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Abstract—Stochastic replay is a channel simulation method
that generates random time-varying impulse responses (TVIRs)
from data collected at sea. Most existing replay-based simulators
only consider single-input single-output transmissions. In this
paper, a single-input multiple-output (SIMO) stochastic replay-
based simulator is presented. It is shown to keep temporal,
inter-tap as well as spatial correlations consistent with those of
the TVIR measured at sea. Numerical examples applied to data
collected in Brest harbor, France, are discussed.

Index Terms—Channel simulation, underwater acoustic com-
munications, SIMO, spatial correlation

I. INTRODUCTION

BEcause of their high degree of realism, replay-based

channel simulators are steadily getting more attention

in underwater acoustic communications [1]–[7]. Driven by a

time-varying impulse response (TVIR) measured in situ during

at-sea experiments, these simulators are able to generate new

random TVIRs with statistical properties (almost) identical to

the original measurement. Although scenario-specific, replay-

based simulators are very relevant to perform fair comparisons

of underwater acoustic communication (UAC) protocols.

So far, existing replay-based strategies have only focused on

single-input single-output channels. In practice, UAC systems

often use several hydrophones at reception so as to benefit

from receive diversity in order to combat fading and increase

signal-to-noise ratio (SNR). Therefore, extension of replay-

based simulators to single-input multiple-output (SIMO) con-

figurations is needed.

Most SIMO UAC channels exhibit time variation, multipath

delay spread and spatial selectivity [8]–[10]. Such channels are

said to be triply selective and may undergo temporal, inter-

tap as well as spatial correlations. Consequently, the main

challenge faced by SIMO replay-based simulators is to keep

these correlations consistent with those of the TVIR measured

at sea.

In this paper, we show that all these correlations can be

jointly preserved by a simple SIMO replay method that relies

on a randomized Fourier transform of the channel taps. More

precisely, in Sec. II we present the trend stationary Rician fad-

ing model which our simulator is based on. The SIMO replay

strategy is detailed in Sec. III. Real data measured in Brest

harbor, France, are studied in Sec. IV. It is shown that inter-

tap as well as spatial correlations do exist in practice, even

for a hydrophone spacing of more than 20 wavelengths. Some

applications of the proposed SIMO replay simulator are also

shown in this section. Finally, conclusions and perspectives

are discussed in Sec. V.

Notations: Throughout this paper, uppercase boldface let-

ters denote matrices, e.g., A. The superscripts T and † denote

transposition and Hermitian transposition, respectively. The

entries of a matrix A are denoted by [A]k,n. IN designates

the N × N identity matrix. [·]K is the modulo K operator.

Finally, E {.} denotes expectation.

II. CHANNEL MODEL

We consider a SIMO underwater acoustic channel, modeled

as a random linear time-varying system H that maps an input

signal x(t) onto M output signals z(m)(t), m ∈ {1, · · · ,M},

according to the I/O relationship

z(m)(t) =

∫

τ

h(m)

H
(τ, t)x(t− τ)dτ + w(m)(t), (1)

where h(m)

H
(τ, t) is the channel impulse response between the

transmitter and the m-th hydrophone and w(m)(t) denotes the

ambient noise. As common practice in replay-based simulation

[2]–[4], the input of the simulator is a discrete-time baseband

estimate of the in-situ TVIR whose time-varying Doppler

shift has been removed. Such an estimate is denoted as

h
(m)
l (k) where l ∈ {0, · · · , L − 1} is the tap index and

k ∈ {0, · · · ,K − 1} is the time index. The removal of the

Doppler shift is required to mitigate the drift of multipath

arrivals that could obscure the analysis of the taps statistics.

Apparent Doppler shift occurs because of relative motion as

well as clock-frequency mismatch between the transmitter and

the receiver. Once the channel statistical properties have been

analyzed, this Doppler shift can be reinserted at the output

of the simulator by performing time resampling. The channel

estimation method as well as the Doppler removal procedure

are described in Sec. IV.

