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Global strong solution for the compressible Navier Stokes system

with large rotationnally invariant initial data in dimension

N ≥ 2

Boris Haspot ∗

Abstract

We show the existence of global strong solution for compressible Navier-Stokes equations
with shallow water viscosity coefficients when the initial data are large and rotationally
invariant. In dimension N = 2 we consider general initial data of the form (ρ0(|x|), u0(x))
with u0(x) = ∇θ(|x|) +∇⊥ψ(|x|) with θ and ψ sufficiently regular. In dimension N = 3 we
deal with radially symmetric initial data (ρ0(|x|),∇θ(|x|)).

1 Introduction

The conservation of mass and of momentum write:
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− div(2µ(ρ) Du)−∇(λ(ρ)divu) +∇P(ρ) = 0,

(ρ(0, ·), u(0, ·)) = (ρ0, u0).

(1.1)

Here u = u(t, x) ∈ RN stands for the velocity field, ρ = ρ(t, x) ∈ R+ is the density and
D(u) = 1

2(∇u+t ∇u) is the strain tensor. We denote by λ and µ the two viscosity coefficients
of the fluid, which are assumed to satisfy µ > 0 and λ + 2µ > 0. Such a condition ensures
ellipticity for the momentum equation and is satisfied in the physical cases where λ+ 2µ

N > 0.
We supplement the problem with initial condition (ρ0, u0). Throughout the paper, we assume
that the space variable x ∈ RN . We restrict ourselves to the case N ≥ 2.
In the sequel we shall only consider the viscous shallow-water system which corresponds to:

µ(ρ) = µρ with µ > 0 and λ(ρ) = 0. (1.2)

It is motivated by the physical consideration that in the derivation of the NavierStokes equations
from the Boltzmann equation through the ChapmanEnskog expansion to the second order (see
[20]), the viscosity coefficient is a function of the temperature. If we consider the case of
isentropic fluids, this dependence is reduced to the dependence on the density function.
Following the new formulation proposed in [30] (see also [7, 26, 31]), we can rewrite the previous
system as follows setting v = u+ 2µ∇ ln ρ:{

∂tρ− 2µ∆ρ+ div(ρv) = 0,

ρ∂tv + ρu · ∇v − µdiv(ρcurlv) +∇P (ρ) = 0.
(1.3)
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Let us express now the energy of the system (when P (ρ) = aργ with a > 0 and γ > 1) and
when the density is close from a constant state ρ̄ > 0, multiplying the momentum equation by
u we have:

E(ρ, u)(t) =

∫
RN

(1

2
ρ(t, x)|u(t, x)|2 + (Π(ρ)(t, x)−Π(ρ̄))

)
dx

+

∫ t

0

∫
RN

2µρ(t, x)|Du|2(t, x)dtdx ≤
∫
RN

(
ρ0(x)|u0(x)|2 + Π(ρ0)(x)

)
dx.

(1.4)

with Π(ρ) defined as follows:

Π(s) = s
( ∫ s

ρ̄

P (z)

z2
dz − P (ρ̄)

ρ̄

)
,

so that P (s) = sΠ′(s)−Π(s), Π′(ρ̄) = 0 and:

∂tΠ(ρ) + div(uΠ(ρ)) + P (ρ)divu = 0 in D′((0, T )× RN ).

Notice that Π is convex in the case of the γ law. Multiplying now momentum equation of (1.3)
by v when P (ρ) = aργ we obtain the so called BD entropy:

E1(ρ, v)(t) =

∫
RN

(1

2
ρ(t, x)|v(t, x)|2 + (Π(ρ)(t, x)−Π(ρ̄))

)
dx+

∫ t

0

∫
RN

µρ(t, x)|curlv|2(t, x)dtdx

+
8µ

γ

∫ t

0

∫
RN
|∇ρ

γ
2 |2dxdt ≤

∫
RN

(
ρ0(x)|v0(x)|2 + (Π(ρ0)(x)−Π(ρ̄)

)
dx.

(1.5)
In the sequel we will assume that ρ̄ = 1 in order to simplify the notations. Combining (1.5)
and (1.4) allows to prove at least heuristically (if in particular the solution of (1.1 is sufficiently
regular) that for any T > 0 we have (see [44] for the definition of the Orlicz space):

• ρ− 1 ∈ L∞((0, T ), Lγ2(RN )), ∇√ρ ∈ L∞((0, T ), L2(RN )),
√
ρ− 1 ∈ L∞((0, T ), H1(RN )).

• ∇ρ
γ
2 ∈ L2((0, T ), L2(RN )).

• √ρu ∈ L∞((0, T ), L2(RN )),
√
ρ∇u ∈ L2((0, T ), L2(RN )).

In a first time we will consider the case of axisymmetric solution in dimension N = 2. In
particular we assume that we can write (ρ, v) as follows:

v(t, x) = v1(t, |x|) x
|x|

+ v2(t, |x|)x
⊥

|x|
and ρ(t, x) = ρ(t, |x|). (1.6)

It implies that (ρ, v1, u2) verify the following system (see the appendix for the details of the
calculus): 

∂

∂t
ρ− 2µ+ div(ρv1) = 0,

ρ∂tv
1 + ρu1 · ∇v +∇P (ρ) = ρ

u2
2

|x|
x

|x|
,

ρ∂tu
2 + ρu1 · ∇u2 + ρu2 · ∇u1 − 2µdiv(ρDu2) = 0.

(1.7)

We will also consider the case of radially symmetric initial data when N ≥ 3, it means:

u(t, x) =
x

|x|
u1(t, |x|) and ρ(t, x) = ρ1(t, |x|), (1.8)
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The system (1.3) can be written as follows since v is irrotational in this case:{
∂tρ− 2µ∆ρ+ div(ρv = 0,

ρ∂tv + ρu · ∇v +∇P (ρ) = 0.
(1.9)

The main goals of the present paper are to prove global existence and uniqueness of axisym-
metric solutions to the systems (1.7) and (1.9) with non-negative initial densities and large
initial data. There is huge literature on the studies about global existence and behaviors of
solutions to (1.1) in the case that the viscosity coefficients µ and λ are both constants. The
global existence of weak solution with large initial data of the system (1.1) has been proved for
the first time by Lions in [44] using the so called notion of renormalized solution combined with
the introduction of the effective pressure which allows to test the compactness of the solutions.
Feireisl et al in [19] have been generalized the previous results in the case of general pressure
of the form P (ρ) = ργ with γ > N

2 (see also Plotnikov and Weigant in [55] for the case N = 2,
γ = 1). This last result have been generalized by Bresch and Jabin for anisotropic viscosity
coefficient (see [6]). We refer also to [13, 15, 51, 10, 8, 23, 9, 50, 16] for the existence of global
strong solution with small initial data in critical spaces for the scaling of the equations.
Let us focus now on the case of the system (1.1) with degenerate viscosity coefficients, we can
first mention that the study is completely different from the constant viscosity case. Indeed the
dependence of viscosity coefficients on the flow density makes difficult the analysis, in particular
it is not clear how to obtain uniformly a-priori estimates for the velocity and trace the motion
of particle paths near vacuum regions, which is the essential difference of (1.1) from compress-
ible Navier-Stokes equations with constant viscosity coefficients where the particle path can
be defined a-priori even near vacuum. Recently different authors have obtained significant
progress on the existence of global weak solutions with degenerate viscosity coefficients. Bresch
and Desjardins in [3, 4, 5] discovered a new entropy structure which ensures estimate on the
gradient of the density. More precisely if µ and λ verifies the following algebraic relation:

λ(ρ) = 2µ′(ρ)− 2µ(ρ), (1.10)

then at least heuristically Bresch and Desjardins have observed that the quantity µ′(ρ)√
ρ ∇ρ is

conserved in L∞T (L2(RN )) norm for any T > 0. It enables us (see [3, 4, 5] and also [7, 52, 64])
to prove the existence of global weak solution with either a drag friction or a cold pressure term
(a pressure that is singular at the vacuum). The fact to work with a friction term is crucial
in the sense that it provides simply a gain of integrability on the velocity, combined with the
BD entropy it allows to obtain the stability of the global weak solution and to construct global
approximated solution which verify uniformly the energy and the BD entropy. The stability
of the global weak solutions for a general γ law (P (ρ) = aργ with 1γ < +∞ when N = 2
and 1 < γ < 3 when N = 3) was proved by Mellet and Vasseur in [48] using new energy
estimate improving the integrability of the velocity. A particular choice of viscosity coefficients
µ(ρ) = µρ, λ(ρ) = 0 satisfying (1.10) leads to the so-called shallow water system, for which
the proof of existence of global weak solutions has been recently delivered independently by
Vasseur and Yu [59, 60] and Li and Xin in [43].
Concerning the existence of global strong solution with large initial data, there is a huge lit-
erature for the one dimension case. We refer to [39, 32] for the case of constant viscosity
coefficients. . In the case of degenerate viscosity coefficient of the form µ(ρ) = µρα with α > 0,
when 0 < α < 1

2 the BD entropy allows to bound the density from below. Indeed, in [49]
Mellet and Vasseur proved the existence of global strong solution to (1.1) for initial density
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far away from the vacuum. The main ingredient of the proof was to use entropy from [3]

to estimate ∂x(ρα−
1
2 ) in L∞(0, T ;L2(R)) for all T > 0. This implies boundedness of ρ−1 in

