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Abstract—Integration of hardware accelerators in System on
Chips is often complex. When dealing with reconfigurable hard-
ware, this greatly limits the attainable flexibility. In this paper,
we propose an approach based on a dedicated instruction set
designed to manage data transfer and execution. This approach,
named Ouessant, is based on a very simple general purpose
instruction set designed for close interaction with dedicated
hardware accelerators. This instruction set is used to program a
dedicated controler, which commands the accelerator’s execution
and data transfer with minimal CPU intervention. The resulting
architecture is flexible, extensible, and can be easily integrated in
System on Chips. Adding new accelerators is also made easier.
Implementation of the architecture on different FPGA resources
show very low footprint and a very small impact on attainable
performance. Ouessant is freely available under an open-source
license.

I. INTRODUCTION

General-Purpose Processors (GPP) are designed to be usable
for a wide range of applications. However, this flexibil-
ity comes at a cost. Dealing with compute-intensive tasks
such as signal processing or multimedia presents challenging
performance issues. In order to reach required computing
throughputs without increasing power or surface consumption,
a solution is to use Hardware(HW)/Software (SW) co-design.
In this approach, compute-intensive parts are offloaded to
dedicated coprocessors. Most modern Systems on Chip (SoCs)
use this solution. For example, smartphones SoCs integrate
hardware video decoders, in order to provide flawless High-
Definition video playback, which can not be obtained with
low-power GPP cores.

The design of dedicated coprocessors can be divided into
two distinct problems: the design of an efficient computing
architecture, and integration of this design in the complete
SoC. In this paper, we focus on the integration part, which
consists in offering control of the coprocessor and on man-
aging communication with the complete SoC. Integration is
often a constraint on coprocessor. The communication method
of the system must be used, and a control interface for the
central GPP must be provided. It can thus quickly become a
bottleneck in coprocessor performance: even if the coprocessor
is very fast once data is available, if data transmission and
control from the processor is inefficient, attainable computing
throughput will stay low. The development of reconfigurable
computing is also leading to new solutions for HW/SW co-
design, with more flexibility in the design. This flexibility must
be supported by hardware integration techniques, which adds
more constraints to the design.

In this paper, in order to tackle this hardware integration
challenge, we propose a new microcontroller-based approach.
This approach, named Ouessant, uses a small instruction set

design to control accelerator usage. It is designed to be as inde-
pendant of the system as possible. It provides a low-overhead,
flexible, portable, and easy-to-use integration method for hard-
ware accelerator in reconfigurable platforms. It comes with
efficient software integration for either baremetal applications,
or Linux programs. Ouessant is available [1] under a CeCILL-
C license, which is Free Software and compatible with LGPL
license.

The paper is organized as follows. In Section II, some
works on coprocessor integration in SoC are presented, and
the proposed approach is then described. In Section III, the
resulting hardware architecture is detailed, before presenting
software integration in Section IV. Implementation details and
preliminary results on the architecture are given in Section V,
before concluding in Section VI

II. EXISTING WORK AND PROPOSED APPROACH
A. Existing work

Integrating a coprocessor in a system can be done using
different approaches, according to the requirements. The typi-
cal way is to connect coprocessors on a bus. They can thus be
easily accessed by a processor. They are usually seen as slaves,
with different registers for the configuration. Data access is
done either through common access to memory, or through
integrated First In/First Out (FIFO) communication devices.
Communication can be offloaded to a Direct Memory Access
(DMA) peripheral, in order to free GPP time.

Other approaches offer more flexibility and ease integration.
Vuletic et al. [2] proposed to use virtual memory in order
to share memory between hardware and software tasks. This
is done to increase applications portability between platforms
and to ease the application developer work, since no prior
knowledge of platform-specific parameters is required. An-
drews et al. [3][4] proposed the HThreads framework, in
which the whole software thread machinery is reimplemented
in hardware, with rather high-level communication mecha-
nisms. This solution offers tight integration with a POSIX
system, through the compatibility of HThreads with POSIX
threads. However, it suffers from the complexity of overhead
of threads. The Molen polymorphic processor [5][6] is based
on a small dedicated instruction set. This set is defined
whatever the accelerators will be in the system, thus limiting
the number of instruction The coprocessor is then integrated
between the processor and the bus, providing an extension to
the instruction set of the GPP. This approach is completely
transparent and provides acceleration with a very low time
overhead. However, it requires access to the bus/processor
interface, and it requires one accelarator per processor, making
it inefficient in MultiProcessor System on Chips (MPSoC).