In agreement with [3], each impulse response is modeled as

a multi-variate trend stationary random process1 so that, for

all k, k1 and k2 ∈ Z

h(m)

l (k) = h̄(m)

l (k) + h̃(m)

l (k), (2)

with

E
{
h(m)

l (k)
}
= h̄(m)

l (k), (3)

1For simplicity, we use the same notation to denote a random process and
one of its possible sample path. It is also assumed that the pseudocovariances

E

{

h̃
(m)

l
(k1)h̃

(n)
p (k2)

}

are negligible.
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Fig. 1. SIMO stochastic replay simulator.

and

E

{

h̃(m)

l (k1)h̃
∗

(n)

p (k2)
}

= E

{

h̃(m)

l (k)h̃
∗

(n)

p (k + k2 − k1)
}

.

h̄(m)

l (k) is called the trend and is a slowly time-varying

deterministic component. h̃(m)

l (k) is a zero-mean wide-sense

stationary random process assumed to be Gaussian. This

model describes the UA channel as a multivariate Rician

fading process with a slowly time-varying mean. h̄(m)

l (k) can

be interpreted as the contribution of (pseudo) deterministic

physical phenomena to channel fluctuations, i.e. h̄(m)

l (k) is

a (pseudo) specular component, and h̃(m)

l (k) represents the

channel fluctuations attributable to scatterers that result in fast

fading.

III. SIMO STOCHASTIC REPLAY

Based on (2), standard replay methods first isolate both

components h̄(m)

l (k) and h̃(m)

l (k) from h(m)

l (k). For each

TVIR, this is done by estimating the specular component

h̄(m)

l (k) using an empirical mode decomposition (EMD) as

detailed in [3]. h̃(m)

l (k) is then obtained as the difference

between the observation h(m)

l (k) and the estimated h̄(m)

l (k).
Illustrations of EMD outputs are shown in [11, Fig. 2], [3,

Fig. 7] and [5, Fig. 1]. The SIMO stochastic replay simulator

generate new realizations of the channel random components

based on the observations h̃(m)

l (k). These realizations are

then added to the original specular components h̄(m)

l (k) to

obtain new TVIRs. The overall SIMO replay-based simulation

methodology is shown in Figure 1.

The aim of our replay method is to generate new realizations

of the channel taps that keep the same statistics as the mea-

sured TVIRs. Formally, we seek to generate sample paths of

a Gaussian multivariate random process that has a covariance

matrix identical to

Σh̃(u)
∆
=









Σ
(1,1)

h̃
(u) Σ

(1,2)

h̃
(u) . . . Σ

(1,M)

h̃
(u)

Σ
(2,1)

h̃
(u) Σ

(2,2)

h̃
(u)

. . .
...

...
...

. . .
...

Σ
(M,1)

h̃
(u) . . . . . . Σ

(M,M)

h̃
(u)









, (4)

where the matrix sub-block Σ
(m,n)

h̃
(u) of size L× L satisfies

[

Σ
(m,n)

h̃
(u)

]

lp

∆
= E

{

h̃(m)

l (k)h̃
∗

(n)

p (k + u)
}

. (5)

This matrix represents the channel tap covariance jointly in

time, delay and space. The TVIRs are assumed to be ergodic

so that the entries of the covariance matrix also satisfy

[

Σ
(m,n)

h̃
(u)

]

lp
= lim

K→+∞

1

2K + 1

+K∑

k=−K

h̃(m)

l (k)h̃
∗

(n)

p (k + u).