L∞(0, T ;L∞(R)) which allows to show sufficient regularity of solution in order to prove the
uniqueness. We have recently extended this result in [29] to the general case. The main idea
was to prove boundedness of v appearing in (1.3) by using the structure of the transport equa-
tion for v. It allows to bound ρ−1 by application of the maximum principle to the continuity
equation.
Concerning the existence of global strong solution in the multi-d case, there is very few works
and the problem remains essentially open. However Kazhikhov and Vaigant proved the ex-
istence of global strong solution with large initial data in two dimension for the torus with
particular viscosity coefficient of the form:

µ(ρ) = µ and λ(ρ) = λρα, (1.11)

with λ, µ > 0 and α > 3. This result is remarkable and use strongly the structure of effective
velocity (see [44]) which consists to estimate (µ + λ(ρ))divu − P (ρ) + P (ρ̄) with ρ̄. Indeed
roughly speaking it is possible for such viscosity coefficients by applying the operator (∆)−1div
to the momentum equation. An additional key point is the form of the viscosity coefficient λ(ρ)
which enables for α > 3 to show a gain of integrability on ρ and more precisely ρ is bounded in
L∞T (Lp(T)) for any T > 0 and p ≥ 1. This result has slightly been improved by weakening the
condition on α (see [25, 38, 35, 36]). Let us also mention [27] where we prove the existence of
global strong solution for irrotational data with a smallness condition which is supercritical. It
allows in particular to exhibit initial data which are large for the energy estimate in dimension
two such that they furnish global strong solution.
In all its generality, the problem of the existence of global strong solution with large initial
data for the shallow. It is then a natural and interesting problem to investigate the existence
of global strong solution by adding symmetry condition on the initial data. It is well known
that in dimension N = 3 (see [40, 57]) there exists global strong solution for the incompressible
Navier-Stokes equation and the incompressible Euler equation for axisymmetric initial data
without swirl. There exists a large literature on the existence of global weak or strong solution
with smallness assumption involving symmetry condition on the initial data, let us point out
that systematically the authors consider initial data which are radially symmetric in dimension
N ≥ 2. It yields that they study initial data such that u2 = 0 in (1.7) in dimension N = 2.
The first existence result was proved by Hoff [34]; he proved the global existence of radially
symmetric weak solutions to problem (1.1) with strictly positive initial densities in annular
domains and with constant viscosity coefficients. Then it was extended by Jiang and Zhang in
[37] to the Cauchy problem with general non-negative initial densities. Roughly speaking, they
proved the global existence of radially symmetric weak solutions for general pressure P (ρ) = ργ

with γ > 1 generalizing the results of Feireisl et al (see [19]). Choe and Kim in [12] proved
the existence of global strong solution with large initial data for radially symmetric initial data
when N ≥ 2 in an annular domain. Let us mention that it is important here to work in an
annular domain since it avoids the difficulties related to the control of the vacuum around 0
which could blow-up.
Indeed as emphasized in many related papers, the possible appearance of vacuum is one of the
main difficulties, which indeed leads to the singular behaviors of solutions in the presence of
vacuum, such as the failure of continuous dependence of weak solutions on initial data [33] and
the finite time blow-up of smooth solutions [62]. That is why, it is a natural and interesting
problem to investigate the influence of the vacuum state on the existence and dynamics of
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global solutions to (1.1). One of the prototype problems which has been largely studied is the
time-evolution of the compressible viscous flow of finite mass expanding into infinite vacuum.
This corresponds to free boundary value problems for the compressible Navier-Stokes equations
(1.1) for general initial data and variant boundary conditions imposed on the free surface. The
study is a fundamental issue of fluid mechanics and has attracted lots of research interests, we
refer to [11, 17, 18, 47, 53, 54, 56, 61, 63, 65, 42] and the reference therein.
In this paper we are interested in proving the existence of global strong solution for the system
(1.1) with large axisymmetric initial data verifying in dimension N = 2 the condition (1.6)
and (??) in dimension N = 3. The purpose is triple, indeed in comparison with the previous
works cited below we would like to avoid any condition of smallness on the initial data, to
work in the complete euclidean space RN (and not only in an annular which allows to avoid
all the difficulties related to some phenomena of blow-up of the density around the origin) and
to take into account the rotational component (u2 when N = 2, we refer to (1.6), ). Let us
explain briefly now the strategy of the proof in the case N = 2 (the case N = 3 follows the
same ideas up to small modifications). As we explained previously, one of the main difficulty
in order to prove the existence of global strong solution consist in controlling the vacuum or in
other word to estimate the L∞ norm of 1

ρ . If we look at the mass equation in (1.7), it seems
natural to apply a maximum principle theorem since the density ρ verifies a parabolic equation
as observed in [30]. We have then to estimate the effective velocity v1 in Lp((0, T ), Lq(RN ))
space with (p, q) suitably chosen such that (see [41]):

2

p
+
N

q
< 1. (1.12)

In order to obtain this type of information, we are going to estimate the L∞((0, T ), Lp(RN ))

norm of ρ
1
p v1 for any p ≥ 2 by multiplying the second equation of (1.7) by v1|v1|p−2. The

main difficulty consists then in evaluating the remainder term in the second equation of (1.7)
u22
|x|

x
|x| . Indeed this terms tends to blow-up in a neighborhood of the origin, in order to overcome

this difficulty we are going to establish new estimates on u2 by involving new weight estimate
combining with some maximum principle arguments on u1 in order to show that u1 is essentially
the sum of a positive function and of an L∞t,x function in space and time. It will enables us to

show that
u22
|x|

x
|x| is bounded in L∞((0, T ), Lp(RN )) for any p ≥ 2. The last difficulty is to deal

with the pressure term which can be rewritten as the sum of v1 and −u1. It implies that the
pressure produces a damping effect on the effective velocity v1 provided that we estimate u1 in
L∞((0, T ), Lp(RN )) for any p ≥ 2 (it will be done by using a gain of integrability as in [48]).
Below we are now giving our main results on the global existence of strong solution with large
initial data for axisymmetric initial data. In a first time let us recall a general 1 theorem
of strong solution in finite time in critical Besov space for the scaling of the equations (see
[15, 22, 24, 9]). We set in the sequel ρ = q + 1.

Theorem 1.1. Let N ≥ 2, the viscosity coefficients verify (1.2). Assume now that (q0, u0) ∈

B
N
p

p,1 × B
N
p
−1

p,1 with 1 ≤ p < 2N and that there exists c such that 0 < c ≤ ρ0. Then there exists
a time T such that system (1.1) has a unique solution on [0, T ] with:

q ∈ C̃T (B
N
p

p,1),
1

ρ
, ρ ∈ L∞T (L∞(RN )) and u ∈ C̃T (B

N
p
−1

p,1 ) ∩ L1
T (B

N
p

+1

p,1 ). (1.13)

1It means that there is no geometric assumption on the initial data.
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If in addition (q0, u0) belongs to Bs
p,1 ×B

s−1
p,1 for any s > N

p then we have:

q ∈ C̃T (Bs
p,1) and u ∈ C̃T (Bs−1

p,1 ) ∩ L1
T (Bs+1

p,1 ). (1.14)

Assume now that (1.1) has a solution (q, u) ∈ C([0, T ∗), B
N
p

p,1 × B
N
p
−1

p,1 ) on the time interval
[0, T ∗) which satisfies the following three conditions:

1. the function q belongs to L∞([0, T ∗], B
N
p

p,1),

2. 1
ρ ∈ L

∞([0, T ∗], L∞(RN )),

3. we have
∫ T ∗

0 ‖∇u(s)‖L∞ds < +∞,

Then (q, u) may be continued beyond T ∗.

Remark 1. This theorem is a direct consequence of [27, 24, 13, 15]. In [27] the existence

is proved for (q0, u0) ∈ B
N
p

p,1 × B
N
p
−1

p,1 for 1 ≤ p < 2N with uniqueness for 1 ≤ p ≤ N . The
uniqueness is extended in [15] to the case N ≤ p < 2N .
The blow up criteria is given in [27] following an argument developed in [13].

Let us define now the maximal time T ∗ of existence:

T ∗ = sup{T ∈ R ; there exists a strong solution (q, u) of the system (1.1) on [0, T ] verifying (1.13)}

Theorem 1.2. Let N = 2, P (ρ) = aργ with γ > 1, the viscosity coefficients veryfy (1.2) and
assume that the initial data can be written under the form (1.6):

ρ0(x) = (ρ1)0(|x|), u0 = u1
0 + u2

0 =
x

|x|
(u1)0(|x|) +

x⊥

|x|
(u2)0(|x|).

In addition we assume that (q0, v0) ∈ (B
N
p

p,1 ∩B
N
p

+ε

p,1 )× (B
N
p
−1

p,1 ∩B
N
p
−1+ε

p,1 ) with ε > 0 such that

N
1−ε < p < 2N and 0 < c ≤ ρ0. Furthermore we suppose that v1

0 ∈ L∞, u1
0, u2

0 ∈ L∞,
u20
|·| ∈ L

∞

and:
E(ρ0, u0) < +∞, E1(ρ0, v0) < +∞,

then we have T ∗ = +∞. Furthermore the global solution so defined (ρ, u) is unique and verifies
locally in time (1.13).

Remark 2. As we explained previously there is essentially one result of global strong solution
in dimension N = 2 for the compressible Navier-Stokes system which is due to Vaigant and
Kazhikhov [58] when the viscosity coefficients verify µ(ρ) = µ and λ(ρ) = ρα with α > 3. The
proof is based on the structure of effective velocity which allows such a choice of coefficients
of viscosity (see [25, 38, 35, 36] for some refinements). However the problem remains actually
completely open for the shallow water system (it means with the viscosity coefficients verifying
(1.2) or more generally for a system verifying the BD condition (1.10).
To the best of our knowledge, it is the first generic result of global strong solution in dimension
N = 2 for the shallow water system with large axisymmetric initial data in R2. Indeed the
most of the results which deal with geometric initial data are restrict to the case u2

0 = 0 (the
rotational part) which corresponds to radially symmetric initial data and are focused on annular
domain in order to avoid all the possible blow-up around the origin.
We can obviously mention that the existence of global strong solution with general initial data
(without any geometric assumption) remains open for the shallow water system.
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To finish we conclude with our theorem on the system (1.9).