B. Ouessant approach and aims

Ouessant aims at providing a microcontroller approach to
hardware integration. It uses the instruction set based approach
of Molen in a different way. One of the main issues with Molen
is the interface with the system. Interfacing the Molen between
the processor and the bus is an interesting but complex choice.
While it provides transparency and low latency access to the
accelerator, it prevents parallelization between hardware and
processor, and it cannot be used in hardcore processors such
as the Zynq system designed by Xilinx.

With an Ouessantnt coprocessor (OCP), the aim is not
to be completely transparent. Transparency for end user can
be achieved through software libraries. One of the aims of
the coprocessor is to be portable, meaning independant from
the processor. In order to benefit from Molen advantages,
while counterbalancing the previously described side effects,
different choices have been made. The coprocessor still uses
a basic instruction set to control the accelerator. However,
more instructions are envisioned, in order to provide increased
autonomy to the coprocessor. Ouessant is integrated in the
system in a classical way, meaning as a regular peripheral
(usually on the communication bus). It is explicitly controlled
from the outside, with configuration and start/stop commands
issued by a central processor. This choice, while slightly
increasing the overhead, greatly decreases the constraints on
the resulting coprocessor.

III. DETAILED HARDWARE ARCHITECTURE

In this section, hardware architecture of the OCP is detailed.

A. General architecture

The general architecture of an Ouessantnt coprocessor is
described in Figure 1. It is divided into 3 main parts, which
represent the different abstraction levels used to integrate the
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Figure 1: Global view of an Ouessantnt coprocessor

The Reconfigurable Acceleration Coprocessor (RAC) is the
accelerator. It is user defined, and can be changed indepen-
dantly from other components of the OCP. It uses FIFO-based
communication, which is the easiest interfacing solution.

The next component is the controller. It is the central part
of the OCP, providing instruction decoding and executing
the instructions. Details on possible instructions and on the
controller are provided further in the paper. The controller
interacts with the RAC through the selected communication
system (FIFO or memory access in future versions). It com-
municates with the complete system through the bus interface.
The controller has no notion of the system type: it uses an
internal address representation. The bus interface, which is the
last component, is then used to translate the internal address
representation in the required representation for the system.

B. RAC

The aim of Ouessant is to provide easy and flexible inte-
gration of dedicated accelerators in a System on Chip (SoC).
In order to reach this goal, the Ouessant project provides
variable width FIFOs, which can be used to interface with
many accelerators. A complete RAC is described in Figure 2.
These FIFOs are easy to use, with few signals to manage.
They provide serializing and deserializing functionalities, and
can thus serve as simple data formatting entities.
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Figure 2: Ouessant RAC integration

The number of input and output interfaces can be adapted
according to the accelerator requirements. For example, a
dedicated configuration FIFO can be added if the accelerator
requires additional configuration.

C. |Interface

OCP interface is designed to translate Ouessant internal
addressing mechanism to the SoC communication system.
To ease the description, we make the hypothesis that the
communication is managed through a bus. While this is a
common configuration, it is not a requirement of Ouessant.

In the Ouessant approach, memory is divided in different
banks. A memory bank is defined as a set of contiguous
memory words. An internal address is a memory bank id
with an offset inside this bank. This is a simple virtualization
scheme, which is used to offer dynamic data management in
Ouessant. Actual location of data is irrelevant when designing
the coprocessor or writing the firmware. Banks location can
then be configured at runtime.

The interface architecture is described in Figure 3. It is
divided in two main parts: one which is dependant on the
system bus, and one which is independant. The independant
interface manages configuration and translates the internal
bank/offset representation in a global address reprentation.

