=

v′(−θE)

u′(−θE)
,

(2) for θE /∈ {c̃2j − θV0}j≥0 ∪ {c̃2j}j≥0,

u(−θE)v(−θV0 − θE)− v(−θE)u(−θV0 − θE) = 0 ⇔ v(−θV0 − θE)

u(−θV0 − θE)
=

v(−θE)

u(−θE)
,

(3) for θE /∈ {c̃2j+1 − θV0}j≥0 ∪ {c̃2j}j≥0,

u(−θE)v′(−θV0 − θE)− v(−θE)u′(−θV0 − θE) = 0 ⇔ v′(−θV0 − θE)

u′(−θV0 − θE)
=

v(−θE)

u(−θE)
,
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(4) for θE /∈ {c̃2j − θV0}j≥0 ∪ {c̃2j+1}j≥0,

u′(−θE)v(−θV0 − θE)− v′(−θE)u(−θV0 − θE) = 0 ⇔ v(−θV0 − θE)

u(−θV0 − θE)
=

v′(−θE)

u′(−θE)
.

We look at the cases where the conditions on −θV0−θE and −θE are not satisfied.
The semiclassical parameter θV0 is the parameter for the problem studied. Under
this observation, assume that:

θV0 ∈ {c̃p − c̃q, | p > q ≥ 0} := Z.

Then, for θV0 = c̃p− c̃q ∈ Z, in the set of values of ck and c̃k, θE = c̃q is the unique
solution of the equation (62) if p and q are odd, (63) if p and q are even, (64) if p
is odd and q is even and (65) if p is even and q is odd.
Conversely, if θV0 /∈ Z, then none of the c̃k is a solution in −θE of any of the
equations (62), (63), (64) and (65).

Assumption. From now on, we assume that θV0 /∈ Z.

Note that, however, all our results hold true when θV0 ∈ Z, this assumption is only
made for convenience’s sake.

Since we have the four equivalences above, the band edges of the spectral bands of
H are solutions of the four following equations:

v′

u′
(−θV0 − θE) =

v′

u′
(−θE), for θE /∈ {c̃2j+1 − θV0}j≥0 ∪ {c̃2j+1}j≥0, (66)

v

u
(−θV0 − θE) =

v

u
(−θE), for θE /∈ {c̃2j − θV0}j≥0 ∪ {c̃2j}j≥0, (67)

v′

u′
(−θV0 − θE) =

v

u
(−θE), for θE /∈ {c̃2j+1 − θV0}j≥0 ∪ {c̃2j}j≥0, (68)

v

u
(−θV0 − θE) =

v′

u′
(−θE), for θE /∈ {c̃2j − θV0}j≥0 ∪ {c̃2j+1}j≥0. (69)

5.2. Variations of v
u and v′

u′ . Using the value of the Wronskian of u and v one
has:

∀x ∈ [0,+∞),
( v
u

)′
(x) =

v′(x)u(x)− v(x)u′(x)

u2(x)
=

1

u2(x)
> 0

and

∀x ∈ (0,+∞),

(
v′

u′

)′
(x) =

xv(x)u′(x)− xv′(x)u(x)

(u′(x))2
= − x

(u′(x))2
< 0.

Thus, the functions v
u and v′

u′ have the following behaviour. Let j ≥ 0.

• On every interval (−c̃2j+2,−c̃2j), the function v
u is continuous, strictly in-

creasing and is a bijection from (−c̃2j+2,−c̃2j) to R. We also have that
v
u is continuous, strictly increasing and is a bijection from (−c̃0,+∞) to
(−∞, α).

• On every interval (−c̃2j+3,−c̃2j+1), the function v′

u′ is continuous, strictly
increasing and is a bijection from (−c̃2j+3,−c̃2j+1) to R. We also have

that v′

u′ is continuous and strictly increasing on (−c̃1, 0) from −∞ to +∞.
It is also continuous, strictly decreasing and a bijection from (0,+∞) to
(α,+∞).
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We remark that α is the common limit at infinity of the two functions v
u and v′

u′ ,

thanks to the limits Bi(x)
Ai(x) −−−−−→x→+∞

+∞ and Bi′(x)
Ai′(x) −−−−−→x→+∞

−∞.

5.3. Some auxilliary functions. One sets, for x ≥ 0 and z ∈ R,

fx(z) = v′(x−z)u(x)−u′(x−z)v(x) = π (Bi′(x− z)Ai(x)−Ai′(x− z)Bi(x)) (70)

and

gx(z) = v(x−z)u(x)−u(x−z)v(x) = π (Bi(x− z)Ai(x)−Ai(x− z)Bi(x)) . (71)

The expressions in terms of the classical Airy functions allow us to use classical
properties of the Ai and Bi functions instead of the properties of u and v when it
makes proofs easier.

The functions fx and gx are non-zero solutions of differential equations which satisfy
the assumptions of Sturm’s theorem, thus their zeroes are isolated on the real line.
We denote by

z0(x) < z2(x) < · · · < z2j(x) < . . .

the zeroes of fx arranged in increasing order. Then, since 0 is the first zero of gx
for every x, we denote by

0 < z1(x) < z3(x) < · · · < z2j+1(x) < . . .

the zeroes of gx arranged in increasing order.
We can characterize these zeroes and prove that none of them is negative.

Let j ≥ 0 an integer. Let x ≥ 0 and denote by ψ2j(x) the unique solution of the
equation

v′

u′
(z) =

v

u
(x), z ∈ [−c2j ,−ãj+1). (72)
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We also denote by ψ2j+1(x) the unique solution of the equation

v

u
(z) =

v

u
(x), z ∈ [−c2j+1,−aj+1). (73)

Lemma 3. For every k ≥ 0, the function ψk is well defined, continuous and strictly
increasing.

Proof: Let j ≥ 0. The function v′

u′ is a bijection from [−c2j ,−ãj+1) to [0, α) and
we denote by (

v′

u′

)−1
2j

: [0, α)→ [−c2j ,−ãj+1)

its reciprocal function. Since for every x ≥ 0, v
u (x) ∈ [0, α), we have:

∀x ≥ 0, ψ2j(x) =

(
v′

u′

)−1
2j

( v
u

(x)
)
.

Thus, the function ψ2j is well defined and it is continuous by continuity of v
u

on [0,+∞) and of the inverse of v′

u′ on [0, α). Since v′

u′ is strictly increasing on
[−c2j ,−ãj+1), its reciprocal function is strictly increasing on [0, α) and since v

u is
strictly increasing on [0,+∞), we deduce that ψ2j is strictly increasing on [0,+∞).
The function v

u is a bijection from (−c2j+1,−aj+1] to [0, α) and we denote by( v
u

)−1
2j+1

: [0, α)→ [−c2j+1,−aj+1)

its reciprocal function. With the same arguments as before, we have that

∀x ≥ 0, ψ2j+1(x) =
( v
u

)−1
2j+1

( v
u

(x)
)

and thus ψ2j+1 is well defined, continuous and strictly increasing.

2

Lemma 4. Let k ≥ 0. Then, for every x ≥ 0,

zk(x) ≥ 0 and zk(x) = x− ψk(x).

Therefore, zk is continuous on [0,+∞). Moreover, for every k ≥ 0, the function zk
is strictly increasing from [0,+∞) to [ck,+∞).

This result is proven in Appendix B.

Let j ≥ 0. For x ≥ 0, denote by ψ2j(x) ∈ (−aj+1,−c̃2j ] the unique solution of the
equation

v

u
(z) =

v′

u′
(x), z ∈ (−aj+1,−c̃2j ]. (74)

We also denote by ψ2j+1(x) ∈ (−ãj+2,−c̃2j+1) the unique solution of the equation

v′

u′
(z) =

v′

u′
(x), z ∈ (−ãj+2,−c̃2j+1). (75)

Lemma 5. For every k ≥ 0, the function ψk is well defined, continuous and strictly
decreasing on [0,+∞).
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Proof: We assume that k is even, k = 2j for one j ≥ 0. The function v
u is a

continuous bijection from (−aj+1,−c̃2j ] to [α,+∞) and we denote its reciprocal
function by ( v

u

)−1
2j

: [α,+∞)→ (−aj+1,−c̃2j ].

Since for every x ≥ 0, v′

u′ (x) ∈ [α,+∞), we have:

∀x ≥ 0, ψ2j(x) =
( v
u

)−1
2j

(
v′

u′
(x)

)
.

Then ψ2j is well defined, continuous and it is the unique solution of (74). Moreover,(
v
u

)−1
2j

is a strictly increasing function from [α,+∞) to (−aj+1,−c̃2j ] and v′

u′ is

strictly decreasing on [0,+∞). Thus, ψ2j is strictly decreasing on [0,+∞).

We assume that k is odd, k = 2j+ 1 for one j ≥ 0. The function v′

u′ is a continuous
bijection from (−ãj+2,−c̃2j+1) to [α,+∞) and we denote its reciprocal function by(

v′

u′

)−1
2j+1

: [α,+∞)→ (−ãj+2,−c̃2j+1).

Since for every x ≥ 0, v′

u′ (x) ∈ [α,+∞), we can write:

∀x ≥ 0, ψ2j+1(x) =

(
v′

u′

)−1
2j+1

(
v′

u′
(x)

)
.

Then ψ2j+1 is well defined, continuous and it is the unique solution of (75). More-

over,
(
v′

u′

)−1
2j+1

is a strictly increasing function from [α,+∞) to (−ãj+2,−c̃2j+1) and

v′

u′ is strictly decreasing on [0,+∞). Thus, ψ2j+1 is strictly decreasing on [0,+∞).

2

6. The first spectral band

6.1. Lower bound of the continuous spectrum. For values of E such that
θE < −θV0, we show that there is no solutions to equations (66), (67), (69) and
(68) which is natural, from a physical point of view, since in this case, the energy
is smaller than the minimum of the potential and it is as if the potential was not
“seen” at this energy.

Proposition 5. For every θV0 ≥ 0, σ(H) ⊂ [−V0,+∞).

Proof: We remark that on the interval [0,+∞), v
u < α and v′

u′ > α. Thus, these
two functions cannot have a common value on this interval and equations (69) and
(68) do not have any solution with 0 < −θV0 − θE < −θE.

Moreover, we already know that v
u is strictly increasing on [0,+∞) and v′

u′ is
strictly decreasing on (0,+∞). Since −θV0 − θE 6= −θE the equations (66), (67)
do not have any solution when 0 < −θV0 − θE < −θE.

2

Remark. This result holds for every θV0 strictly positive. In particular we do not
need to assume this semiclassical parameter to be large.
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6.2. The bottom of the spectrum. At first, we determine the bottom of the
spectrum. It has to be a solution of either the equation (66) or the equation (67)
with −θE ≥ 0 and thus −θV0 − θE < 0.