Theorem 1.3. Let N = 3, P (ρ) = aργ with 1 ≤ γ < 7
6 and assume that the initial data can

be written under the form (1.8):

u0(x) =
x

|x|
u1

0(|x|) and ρ0(x) = (ρ1)0(r, z).

In addition we assume that (q0, v0) ∈ (B
N
p

p,1 ∩B
N
p

+ε

p,1 )× (B
N
p
−1

p,1 ∩B
N
p
−1+ε

p,1 ) with ε > 0 such that
N

1−ε < p < 2N and 0 < c ≤ ρ0. Furthermore we suppose that v0 ∈ L∞, u0 ∈ L∞ and:

E(ρ0, u0) < +∞, E1(ρ0, v0) < +∞,

then we have T ∗ = +∞. Furthermore the global solution so defined (ρ, u) is unique and verifies
locally in time (1.13).

Remark 3. Let us mention that it would be easy to extend this result to the case of general
dimension N ≥ 4, the only modification would concern the exponent γ which should be small
enough. The case γ = 1 works (see [28]).

The paper unfolds as follows. In the next section, we introduce the homogeneous Besov
spaces and the tools (the Littlewood-Paley decomposition and paradifferential calculus). In
the section 3, we use the theorem 1.1 that we describe briefly to obtain the existence of strong
solution in finite time. Furthermore we show that the solution remains axysymmetric. Section
4 is devoted to the proof of a gain of integrability on v1 which allows us to apply a maximum
principle in order to bound in L∞ norm ρ and 1

ρ . The proof of the theorem 1.2 is carried over
to the section 5. The proof os the theorem 1.3 is given in section 6. We postpone in appendix
some tedious computations on the writing of the system (1.7) and (??).

2 Littlewood-Paley theory and Besov spaces

Throughout the paper, C stands for a constant whose exact meaning depends on the context.
The notation A . B means that A ≤ CB. This section is intended to briefly recall some
classical results on homogeneous Besov spaces which are defined via the so-called Littlewood-
Paley decomposition (for a recent account of the theory we refer to the excellent book [1]). To
build the Littlewood-Paley decomposition, one may fix a smooth radial function χ supported
in (say) the ball B(0, 4

3), equal to 1 in a neighborhood of B(0, 3
4) and such that r 7→ χ(r.er)

is nondecreasing over R+. So that if we define ϕ(ξ) = χ(ξ/2) − χ(ξ), then ϕ is compactly
supported in the annulus {ξ ∈ Rd, 3

4 ≤ |ξ| ≤
8
3} and we have

∀ξ ∈ Rd \ {0},
∑
l∈Z

ϕ(2−lξ) = 1. (2.15)

Then we can define the dyadic blocks (∆l)l∈Z by ∆l := ϕ(2−lD) (that is ∆̂lu = ϕ(2−lξ)û(ξ))
so that, formally, we have

u =
∑
l

∆lu. (2.16)

As (2.15) is satisfied for ξ 6= 0, the previous formal equality holds true for tempered distributions
modulo polynomials. A way to avoid working modulo polynomials is to consider the set S ′h

7



of tempered distributions u such that liml→−∞ ‖Slu‖L∞ = 0, where Sl stands for the low
frequency cut-off defined by Sl := χ(2−lD). If u ∈ S ′h, (2.16) becomes true and one may write

Slu =
∑
q≤l−1

∆̇qu. One can now define the homogeneous Besov spaces used in this article:

Definition 2.1. For s ∈ R and 1 ≤ p, r ≤ ∞, we set

‖u‖Bsp,r :=

(∑
l

2rls‖∆lu‖rLp
) 1
r

if r <∞ and ‖u‖Bsp,∞ := sup
l

2ls‖∆lu‖Lp .

We then define the space Bs
p,r as the subset of distributions u ∈ S ′h such that ‖u‖Bsp,r is finite.

Bernstein lemma (describing how derivatives act on spectrally localized functions, see [1])
implies the following embedding result:

Proposition 2.1. For all s ∈ R, 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞, the space Bs
p1,r1 is

continuously embedded in the space B
s−N( 1

p1
− 1
p2

)

p2,r2 . In addition we have:

B
N
p

p,1 ↪→ B0
∞,1 ↪→ L∞ and B0

p,1 ↪→ Lp ↪→ B0
p,∞.

In this paper, we shall mainly work with functions or distributions depending on both the
time variable t and the space variable x. We shall denote by C(I;X) the set of continuous
functions on I with values in X. For p ∈ [1,∞], the notation Lp(I;X) stands for the set of
measurable functions on I with values in X such that t 7→ ‖f(t)‖X belongs to Lp(I). In the
case where I = [0, T ], the space Lp([0, T ];X) (resp. C([0, T ];X)) will also be denoted by LpTX
(resp. CTX). Finally, if I = R+ we shall alternately use the notation LpX. The Littlewood-
Paley decomposition enables us to work with spectrally localized (hence smooth) functions
rather than with rough objects. We naturally obtain bounds for each dyadic block in spaces
of type LρTL

p. Going from those type of bounds to estimates in LρTB
s
p,r requires to perform a

summation in `r(Z). When doing so however, we do not bound the LρTB
s
p,r norm for the time

integration has been performed before the `r summation. This leads to the following notation:

Definition 2.2. For T > 0, s ∈ R and 1 ≤ r, σ ≤ ∞, we set ‖u‖
L̃σT (Bsp,r)

:=
∥∥2js‖∆lu‖LσT (Lp)

∥∥
`r(Z)

.

One can then define the space L̃σT (Bs
p,r) as the set of tempered distributions u over (0, T )×Rd

such that liml→−∞ Slu = 0 in Lσ([0, T ];L∞(Rd)) and ‖u‖
L̃σT (Bsp,r)

<∞ 2. The spaces L̃σT (Bs
p,r)

may be compared with the spaces LσT (Bs
p,r) using the Minkowski inequality:

‖u‖
L̃σT (Bsp,r)

≤ ‖u‖LσT (Bsp,r)
if r ≥ σ and ‖u‖

L̃σT (Bsp,r)
≥ ‖u‖LσT (Bsp,r)

if r ≤ σ.

All the properties of continuity for the product and composition which are true in Besov
spaces remain true in the above spaces. The time exponent just behaves according to Hölder’s
inequality.
Formally, any product of two distributions u and v may be decomposed into

uv = Tuv + Tvu+R(u, v), (2.17)

2 The letter T is omitted for functions defined over R+.
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Tuv :=
∑
l

Sl−1u∆lv, Tvu :=
∑
l

Sl−1v∆lu and R(u, v) :=
∑
l

∑
|l′−l|≤1

∆lu∆l′v.

The above operator T is called “paraproduct” whereas R is called “remainder”. The decompo-
sition (2.17) has been introduced by Bony in [2] (see also [1]). In this article we will deal with
the following classical paraproduct estimates (we refer to [1]).

Proposition 2.2. Under the same assumptions there exists a constant C > 0 such that if
1/p1 + 1/p2 = 1/p, and 1/r1 + 1/r2 = 1/r:

‖Tuv‖Bsp,1 ≤ C‖u‖L∞‖v‖Bsp,1 ,

‖Tuv‖Bs+tp,r
≤ C‖u‖Btp1,r1‖v‖Ḃsp2,r2 (t < 0),

‖R(u, v)‖
B
s1+s2−

d
2

p,r

≤ C‖u‖Bs1p1,r1‖v‖B
s2
p2,r2

(s1 + s2 > 0). (2.18)

Let us now turn to the composition estimates (see [1]).

Proposition 2.3. Let s > 0, u ∈ Bs
p,1 ∩ L∞ and F ∈W [s]+2,∞

loc (Rd) such that F (0) = 0. Then
F (u) ∈ Bs

p,1 and there exists a function of one variable C0 only depending on s, p, d and F
such that

‖F (u)‖Bsp,1 ≤ C0(‖u‖L∞)‖u‖Bsp,1 .

A maximal regularity estimate for the heat equation

According to [1], the following result holds:

Proposition 2.4. Let s ∈ R, (p, r) ∈ [1,+∞]2 and 1 ≤ ρ2 ≤ ρ1 ≤ +∞. Assume that u0 ∈ Bs
p,r

and f ∈ L̃ρ2T (B
s−2+2/ρ2
p,r ). Let u be a solution of:{

∂tu− µ∆u = f,

u/t=0 = u0,

where µ > 0. Then there exists C > 0 depending only on N,µ, ρ1 and ρ2 such that:

‖u‖
L̃
ρ1
T (B

s+2/ρ1
p,r )

≤ C
(
‖u0‖Bsp,r + ‖f‖

L̃
ρ2
T (B

s−2+2/ρ2
p,r )

)
.

If in addition r is finite then u belongs to C([0, T ], Bs
p,r).