Configuration is stored on 10 registers. The first register
is a control register. In the current version, only 3 bits are
used, one for starting the coprocessor (bit S), one to enable
interrupt (bit IE), and one to signal whether data processing is
finished or not (bit D). The second register is the number of
instructions in the program. The remaining registers are used
to store memory banks location in the system.

The translation mechanism is quite simple. The controller
sets a bank id and an offset when it requires data transfer. The
interface selects the correct bank address in its configuration
registers. It then adds the offset, in order to obtain the complete
correct address in the system.

The system bus interface uses generic signals from the bus-
independant interface and implements the real bus protocol. It
must be implemented for each bus supported by Ouessant.
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Figure 3: Ouessant interface architecture

D. Instruction set and controller

The instuction set for Ouessant is still a very simple and
basic one. It will be extended in future versions. Operation
code is stored on 5 bits, which allows up to 32 different
instructions.

Currently, only 4 instructions are implemented, which can
be divided in two different kinds:

« data transfers instructions, designed to copy data from/to
memory. It provides burst transfer, and can be used as
a simple Direct Memory Access component integrated
in Ouessant. Two instructions are available: mvtc and
mvfc, which respectively write and read data to and from
COProcessor.

« execution management instructions. Two instructions can
be used in this context: exec, which launches the copro-
cessor and waits for it to end, and eop, which signals the
CPU.

Ouessant controller is responsible for instruction decoding
and actual control of data transfer and coprocessor operations
based on provided microcode. It is based on a classical un-
pipelined Fetch/Decode/Execute microcontroller architecture.
It roughly consists of a Finite State Machine to control
execution, and of registers to store the state it is in.

The resulting global Ouessant architecture is thus modular,
and provide independant interfaces between each part. Inter-
ested users can thus focus on the part they are interested in,
for example integration on a specific bus, without modifying
anything else. Each part is optimized to be as efficient as
possible, and to limit latency as much as possible.

IV. SOFTWARE INTEGRATION

One aim of Ouessant is to provide seamless hardware
acceleration for end users. This means that it is necessary to
provide efficient and easy to use software integration.

Integrating an hardware accelerator using an OCP in a
software project requires very little modification. To illustrate
the process, we describe how a Discrete Fourier Transform
(DFT) operation would be used in a software program with
different configurations. In a full-software implementation, the
DFT is implemented in software, and called through a normal

// 64 words from offset 0 of bank 1
// to coprocessor FIFO 0
mvtc BANK1, 0,DMAG4,FIFOO0
mvtc BANK1, 64,DMA64,FIFO0

mvtc BANK1,448,DMA64,FIFO0
execs

mvfc BANK2, 0,DMAG64,FIFO0
mvEfc BANK2, 64,DMA64,FIFO0

mvfc BANK2, 448,DMA64,FIFO0
eop

Figure 4: Example microcode for DFT execution

function call. The GPP executes the FFT, and the result is
directly available in the output array.

When using a typical bus-based hardware accelerator, the
GPP sends data to the accelerator, waits for the computation,
and then copies the results back to the result array. Data
can be transferred through a Direct Memory Access (DMA)
peripheral, however, the GPP is still responsible for scheduling
transfers and launching operations.

In an Ouessantnt-accelerated application, the program con-
figures the Ouessant, providing its parameters (pointers to
arrays), lauches the computation and waits for the results. The
OCP microcode is located in the memory and a very simple
example is provided in Figure 4.

After the computation, the results are directly available in
the output array. During computation, the GPP can process
other tasks if required, as long as it does not involve data
being processed by OCP.

The OCP is able to access memory, it is thus necessary to
provide it with physical address. When no virtual memory is
used, integration is quite easy. The only trick is to manage
caches properly, which is often useless since current systems
implement cache snooping.

Efficiently integrating Ouessant in a virtual-memory based
environment such as Linux kernel is much more difficult.
The strong isolation between kernel and user modes and the
high overhead induced by the kernel can quickly decrease
performance. In order to be able to benefit from Ouessant
acceleration under a Linux system, it is necessary to provide
an efficient driver. It is important to notice that this problem
is true for any accelerator, not only for OCP. However, with
OCP, the job will only need to be done once, and will then
benefit all supported accelerators.