We start by proving that for every θV0 > 0, the equation (66) has a unique solu-

tion with −θE > 0 and −θV0 − θE ∈ [−ã1, 0). The function v′

u′ is an increasing
continuous bijection from (−ã1, 0) to [α,+∞) and thus, since for every x > 0,
v′

u′ (x) ∈ [α,+∞), one can define:

∀x > 0, ψ(x) =

(
v′

u′

∣∣∣
(−ã1,0)

)−1(
v′

u′
(x)

)
. (76)

The function ψ does not belong to the family of the functions ψ2k+1, due to the

difference of behaviour of v′

u′ on (−ã1,+∞) compared to (−∞,−ã1).
The function ψ is a continuous decreasing bijection from (0,+∞) to (−ã1, 0) and
x 7→ x− ψ(x) is a continuous increasing bijection from (0,+∞) to (0,+∞). Thus,

∀θV0 > 0, ∃!x̃ > 0, x̃− ψ(x̃) = θV0.

One sets Ẽ = − x̃θ and since x̃ = θV0 + ψ(x̃) ∈ (−ã1 + θV0, θV0) one has

−V0 < Ẽ < −V0 +
ã1
θ
. (77)

We remark that Ẽ is the smallest solution of (66).

Now we turn to the smallest solution of (67). Since the function z1 is an increasing
continuous bijection from [0,+∞) to [c1,+∞),

∀θV0 ≥ c1,∃!x1 ≥ 0, z1(x1) = x1 − ψ1(x1) = θV0.

One sets Ĕ1 = −x1

θ and since x1 = θV0 + ψ1(x1) ∈ (−c1 + θV0,−a1 + θV0) one has

−V0 +
a1
θ
< Ĕ1 < −V0 +

c1
θ
.

Since ã1 < a1 we have Ẽ < Ĕ1 and thus E0
min = Ẽ. In particular, E0

min is the
smallest solution of (66). Moreover, it is the smallest solution among those of (66)
and (67).

Now that we have identified the bottom of the spectrum of H as the smallest
solution among the possible solutions of (66) and (67), we can prove the estimates
stated in Theorem 3.

Proof: (of Theorem 3).

(1) Since E0
min = Ẽ, by (77) we have, for every θV0 > 0, −θV0 < θE0

min < −θV0+ã1.

Let θV0 > 0. By the previous inequality, −θE0
min ∈ (−ã1 + θV0, θV0). We recall

that, since u and v are linear combinations of Ai and Bi and since E0
min is a solution

of (66), it also satisfies:

Bi′

Ai′
(−θE0

min − θV0) =
Bi′

Ai′
(−θE0

min), −θE0
min − θV0 ∈ (−ã1, 0).

We introduce the functions

F±(·, θV0) :
I± → R
x 7→ Bi′

Ai′

(
x− θV0

2

)
− Bi′

Ai′

(
x+ θV0

2

)
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with I− =
(
− θV0

2 , θV0

2

)
and I+ =

(
−ã1 + θV0

2 , θV0

2

)
. We remark that, for every

θV0 > 0, the unique zero of F±(·, θV0) on I± is −θE0
min − θV0

2 .

Thanks to the fact that 0 is the point of maximum of Bi′

Ai′ on (−ã1,+∞), one has:

F±

(
θV0

2
, θV0

)
=

Bi′

Ai′
(0)− Bi′

Ai′
(θV0) > 0.

First case: θV0 ≥ 2ã1. In this case, −ã1 + θV0

2 > 0 hence the unique zero of

F+(·, θV0) on I+ is strictly positive, hence −θE0
min − θV0

2 > 0 which implies that

E0
min < −V0

2 . Thus, point (1) is proved for every θV0 ≥ 2ã1.

Second case: 0 < θV0 < 2ã1. We want to prove that the unique zero of F±(·, θV0)
on I± is strictly positive. Since F±( θV0

2 , θV0) > 0, it is sufficient to prove that
F±(0, θV0) < 0. Indeed, if 0 < θV0 < ã1, then 0 ∈ I− and we study the unique zero
of F− in I−. If ã1 ≤ θV0 < 2ã1, then −ã1 + θV0

2 < 0 and 0 ∈ I+. In this case, we
study the unique zero of F+ in I+.

We have:

F±(0, θV0) =
Bi′

Ai′

(
− θV0

2

)
− Bi′

Ai′

(
θV0

2

)
.

Let y = θV0

2 so that y ∈ (0, ã1) and set:

∀y ∈ (0, ã1), G(y) =
Bi′

Ai′
(−y)− Bi′

Ai′
(y).

One has, for every y ∈ (0, ã1),

G′(y) =
y

π(Ai′(−y))2(Ai′(y))2
((Ai′(−y)−Ai′(y))(Ai′(−y) +Ai′(y))) .

On (0, ã1), y
π(Ai′(−y))2(Ai′(y))2 > 0 and as Ai′ is negative on (−ã1,+∞), Ai′(−y) +

Ai′(y) < 0 for every y ∈ (0, ã1).
Let

K :
(0, ã1) → R
y 7→ Ai′(−y)−Ai′(y)

.

Then K(0) = 0 and

∀y ∈ (0, ã1), K ′(y) = −Ai′′(−y)−Ai′′(y) = y(Ai(−y)−Ai(y)).

But, the Airy function Ai is decreasing on (−ã1,+∞) hence, for y ∈ (0, ã1),
Ai(−y) − Ai(y) > 0 and K ′(y) > 0. Thus, K is strictly increasing on (0, ã1)
and

∀y ∈ (0, ã1), K(y) > K(0) = 0.

Thus, for every y ∈ (0, ã1), G′(y) < 0. Since G(0) = 0, for every y ∈ (0, ã1),
G(y) < 0, which rewrites

∀θV0 ∈ (0, 2ã1), F±(0, θV0) < 0.

Thus, the unique zero of F±(·, θV0) in I± is strictly positive. Thus, −θE0
min− θV0

2 ∈(
0, θV0

2

)
and θE0

min < − θV0

2 .

Taking in account the result in both cases, point (1) is proved.
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(2) Since E0
min is the smallest solution of (66), if one sets X = −θE0

min − θV0 + ã1,
then X satisfies

v′

u′
(X − ã1) =

v′

u′
(X + θV0 − ã1), X ∈ [0, ã1). (78)

Since x 7→ x − ψ(x) is increasing on (0,+∞), when θV0 tends to infinity, X − ã1
tends to −ã1 and X + θV0 − ã1 tends to +∞. Therefore, both members of (78)
tends to α when θV0 tends to +∞. We assume that θV0 > ã1.
Using [1, 10.4.61, 10.4.66] in the equality (78), one gets

v′

u′
(X − ã1) = α+ α

√
3e−

4
3 (X+θV0−ã1)

3
2
(

1 +O
(

(X + θV0 − ã1)
− 3

2

))
. (79)

Let ε = e−
4
3 (θV0−ã1)

3
2 , which amounts to θV0− ã1 =

(
− 3

4 ln(ε)
) 2

3 . In particular, θV0
tends to +∞ if and only if ε tends to 0+.
We use the following identity valid for strictly positive real numbers a and b:

a
3
2 − b 3

2 − 3
2b

1
2 (a− b) = (a− b)2

2
√

a
b + 1

2
(√

a
b + 1

)2 b− 1
2 (80)

with a = X + θV0 − ã1 = εY + θV0 − ã1 and b = θV0 − ã1 =
(
− 3

4 ln(ε)
) 2

3 . Then,

− 4
3
(X + θV0 − ã1)

3
2 + 4

3

((
− 3

4
ln(ε)

) 2
3

) 3
2
+2
(
− 3

4
ln(ε)

) 1
3 εY =

(
− 3

4
ln(ε)

)− 1
3 (εY )2Q(ε, Y )

where

Q(ε, Y ) =
4

3

2 (εY+θV0−ã1)
1
2

(− 3
4 ln(ε))

1
3

+ 1

2

(
(εY+θV0−ã1)

1
2

(− 3
4 ln(ε))

1
3

+ 1

)2 .

The condition θV0 > ã1 implies 0 < ε ≤ 1 and since εY + θV0 − ã1 = −θE0
min > 0,

(εY + θV0 − ã1)
1
2(

− 3
4 ln(ε)

) 1
3

≥ 0.

If ϕ : R+ → R is defined by ϕ(x) = 2x+1
2(x+1)2 for every x ∈ R+, then ϕ is decreasing

on R+, ϕ(0) = 1
2 and ϕ tends to 0 when x tends to +∞. Thus, for every ε and Y ,

0 < Q(ε, Y ) ≤ 2

3
.

We have,

e−
4
3 (X+θV0−ã1)

3
2 = ε · e−2(−

3
4 ln(ε))

1
3 εY+(− 3

4 ln(ε))
− 1

3 (εY )2Q(ε,Y ). (81)

The condition X ∈ [0, ã1) implies that(
− 3

4 ln(ε)
) 2

3 = −ã1 + θV0 ≤ X + θV0 − ã1 ≤ ã1 +
(
− 3

4 ln(ε)
) 2

3

and in particular, X + θV0 − ã1 tends to +∞ when θV0 tends to +∞. Moreover,((
3

4

) 2
3

+
ã1

| ln(ε)|
2
3

)− 3
2 1

| ln(ε)|
≤ (X + θV0 − ã1)

− 3
2 ≤ 4

3

1

| ln(ε)|
.
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Using (79) and the identity α = v′

u′ (−ã1), which comes directly from the expressions
of u and v in terms of Ai and Bi, one gets:

1

ε

(
v′

u′
(εY − ã1)− v′

u′
(−ã1)

)
=

α
√

3e−2(−
3
4 ln(ε))

1
3 εY e(− 3

4 ln(ε))
− 1

3 (εY )2Q(ε,Y )

(
1 +O

(
1

| ln(ε)|

))
.

(82)

To estimate the left member of (82) one uses:

v′

u′
(εY − ã1)− v

′

u′
(−ã1) =

∫ 1

0

(
v′

u′

)′
(−ã1 + tεY )εY dt =

∫ 1

0

ã1 − tεY
(u′(−ã1 + tεY ))2

εY dt.

Recall that the strictly decreasing and continuous function ψ has been introduced in
(76) and that, if we denote by z the function defined on (0,+∞) by z(x) = x−ψ(x),
then z is a strictly increasing and continuous function. Since for every θV0 > 0,
−θE0

min = z−1(θV0), θV0 7→ −θE0
min(θV0) is strictly increasing on (0,+∞) and

ϕ : θV0 7→ ψ(−θE0
min(θV0)) is strictly decreasing and continuous on (0,+∞).

Since for every θV0 > 0, X = ϕ(θV0) + ã1, if one assume that θV0 ≥ ϕ−1( ã12 ), then

X ∈ [0, 12 ã1].