(6)

Following the same approach as in [3], we propose to

simulate new sample paths of the random components as

follows

y(m)

l (k) =
1

K

K−1∑

v=0

H̃ (m)

l (v)e2iπvk/Keiθ
(m)
l

(v), (7)

where H̃ (m)

l (v) =
∑K−1

k=0 h̃(m)

l (k)e−2iπvk/K , and θ(m)

l (v) is a

random phase uniformly distributed in (0, 2π]. To keep similar

statistics as the measured TVIRs, this random phase must

satisfies
{

θ(m)

l (v) = θ(n)
p (v), ∀ l, p,m, n,

θ(m)

l (v) and θ(m)

l (w) mutually independent for v 6= w.
(8)

In that case, the covariance of y satisfies, for −K
2 ≤ u ≤ K

2 ,

[
Σ

(m,n)

y (u)
]

lp

(a)
= Eh̃

{

Eθ

{

y(m)

l (k)y
∗

(n)

p (k + u)|h̃
}}

(b)
= Eh̃

{

1

K

K−1∑

k=0

h̃(m)

l (k)h̃
∗

(n)

p ([k + u]K)

}

(c)
≈

K − |u|

K

[

Σ
(m,n)

h̃
(u)

]

lp
, (9)

where (a) follows from the law of iterated expectation and (b)

from (8) and Parseval’s theorem. (c) is obtained by making the

assumption that the covariance is negligible for |u| > K
2 . This

assumption is valid as soon as the duration of the measured

TVIRs is longer than the coherence time of their random

components. For the experiment described in Sec . IV, the

TVIRs were measured over a period of 30 s., which is long

compared to a coherence time that is of a few hundreds of ms.

Note that even in this case, the covariance of y expressed in (9)

is similar to the one of h̃ but up to the scale factor (K−|u|)/K .

Once again, when K is large this is not a major concern since,

in general, the entries of Σh̃(u) rapidly decrease with u.



3

(a) Channel #1 (b) Channel #2

(c) Channel #3 (d) Channel #4

Fig. 2. Magnitude of h
(m)

l
(k), m = 1, 2, 3, 4.

IV. ILLUSTRATIONS

A. Experiment set-up

The SIMO replay-based simulation strategy is here il-

lustrated with real data collected in Brest harbor, France.

Channels measurements were conducted in this harbor in

May 2015. The transmissions were realized between two

docks over a 800 m distance, in a 20 m water depth. At

the transmitter side, an omnidirectional transducer ITC-1032

(resonant frequency: 35 kHz) immersed at a depth of 2 m was

used. At the receiver side, four broadband omnidirectional BK-

8106 hydrophones were vertically deployed at a depth between

3 and 6 m with a 1 m spacing. Estimates of the TVIRs were

obtained by successive matched filtering to a known probe

signal transmitted repeatedly. The probe signal used during the

experiments was a m-sequence of 255 BPSK chips transmitted

at a symbol rate of 5 kbds. Such a sequence can capture

arrivals delayed up to 51 ms and channel estimates can be

updated up to 19.6 times per second. Measurements were made

at a carrier frequency of 35 kHz and transmitted symbols were

pulse-shaped by a root raised cosine filter with a roll-off factor

of 0.1.

At the receiver side, the recorded signal is first down-

converted into complex-baseband and downsampled. Then,

time-varying Doppler shifts are mitigated by an iterative

resampling procedure presented in [2]: the first step consists in

the elimination of a coarse, constant Doppler shift estimated

by a bank of Doppler-shifted replicas of the transmitted probe

signal. Following this step, a first estimate of the TVIR can

be obtained to compute the center of gravity of its Doppler

power spectrum, from which a finer resampling factor can be

deduced. In our experiments, these two steps mainly com-

pensate clock frequency offsets of electronic devices. A last

correction is applied to remove time-varying Doppler shifts

around the mean. To this end, a time-varying resampling factor

is computed from the unwrapped phase of the most energetic

arrival.

Fig. 2 shows the channel estimates obtained on the four

hydrophones. The strongest arrival is arbitrarily placed at zero

delay. These four TVIRS present some similarities. For all

of them, the main tap, which corresponds the direct path, is

very stable and the rms delay spread is approximately 6.5 ms.