3 Strong solution in finite time

In this section we are interested in proving the existence of strong solution on a maximal time
interval (0, T ∗) for initial data verifying the assumptions of the theorem 1.2. Furthermore we
will verify that the solution remains axisymmetric on (0, T ∗).
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3.1 Existence of strong solution in finite time on a maximal time interval
(0, T ∗)

The theorem 1.1 is a direct consequence of [27, 24, 13, 15]. In [27] the existence is proved for

(q0, u0) ∈ B
N
p

p,1 × B
N
p
−1

p,1 for 1 ≤ p < 2N with uniqueness for 1 ≤ p ≤ N . The uniqueness is
extended in [15] to the case N ≤ p < 2N . The blow up criteria is given in [27] following an
argument developed in [13]. We can simply recall that the condition p < 2N is a restriction
due to the paraproduct law when we want to deal with the term of the form ∇ ln ρ ·Du.

3.2 Existence of strong solution in finite time which remains axisymmetric

We have seen that there exists a strong solution (ρ, u) on a maximal time interval (0, T ∗) of
the system (1.1) for the initial data (ρ0, u0) verifying the assumptions of the theorem 1.2. We
are now interested in proving that this solutions remains radially symmetric in the case N = 3
or rotationally invariant in the case N = 2 on the time interval (0, T ∗) provided that the initial
data are radially symmetric or rotationally invariant. Let us start with the first case. In other
way we wish to verify that (ρ, u) can be written under the following form:

ρ(t, x) = ρ1(t, |x|) and v(t, x) =
x

|x|
v1(t, |x|). (3.19)

To see this, it suffices to check that any isometry A ∈MN (RN ) (whith AtA = AAt = IdN ) we
have for all t ∈ (0, T ∗):

ρ(t, x) = ρ(t, Ax) and v(t, x) = Av(t, Atx). (3.20)

Indeed (3.20) implies that for every t ∈ (0, T ∗):

v(t, x) = xf(t, x), (3.21)

with f a scalar function. By contradiction assume that it is not true, then there exists t ∈
(0, T ∗), y1 and y0 which are not collinear such that:

v(t, y0) = λy1,

with λ ∈ R∗. (3.20) is true for any A an isometry, let us now choose A0 a rotation such that:

A0y0 =
y1

|y1|
|y0|.

Now we have for all the rotations A (we recall that the rotations are commutative), we have:

v(t, Ay0) = λAy1 = λ
|y1

|y0|
AA0y0 = λ

|y1|
|y0|

A0Ay0.

We deduce then that:

v(t, x) = λ
|y1|
|y0|

A0x.

We take now any isometry B and we deduce that:

Bv(t, x) = λ
|y1|
|y0|

BA0x = λ
|y1|
|y0|

A0Bx = v(t, Bx).
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It implies that for any isometry B we have BA0 = A0B which is false. Then by contradiction
(3.21) is true. We now prove that f in (3.21) is necessary a radial function. From (3.20) we
observe that for any isometry A:

H(t, x) = (v(t, x), x) = (Av(t,tAx), x) = (v(t,tAx),tAx) = H(t,tAx).

It implies that H is radial furthermore we have:

H(t, x) = |x|2f(x).

We deduce that f is radial and it concludes the fact that v remains radially symmetric.
Let us prove now (3.20), since ρ and v are regular on (0, T ∗) and solution of (1.3) we can easily
verify that:

∂t(ρ(t, Atx))− 2µ∆(ρ(t, Atx)) + div
(
ρ(t, Atx)Av(ρ(t, Atx)

)
= 0

ρ(t, Atx)∂t(Av(t, Atx)) + ρ(t, Atx)Au(t, Atx) · ∇(Av(t, Atx))

− µdiv(ρ(t, Atx)curl[Av(t, Atx)]) +∇[P (ρ)(t, Atx)] = 0

(3.22)

It implies that (ρ(t, Atx), Av(t, Atx)) is a solution of (1.3) with initial data (ρ0(x), v0(x)) since
ρ0 is radial and v0 radially symmetric. By uniqueness of the strong solution we deduce the
result (3.20).

We prove similar result for the case of rotationally invariant initial data in dimension N = 2
(it means initial data verifying the condition 1.6). To do this it suffices to rewrite the system
in function of divu and curlu and to observe that these functions are radial. More precisely for
initial data verifying (1.6) we consider solution of the form:

v(t, x) =t Av1(t, Ax) +A⊥v2(t, Ax),

with:

A =

(
a11 a12

a21 a22

)
and A⊥ =

(
a22 −a12

−a21 a11

)
and tAA = AtA = Id2.

4 Maximum principle on the density ρ and control of the vac-
uum

In the sequel we are interested in dealing with radially symmetric solutions such that the initial
data (ρ(0, ·), u(0, ·)) verify:

ρ0(x) = ρ1
0(|x|) and u0(x) =

x

|x|
u1

0(|x|) +
x⊥

|x|
u2

0(|x|).

It is then natural to search solution to the system (1.3) under the form:

ρ(t, x) = ρ1(t, |x|) et v(t, x) =
x

|x|
v1(t, |x|) +

x⊥

|x|
u2(t, |x|).

11



It implies that (ρ, v1, u2) has to solve the following system:

∂tρ− 2µ∆ρ+ div(ρv1) = 0

ρ∂tv
1 + ρu1 · ∇v1 +∇P (ρ)− u2

2

|x|
x

|x|
= 0

ρ∂tu
2 + ρu1 · ∇u2 + ρu2 · ∇u1 − 2µdiv(ρDu2) = 0

(ρ, v1, u2)t=0 = (ρ1
0, v

1
0, u

2
0).

(4.23)

We have seen in the previous section that for initial data verifying the assumption of the
theorem 1.2 there exists strong solution (ρ, v1, u2) on a finite time interval (0, T ∗). We are
interested now in proving that T ∗ = +∞. By absurd we assume now that T ∗ < +∞. In order
to prove a contradiction, we are going to show that the norm ‖(q, u)(T, ·)X does not blow up
when T goes to T ∗.
In a first time we have to show that 1

ρ and ρ are bounded in L∞([0, T ∗], L∞(RN )). In order to

show this result, we are going to prove a gain of integrability on v1 which allows us to apply a
maximum principle on the first equation of (4.23).

4.0.1 Estimate on u1

We recall that P (ρ) = aργ in addition since u1 is irrotational we have Du1 = ∇u1, it implies
that on (0, T ∗) we have:

ρ∂tu
1 + ρu1 · ∇u1 − 2µdiv(ρ∇u1) +∇P (ρ) =

ρu2
2

|x|
x

|x|
. (4.24)

It gives in particular since 1
ρ is bounded in L∞((0, T ∗)× RN ):

∂tu
1 + (u1 − 2µ∇ ln ρ) · ∇u1 − 2µ∆u1 +∇F (ρ) =

u2
2

|x|
x

|x|
. (4.25)

We now define by S(t) the semi-group associated to parabolic the equation:

∂tu
1 + w · ∇u1 − 2µ∆u1 = 0,

with w = u1 − µ∇ ln ρ. From Duhamel formula, it yields:

u1(t, ·) = S(t)u1
0 −

∫ t

0
S(t− s)∇F (ρ)(s, ·)ds+

∫ t

0
S(t− s)(u

2
2(s, ·)
| · |

·
| · |

)ds.

Let us estimate now w1 the solution of the problem:{
∂tw

1 + w · ∇w1 − 2µ∆w1 +∇F (ρ) = 0

w1(0, ·) = u1
0,

(4.26)

then we show that for any p ≥ 2, ρ
1
pw1 is uniformly bounded in L∞T (Lp(RN )) which implies

that w1 belongs to L∞T (L∞(RN )). Indeed we observe that:{
ρ∂tw

1 + ρu1 · ∇w1 − 2µdiv(ρ∇w1) +∇P (ρ) = 0

w1(0, ·) = u1
0,

(4.27)
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Multiplying the previous equation by w1|w1|p−2 with p ≥ 2 and integrating over (0, t) × RN
with 0 < t < T ∗ we obtain:

1

p

∫
RN

(ρ|w1|p)(t, x)dx+

∫ t

0

∫
RN

ρ|w1|p−2|∇w1|2(s, x)dsdx

+
(p− 2)

4

∫ t

0

∫
RN

ρ|∇(|w1|2)|2|w1|p−4(s, x)dsdx ≤ 1

p

∫
RN

(ρ0|u1
0|p)(x)dx

+ |
∫ t

0

∫
RN
|w1|p−2w1 · ∇aργ(s, x)dsdx|.

(4.28)

Following the same procedure than in [28] we prove that exists a continuous function C such
that for any 0 < T < T ∗ and 2 ≤ p < +∞ we have:

‖ρ
1
pw1‖L∞T (Lp(RN )) ≤ C(T ). (4.29)

In addition we can observe that w1 is bounded via the maximum principle in C([0, T ], L∞(RN ))
when 0 ≤ T < T ∗ (with eventually ‖w1‖L∞([0,T ∗],L∞(RN )) = +∞). We have now for any
t ∈ [0, T ] and ε > 0:( ∫

{x, |w(t,w)|≥‖w(t,·)‖L∞−ε}
ρ(t, x)|w(t, x)|pdx

) 1
p

≥ (‖w(t, ·)‖L∞ − ε)
(

min
x∈RN

|ρ(t, x)| λ({x, |w(t, w)| ≥ ‖w(t, ·)‖L∞ − ε})
) 1
p ,

with λ the Lebesgue measure. We deduce that since minx∈RN |ρ(t, x)| λ({x, |w(t, w)| ≥
‖w(t, ·)‖L∞ − ε}) 6= 0, we have then for any ε > 0:

lim inf
p→+∞

‖ρ
1
pw1‖L∞T (Lp(RN )) ≥ (‖w(t, ·)‖L∞ − ε).

Using (4.29), we deduce that for any T ∈ (0, T ∗) we have:

‖w1‖L∞([0,T ],L∞(RN )) ≤ C(T ). (4.30)

We are now interested in proving that:

x

|x|
·
∫ t

0
S(t− s)(u

2
2(s, ·)
| · |

·
| · |

)ds ≥ 0.