Thus, for every t ∈ [0, 1], −ã1 + tεY ∈ [−ã1,− 1
2 ã1]. Since x 7→ − x

(u′(x))2 is strictly

positive and continuous on the interval [−ã1,− 1
2 ã1] it is bounded from below by a

constant C1 > 0 and ∣∣∣∣ v′u′ (εY − ã1)− v′

u′
(−ã1)

∣∣∣∣ ≥ C1εY. (83)

Thus, there exists C2 > 0 such that,

Y ≤ α
√

3

C1
e−2(−

3
4 ln(ε))

1
3 εY e

1
2 (− 3

4 ln(ε))
− 1

3 (εY )2
(

1 + C2

(
1

| ln(ε)|

))
,

which rewrites

Y e2(−
3
4 ln(ε))

1
3 εY ≤ α

√
3

C1
e

1
2 (− 3

4 ln(ε))
− 1

3 (εY )2
(

1 + C2

(
1

| ln(ε)|

))
.

But, εY = X ∈ [0, ã1) is bounded and thus the right member of the previous
inequality is bounded by a constant independent of ε and Y . Thus, there exists
C > 0 such that

Y e2(−
3
4 ln(ε))

1
3 εY ≤ C (84)

and

ε
(
− 3

4 ln(ε)
) 1

3 Y e2(−
3
4 ln(ε))

1
3 εY ≤ ε

(
− 3

4 ln(ε)
) 1

3 C.

The function x 7→ xe2x is of class C1 and strictly increasing on R, let us denote by
h its reciprocal function which is also C1. From (84) one gets

ε
(
− 3

4 ln(ε)
) 1

3 Y ≤ h
(
ε
(
− 3

4 ln(ε)
) 1

3 C
)
.

Since h is of class C1, h(0) = 0, h′(0) = 1 and ε
(
− 3

4 ln(ε)
) 1

3 −−−→
ε→0

0, there exists

D > 0 such that

h
(
ε
(
− 3

4 ln(ε)
) 1

3 C
)
≤ ε

(
− 3

4 ln(ε)
) 1

3 C +Dε2
(
− 3

4 ln(ε)
) 2

3
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and

Y ≤ C +Dε
(
− 3

4 ln(ε)
) 1

3 , (85)

from which we deduce that Y is bounded. Thus, X = O(ε), namely

X = O
(

e−
4
3 (θV0−ã1)

3
2

)
and since X = −θE0

min − θV0 + ã1, we already have

θE0
min = −θV0 + ã1 +O

(
e−

4
3 (−ã1+θV0)

3
2

)
.

We can refine the estimate. Since Y is bounded, εY tends to 0 and one has

v′

u′
(εY − ã1)− v′

u′
(−ã1) =

(
v′

u′

)′
(−ã1)(εY ) +O(ε2).

Using (85) to prove that

e−2(−
3
4 ln(ε))

1
3 εY e

1
2 (− 3

4 ln(ε))
− 1

3 (εY )2 = 1 +O
(
ε| ln(ε)| 13

)
,

one deduces from (82) that(
v′

u′

)′
(−ã1) · Y +O(ε) = α

√
3

(
1 +O

(
1

| ln(ε)|

)
+O

(
ε| ln(ε)| 13

))
hence (

v′

u′

)′
(−ã1) · Y = α

√
3

(
1 +O

(
1

| ln(ε)|

))
.

Since
(
v′

u′

)′
(−ã1) = ã1

(u′(−ã1))2 , when θV0 tends to +∞ and thus ε = e−
4
3 (θV0−ã1)

3
2

tends to 0,

Y = α
√

3
(u′(−ã1))2

ã1
+O

(
(θV0 − ã1)−

3
2

)
. (86)

Thus,

X = εY = α
√

3
(u′(−ã1))2

ã1
e−

4
3 (θV0−ã1)

3
2 +O

(
(θV0 − ã1)−

3
2 e−

4
3 (θV0−ã1)

3
2

)
and finally, using θE0

min = −X − θV0 + ã1

θE0
min = −θV0+ã1−α

√
3

(u′(−ã1))2

ã1
e−

4
3 (θV0−ã1)

3
2 +O

(
(θV0 − ã1)−

3
2 e−

4
3 (θV0−ã1)

3
2

)
,

which proves the second point. This is an estimate in the semiclassical limit.

(3) For the last point, we look at the behaviour of θE0
min when θV0 tends to 0.

Since E0
min is a solution of (66) with −θE0

min > 0 and −θV0 − θE0
min ∈ (−ã1, 0),

when θV0 tends to 0, both −θE0
min and −θV0− θE0

min tends to 0. In order to avoid

the technical difficulty induced by the fact that v′

u′ tends to +∞ at 0, we use the

fact that E0
min is also the unique solution in (−V0, 0) of the equation

u′

v′
(−θV0 − θE) =

u′

v′
(−θE). (87)
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Note that u and v stand for f and g in [1, 10.4.3]. Thus, for x in a neighborhood
of 0 where v′ does not vanish,(

u′

v′

)′
(x) =

x

(v′(x))2
and v(x) = x+

x4

12
+O(x7).

One deduces (
u′

v′

)′
(x) = x− 2

3
x4 +O(x7)

hence (
u′

v′

)′
(x) =

(
u′

v′

)′
(0) +

1

2
x2 − 2

15
x5 +O(x8). (88)

Let y = −θE0
min − θV0

2 . Then, (87) rewrites

u′

v′

(
y − θV0

2

)
=
u′

v′

(
y +

θV0

2

)
. (89)

Since −θV0 < θE0
min < 0,

|y| ≤ θV0
2
. (90)

By (90), y = O(θV0). Thus equation (89) and equality (88) imply

1

2

(
y2 +

(
θV0

2

)2
− θV0y

)
− 2

15

(
y − θV0

2

)5
=

1

2

(
y2 +

(
θV0

2

)2
+ θV0y

)
− 2

15

(
y +

θV0

2

)5
+O((θV0)8)

that is

−θV0y −
2

15

(
−5θV0y

4 − 20
(
θV0

2

)3
y2 − 2

(
θV0

2

)5)
+O((θV0)8) = 0,

which implies

y − 2

15
y4 − 4

3

(
θV0

2

)3
y2 =

2

15

(
θV0

2

)4
+O((θV0)7). (91)

Then, (90) and (91) give y = O((θV0)4). We write y = (θV0)4ρ where ρ is a bounded
function of θV0. Then, (91) rewrites

ρ− 2

15
(θV0)12ρ4 =

1

120
+O((θV0)3),

hence

ρ =
1

120
+O((θV0)3)

and then,

y =
1

120
(θV0)4 +O((θV0)7),

which proves (10).

2
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To finish this Section and before turning to the study of the upper edge of the first
spectral band, we prove Proposition 1.

Proof: Let (e1, . . . ed) be the canonical basis of Rd and Fd−1 = Vect(e2, . . . , ed).
Since Vd is a potential which has separable variables, we have a tensor product
decomposition for Hd:

Hd =

(
− ~2

2m

d2

dx2
+ V

)
⊗ Id(x2,...,xd) + Idx1

⊗
(
− ~2

2m
∆d−1

)
where Id(x2,...,xd) is the identity operator on Fd−1, Idx1

is the identity on Vect(e1)

and ∆d−1 is the Laplacian acting on H2(Fd−1).
Then, using general results on the spectrum of tensor products of operators (see
[25, Theorem VIII.33]), we obtain:

σ(Hd) = σ

((
− ~2

2m

d2

dx2
+ V

)
⊗ Id(x2,...,xd)

)
+ σ

(
Idx1

⊗
(
− ~2

2m
∆d−1

))
= σ(H) + σ(−∆d−1)

=
⋃
p≥0

[Epmin, E
p
max] + [0,+∞)

= [E0
min,+∞).

Since H has purely absolutely continuous spectrum and − ~2

2m∆d−1 too, the spec-
trum of Hd is also purely absolutely continuous.

2

6.3. The upper edge of the first spectral band. The upper edge of the first
spectral band is the smallest value of E among the solutions of equations (68) and
(69).

We start by assuming that θV0 ∈ [c0, c̃0), which implies in particular that we are
in the semiclassical regime. In this case (69) has no solution with −θE > 0 and
we prove that (68) has a unique solution such that −θE > 0 and −θV0 − θE ∈
[−c0,−ã1). Indeed, the function z0 : [0,+∞)→ [c0,+∞) is a continuous bijection
and

∀θV0 ≥ c0, ∃!x0 ≥ 0, z0(x0) = x0 − ψ0(x0) = θV0.

One sets Ĕ0 = −x0

θ and since x0 = θV0 + ψ0(x0) ∈ [−c0 + θV0,−ã1 + θV0) one has

−V0 +
ã1
θ
< Ĕ0 ≤ −V0 +

c0
θ
.

Thus, for θV0 ∈ [c0, c̃0), E0
max = Ĕ0.

We then assume that θV0 ≥ c̃0. In this case, (68) has still a unique solution such

that −θE > 0 and −θV0 − θE ∈ [−c0,−ã1), namely Ĕ0, but one can also find a
solution of (69) with −θE > 0. Indeed, the function from [0,+∞) → [c̃0,+∞)
which maps x ≥ 0 to x− ψ0(x) is a continuous strictly increasing bijection. Thus,

∀θV0 ≥ c̃0, ∃!x̃0 ≥ 0, x̃0 − ψ0(x̃0) = θV0.

One sets Ẽ0 = − x̃0

θ and since x̃0 = θV0 + ψ0(x̃0) ∈ (−a1 + θV0,−c̃0 + θV0] one has

−V0 +
c̃0
θ
≤ Ẽ0 < −V0 +

a1
θ
.
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Since c0 < c̃0, one has Ĕ0 < Ẽ0 which implies E0
max = Ĕ0 and E1

min = Ẽ0.

As we identified E0
max among all the solutions of (68) and (69), we can give more

precise estimates.

Proposition 6. We have the following estimates on E0
max, in the semiclassical

regime and the semiclassical limit:

(1) For every θV0 > c0,

−V0 +
ã1
θ
< E0

max < −V0 +
c0
θ
.

(2) When θV0 tends to +∞,

θE0
max = −θV0 + ã1 + α

√
3

(u′(−ã1))2

ã1
e−

4
3 (θV0−ã1)

3
2
(

1 +O
(

(θV0 − ã1)−
3
2

))
.

Proof: (1) The first point has just been proven before we stated Proposition 6 and
the strict inequality is a consequence of the strictly increasing character of z0.

(2) For the second point, we follow the proof of point 3 of Theorem 3. We assume
that θV0 > ã1. One sets X = −θE0

max − θV0 + ã1, then X satisfies

v′

u′
(X − ã1) =

v

u
(X + θV0 − ã1), X ∈ [−c0 + ã1, 0). (92)

Using [1, 10.4.59, 10.4.63] in the equality (78), one gets

v′

u′
(X − ã1) = α− α

√
3e−

4
3 (X+θV0−ã1)

3
2
(

1 +O
(

(X + θV0 − ã1)
− 3

2

))
. (93)

Again, we set ε = e−
4
3 (θV0−ã1)

3
2 . We also define Y as in the proof of point (3) of

Theorem 3. Then, equality (81) is still valid and the condition X ∈ [−c0 + ã1, 0)
implies that

−c0 + ã1 +
(
− 3

4 ln(ε)
) 2

3 = −c0 + θV0 ≤ X + θV0 − ã1 ≤
(
− 3

4 ln(ε)
) 2

3

and in particular, X + θV0 − ã1 tends to +∞ when θV0 tends to +∞. Moreover,

4

3

1

| ln(ε)|
≤ (X + θV0 − ã1)

− 3
2 ≤

((
3

4

) 2
3

+
ã1 − c0
| ln(ε)|

2
3

)− 3
2 1

| ln(ε)|
.