However, energetic differences can be noticed. For instance,

the total energy received at the third hydrophone is 8 dB

lower than at the first hydrophone. In addition, the amount

of energy carried by the specular components h̄(m)

l (k) slightly

varies from one channel to another. It represents about 75%

for channel #1, whereas it is less than 50 % for channel #3.

Despite a relative hydrophone spacing corresponding to

more than 20 wavelengths, the four TVIRs are highly cor-

related. This is due in large part of the substantial amount

of specular energy but not only. As shown in Fig. 3, some

inter-tap and spatial correlations also exist between the ran-

dom components. This observation reveals that care must be

taken when invoking the common assumption of uncorrelated

scattering or when applying rules of thumb on the relationship

between the wavelength and the inter-channel correlation.

B. Stochastic replay of real data

To show that stochastic replay actually keeps the inter-

tap and spatial correlations of the in situ channel, popula-

tion correlation matrices are displayed in Fig. 4. While the
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Fig. 3. Sample correlation matrices. Matrix entries are defined as
[

r(m,n)
]

lp

∆
=

∣

∣

∣

∣

∣

∣

∑K−1
k=0

h̃
(m)
l

(k)h̃
∗(n)
p (k)

√

∑K−1
k=0

∣

∣

∣
h̃
(m)
l

(k)
∣

∣

∣

2 ∑K−1
k=0

∣

∣

∣
h̃
(n)
p (k)

∣

∣

∣

2

∣

∣

∣

∣

∣

∣

.

correlations in Fig. 3 have been computed across time for

a single observation, the correlations of Fig. 4 have been

computed across realizations for a fixed time (time averages

vs ensemble averages).2 The ensemble averages have been

obtained by Monte-Carlo simulation with 1000 trials. Since

h̃(m)

l (k) is assumed to be ergodic and that our replay method

(approximately) keeps the original statistics, it can be checked

that both figures are similar.

Replay-based simulation can be useful to measure all sorts

of statistics relevant for system design and/or validation [2]–

[5], [12], [13]. For the sake of generality, we do not focus

on a specific communication system but present numerical

results on the mutual information between the input and output

of the SIMO channel. More precisely, for an input block of

N symbols, with N > L, the SIMO channel input-output

relationship can be written as

z(k) =








H1(k)
H2(k)

...

HM (k)








︸ ︷︷ ︸

∆
=H(k)

x(k) +w(k), (10)

2Note that since h̃
(m)

l
(k) is stationary, the ensemble average can be

computed for any fixed time sample k.

where x(k) = [x(k), x(k + 1), · · · , x(k + N − 1)]T is the

N × 1 input vector at time k, z(k) the MN × 1 output vector

and w(k) is the MN × 1 noise vector. The N ×N sub-block

matrix Hm(k) is defined as3

Hm(k)
∆
=













h
(m)
0 (k)

h
(m)
1 (k+1) h

(m)
0 (k+1)

... 0

h
(m)
L−1(k+L−1)

. . .

. . .

0 h
(m)
L−1(k+N−1) ... h

(m)
0 (k+N−1)













.

(11)

We study the instantaneous mutual information (MI) of z(k)
and x(k) (conditional on H) that is defined as

I(k)
∆
= I (z(k);x(k)|H(k)) (12)

= h (z(k)|H(k))− h (z(k)|x(k),H(k)) , (13)

where I (·) denotes mutual information and h (·) relative en-

tropy. Since it is a measure of dependence between x and z,

3Note that (10) is valid only if the sampling frequency of the TVIR is same
along the time and delay axes.
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Fig. 4. Population correlation matrices. Matrix entries are defined as
[

ρ(m,n)
]

lp

∆
=

∣

∣

∣

∣

∣

∣

∣

∣

Eθ

{

y
(m)
l

(k)y
∗(n)
p (k)

∣

∣h̃

}

√

Eθ

{

∣

∣

∣y
(m)
l

(k)
∣

∣

∣

2∣
∣h̃

}

Eθ

{

∣

∣

∣y
(n)
p (k)

∣

∣

∣

2∣
∣h̃

}

∣

∣

∣

∣

∣

∣

∣

∣

.