To do this it suffices to study the solution w2(t, x) = x
|x|w2(t, |x|) of the linear equation: ∂tw

2 + w · ∇w2 − 2µ∆w2 =
u2

2

|x|
x

|x|
w2(0, ·) = 0.

(4.31)

Simple calculus gives: 

(w · ∇w2) · x
|x|

= w · ∇(w2 · x
|x|

)

∆w2 =
x

|x|
(3∂r(

w2

r
) + |x|∂rr(

w2

r
))

∆w2 · x
|x|

= ∂rrw2 +
∂rw2

r
− w2

r2

∆w2 = ∂rrw2 +
∂rw2

r
.
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It means in particular that: ∂tw2 + w · ∇w2 − 2µ∆w2 + 2µ
w2

|x|2
=
u2

2

|x|
.

w2(0, ·) = 0.

(4.32)

Let us consider now the unknown wk2(t, x) = max
(
0,maxx∈RN (−w2(t, x))

)
. Multiplying (4.32)

by wk2 and integrating over (0, t)× RN for t ∈ (0, T ∗) we obtain:

1

2
‖wk2(t, ·)‖2L2 + 2µ

∫ t

0

∫
RN
|∇wk2 |(s, x)dsdx ≤ −

∫ t

0

∫
RN

wi∂iw
k
2(s, x)ds dx. (4.33)

The theorem 1.1 ensures that on [0, t] we have w ∈ L2r([0, t], L2q(RN )) with 1
r + N

2q = 1 − κ
with 0 < κ1 and q ∈ [ N

2(1−κ) ,+∞], r ∈ [ 1
1−κ ,+∞]. By Höder inequality, Young inequality and

Gagliardo Niremberg inequalities, we show that:

|
∫ t

0

∫
RN

wi∂iw
k
2(s, x)ds dx| ≤

∫ t

0

∫
RN

( ε
2
|∇wk2 |(s, x) +

1

2ε

N∑
i=1

w2
i (s, x)(wk2)2(s, x)

)
ds dx

≤ ε

2

∫ t

0

∫
RN
|∇wk2 |(s, x)dsdx+

C

2ε
‖

N∑
i=1

w2
i ‖Lr((0,t),Lq(RN ))(‖wk2(t, ·)‖2L2 +

∫ t

0

∫
RN
|∇wk2 |(s, x)dsdx).

(4.34)
Plugging (4.34) in (4.33), we obtain for ε small enough, there exists C > 0 such that:

‖wk2(t, ·)‖2L2+

∫ t

0

∫
RN
|∇wk2 |(s, x)dsdx ≤ C‖

N∑
i=1

w2
i ‖Lr((0,t),Lq(RN ))

(
‖wk2(t, ·)‖2L2+

∫ t

0

∫
RN
|∇wk2 |(s, x)dsdx

)
.

(4.35)
Taking t sufficiently small we obtain that:

‖wk2(t, ·)‖2L2 +

∫ t

0

∫
RN
|∇wk2 |(s, x)dsdx ≤ 0. (4.36)

It implies that w2(s, x) ≥ 0 for (s, x) ∈ (0, t)× RN . Repeating the procedure we show that:

w2(t, x) ≥ 0 on (0, T ∗)× RN . (4.37)

Combining (4.30) and (4.37), we deduce that for all t ∈ (0, T ∗) we have:

u1(t, ·) = f1(t, ·) + f2(t, ·), (4.38)

with f1 ∈ L∞([0, T ∗], L∞(RN )) and f2 ≥ 0.

4.0.2 Estimate on v1

We can rewrite the equation on v1 as follows:

ρ∂tv
1 + ρu1 · ∇v1 +

a

2µ
ργv1 − ρu2

2

|x|
x

|x|
=

a

2µ
ργu1. (4.39)

It gives that:

∂tv
1 + u1 · ∇v1 +

a

2µ
ργ−1v1 = (

a

2µ
ργ−1u1 +

u2
2

|x|
)
x

|x|
. (4.40)
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Applying the characteristic method, we now observe that:

∂t[v
1(t, χ(t, x))] +

a

2µ
ργ−1(t, χ(t, x))v1(t, χ(t, x)) = (

a

2µ
ργ−1(t, χ(t, x))u1(t, χ(t, x))

+
ρu2

2(t, χ(t, x))

|(t, χ(t, x))|
)
χ(t, x))

|χ(t, x)|
,

(4.41)

with:
∂tχ(t, x) = u1(t, χ(t, x)).

We have now:

∂t[v
1(t, χ(t, x))] = ∂t[v1(t, χ(t, x))]

χ(t, x)

|χ(t, x)|
+ v1(t, χ(t, x))[

∂tχ(t, x)

|χ(t, x)|
+ χ(t, x)∂t(

1

|χ(t, x)|
)]

Next we have:

∂t(
1

|χ(t, x)|
) = −1

2

1

|χ(t, x)|3
(2χ1(t, x)∂tχ1(t, x) + 2χ2(t, x)∂tχ2(t, x))

= −1

2

1

|χ(t, x)|3
2u1(t, χ(t, x))|χ(t, x)| = − 1

|χ(t, x)|2
u1(t, χ(t, x)).

It implies that:

∂t[v
1(t, χ(t, x))] = ∂t[v1(t, χ(t, x))]

χ(t, x)

|χ(t, x)|
Finally we have obtained that:

∂t[v1(t, χ(t, x))] +
a

2µ
ργ−1(t, χ(t, x))v1(t, χ(t, x)) = (

a

2µ
ργ(t, χ(t, x))u1(t, χ(t, x))

+
ρu2

2(t, χ(t, x))

|(t, χ(t, x))|
).

(4.42)

It implies that according to (4.38) and since (v1)0 belongs to L∞(RN ) that for any (t, x) we
have:

v1 = g1 + g2, (4.43)

with g1 ∈ L∞([0, T ∗], L∞(RN )) and g2(t, x) ≥ 0 for any (t, x) ∈ (0, T ∗)× RN .

4.1 Energy estimate

We recall now that we have:
ρ∂tv

1 + ρu1 · ∇v1 +∇P (ρ) +
ρu2

2

|x|
x

|x|
= 0

ρ∂tu
2 + ρu1 · ∇u2 − µdiv(ρ∇u2) +

ρu1

2|x|
u2 +

ρv1

2|x|
u2 = 0

We multiply the first equation by v1, and the second by 2u2 and we obtain:

1

2

∫
RN

∂t(ρ|v1|2 + ρ|u2|2)dx+

∫
RN
∇P (ρ) · v1dx+ 2µ

∫
RN

ρ|∇u2|2dx+

∫
ρ
u1

|x|
|u2|2dx = 0.
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We can check now that (w = curlu2 = ∂1u
2
2 − ∂2u

2
1):

|∇u2|2 = (∂ru2)2 +
(u2)2

|x|2
, w =

u2

|x|
+ ∂ru2 and divu =

u1

|x|
+ ∂ru1.

We have finally:

1

2

∫
RN

∂t(ρ|v1|2 + ρ|u2|2 + jγ(ρ))dx+ 2µ

∫
RN
∇P (ρ) · ∇ ln ρdx+ 2µ

∫
RN

ρ(∂ru2)2dx+ 2µ

∫
RN

ρ
(u2)2

|x|2
dx

+

∫
RN

ρ
u1

|x|
|u2|2 = 0.

4.2 Weight energy estimate on u2

We recall that:

ρ∂tu
2 + ρu1 · ∇u2 − µdiv(ρ∇u2) +

ρ(u1 + µ∂r ln ρ)

|x|
u2 = 0. (4.44)

Let f a radial function that we will determine later, we verify that:

f(|x|)div(ρ∇u2) = div(ρ∇(fu2))− ρu2(∆f + f ′∂r ln ρ)− 2ρ∇ ln f · ∇(fu2) + 2ρf |∇ ln f |2u2.

And:
fρu1 · ∇u2 = ρu1 · ∇(fu2)− ρu2u1 · ∇f.

We can then rewrite (4.44) as follows:

ρ∂t(fu
2) + ρ(u1 + 2µ∇ ln f) · ∇(fu2)− µdiv(ρ∇(fu2)) +

ρ(fu1 + µf∂r ln ρ)

|x|
u2

+ µρu2(µ∆f + f ′∂r ln ρ− 2f |∇ ln f |2)− ρu2u1 · ∇f = 0.

It gives in particular:

ρ∂t(fu
2) + ρ(u1 + 2µ∇ ln f) · ∇(fu2)− µdiv(ρ∇(fu2))

+ µρu2(∆f − 2f |∇ ln f |2) + ρu2(u1(
f

|x|
− f ′) + µ∂r ln ρ(

f

|x|
+ f ′)) = 0

(4.45)

Multiplying the previous equation by fu2 we get:

1

2

∫
RN

∂t(ρ|fu2|2)dx− µ
∫
RN

ρ(∆ ln f + ∂r ln ρ
f ′

f
)|fu2|2dx+ µ

∫
RN

ρ|∇(fu2)|2dx

+ µ

∫
RN

ρf |u2|2(∆f − 2
(f ′)2

f
)dx+

∫
RN

ρ|fu2|2(u1(
1

|x|
− f ′

f
) + µ∂r ln ρ(

1

|x|
+
f ′

f
))dx = 0.