Using (93) and the relation α = v′

u′ (−ã1) one gets:

1

ε

(
v′

u′
(εY − ã1)− v′

u′
(−ã1)

)
=

− α
√

3e−2(−
3
4 ln(ε))

1
3 εY e(− 3

4 ln(ε))
− 1

3 (εY )2Q(εY )

(
1 +O

(
1

| ln(ε)|

))
.

(94)

Inequality (83) is still valid and, using the fact that εY = X ∈ [−c0 − ã1, 0), one
gets that Y is bounded and

X = O
(

e−
4
3 (θV0−ã1)

3
2

)
.

Then, the bootstrap argument gives us the limit of Y and we have

Y = −α
√

3
(u′(−ã1))2

ã1
+O

(
(θV0 − ã1)−

3
2

)
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and

θE0
max = −θV0+ã1+α

√
3

(u′(−ã1))2

ã1
e−

4
3 (θV0−ã1)

3
2 +O

(
(θV0 − ã1)−

3
2 e−

4
3 (θV0−ã1)

3
2

)
,

which proves the second point.

2

We deduce from the asymptotic expansions in θV0 of E0
min and E0

max the width of
the first rescaled spectral band in the semiclassical limit.

Proposition 7. When θV0 tends to +∞,

θE0
max − θE0

min = 2α
√

3
(u′(−ã1))2

ã1
e−

4
3 (θV0−ã1)

3
2
(

1 +O
(

(θV0 − ã1)−
3
2

))
. (95)

For θV0 ≤ c0 (i.e. in the classical regime), the situation changes. The first band
recovers completely the range of the periodic potential V and is even larger.

Proposition 8. If θV0 ≤ c0, E0
max ≥ 0 and we have[

min
(
−V0

2
,−V0 +

ã1

θ

)
, 0
]
⊂
[
E0

min, E
0
max

]
.

Proof: If θV0 ≤ c0, there is no longer a solution of (68) or (69) satisfying −θE > 0.
Thus, −θE ≤ 0 and E0

max ≥ 0. Using the upper bound on E0
min given in Theorem

3, we have −V0 + ã1
θ ∈ [E0

min, E
0
max]. Using point (1) of Theorem 3, we also have

−V0

2 ∈ [E0
min, E

0
max], which proves the proposition.

2

Proposition 8 along with Proposition 6 imply Theorem 1.

The following proposition precise the behaviour of E0
max in the classical regime and

the classical limit.

Proposition 9. Let θV0 ≤ c0.

(1) If θV0 ∈ (c̃1 − c̃0, c0], then θE0
max ∈ (−θV0 + c̃0, 0].

(2) If θV0 < c̃1 − c̃0, let p0 defined in (7). Then, θE0
max ∈ [−θV0 + c̃p0 , c̃p0+1]

or θE0
max ∈ [−θV0 + c̃p0−1, c̃p0 ].

(3)
lim

θV0→0
θE0

max = +∞. (96)

Proof: (2) Since (c̃k+1 − c̃k)k≥0 is strictly decreasing and converges to 0, for any
θV0 ∈ [0, c̃1 − c̃0), the integer p0 ≥ 1 defined in (7) is well defined and unique.
E0

max is a solution of either (69) or (68). Let k ≥ 1. The restriction of the
function v

u to (−c̃2k,−c̃2k−2) is a strictly increasing and continuous bijection from

(−c̃2k,−c̃2k−2) to R denoted by
(
v
u

)
2k−2, and v′

u′ induce a strictly increasing and

continuous bijection from (−c̃2k+1,−c̃2k−1) to R denoted by
(
v′

u′

)
2k−1

. Then,

studying the sign of fx for x ∈ (−c̃2k,−c̃2k−2) and using the Sturm-Picone’s
lemma in a way similar as in the proof of Lemma 10, we prove that x 7→ x −(
v′

u′

)−1
2k−1

(
v
u

)
2k−2 (x) is strictly increasing and continuous from (−c̃2k+1,−c̃2k−1)

to (c̃2k+1 − c̃2k, c̃2k−1 − c̃2k−2).
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Thus, (68) admits a unique solution Ek with −θEk ∈ (−c̃2k,−c̃2k−2) and −θV0 −
θEk ∈ (−c̃2k+1,−c̃2k−1).

To study the sign of fx, we need to know the signs of u, v, u′ and v′ on the interval
(−c̃2k+1,−c̃2k−2), since x ∈ (−c̃2k,−c̃2k−2) and x − z ∈ (−c̃2k+1,−c̃2k−1). For
example, we have on (−c̃2k+1,−c2k+1),

(−1)ku < 0, (−1)ku′ > 0, (−1)kv > 0, (−1)kv′ < 0

and on (−c2k+1,−c̃2k),

(−1)ku < 0, (−1)ku′ > 0, (−1)kv < 0, (−1)kv′ < 0

and the signs alternate on the successive intervals (−c̃2k,−c2k), (−c2k,−c̃2k−1),
(−c̃2k−1,−c2k−1), (−c2k−1,−c̃2k−2).
The restriction of the function v

u to (−c̃2k+2,−c̃2k) is a strictly increasing and

continuous bijection from (−c̃2k+2,−c̃2k) to R denoted by
(
v
u

)
2k

. We set for every

x ∈ (−c̃2k+1,−c̃2k−1) and every z ∈ (−c̃2k+1 + c̃2k+2,−c̃2k−1 + c̃2k), ḡx(z) = v(x−
z)u′(x)− u(x− z)v′(x). Then ḡx satisfies the Airy equation and using the signs of
u, v, u′ and v′ given above and a Sturm-Picone’s argument as in Lemma 10, we

prove that x 7→ x −
(
v
u

)−1
2k

(
v′

u′

)
2k−1

(x) is strictly increasing and continuous from

(−c̃2k+1,−c̃2k−1) to (−c̃2k+1 + c̃2k+2,−c̃2k−1 + c̃2k).

Thus, (69) admits a unique solution Ēk with −θĒk ∈ (−c̃2k+1,−c̃2k−1) and −θV0−
θĒk ∈ (−c̃2k+2,−c̃2k).

Since c̃p0+1− c̃p0 < θV0 < c̃p0 − c̃p0−1, we have either E0
max = Ek or E0

max = Ēk for
k equal to the integer part of p0

2 .

We deduce that −θE0
max ∈ [−c̃p0+1,−c̃p0−1] and −θV0 − θE0

max ∈ [−c̃p0+2,−c̃p0 ],
or −θE0

max ∈ [−c̃p0 ,−c̃p0−2] and −θV0 − θE0
max ∈ [−c̃p0+1,−c̃p0−1]. This proves

the second point.

(1) If θV0 ∈ (c̃1 − c̃0, c0], then θV0 ∈ (c̃2 − c̃1, c̃0). The function v′

u′ induces a

strictly increasing and continuous bijection from (−c̃1, 0) to R denoted by
(
v′

u′

)
0
.

Then, with the previous notations, the function x 7→ x−
(
v
u

)−1
0

(
v′

u′

)
0

(x) is strictly

increasing and continuous from (−c̃1, 0) to (c̃2− c̃1, c̃0), using again Sturm-Picone’s
Lemma with ḡx for x ∈ (−c̃1, 0). Thus, (69) admits a unique solution Ē0 with
−θĒ0 ∈ (−c̃1, 0) and −θV0 − θĒ0 ∈ (−c̃2,−c̃0). Since E0

max = Ē0, we proved the
first point.

(3) The integer p0 tends to +∞ when θV0 tends to 0. Indeed, using (54) and (56),
one has

p0 = O
(
(θV0)−3

)
.

Since p0 −−−−→
θV0→0

+∞ and ck −−−−−→
k→+∞

+∞, we get (96) and prove the third point.

2

Proposition 9 and Theorem 3 imply directly Theorem 2.
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6.4. The first spectral gap. In the discussion before the statement of Proposition
6, we identified both E0

max and E1
min in the case θV0 ≥ c̃0. We had obtained, for

every θV0 ≥ c̃0,

−V0 +
ã1
θ
< E0

max ≤ −V0 +
c0
θ

and

−V0 +
c̃0
θ
≤ E1

min < −V0 +
a1
θ
.

This yields a first estimate of the first spectral gap in the semiclassical regime

0 <
c̃0 − c0
θ
≤ E1

min − E0
max <

a1 − ã1
θ

.

In particular, the first gap is always open.
Similarly to the expansions we obtained for the edges of the first spectral band, we
can prove the following expansion for θE1

min in the semiclassical limit.

Proposition 10. When θV0 tends to +∞,

θE1
min = −θV0 + a1 − α

√
3(u(−a1))2e−

4
3 (θV0−a1)

3
2
(

1 +O
(

(θV0 − a1)−
3
2

))
. (97)

Proof: We follow the proof of point 3 of Theorem 3. We assume that θV0 > a1.
One sets X = −θE1

min − θV0 + a1 which satisfies

v

u
(X − a1) =

v′

u′
(X + θV0 − a1), X ∈ [0,−c̃0 + a1). (98)

Since x 7→ x−ψ0 is strictly increasing on [0,+∞), there exists C > 0 such that for
θV0 > C, −θE1

min − θV0 ∈ [−a1, −c̃0−a12 ] and thus X ∈ [0, −c̃0+a12 ].
Using [1, 10.4.61, 10.4.66] in the equality (78), one gets

v

u
(X − a1) = α+ α

√
3e−

4
3 (X+θV0−a1)

3
2
(

1 +O
(

(X + θV0 − a1)
− 3

2

))
. (99)

We set ε = e−
4
3 (θV0−a1)

3
2 and Y = 1

εX. Since α = v
u (−a1) and using the fact that(

v
u

)′
= 1

u2 is bounded from below by a strictly positive constant on [0, −c̃0+a12 ], one
shows with a similar proof as (83) that:

∃C2 > 0,
∣∣∣ v
u

(X − a1)− v

u
(−a1)

∣∣∣ ≥ C2εY.

Then, following the proof of point 3 of Theorem 3 and using that εY = X ∈
[0, −c̃0+a12 ] is bounded, on gets that Y is bounded and

X = O
(

e−
4
3 (θV0−a1)

3
2

)
.

Since Y is bounded one has:
v

u
(εY − a1)− v

u
(−a1) =

( v
u

)′
(−a1)(εY ) +O(ε2).