I(k) reflects the severity of the channel. We kept this MI time

dependent since, according to (2), the first order statistics of

H may vary over time.4 If we consider circularly symmetric

Gaussian inputs as well as white Gaussian noise, the mutual

information (12) is shown to satisfy

I(k) = EH

{
log det

(
IMN + γH(k)H†(k)

)}
, (14)

where γ is the signal-to-noise ratio (SNR).

Fig. 5 shows the time evolution of the MI in three different

cases. The average SNR is set to 10 dB and the block size N
corresponds to a 200 ms time window.5 In the first case (dash-

doted line), the mutual information is directly assessed on the

measured channel without applying stochastic replay. Since

ensemble averaging is not possible in this case, the expression

of the plotted MI is simply log det
(
IMN + γH(k)H†(k)

)
.

The second case (black solid line) corresponds to (14) where

the expectation EH {·} is computed thanks to stochastic re-

play. This MI obviously fluctuates less than in the case of

“direct” replay as it is averaged over 250 channel realizations.

4Note that the MI (12) is the not the channel capacity as perfect knowledge
of H at reception cannot be assumed in most underwater acoustic contexts
(see [12]–[14] for more details).

5Note that to account for frequency selectivity the block size N must be
greater than the number of taps L.

However, slow variations attributable to local fluctuations of

channel energy are still visible. As shown in [5], with stochas-

tic replay it is possible to deliberately distort the statistics of

the experimental channel in order to meet some user-specified

constraints. This capability is exploited in the third case (red

solid line) where the impact of correlated scattering on the MI

is assessed. More precisely, we have seen previously that the

random components h̃(n)

l (k) are correlated across both taps

and channels (see Fig. 3 and 4). Since correlation usually

implies a loss of diversity, it may be interesting to quantify the

impact of this correlation on the MI. This is rather easy with

replay-based simulation since this is equivalent to generate a

process y with a diagonal covariance matrix that satisfies, for

all u,

[
Σ

(m,n)

y (u)
]

lp
=

{ [

Σ
(m,n)

h̃
(u)

]

lp
for l = p and m = n,

0 otherwise.
(15)

It can be shown that this property is satisfied (up to the scale

factor (K − |u|)/K) if the random phases defined in (8) are

forced to be mutually independent for all v 6= w,m 6= n
and l 6= p. As visible in Fig. 5, decorrelating the channel

random components results in a 5% increase of MI, which

means that the MI loss attributable to correlated scattering is
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Fig. 5. Mutual information as function of a time. dash-doted line: direct
replay, black solid line: stochastic replay as implemented in (8), red solid
line: stochastic replay as implemented in (15). γ = 20, N = 1000.

rather negligible in our case.

V. CONCLUSIONS

An extension of the simulator presented in [3] to SIMO

configurations has been proposed. Through theoretical deriva-

tions and real-data analysis, it is shown that our stochastic

replay strategy is able to preserve correlations of the measured

TVIR jointly in time, delay and space. Our simulator has

been used on real-data to quantify the mutual information loss

attributable to inter-tap and spatial covariations. This loss is

less than 5% for our dataset.

A great advantage of our approach is that it does not require

an explicit estimation of correlations to generate new channel

realizations. However, as noticed in Sec. II, a drawback is

that it implicitly assumes negligible pseudocovariances. Such

an assumption is valid if the covariances between the real and

the imaginary parts of the channel taps exhibit some specific

symmetry (see [15, p. 44]). A preliminary analysis of our

dataset (not show here) seems to indicate that this assumption

is reasonable, but this may not be the case for every UAC

channels, especially in the ultrawideband case. Taking into

account pseudocovariances in replay simulators is possible: it

requires to work with composite taps whose real and imaginary

parts are split up as done in [5] but at the expense of increased

computational complexity.
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