It gives:

1

2

∫
RN

∂t(ρ|fu2|2)dx+ µ

∫
RN

ρ|∇(fu2)|2dx

+ µ

∫
RN

ρf |u2|2(∆f − 2
(f ′)2

f
− f∆ ln f)dx+

∫
RN

ρ|fu2|2(u1(
1

|x|
− f ′

f
) + µ∂r ln ρ(

1

|x|
))dx = 0.
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We have in particular:

1

2

∫
RN

∂t(ρ|fu2|2)dx+ µ

∫
RN

ρ|∇(fu2)|2dx

+ µ

∫
RN

ρf |u2|2(∆f − 2
(f ′)2

f
− f∆ ln f)dx+

∫
RN

ρ|fu2|2(u1(
1

2|x|
− f ′

f
) +

1

2|x|
v1)dx = 0.

Furthermore a basic calculus yields:

∆f − 2
(f ′)2

f
− f∆ ln f = ∆f − 2

(f ′)2

f
− (∆f − |∇f |

2

f
) = −(f ′)2

f
. (4.46)

Using the fact that |∇u2|2 = (∂ru2)2 + (u2)2

|x|2 , we deduce from (4.46):

1

2

∫
RN

∂t(ρ|fu2|2)dx+ µ

∫
RN

ρ|∂r(fu2)|2dx+ µ

∫
RN

ρ
|fu2|2

|x|2
dx

− µ
∫
RN

ρ|fu2|2 (f ′)2

f2
dx+

∫
RN

ρ|fu2|2(u1(
1

2|x|
− f ′

f
) +

1

2|x|
v1)dx = 0.

(4.47)

Now taking f(|x|) = |x|ε−1 with ε > 0 small enough we have:

1

2

∫
RN

∂t(ρ
|u2|2

|x|2−2ε
)dx+ µ

∫
RN

ρ|∂r(fu2)|2dx+ µ(2ε− ε2)

∫
RN

ρ
|u2|2

|x|4−2ε
dx

+

∫
RN

ρ
|u2|2

|x|2−2ε
(u1(

3

2
− ε) 1

|x|
+

1

2|x|
v1)dx = 0.

(4.48)

Applying Young inequality we have now for α1 > 0 small enough and C > 0:

1

2

∫
RN

∂t(ρ
|u2|2

|x|2−2ε
)dx+ µ

∫
RN

ρ|∂r(fu2)|2dx+ µ(2ε− ε2)

∫
RN

ρ
|u2|2

|x|4−2ε
dx

+

∫
RN

ρ
|u2|2

|x|2−2ε
(f2(

3

2
− ε) 1

|x|
+

1

2|x|
g2)dx ≤ α1

2

∫
RN

ρ
|u2|2

|x|4−2ε
dx

+
1

2α1

∫
RN

ρ
|u2|2

|x|2−2ε
C(|f1|2 + |g2|2)dx.

(4.49)

Since f2 and g2 are bounded in L∞([0, T ∗], L∞(RN )) we deduce by Gronwall lemma that:

√
ρ

u2

|x|1−ε
∈ L∞([0, T ∗], L2(RN )).

√
ρ

u2

|x|2−ε
∈ L2([0, T ∗], L2(RN )).

(4.50)

4.3 Lp weight estimate on u2

Multiplying the previous equation (4.45) by fu2 |fu2|p, we have:

1

p+ 2

∫
RN

∂t(ρ|fu2|p+2)dx+ µ

∫
RN

ρ|fu2|p|∇(fu2)|2 +
µp

4

∫
ρ|∇|fu2|2|2|fu2|p−4dx

+ µ

∫
RN

ρ|fu2|p+2(
∆f

f
− 2|∇ ln f |2) + ρ|fu2|p+2(u1(

1

2|x|
− 3f ′

2f
) +

v1

2
(

1

|x|
+
f ′

f
))dx

+ 2µ

∫
RN

ρ∇ ln f · ∇(fu2)(fu2)|fu2|pdx = 0.
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Next we have:∫
RN

ρ∇ ln f · ∇(fu2)(fu2)|fu2|pdx = − 1

p+ 2

∫
RN

ρ(∂r ln ρ
f ′

f
+ ∆ ln f)|fu2|p+2dx.

We deduce that:

1

p+ 2

∫
RN

∂t(ρ|fu2|p+2)dx+ µ

∫
RN

ρ|fu2|p|∇(fu2)|2 +
µp

4

∫
ρ|∇|fu2|2|2|fu2|p−4dx

+ µ

∫
RN

ρ|fu2|p+2(
∆f

f
− 2|∇ ln f |2 − 2

p+ 2
∆ ln f) + ρ|fu2|p+2(u1(

1

|x|
− f ′

f
)

+ µ∂r ln ρ(
1

|x|
+
f ′

f
(1− 2

p+ 2
))dx = 0.

We have in particular:

1

p+ 2

∫
RN

∂t(ρ|fu2|p+2)dx+ µ

∫
RN

ρ|fu2|p|∂r(fu2)|2dx+ µ

∫
RN

ρ
|fu2|p+2

|x|2
dx

+
µp

4

∫
RN

ρ|∇|fu2|2|2|fu2|p−4dx+ µ

∫
RN

ρ|fu2|p+2(
∆f

f
(1− 2

p+ 2
)− 2(1− 1

p+ 2
)|∇ ln f |2)

+ ρ|fu2|p+2(u1(
1

2|x|
− f ′

f
(
3

2
− 1

p+ 2
)) +

v1

2
(

1

|x|
+
f ′

f
(1− 2

p+ 2
))dx = 0.

(4.51)
Taking f(|x|) = |x|α we have:

∆f(x) = α2|x|α−2.

∆f

f
(1− 2

p+ 2
)− 2(1− 1

p+ 2
)|∇ ln f |2 = − α2

|x|2
.

(
1

2|x|
− f ′

f
(
3

2
− 1

p+ 2
)) =

1

|x|
(
1

2
− 3α

2
+

α

p+ 2
)

1

|x|
+
f ′

f
(1− 2

p+ 2
) =

1

|x|
(1 + α− 2α

p+ 2
).

Let us deal now with the case α = −1 + ε with ε > 0 small enough, it implies that:

1

p+ 2

∫
RN

∂t(ρ
|u2|p+2

|x|(p+2)(1−ε) )dx+ µ

∫
RN

ρ|fu2|p|∂r(fu2)|2 + µ(2ε− ε2)

∫
RN

ρ
|u2|p+2

|x|2+(p+2)(1−ε)dx

+
µp

4

∫
RN

ρ|∇|fu2|2|2|fu2|p−4dx+ µ

∫
RN

ρ
|u2|p+2

|x|(p+2)(1−ε)

(u1

|x|
(2− 3ε

2
− 1− ε
p+ 2

)

+
v1

2|x|
(ε+

2− ε
p+ 2

)
)
dx = 0.

(4.52)
Using (4.38), (4.43) and Young inequality there exists C > 0 and α1 > 0 small enough such
that:

1

p+ 2

∫
RN

∂t(ρ
|u2|p+2

|x|(p+2)(1−ε) )dx+ µ

∫
RN

ρ|fu2|p|∂r(fu2)|2 + µ(2ε− ε2)

∫
ρ

|u2|p+2

|x|2+(p+2)(1−ε)dx

+
µp

4

∫
RN

ρ|∇|fu2|2|2|fu2|p−4dx+ µ

∫
RN

ρ
|u2|p+2

|x|(p+2)(1−ε)

( f2

|x|
(2− 3ε

2
− 1− ε
p+ 2

)

+
g2

2|x|
(ε+

2− ε
p+ 2

)
)
dx ≤ α1

2

∫
RN

ρ
|u2|p+2

|x|2+(p+2)(1−ε)dx+
C

2α1

∫
RN

ρ
|u2|p+2

|x|(p+2)(1−ε) (|f1|2 + |g1|2)dx

(4.53)
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By Gronwall lemma we deduce that for any ε > 0 small enough and any p ≥ 2, there exists a
continuous function C independent on p such that for any T ∈ (0, T ∗):

‖ρ
1
p

u2

|x|1−ε
‖L∞(0,T ),Lp(RN )) ≤ C(T ). (4.54)

4.4 Gain of integrability on u2

We recall now that u2 verifies the following equation:

ρ∂tu
2 + ρu1 · ∇u2 − µdiv(ρ∇u2) +

ρu1

2|x|
u2 +

ρv1

2|x|
u2 = 0

We multiply this equation by u2|u2|p and we integrate over RN :

1

p+ 2

∫
RN

∂t(ρ|u2|p+2)dx+ µ

∫
RN

ρ|u2|p|∂ru2|2dx+ µ

∫
RN

ρ|u2|p |u
2|2

|x|2
dx

+
µp

4

∫
ρ|∇|u2|2|2|u2|p−4dx+

∫
RN

ρu1

2|x|
|u2|p+2dx+

∫
RN

ρv1

2|x|
|u2|p+2dx = 0.

Using (4.38), (4.43) and Young inequality there exists C > 0 and α1 > 0 small enough such
that:

1

p+ 2

∫
RN

∂t(ρ|u2|p+2)dx+ µ

∫
RN

ρ|u2|p|∂ru2|2dx+ µ

∫
RN

ρ|u2|p |u
2|2

|x|2
dx

+
µp

4

∫
ρ|∇|u2|2|2|fu2|p−4dx+

∫
RN

ρf2

2|x|
|u2|p+2dx+

∫
RN

ρg2

2|x|
|u2|p+2dx ≤ α1

2

∫
RN

ρ|u2|p|∂ru2|2dx

+
C

2α1

∫
RN

ρ|u2|p+2(|f1|2 + |g1|2)dx.