But,
(
v
u

)′
(−a1) = 1

(u(−a1))2 and we get, similarly to (86),

Y = α
√

3(u(−a1))2 +O
(

(θV0 − a1)−
3
2

)
from which we obtain (97).

2

Combining the asymptotics of θE0
max and θE1

min we deduce an asymptotic expansion
of the rescaled first gap in the semiclassical limit.



THE PERIODIC AIRY-SCHRÖDINGER OPERATOR 39

Proposition 11. When θV0 tends to +∞,

θE1
min − θE0

max = a1 − ã1 − α
√

3(u(−a1))2e−
4
3 (θV0−a1)

3
2
(

1 +O
(

(θV0 − a1)−
3
2

))
.

(100)

Proof: We combine (97) and point (2) of Proposition 6. Then, since a1 > ã1, one
has

(θV0 − ã1)−
3
2 e−

4
3 (θV0−ã1)

3
2 ≤ (θV0 − a1)−

3
2 e−

4
3 (θV0−a1)

3
2 ,

which allows to keep only the term O
(

(θV0 − a1)−
3
2 e−

4
3 (θV0−a1)

3
2

)
and not the

term O
(

(θV0 − ã1)−
3
2 e−

4
3 (θV0−ã1)

3
2

)
in (100).

2

7. The p first spectral bands in the semiclassical regime

In this Section, we prove Theorem 4 by determining the band edges which are
contained in the interval [−V0, 0] for a fixed θV0.

Proposition 12. Let p ≥ 0 and assume that θV0 ≥ c̃p. Then, for every k ∈
{0, . . . , p},

(1) If k = 2j is even, (69) has a unique solution Ê2j with −θE ∈ [0,+∞),
−θV0 − θE ∈ (−aj+1,−c̃2j ] and satisfying:

−V0 +
c̃2j
θ
≤ Ê2j < −V0 +

aj+1

θ
. (101)

(2) If k = 2j+1 is odd, (66) has a unique solution Ê2j+1 with −θE ∈ [0,+∞),
−θV0 − θE ∈ (−ãj+2,−c̃2j+1] and satisfying:

−V0 +
c̃2j+1

θ
≤ Ê2j+1 < −V0 +

ãj+2

θ
. (102)

Proof: By Lemma 5, for every k ≥ 0, the function x 7→ x − ψk(x) is a strictly
increasing and continuous bijection from [0,+∞) to [c̃k,+∞). Thus, if θV0 ≥ c̃p ≥
c̃k, there exists a unique xk ≥ 0 such that θV0 = xk −ψk(xk). Let Êk be such that

−θÊk = xk. Then, if k = 2j, Ê2j is the unique solution of (69) with −θE ∈ [0,+∞)
and −θV0 − θE ∈ (−aj+1,−c̃2j ]. Moreover,

−aj+1 < −θÊk − θV0 ≤ −c̃k < 0 ≤ −θÊk,

and we get (101). If k = 2j + 1, Ê2j+1 is the unique solution of (66) with −θE ∈
[0,+∞) and −θV0 − θE ∈ (−ãj+2,−c̃2j+1]. Moreover,

−ãj+2 < −θÊk − θV0 ≤ −c̃k < 0 ≤ −θÊk,
and we get (102). The proof of the proposition is complete.

2

Proposition 13. Assume that θV0 ≥ cp. Then, for every k ∈ {0, . . . , p},
(1) If k = 2j is even, (68) has a unique solution Ĕ2j with −θE ∈ [0,+∞),
−θV0 − θE ∈ [c2j ,−ãj+1) and satisfying:

−V0 +
ãj+1

θ
< Ĕ2j ≤ −V0 +

c2j
θ
. (103)
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(2) If k = 2j+1 is odd, (67) has a unique solution Ĕ2j+1 with −θE ∈ [0,+∞),
−θV0 − θE ∈ [c2j+1,−aj+1) and satisfying:

−V0 +
aj+1

θ
< Ĕ2j+1 ≤ −V0 +

c2j+1

θ
. (104)

Proof: Let k ∈ {0, . . . , p}. Since θV0 ≥ cp, we have θV0 ∈ [ck,+∞). Thanks
to Lemma 10, zk is continuous and strictly increasing, there exists a unique real
number xk ≥ 0 such that θV0 = zk(xk). Let Ĕk be such that −θĔk = xk. Then,

Ĕ2j is the unique solution of (68) such that −θE ∈ [0,+∞) and −θV0 − θE ∈
[c2j ,−ãj+1). Moreover,

−ck ≤ −θĔk − θV0 < −ãj+1

and we get (103).

Similarly, Ĕ2j+1 is the unique solution of (67) such that −θE ∈ [0,+∞) and −θV0−
θE ∈ [c2j+1,−aj+1). Moreover,

−ck ≤ −θĔk − θV0 < −aj+1

and we get (104).

2

We can deduce from Proposition 12 and Proposition 13 the following Proposition
on the p first spectral bands and the p− 1 first spectral gaps of the operator H.

Proposition 14. Let p ≥ 0. Assume that θV0 ≥ c̃p.

(1) For every k ∈ {0, . . . , p}, Ek+1
min = Êk and Ekmax = Ĕk.

(2) We have the estimates on the spectral gaps:

∀j ≥ 1, 0 <
c̃2j−1 − c2j−1

θ
≤ E2j

min − E
2j−1
max ≤

ãj+1 − aj
θ

and

∀j ≥ 0, 0 <
c̃2j − c2j

θ
≤ E2j+1

min − E
2j
max ≤

aj+1 − ãj+1

θ
.

In particular, all the spectral gaps are open.

Proof: (1) Using the estimates obtained on Êk and Ĕk and using the fact that

ck < c̃k, we have Ĕk < Êk. Since

−V0 < E0
min < −V0 +

ã1
θ
< Ĕ0 < Ê0,

we have E0
max = Ĕ0 and E1

min = Ê0. Then using Ĕk < Êk, we deduce the first
point.
(2) These two estimates are deduced directly from the estimates proven on Êk and

Ĕk in Proposition 12 and Proposition 13. We just have to be careful with the fact
that E2j

min = Ê2j−1 and E2j+1
min = Ê2j and to use the right estimate in Proposition

12 depending on the parity of k.

2

Propositions 12, 13 and 14 imply the proof of Theorem 5.

Proof: (of Theorem 5). For every p ≥ 0, −θEpmax(θV0) = (zp)
−1(θV0) and since

zp is strictly increasing and continuous on [0,+∞), θV0 7→ θEpmax(θV0) is strictly
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decreasing and continuous on [0,+∞). Since for every p ≥ 0, θEpmax(cp) = 0, cp is
the unique zero in [0,+∞) of the function θV0 7→ θEpmax(θV0).

Since for every p ≥ 0, −θEp+1
min (θV0) = (zp)−1(θV0) (where zp : x 7→ x − ψp(x) is

strictly increasing and continuous on [0,+∞)), θV0 7→ θEp+1
min (θV0) is also strictly

decreasing and continuous on [0,+∞), and since for every p ≥ 0, θEp+1
min (c̃p) = 0,

c̃p is the unique zero in [0,+∞) of the function θV0 7→ θEp+1
min (θV0).

2

The estimates in Propositions 12, 13 and 14 combined with the intervals given in
Lemma 2 lead to the proof of Theorem 4. Before that, we prove a technical lemma.

Lemma 6. For every y ∈ R∗+, let I(y) = (9
4 )

2
3
y

3
2 +1

y2+y+1 . Then, for every η > 0 and

every real numbers 0 < b < a such that a−b
b ∈ [0, η],

(a− b)b− 1
3 I((1 + η)

2
3 ) ≤

(
3
2a
) 2

3 −
(
3
2b
) 2

3 ≤ (a− b)b− 1
3 I(1). (105)

Proof: One checks that I(1) = ( 3
2 )

1
3 , I ′(1) = − 1

6 and

∀y > 0, I ′(y) = −
3
2 + (z − 1)( 1

2 + 2z + 1
2 (1 + z)z3)

(1 + z2 + z4)2
, where z2 = y.

Hence I ′(y) < 0 for y > 1 and I is strictly decreasing on [1, 1 + η] for all η > 0.

In particular, for every real numbers 0 < b < a such that a−b
b ∈ [0, η],

(
a
b

) 2
3 ∈

[1, (1 + η)
2
3 ] ⊂ [1, 1 + η] and

I((1 + η)
2
3 ) ≤ I

((
a
b

) 2
3

)
≤ I(1).

Since

I
((

a
b

) 2
3

)
= (a− b)−1

((
3
2a
) 2

3 −
(
3
2b
) 2

3

)
b

1
3 ,

we get (105).

2

Proof: (of Theorem 4). Let θV0 > c0. Let k0 defined in (8). The first point in
Theorem 4 is a direct consequence of point (1) of Proposition 14 and Propositions

12 and 13 which ensure that for every k ∈ {0, . . . , k0}, Êk and Ĕk are in [−V0, 0].
For the second point, using Propositions 12, 13 and 14 one deduces that

∀p ∈ {2, . . . , k0}, c̃p − cp ≤ θ(Ep+1
min − E

p
max) ≤ c̃p − c̃p−2

and

∀p ∈ {2, . . . , k0}, 0 < θ(Epmax − E
p
min) ≤ cp − c̃p−1.

Let p ∈ {2, . . . , k0}. Assume that p is even, that is p = 2j for j ≥ 1. Then,

c̃2j − c̃2j−2 =
(

3
2 ξ̃2j

) 2
3 −

(
3
2 ξ̃2j−2

) 2
3

.

Using (53) in Lemma 2, we have ξ̃2j − ξ̃2j−2 ∈
[
π − 5

9π
2j

(2j)2−1 , π + 5
9π

2j
(2j)2−1

]
and

ξ̃
− 1

3
2j−2 ≤

(
−5π

12
+ jπ − 5

18π

)− 1
3

≤
(

(2j − 1)π

2

)− 1
3

.
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Thus, by Lemma 6,

c̃2j − c̃2j−2 ≤
(
π +

5

9π

2j

(2j)2 − 1

)(
3

2

) 1
3
(

(2j − 1)π

2

)− 1
3

.

If p is odd, that is p = 2j + 1 for j ≥ 1, then, using (55) in Lemma 2, we have

ξ̃2j+1 − ξ̃2j−1 ∈
[
π − 7

3π
2j+1

(2j+1)2−1 , π + 7
3π

2j+1
(2j+1)2−1

]
and ξ̃

− 1
3

2j−1 ≤
(
2jπ
2

)− 1
3 . Thus,

by Lemma 6,

c̃2j+1 − c̃2j−1 ≤
(
π +

7

3π

2j + 1

(2j + 1)2 − 1

)(
3

2

) 1
3
(

2jπ

2

)− 1
3

.

Since 7
3π >

5
9π , we have

∀p ∈ {2, . . . , k0}, c̃p − c̃p−2 ≤
(
π +

7

3π

p

p2 − 1

)(
3

π

) 1
3

(p− 1)−
1
3

which proves (13). The proof of the upper bound in (12) is similar. We estimate
both c2j − c̃2j−1 and c2j+1 − c̃2j for j ≥ 1 by using (49), (55), (53) and (51)

to obtain that ξ2j − ξ̃2j−1 ∈
[
π
3 −

7
3π

2j+ 1
3

2j(2j+ 2
3 )
, π3 + 7

3π

2j+ 1
3

2j(2j+ 2
3 )

]
and ξ2j+1 − ξ̃2j ∈[

π
3 −

5
9π

2j+1+ 1
3

(2j+1)(2j+1+ 2
3 )
, π3 + 5

9π

2j+1+ 1
3

(2j+1)(2j+1+ 2
3 )

]
. We also have that for every p ∈

{2, . . . , k0}, ξ̃
− 1

3
p ≤

(
(p+1)π

2

)− 1
3

. Since 7
3π >

5
9π , we get the upper bound of (12) by

using Lemma 6.

It remains to prove the lower bound in (12). We have to find a lower bound of
c̃p − cp for every p ∈ {2, . . . , k0}. Using (53) and (49) we get for every j ≥ 1,

ξ̃2j − ξ2j ∈
[
π

6
− 229

432π
,
π

6
+

229

432π

]
⊂
[
π

9
,

2π

9

]
.

We have
ξ̃2j − ξ2j
ξ2j

≤
2π
9

5π
12 + π − 7

16π

≤
2π
9

17π
12

≤ 8

51
≤ 1

6
.

Moreover, since 5
6 + 7

8π2 < 1,

(ξ2j)
− 1

3 ≥
(

5π

12
+

2jπ

2
+

7

16π

)− 1
3

≥
(π

2

)− 1
3

(2j + 1)−
1
3 .

Thus, we can take η = 1
6 and use the lower bound in (105) to get

I
((

7
6

) 2
3

) 2
1
3π

2
3

9
(2j + 1)−

1
3 ≤ c̃2j − c2j .

For p = 2j + 1, since π
9 <

π
6 −

97
264π and 5

6 + 5
33π2 < 1, and taking η = 1

2 , we get a
larger lower bound which is

I
((

3
2

) 2
3

) 2
1
3π

2
3

9
(2j + 2)−

1
3 ≤ c̃2j+1 − c2j+1.

It allows to conclude that the lower bound valid for every p ∈ {2, . . . , k0} is the one
obtained for p even. This proves the lower bound in (12).

2
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Proof: (of Corollary 1). The integer k0 defined in (8) is equal to
[

4
3π (θV0)

3
2

]
where,

for any x ∈ R, [x] denotes the integer part of x. Using (12), one has:

∀θV0 > c0, 0 <
1

θV0

k0∑
p=2

θδp ≤
1

θV0

k0∑
p=2

(
π

3
+

7

3π

p+ 1
3

p(p+ 2
3 )

)(
3

π

) 1
3 1

p
1
3

. (106)

Since x 7→ 1

x
1
3

and x 7→ 1

x
1
3

x+ 1
3

x(x+ 2
3 )

are decreasing functions on [1,+∞), by compar-

ison between sums and integrals,

3

2

(
(k0 + 1)

2
3 − 2

2
3

)
≤

k0∑
p=2

1

p
1
3

≤ 3

2

(
k

2
3
0 − 1

)
and ∫ k0+1

2

1

x
1
3

x+ 1
3

x(x+ 2
3 )

dx ≤
k0∑
p=2

p+ 1
3

p(p+ 2
3 )

1

p
1
3

≤
∫ k0

1

1

x
1
3

x+ 1
3

x(x+ 2
3 )

dx.

Since∫
1

x
1
3

x+ 1
3

x(x+ 2
3 )

dx = −3

2

1

x
1
3

−
(

3

16

) 1
3

ln

(
x

1
3 +

(
2

3

) 1
3

)
+

(
3

27

) 1
3

ln

(
x

2
3 −

(
2

3
x
) 1

3

+
(

2

3

) 2
3

)
+

3
5
6

2
4
3

arctan

(
2

2
3

3
1
6

(x
1
3 − 1

3
1
2

)

)
,

and k0 =
[

4
3π (θV0)

3
2

]
, one gets that

1

θV0

k0∑
p=2

1

p
1
3

−−−−−−→
θV0→+∞

3

2

(
4

3π

) 2
3

and

1

θV0

k0∑
p=2

p+ 1
3

p(p+ 2
3 )

1

p
1
3

−−−−−−→
θV0→+∞

0.

Thus,

1

θV0

k0∑
p=2

(
π

3
+

7

3π

p+ 1
3

p(p+ 2
3 )

)(
3

π

) 1
3 1

p
1
3

−−−−−−→
θV0→+∞

(
2

3

) 1
3

. (107)

The function θV0 7→ 1
θV0

∑k0
p=2 θδp is increasing and thus admits a limit in R∪{∞}

at +∞. It implies that DθV0
also has a limit in R∪{∞} at +∞ and since the upper

bound in (106) has a limit in R at +∞, it is a bounded function of θV0 and thus
DθV0

also has a limit in R when θV0 tends to +∞. Then, (106) and (107) imply
(14).

2

8. Spectral bands and spectral gaps in the semiclassical limit

Proposition 14 allows us to identify the spectral band edges among the solutions of
(69), (68), (66) and (67). Using proofs similar to those of the asymptotics of E0

min,
E0

max and E1
min, one can get the following asymptotics for the spectral band edges

in the semiclassical limit.
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Proposition 15. When θV0 tends to +∞,

(1) for every integer j ≥ 0,

θE2j
min = −θV0 + ãj+1 − α

√
3

(u′(−ãj+1))2

ãj+1
e−

4
3 (θV0−ãj+1)

3
2 +

O
(

(θV0 − ãj+1)−
3
2 e−

4
3 (θV0−ãj+1)

3
2

) (108)

and

θE2j
max = −θV0 + ãj+1 + α

√
3

(u′(−ãj+1))2

ãj+1
e−

4
3 (θV0−ãj+1)

3
2 +

O
(

(θV0 − ãj+1)−
3
2 e−

4
3 (θV0−ãj+1)

3
2

) (109)

(2) and for every integer j ≥ 0,

θE2j+1
min = −θV0 + aj+1 − α

√
3(u(−aj+1))2e−

4
3 (θV0−aj+1)

3
2 +

O
(

(θV0 − aj+1)−
3
2 e−

4
3 (θV0−aj+1)

3
2

) (110)

and

θE2j+1
max = −θV0 + aj+1 + α

√
3(u(−aj+1))2e−

4
3 (θV0−aj+1)

3
2 +

O
(

(θV0 − aj+1)−
3
2 e−

4
3 (θV0−aj+1)

3
2

)
.

(111)

Proof: For j = 0 we have already obtained the asymptotic of E0
min. For every

j ≥ 1, E2j
min is the unique solution of (66) with −θV0 − θE2j

min ∈ [−ãj+1,−c̃2j−1).

Since ψ2j−1 is strictly decreasing on [0,+∞), one can assume that −θV0− θE2j
min ∈[

−ãj+1,
−c̃2j−1−ãj+1

2

]
and on this reduced interval, the function x 7→ − x

(u′(x))2 is

greater than a strictly positive constant. Thus, the scheme of the proof of the
asymptotics of E0

min can be followed and leads to (108).

For every j ≥ 0, E2j
max is the unique solution of (68) with −θV0 − θE2j

max ∈
[−c2j ,−ãj+1). Since the function x 7→ − x

(u′(x))2 is greater than a strictly posi-

tive constant on the interval [−c2j ,−ãj+1]. Thus, the scheme of the proof of the
asymptotics of E0

max can be followed and leads to (109).

For every j ≥ 0, E2j+1
min is the unique solution of (69) with −θV0 − θE2j+1

min ∈
[−aj+1,−c̃2j). Since ψ2j is strictly decreasing on [0,+∞), one can assume that

−θV0 − θE2j+1
min ∈

[
−aj+1,

−c̃2j−ãj+1

2

]
and on this reduced interval, the function 1

u2

is greater than a strictly positive constant. Thus, the scheme of the proof of the
asymptotic of E1

min can be followed and leads to (110).

For every j ≥ 0, E2j+1
max is the unique solution of (67) with −θV0 − θE2j+1

max ∈
[−c2j+1,−aj+1). Since the function 1

u2 is greater than a strictly positive constant
on the interval [−c2j+1,−aj+1]. Thus, combining the proofs of the asymptotics of
E0

max and E1
min leads to (109).

2
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These asymptotics lead to the asymptotics of the widths of the p-th spectral band
and the p-th gap in the semiclassical limit.

Proposition 16. When θV0 tends to +∞, for every j ≥ 0,

θδ2j = θE2j
max − θE

2j
min

= 2α
√

3
(u′(−ãj+1))2

ãj+1
e−

4
3 (θV0−ãj+1)

3
2
(

1 +O
(

(θV0 − ãj+1)−
3
2

))
,

(112)

θδ2j+1 = θE2j+1
max − θE

2j+1
min

= 2α
√

3(u(−aj+1))2e−
4
3 (θV0−aj+1)

3
2
(

1 +O
(

(θV0 − aj+1)−
3
2

))
.

(113)

Proof: The asymptotic formula (112) is obtained from (108), (109) and the asymp-
totic formula (113) is a direct consequence of (111) and (110).

2

Proposition 15 and Proposition 16 together imply Theorem 6.
Proof: of Theorem 6. The first statement of Theorem 6 is about the convergence of
the rescaled spectral bands to the zeroes of the Airy function Ai and of its derivative,
and is a consequence of the first two terms of the asymptotic developments (108),
(109), (110) and (111). More precisely, for every j ≥ 0,

θV0 + θE2j
min = ãj+1 +O

(
e−

4
3 (θV0−ãj+1)

3
2

)
and

θV0 + θE2j
max = ãj+1 +O

(
e−

4
3 (θV0−ãj+1)

3
2

)
and both θV0 + θE2j

min and θV0 + θE2j
max tends to ãj+1 when θV0 tends to +∞.

Using (110) and (111) we prove similarly that both θV0 +θE2j+1
min and θV0 +θE2j+1

max

tends to aj+1 when θV0 tends to +∞.
The asymptotic formula for θδ2j and θδ2j+1 in Theorem 6 are exactly the same as
those in Proposition 16.

2

Proposition 17. When θV0 tends to +∞, for every j ≥ 0,

θγ2j = θE2j+1
min − θE

2j
max

= aj+1 − ãj+1 − α
√

3(u(−aj+1))2e−
4
3 (θV0−aj+1)

3
2
(

1 +O
(

(θV0 − aj+1)−
3
2

))
,

(114)

and

θγ2j+1 = θE2j+2
min − θE

2j+1
max

= ãj+2 − aj+1 − α
√

3
(u′(−ãj+2))2

ãj+2
e−

4
3 (θV0−ãj+2)

3
2
(

1 +O
(

(θV0 − ãj+2)−
3
2

))
.