By Gronwall lemma we deduce that for any ε > 0 small enough and any p ≥ 2, there exists a
continuous function C independent on p such that for any T ∈ (0, T ∗):

‖ρ
1
pu2‖L∞((0,T ),Lp(RN )) ≤ C(T ). (4.55)

4.5 Gain of integrability on u1

Combining (4.54) and (4.55), we deduce that for any T ∈ (0, T ∗) and any p ≥ 2:

‖ρ
2
p
u2

2

|x|
x

|x|
(T, ·)‖

p
2

L
p
2
≤ ‖ρ

1
p

u2

|x|1−ε
x

|x|
(T, ·)‖pLp + ‖ρ

1
pu2(T, ·)‖pLp .

It implies that there exists a continuous function C such that for any p ≥ 2 we have:

‖ρ
2
p
u2

2

|x|
x

|x|
(T, ·)‖

L
p
2
≤ C(T ). (4.56)

We recall now that u1 verifies the following equation:

ρ∂tu
1 + ρu1 · ∇u1 − 2µdiv(ρ∇u1) +∇P (ρ) =

ρu2
2

|x|
x

|x|
. (4.57)
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Multiplying the previous equation by w1|w1|p−2 with p ≥ 2 and integrating over (0, t) × RN
with 0 < t < T ∗ we obtain:

1

p

∫
RN

(ρ|u1|p)(t, x)dx+

∫ t

0

∫
RN

ρ|u1|p−2|∇u1|2(s, x)dsdx

+
(p− 2)

4

∫ t

0

∫
RN

ρ|∇(|u1|2)|2|u1|p−4(s, x)dsdx ≤ 1

p

∫
RN

(ρ0|u1
0|p)(x)dx

+ |
∫ t

0

∫
RN
|u1|p−2w1 · ∇aργ(s, x)dsdx|+ |

∫ t

0

∫
RN

ρ
|u2|2

|x|
u1|u1|p−2dxds|.

(4.58)

The pressure term can be treated as in [28], let us focus on the second term in the right hand
side of (4.62). By Hölder inequality and Young inequality, we have when q = 2p for ε > 0 small
enough and C > 0:

|
∫ t

0

∫
RN

ρ
|u2|2

|x|
u1|u1|p−2dxds| ≤

∫ t

0
‖ρ

p−1
p u1(s)‖

L
p
p−1
‖ρ

1
p (s, ·) |u

2|2(s, ·)
| · |

‖Lpds

≤
∫ t

0
‖ρ

p−1
p u1(s)‖

L
p
p−1
‖ρ

2
q (s, ·) |u

2|2(s, ·)
| · |

‖
L
q
2
ds

≤
∫ t

0
‖ρ

1
pu1(s)‖

p
p−1

Lp ‖ρ
2
q (s, ·) |u

2|2(s, ·)
| · |

‖
L
q
2
ds

≤ ε
∫ t

0
‖ρ

1
pu1(s)‖pLpds+ C

∫ t

0
‖ρ

2
q (s, ·) |u

2|2(s, ·)
| · |

‖
p
p−1

L
q
2
ds

(4.59)

From (4.58) and (4.63) we deduce that the exists a continuous function C such that for any
p ≥ 2 and T ∈ (0, T ∗) we have:

‖ρ
1
pu1‖L∞((0,T ),Lp(RN )) ≤ C(T ). (4.60)

4.6 Gain of integrability on v1

Let us recall now that v1 verifies the following equation:

ρ∂tv
1 + ρu1 · ∇v +

a

2µ
ργv1 =

a

2µ
ργu1 + ρ

u2
2

|x|
x

|x|
. (4.61)

Multiplying the previous equation (4.61) by v|v|p−2 for p ≥ 2, we have:

1

p

∫
RN

∂t(ρ|v1|p)dx+
a

2µ

∫
RN

ργ |v1|pdx =
a

2µ

∫
RN

ρ
γ p−1

p |v1|p−2v1 · ρ
γ
p u1 dx

+

∫
RN

ρ
u2

2

|x|
v1|v1|p−2dx.

(4.62)

We have now by Hölder inequalities and Young inequality:

|
∫ t

0

∫
RN

ρ
|u2|2

|x|
v1|v1|p−2dxds| ≤

∫ t

0
‖ρ

p−1
p v1(s)‖

L
p
p−1
‖ρ

1
p (s, ·) |u

2|2(s, ·)
| · |

‖Lpds

≤ ε
∫ t

0
‖ρ

1
p v1(s)‖pLpds+ C

∫ t

0
‖ρ

2
q (s, ·) |u

2|2(s, ·)
| · |

‖
p
p−1

L
q
2
ds

(4.63)

20



Next by Höder, Young inequality and energy inequality we have for ε > 0 small enough:

|
∫
RN

ρ
γ p−1

p |v1|p−2v1 · ρ
γ
p u1 dx| ≤ εp− 1

p

∫
RN

ργ |v1|pdx+
1

εp

∫
RN

ργ |u1|pdx

≤ εp− 1

p

∫
RN

ργ |v1|pdx+
1

εp
[‖ρ

1
pu1‖p

Lp(RN )
+ ‖√ρ|u1|p‖L2(RN )‖ργ−

1
2 −√ρ‖L2(RN ))]

≤ εp− 1

p

∫
RN

ργ |v1|pdx+
1

εp
[‖ρ

1
pu1‖p

Lp(RN )
+ C‖ρ

1
2pu1‖2L2p(RN )].

(4.64)

Combining (4.63), (4.63) and (4.64) It yields that for any p ≥ 2 and T ∈ (0, T ∗) there exists a
continuous increasing function C such that we have:

‖ρ
1
p v‖L∞t (Lp) . C(T ). (4.65)

4.7 Maximum principle

Let us recall the different estimates that we have obtained, from (4.65), (4.60), (4.55) there
exists a continuous increasing function C such that for any p ≥ 2 and T ∈ (0, T ∗) we have:

‖ρ
1
pu1‖L∞((0,T ),Lp(RN )) ≤ C(T ),

‖ρ
1
pu2‖L∞((0,T ),Lp(RN )) ≤ C(T ),

‖ρ
1
p v1‖L∞((0,T ),Lp(RN )) ≤ C(T ).

(4.66)

Our goal is now to show that we can extend the solution (ρ, u) beyond T ∗ using the estimates
(4.66). From the previous estimates (4.66) we deduce using the maximum principle the following
proposition (see [28] for a detailed proof).

Proposition 4.5. Under the assumption of theorem 1.2, the density ρ verifies for any T ∈
(0, T ∗):

‖1

ρ
‖L∞T (L∞(RN )) ≤ C(T ), (4.67)

with C an increasing continuous function in T .

5 Proof of the theorem 1.2

We are going to show that we can extend the solution (ρ, u) beyond T ∗ using the estimates
(4.66).

5.1 Estimate on ‖u(T, ·)‖
B
N
p −1+ε′

p,1

for any T < T ∗ and ε′ > 0

Let us recall that we have proved according to (4.60), (4.55) and proposition 4.5 that for any
p ≥ 2 there exists increasing continuous functions C and C1 depending only on the initial data
(ρ0, u0) such that:

‖ρ
1
pu‖L∞T (Lp) ≤ C(T ) and ‖ 1

ρ
1
p

‖L∞T (L∞) ≤ C
1
p

1 (T ). (5.68)
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By Besov embedding we observe that for p ≥ 2 there exists C > 0 such that:

‖u‖L∞T (B0
p,∞) ≤ CC(T )C

1
p

1 (T ) and ‖u‖
L∞T (B

−N( 12−
1
p )

p,∞ )
≤ CC(T )C

1
2
1 (T ). (5.69)

For p > N
1−ε′ we have −N

2 + N
p <

N
p − 1 + ε′ < 0; we deduce then by interpolation in the Besov

space that there exists M an increasing continuous function depending only on the initial data
(ρ0, u0) verifying for any 0 < T < T ∗ 3:

‖u(T, ·)‖
B
N
p −1+ε′

p,1

≤M(T ). (5.70)

5.2 Estimate on ‖q1(T, ·)‖
B
N
p +ε′

p,1

for any T < T ∗ and ε′ > 0

Using the first equation in (1.3) and the proposition 2.4, there exists C > 0 such that for any
T ∈ (0, T ∗) we have (where we set q1 = ρ− ρ̄):

‖q1‖
L̃∞T (B

N
p +ε′

p,1 )
≤ C(‖q1

0‖
B
N
p +ε′

p,1

+ ‖ρv1‖
L̃∞T (B

N
p −1+ε′

p,1 )
). (5.71)

In the same way as in the previous section we have for any p ≥ 2:

‖ρv1‖
L̃∞T (B0

p,∞)
= ‖ρv1‖L∞T (B0

p,∞) ≤ ‖ρ‖
1− 1

p

L∞T (L∞)‖ρ
1
p v1‖L∞T (Lp),

‖ρv1‖
L̃∞T (B

−N( 12−
1
p )

p,∞ )
= ‖ρv1‖

L∞T (B
−N( 12−

1
p )

p,∞ )
≤ ‖ρ‖

1
2

L∞T (L∞)‖ρ
1
2 v1‖L∞T (L2).

(5.72)

Since the inequality −N
2 + N

p <
N
p − 1 + ε′ < 0 holds, we get by interpolation with N

p − 1 + ε′ =

θ(−N
2 + N

p ):

‖ρv1‖
L̃∞T (B

N
p −1+ε′

p,1 )
≤ ‖ρ‖

θ
2

L∞T (L∞)‖ρ
1
2 v1‖θL∞T (L2)‖ρ‖

(1−θ)(1− 1
p

)

L∞T (L∞) ‖ρ
1
p v1‖1−θL∞T (Lp)

≤ ‖ρ‖1−
1−ε′
N

L∞T (L∞)‖ρ
1
2 v1‖θL∞T (L2)‖ρ

1
p v1‖1−θL∞T (Lp).