(115)

Proof: The asymptotic formula (114) is a consequence of (110), (109) and the fact
that aj+1 > ãj+1.
The asymptotic formula (115) is a consequence of (108), (111) and the fact that
ãj+2 > aj+1.

2
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This proposition implies directly Theorem 7 of the introduction.

9. Conclusion

Let us summarize some of the results we have obtained in this article.

(1) We have been able to get very precise estimates of the widths of the spec-
tral bands and the spectral gaps in the semiclassical limit for a periodic
potential which is not analytic and not even differentiable at its maxima
or minima. Up to our knowledge, this is the first example of non-regular
periodic potential for which such estimates have been obtained. This was
done thanks to the accurate asymtptotic expansions of the classical Airy
functions and their derivatives and thanks to a bootstrap analysis argument
developed in the proof of Theorem 3.

(2) We defined a semiclassical regime which is not the semiclassical limit. In
this regime the results are stated for a fixed value of the semiclassical pa-
rameter θV0. This regime is characterized by the comparison between θV0
and the constant c0: if θV0 > c0 then the periodic Airy-Schrödinger opera-
tor is in the semiclassical regime. Here, c0 is explicitly defined and we even
know an approximate value: c0 ' 1.515.

(3) In the semiclassical regime, we count the number of spectral bands which
lie in the range of the potential V . This number depends only of the value
of the semiclassical parameter θV0 compared to the values of the zeroes
of the canonical solutions of the Airy equation and their derivatives. In
Theorem 5 we give a dynamical picture of the successives entrances in the
range of V of the spectral bands and gaps when θV0 grows and takes the
successives values ck and c̃k for any k ≥ 0.

(4) In the semiclassical regime, we estimate the widths of the spectral bands
and gaps which lie in the range of the potential V . The bounds for the p-th
spectral band or gap depend only on p.

(5) In the classical regime, which is characterized by the inequality θV0 ≤ c0,
we give a complete description of the first spectral band. We also get the
behaviour of this first spectral band in the classical limit, that is when θV0
tends to 0.

Appendix A. Sturm-Picone’s lemmas

In this Appendix we prove a Sturm’s formula and a version of the Sturm-Picone’s
formula adapted to the setting of the proof of Lemma 10.

Lemma 7. Let a < b be two real numbers and let g1, g2 ∈ C0([a, b]). Let z be a
solution of −z′′ + g1z = 0 and let y be a solution of −y′′ + g2y = 0. Then:

(yz′ − zy′)′ = (g1 − g2)yz. (116)

Proof: We have:

y(−z′′ + g1z)− z(−y′′ + g1y) = −yz′′ + zy′′ = −(yz′ − zy′)′

We also have:

(−y′′ + g1y)− (−y′′ + g2y) = (g1 − g2)y.

Then,

y(−z′′ + g1z)− z (−z′′ + g2z + (g1 − g2)y) = −(yz′ − zy′)′.
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Since −z′′ + g1z = 0 and −y′′ + g2y = 0, we finally have:

−(yz′ − zy′)′ = −(g1 − g2)yz,

which proves (116).

2

Lemma 8. Let a < b be two real numbers and let q1, q2, g ∈ C0([a, b])∩C1((a, b)),
q1 > q2 > 0. Let z be a solution of −(q1z

′)′ + gz = 0 and let y be a solution of
−(q2y

′)′ + gy = 0 with y > 0 on (a, b]. Then:(
z

y
(q1yz

′ − q2y′z)
)′

= (q1 − q2)(z′)2 + q2

(
z′ − y′z

y

)2

. (117)

Moreover, if there exists η > 0 such that q1 − q2 > η, then there exists A > 0 such
that [

z

y
(q1yz

′ − q2y′z)
]b
a

≥ A
∫ b

a

z2(x)dx. (118)

Proof: We have, on the interval (a, b),(
z

y
(q1yz

′ − q2y′z)
)′

=

(
q1zz

′ − q2
y′

y
z2
)′

= (q1z
′)′z + q1(z′)2 − (q2y

′)′
z2

y
− q2y′

(
z2

y

)′
= gz2 + q1(z′)2 − gy z

2

y
− q2y′

(
z2

y

)′
= q1(z′)2 − q2y′

(
z2

y

)′
= (q1 − q2)(z′)2 + q2

(
(z′)2 − y′

(
z2

y

)′)

= (q1 − q2)(z′)2 + q2

(
(z′)2 − 2y′

zz′

y
+

(y′)2

y2
z2
)

= (q1 − q2)(z′)2 + q2

(
z′ − y′z

y

)2

.

This proves (117). Then, integrating (117) between a and b and using Poincaré
inequality in the last inequality, there exists A > 0 (depending on η, a and b) such
that[

z

y
(q1yz

′ − q2y
′z)

]b
a

=

∫ b

a

(q1(x)− q2(x))(z
′(x))2 + q2(x)

(
z′(x)− y′(x)z(x)

y(x)

)2

dx

≥
∫ b

a

(q1(x)− q2(x))(z
′(x))2dx

≥ η

∫ b

a

(z′(x))2dx ≥ A

∫ b

a

(z(x))2dx.

This proves (118).

2
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Appendix B. The monotonicity arguments

We have defined the functions fx, gx and the functions zk for k ≥ 0 in Section 5.3.

Lemma 9. Let k ≥ 0. Then, for every x ≥ 0,

zk(x) ≥ 0 and zk(x) = x− ψk(x).

Therefore, zk is continuous on [0,+∞). Moreover, for every j ≥ 0 and every x ≥ 0,

0 < x+ ã1 < z0(x) ≤ x+ c0 < · · · < x+ ãj+1 < z2j(x) ≤ x+ c2j

< x+ aj+1 < z2j+1(x) ≤ x+ c2j+1 . . .
(119)

Proof: In this proof it will be easier to use the expressions in terms of classical
Airy functions for fx and gx since we will use classical properties of the Ai and Bi
functions and in particular the fact that Ai′ is strictly negative on the positive real
half-line, which is not the case for u′.
For x ≥ 0, Ai(x) > 0, Bi(x) > 0, Bi′ is strictly positive on [0,+∞) and Ai′ is
strictly negative on [0,+∞). If z ≤ 0, x − z ≥ 0 and fx(z) > 0. Thus, z0(x) > 0.
Then, 0 is a zero of gx and since Bi

Ai is strictly increasing on [0,+∞), and for z < 0,
x− z > x and gx(z) > 0. So, 0 is the first zero of gx. In particular, for every k ≥ 0,
zk(x) ≥ 0.

Let j ≥ 0. We remark that, by definition of ψ2j , we have fx(x − ψ2j(x)) = 0,
and by definition of ψ2j+1, we have gx(x − ψ2j+1(x)) = 0. Moreover, for x − z /∈
{−c̃2j+1}j≥0, by unicity of ψ2j(x) in [−c2j ,−ãj+1), x − ψ2j(x) is the unique zero
of fx in (x + ãj+1, x + c2j ]. Since we have fx(x + ãj+1) = Bi′(−ãj+1)Ai(x) 6= 0,
the set of the zeroes of fx is exactly {x − ψ2j(x), j ≥ 0}. Thus, for every j ≥ 0,
z2j(x) = x− ψ2j(x).

For x − z /∈ {−c̃2j}j≥0, by unicity of ψ2j+1(x) in [−c2j+1,−aj+1), x − ψ2j+1(x)
is the unique zero of gx in (x + aj+1, x + c2j+1]. Since we have gx(x + aj+1) =
Bi(−aj+1)Ai(x) 6= 0, the set of the zeroes of gx is exactly {0}∪{x−ψ2j+1(x), j ≥
0}. Thus, for every j ≥ 0, z2j+1(x) = x− ψ2j+1(x).

By Lemma 3, we deduce that zk is continuous on [0,+∞). Since for every j ≥ 0,
ψ2j(x) ∈ [−c2j ,−ãj+1) and ψ2j+1(x) ∈ [−c2j+1,−aj+1), we deduce (119).

2

We can now prove further properties of the functions fx and gx and in particular
their signs and their variations.

Proposition 18. For every x ≥ 0, the functions fx and gx from R to R have the
following properties:

(1) ∀z ∈ R, g′x(z) = −fx(z) and f ′x(z) = −(x− z)gx(z).
(2) fx satisfies the ordinary differential equation on R \ {x}:(

f ′x
x− z

)′
= fx, (120)

and gx satisfies the Airy equation: g′′x = (x− z)gx.

Proof: We compute the derivative of fx, using the fact that u and v satisfies the
Airy equation:

∀z ∈ R, f ′x(z) = (x− z)(u(x− z)v(x)− v(x− z)u(x)). (121)
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Thus, f ′x(z) = −(x − z)gx(z), for every z ∈ R. A direct computation leads to
g′x(z) = −fx(z), for every z ∈ R.
For the second point, we assume that z 6= x, we divide (121) by x − z and by
derivation:

∀z ∈ R \ {x},
(

f ′x
x− z

)′
= −u′(x− z)v(x) + v′(x− z)u(x) = fx(z).

The function gx satisfies the Airy equation since it is a linear combination of solu-
tions of the Airy equation.

2

Proposition 19. For every x ≥ 0, the functions fx and gx from R to R have the
following properties:

(1) The function f ′x vanishes exactly on 0, x, and z2j+1(x) for every j ≥ 0.
It is strictly negative on (−∞, 0), strictly positive on (0, x), strictly nega-
tive on (x, z1(x)) and, for every j ≥ 1, (−1)j+1f ′x is strictly positive on
(z2j−1(x), z2j+1(x)).

(2) The function fx is strictly positive on (−∞, z0(x)) and, for every j ≥ 1,
(−1)j+1fx is strictly positive on (z2j−2(x), z2j(x)).

(3) The function g′x vanishes exactly on z2j(x) for every j ≥ 0. It is strictly
negative on (−∞, z0(x)) and, for every j ≥ 1, (−1)j+1g′x is strictly positive
on (z2j−2(x), z2j(x)).

(4) The function gx is strictly positive on (−∞, 0), strictly negative on (0, z1(x))
and, for every j ≥ 1, (−1)j+1gx is strictly positive on (z2j−1, z2j+1).

Proof: We will again use the expressions in terms of classical Airy functions for fx
and gx.
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(1) From (121), it is clear that f ′x(0) = f ′x(x) = 0. We have already proven in
Lemma 4 that for z ∈ (−∞, 0), f ′x(z) < 0. Then, for z ∈ (0, x), x−z > 0, x−z < x,
Bi
Ai (x − z) <

Bi
Ai (x − z) and f ′x(z) > 0. From f ′x(z) = −(x − z)gx(z) and Lemma

4, we know that the remaining zeroes of f ′x are exactly the z2j+1(x) for j ≥ 0. We
also have f ′x(x+ a1) = a1Bi(−a1)Ai(x) with a1 > 0, Bi(−a1) < 0 and Ai(x) > 0,
thus f ′x(x + a1) < 0. Since f ′x is of constant sign in (x, z1(x)), one deduce that f ′x
is strictly negative on (x, z1(x)). To finish the proof of point 1, it is sufficient to
remark that f ′x is of constant sign on every interval (z2j−1(x), z2j+1(x)) for j ≥ 1.
But, x + a2j ∈ (z4j−3(x), z4j−1(x)) and f ′x(x + a2j) = a2jBi(−a2j)Ai(x) > 0,
since Bi(−a2j) > 0. Thus, f ′x is strictly positive on (z4j−3(x), z4j−1(x)). Similarly,
x + a2j+1 ∈ (z4j−1(x), z4j+1(x)) and f ′x(x + a2j+1) = a2j+1Bi(−a2j+1)Ai(x) < 0,
since Bi(−a2j+1) < 0. Thus, f ′x is strictly negative on (z4j−1(x), z4j+1(x)).

(2) We have already proven in Lemma 4 that for z ∈ (−∞, 0), fx(z) > 0. We
also have fx(0) = 1

π > 0 since it is the value of the Wronskian of Ai and Bi and

thus, for every z ∈ (−∞, x), fx(z) ≥ 1
π . Since z0(x) is the first zero of fx, this

function is strictly positive on (−∞, z0(x)). We remark that fx is of constant sign
on every interval (z2j−2(x), z2j(x)) for j ≥ 1. But, x + ã2j+1 ∈ (z4j−2(x), z4j(x))
and fx(x + ã2j+1) = Bi′(−ã2j+1)Ai(x) > 0, since Bi′(−ã2j+1) > 0. Thus, fx is
strictly positive on (z4j−2(x), z4j(x)). Similarly, x+ ã2j+2 ∈ (z4j(x), z4j+2(x)) and
fx(x+ ã2j+2) = Bi′(−ã2j+2)Ai(x) < 0, since Bi′(−ã2j+2) < 0. Thus, fx is strictly
negative on (z4j(x), z4j+2(x)).

(3) It is deduced directly from point 1 of Proposition 18 and point 2.

(4) It comes from point 1 of Proposition 18, point 1 and the fact that for z ≥ z1(x),
z > x and x− z < 0.

2

We have now all the ingredients needed to prove that zk is a strictly increasing
function.

Lemma 10. For every k ≥ 0, the function zk is strictly increasing from [0,+∞)
to [ck,+∞).

Proof: We will separate the proof in two cases, depending on the parity of k.

Case 1: k = 2j for j ≥ 0. Let 0 < x1 < x2. We want to prove that z2j(x1) ≤
z2j(x2). Assume that z2j(x2) < z2j(x1). Let δ > 0 be such that z2j(x2) + δ <
z2j(x1). We use (119) to get

z2j−1(x1) < x1+ ãj+1 < x2+ ãj+1 < z2j(x2) < z2j(x2)+δ <

z2j(x1) < x1 + aj+1 < x2 + aj+1 < z2j+1(x2).

In particular, x1 − (z2j(x2) + δ) < 0, x2 − (z2j(x2) + δ) < 0 and

(z2j(x2) + δ) ∈ (z2j−1(x1), z2j(x1)) ∩ (z2j(x2), z2j+1(x2)).

Thus, using Proposition 19,

(−1)jfx1(z2j(x2) + δ) > 0, (−1)jf ′x1
(z2j(x2) + δ) < 0, (122)

and (−1)jfx2
(z2j(x2) + δ) < 0, (−1)jf ′x2

(z2j(x2) + δ) < 0. (123)
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There exists η > 0 such that, for every z ∈ [z2j(x2) + δ, z2j(x1)], 1
x1−z −

1
x2−z ≥

η. Moreover, since (z2j(x2) + δ, z2j(x1)) ⊂ (z2j−1(x1), z2j(x1)), for every z ∈
(z2j(x2) + δ, z2j(x1)), (−1)j+1fx1

(z) > 0. Similarly, since (z2j(x2) + δ, z2j(x1)) ⊂
(z2j(x2), z2j+1(x2)), for every z ∈ (z2j(x2) + δ, z2j(x1)), (−1)j+1fx2(z) < 0. Then,
applying Lemma 8,∫ z2j(x1)

z2j(x2)+δ

(
fx1

(z)

fx2(z)

(
f ′x1

(z)fx2
(z)

x1 − z
−
fx1

(z)f ′x2
(z)

x2 − z

))′
dz > 0. (124)

Since fx1
(z2j(x1)) = 0, the integral in the left side of equality (124) is equal to

−
fx1

(z2j(x2) + δ)f ′x1
(z2j(x2) + δ)

x1 − z2j(x2)− δ
+
f2x1

(z2j(x2) + δ)

x2 − z2j(x2)− δ
·
f ′x2

(z2j(x2) + δ)

fx2
(z2j(x2) + δ)

< 0 (125)

by the use of (122) and (123). But (125) contradicts (124) and thus we must have
z2j(x1) ≤ z2j(x2). The function z2j is an increasing function from [0,+∞) to
[ck,+∞).

It remains to prove that z2j is strictly increasing. If z2j is not strictly increasing,
since it is increasing and continuous, there exists an interval in [0,+∞) on which z2j
is constant. But, z2j is also analytic on [0,+∞) since one can prove that actually
the functions ψ2j are analytic. Thus, if it is constant on an interval, it should be
constant everywhere which is not the case, so z2j is actually strictly increasing.

Case 2: k = 2j + 1 for j ≥ 0. Let x1 < x2. We will show by induction on j ≥ 0
that z2j+1(x1) < z2j+1(x2).
For j = 0, we can directly apply the classical interlacing zeroes theorem of Sturm
with potentials q(z) = −(x2−z) < p(z) = −(x1−z), since gx1

satisfies−g′′x1
+pgx1

=
0 and gx2

satisfies −g′′x2
+ qgx2

= 0. Applying this theorem between 0 which is a
common zero to gx1

and gx2
and z1(x2) which is the first strictly positive zero of

gx2 one gets that gx1 admits a zero in the interval (0, z1(x2)). Since z1(x1) is the
smallest strictly positive zero of gx1 , we necessarily have z1(x1) ∈ (0, z1(x2)) and
z1(x1) < z1(x2). Thus, z1 is strictly increasing.

Let j ≥ 1. We assume by induction that z2j−1(x1) < z2j−1(x2) and we want to
prove that z2j+1(x1) < z2j+1(x2). We assume the contrary: z2j+1(x2) ≤ z2j+1(x1).
Then we have

z2j−1(x1) < z2j−1(x2) < z2j(x2) < z2j+1(x2) ≤ z2j+1(x1). (126)

We apply Lemma 7 to gx1 and gx2 between z2j−1(x2) and z2j+1(x2) to get∫ z2j+1(x2)

z2j−1(x2)

(
gx2(z)g′x1

(z)− gx1g
′
x2

(z)
)′

dz =

∫ z2j+1(x2)

z2j−1(x2)

(x1 − x2)gx1(z)gx2(z)dz.

(127)
But, using (126), we have (z2j−1(x2), z2j+1(x2)) ⊂ (z2j−1(x1), z2j+1(x1)). Using
Proposition 19,

∀z ∈ (z2j−1(x2), z2j+1(x2)), (−1)jgx1
(z) < 0 and (−1)jgx2

(z) < 0.

Since x1 − x2 < 0, ∫ z2j+1(x2)

z2j−1(x2)

(x1 − x2)gx1
(z)gx2

(z)dz < 0. (128)
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We have,∫ z2j+1(x2)

z2j−1(x2)

(
gx2(z)g′x1

(z)− gx1g
′
x2

(z)
)′

dz =

− gx1(z2j+1(x2))g′x2
(z2j+1(x2)) + gx1(z2j−1(x2))g′x2

(z2j−1(x2)).

But, using again Proposition 19,

∀z ∈ [z2j−1(x2), z2j(x2)), (−1)jg′x2
(z) < 0

and
∀z ∈ (z2j(x2), z2j+1(x2)], (−1)jg′x2

(z) > 0.

In particular,

(−1)jgx1
(z2j+1(x2)) < 0, (−1)jg′x2

(z2j+1(x2)) > 0,

and
(−1)jgx1(z2j−1(x2)) < 0, (−1)jg′x2

(z2j−1(x2)) < 0.

Thus, ∫ z2j+1(x2)

z2j−1(x2)

(
gx2(z)g′x1

(z)− gx1g
′
x2

(z)
)′

dz > 0

which contradicts (128). So we have z2j+1(x1) < z2j+1(x2) and z2j+1 is strictly
increasing.

We have thus proven by induction that for every j ≥ 0, z2j+1 is strictly increasing
from [0,+∞) to [c2j+1,+∞). This finishes the proof of Lemma 10.

2

Appendix C. Eigenvalues and eigenfunctions for a linear potential
well

We solve the eigenvalue problem for a linear potential well:

−d2ψ

dx2
+ |x|ψ = λψ, with λ ∈ R, ψ ∈ H2(R)

and ψ not identically zero. In particular one has ψ(0+) = ψ(0−) and ψ′(0+) =
ψ′(0−) since ψ must be C1. We solve both equations −ψ′′ + xψ = λψ for x > 0
and −ψ′′ − xψ = λψ for x < 0. We get that there exists C,D ∈ R such that

∀x > 0, ψ(x) = C ·Ai(−λ+ x) and ∀x < 0, ψ(x) = D ·Ai(−λ− x).

For x = 0, C ·Ai(−λ) = D ·Ai(−λ) and C ·Ai′(−λ) = −D ·Ai′(−λ). If Ai(−λ) 6= 0
and Ai′(−λ) 6= 0 then C = D = 0 and ψ = 0.

Thus, Ai(−λ) = 0 or Ai′(−λ) = 0 and the eigenvalues are the opposite of the
zeroes of the Airy function and its derivative, the aj+1 and ãj+1, for j ≥ 0. These
eigenvalues are of multiplicity 1.

The eigenspace associated with ãj+1 is spanned by x 7→ Ai(|x| − ãj+1) and the
eigenspace associated with aj+1 is spanned by x 7→ sign(x) ·Ai(|x| − aj+1).

Remark that these eigenfunctions are both decaying to 0 faster than exponentially
when |x| tends to +∞. This implies the absence of tunneling effect in the semiclas-
sical limit.

With the first statement of Theorem 6, one deduces immediately Corollary 2.
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[12] A. Grigis, J. Sjöstrand, Microlocal analysis for differential operators. An introduction., Lon-

don Mathematical Society, Lecture Note Series, 196, Cambridge University Press, Cambridge
(1994).

[13] E. M. Harrell, The band-structure of a one-dimensional, periodic system in a scaling limit,

Annals of Physics 119, Issue 2, 351-369 (1979).
[14] B. Helffer, O. Lafitte, The semiclassical regime for ablation front models, Arch. Ration. Mech.

Anal. 183(3), 371409 (2007).
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