(5.73)

According to (4.65) and the energy inequality, there exists a continuous increasing function M1

such that:

‖ρv‖
L̃∞T (B

N
p −1+ε′

p,1 )
≤ ‖ρ‖1−

1−ε′
N

L∞T (L∞)M1(T ). (5.74)

Plugging the previous estimate in (5.72) it gives:

‖q1‖
L̃∞T (B

N
p +ε′

p,1 )
≤ C(‖q1

0‖
B
N
p +ε′

p,1

+ (‖q1‖L∞T (L∞) + ρ̄)1− 1−ε′
N M1(T )). (5.75)

From Besov embedding and interpolation, we know that there exists C,C ′ > 0 such that:

‖q1‖L∞T (L∞) ≤ C‖q1‖
L̃∞T (B

N
p
p,1)
≤ C ′‖q1‖θ

L̃∞T (B
−N( 12−

1
p )

p,∞ )
‖q1‖1−θ

L̃∞T (B
N
p +ε′
p,∞ )

, (5.76)

3‖u(T, ·)‖
B

N
p
−1+ε′

p,1

is well defined since u belongs to C̃T∗(B
N
p
−1+ε′

p,1 ).
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with N
p = −θN(1

2 −
1
p) + (1− θ)(Np + ε′). Since q1 = ρ− ρ̄ is bounded in L∞((0, T ), L2(RN )) for

any T ∈ (0, T ∗) from the energy estimate and by Sobolev embedding, we can now show that
by Young inequality and (5.76) there exists M ′ an increasing function such that:

‖q1‖L∞T (L∞) ≤M ′(T ) + ‖q1‖
L̃∞T (B

N
p +ε′

p,1 )
. (5.77)

From (5.75), (5.77) and by Young inequality we have for C > 0 and any ε > 0:

‖q1‖
L̃∞T (B

N
p +ε′

p,1 )
≤ C(‖q1

0‖
B
N
p +ε′

p,1

+ (‖q1‖
L̃∞T (B

N
p +ε′

p,1 )
+M ′(T ) + ρ̄)1− 1−ε′

N M1(T ))

≤ C
(
‖q1

0‖
B
N
p +ε′

p,1

+
ε(N − 1 + ε′)

N
(‖q1‖

L̃∞T (B
N
p +ε′

p,1 )
+M ′(T ) + ρ̄) +

1− ε′

εN
M1(T )

N
1−ε′
)
.

(5.78)

Choosing ε sufficiently small we deduce that there exists C > 0 such that:

‖q1‖
L̃∞T (B

N
p +ε′

p,1 )
≤ C(1 + ‖q1

0‖
B
N
p +ε′

p,1

+M ′(T ) +M1(T )
N

1−ε′ ). (5.79)

From (5.77) it implies in particular that the L∞T (L∞) norm of ρ depends only on T and on the
initial data.

5.3 Lipschitz control on the velocity u

We recall that we have on (0, T ∗):

∂tu− µ∆u− µ∇divu = −u · ∇u− 2µ∇ ln ρ ·Du− ∇P (ρ)

ρ
.

Applying the proposition 2.4 we have for any T ∈ (0, T ∗):

‖u‖
L̃∞T (B

N
p −1

p,1 )
+ ‖u‖

L̃1
T (B

N
p +1

p,1 )
≤ C(‖u0‖

B
N
2 −1

p,1

+ ‖F1‖
L̃1
T (B

N
p −1

p,1 )
), (5.80)

with:
F1 = −u · ∇u− 2µ∇ ln ρ ·Du−∇F (ρ).
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with F ′(ρ) = P ′(ρ)
ρ . It remains now to estimate ‖F‖

L̃1
T (B

N
p −1

p,1 )
, by proposition 2.2,2.3, interpo-

lation and Young inequality we have for C a continuous function and with θ ∈ (0, 1):

‖∇P (ρ)

ρ
‖
L̃1
T (B

N
p −1

p,1 )
≤ T‖F (ρ)− 1‖

L̃∞T (B
N
p
p,1)
≤ T (‖q‖

L∞T (B
N
p +ε′

p,1 )
+ ‖q‖L∞T (L2))

‖u · ∇u‖
L̃1
T (B

N
p −1

p,1 )
≤
∫ T

0
‖u(s)‖

B
N
p −1+ε′

p,1

‖∇u(s)‖
B
N
p −ε

′

p,1

ds

≤
∫ T

0
‖u(s)‖

B
N
p −1+ε′

p,1

‖u(s)‖θ
B
N
p +1

p,1

‖u(s)‖1−θ
B
N
p +1

p,1

ds

≤ Cε
∫ T

0
‖u(s)‖

1
1−θ

B
N
p −1+ε′

p,1

‖u(s)‖1−θ
B
N
p +1

p,1

ds+ ε

∫ T

0
‖u(s)‖

B
N
p +1

p,1

ds

‖∇ ln ρ ·Du‖
L̃1
T (B

N
p −1

p,1 )
≤ Cε

∫ T

0
‖∇ ln ρ(s)‖

1
1−θ

B
N
p −1+ε′

p,1

‖u(s)‖1−θ
B
N
p +1

p,1

ds+ ε

∫ T

0
‖u(s)‖

B
N
p +1

p,1

ds

≤ Cε
∫ T

0
C(‖1

ρ
‖L∞T (L∞), ‖ρ‖L∞T (L∞))‖q(s)‖

1
1−θ

B
N
p +ε′

p,1

‖u(s)‖1−θ
B
N
p +1

p,1

ds+ ε

∫ T

0
‖u(s)‖

B
N
p +1

p,1

ds

(5.81)
From proposition 4.5 and according to (5.70) and (5.79), plugging the previous estimate (5.81)
and using Gronwall lemma we prove that there exists a function C continuous and increasing
such that:

‖u‖
L̃∞T (B

N
p −1

p,1 )
+ ‖u‖

L̃1
T (B

N
p +1

p,1 )
≤ C(T ). (5.82)

We have proved in particular that for any T ∈ (0, T ∗) we have:

‖∇u‖L1((0,T ),L∞(RN )) ≤ C(T ). (5.83)

In addition by classical estimate on transport equation we prove also that there exists a function
C continuous and increasing such that for any T ∈ (0, T ∗):

‖q‖
L̃∞T (B

N
p
p,1)
≤ C(T ). (5.84)

Proposition (4.5), (5.83) and (5.84) allows to apply the blow-up criterion of the theorem 1.1.
In particular it contradicts the assumption T ∗ < +∞ and we have then seen that necessary
T ∗ = +∞. It implies that the solution (q, u) is unique and verify locally in time (1.13). In
particular since the proof of the uniqueness in [15] requires only local estimates in time, we
have proved that (q, u) is a global strong solution of the system (1.1).

6 Proof of the theorem 1.3

The proof follows exactly the same lines than the previous section and is even simpler. We are
going to explain how to adopt the previous proof. First since radially the solution is radially
symmetric symmetric we observe that the strong solution (ρ, v) of the system (1.3) verifies on
the maximal time interval (0, T ∗):

ρ∂tv + ρu · ∇v +∇P (ρ) = 0. (6.85)
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Using an argument developed in [29], we can rewrite the previous equation as follows:

ρ∂tv + ρu · ∇v +
aγ

2µ
v =

aγ

2µ
u. (6.86)

The rest of the proof consists in getting L∞T (Lp(RN )) estimates on ρ
1
p v for any p ≥ 2 and

T ∈ (0, T ∗). It is then sufficient as in the previous section and [28] to apply a maximum
principle and to prove that ρ and 1

ρ is bounded in L∞([0, T ∗], L∞(RN )). To do this, it suffices

to multiply the equation (6.86) by v|v|p and to integrate over (0, T )× RN . It gives:

1

p+ 2

∫
RN

∂t(ρ|v|p+2(t, x))dx+
aγ

2µ

∫
RN
|v|p+2(t, x)dx =

aγ

2µ

∫
RN

u · v|v|p(t, x)dx. (6.87)

In order to conclude, it remains to bound ρ
1
q u in any L∞([0, T ∗], Lq(RN )) with q ≥ 2. We recall

now that since u is radially symmetric, we have Du = ∇u and we can rewrite the momentum
equation on u as follows:

ρ∂tu+ ρu · ∇u− 2µdiv(ρ∇u) + a∇ργ = 0. (6.88)

Multiplying the previous equation by u|u|p and integrating over r (0, T )× RN we get:

1

p+ 2

∫
RN

∂t(ρ|u|p+2(t, x))dx+ 2µ

∫
|∇u|2|u|p(t, x)dx+

µp

2

∫
RN

ρ|∇(|u|2)|2|v|p−2(t, x)dx

≤ |
∫
RN

a∇ργ · u|u|p(t, x)dx|.

(6.89)

Using same arguments than in [28], we show that we obtain L∞([0, T ∗], Lq(RN )) on ρ
1
q u for

any q ≥ 2 when 1 ≤ γ < 7
6 . The rest of the proof follows the same arguments than the previous

section.

7 Appendix

Assume that v has the following form:

v =
x⊥

|x|
v2(t, |x|) +

x

|x|
v1(t, |x|) = v2 + v1.

We verify then that:

u1 · ∇v1 =
x⊥

|x|
(u1∂rv1),

u2 · ∇u2 = −x
⊥

|x|
(
u2

2

r
),

u1 · ∇v2 =
x⊥

|x|
(u1∂rv2),

u2 · ∇v1 =
x⊥

|x|
(
v1u2

r
).
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