When studying Linux hardware integration, the main prob-
lem of drivers for high performance hardware lies in the
kernel/user separation. In fact, each domain has its own virtual
memory space, and it is not possible to directly access user
space memory from kernel, or kernel space memory from user
space applications. This is a very efficient memory protection
mechanisms, but this means that data copies are required each
time the user/kernel layer is crossed. Since data copies are
performance killers, this is not acceptable in our case.

Several solutions are defined in the kernel to avoid these
data copies [7]. In the Ouessant Linux driver, the mmap solu-
tion is used. This allows kernel space memory to be mapped
in user space applications. Data is thus shared between both



domains. As will be seen in the Section V, this implementation
allows performance gain even on small operations.

V. IMPLEMENTATION AND RESULTS
A. Implementation status

The OCP described in this paper has been completely
implemented, and integrated in a Leon3 [8] based system.
The Leon3 is a Free Software implementation of the SPARCv8
architecture, available as a soft-core on many different FPGAs.
It is based on an Amba2 bus. Linux integration has also been
successfully used.

The OCP currently provides three main RACs. The first
accelerator is a locally developped 2D Inverse Discrete Cosine
Transform (IDCT) for JPEG decoding. The second one is
the Spiral iterative DFT [9]. It can be configured to accept
different DFT size, limited to the available FPGA size. In
the following experiments, the previously described 256 points
DFT was used. Any Spiral generated accelerator can be used.

Tests have been performed on a Digilent Nexys4 board,
based on Xilinx Artix7 LX100T FPGA, with 16MB SRAM
memory. Sytem clock frequency has been set to 50 MHz for
all configurations, and no timing errors were left according to
Xilinx tools.

B. Results

In order to validate the Ouessant approach and estimate its
performances, the OCP overhead in FPGA resources has been
computed. This has been done by synthesizing each accelerator
alone, and with the OCP. Results have been obtained using the
Xilinx synthesis tool, with the "Keep Hierarchy" option. This
is not really an accurate measure, but it gives us a good idea
of the hardware footprint.

Obtained results show that the actual OCP implementation
consumes a reasonable amount of hardware resources (less
than 1000 LUT and 750FF). This is for all OCP related
parts: interface, controller and FIFO control. FIFO memory is
inferred as BRAM, and strongly dependant on the accelerator.
IDCT and DFT gives similar results except for the FIFO size
and the RAC (actual accelerator size), which is independant
from Ouessant.

Both RACs have then been used under a Linux system.
Computing time has been measured through time markers in
the software code. All the time results are summarized in
Table I, and are given in cycles. For each available accelerator,
the required number of cycles to process data has been
computed (Lat. in the table). Data transfer time has not been
considered in this estimation. The accelerator has then been
integrated using an OCP in a Leon3 platform, and deployed
on the FPGA. The computing time is given in the table in
the HW column. A time-optimized software version (SW)
for each operation has also been run for comparison. Finally,
an acceleration factor (named Gain in the table) has been
computed as the ratio between software execution time and
hardware execution time.interrupt mode.

Lat. | HW SW | Gain
IDCT 18 | 3000 5000 | 1.67
DFT | 2485 | 7000 | 600.103 85

Table I: Time results for OCP
We can see from the results that the overhead remains
quite low. Given the fact that data must be transferred to

and from the coprocessor, which is unavoidable, the Ouessant
related overhead seems explainable. When running it without
Linux, the DFT took 4000 cycles to compute, which gives
an overhead of 3000 cycles coming from Linux. This comes
from system calls. Given the computing time, we have roughly
1500 cycles needed for data transfer, and 1024 32-bits words
to transfer. This means that around 1.5 cycles per word were
required, which is quite a good result.

Finally, some results are hard to measure. Integrating the
generated DFT took around 2 hours of work. The integration
process was simplified since almost no control was required,
and the result was easy to simulate, using the OCP. Since the
OCP integration on the bus had already been validated, once
it was functional in simulation, it worked on the board on the
first try. This gain in integration time is non-negligible, at least
when the original accelerator is adapted to a FIFO interface.
Looking at the results in Table I, this means that an OCP is a
good solution to benefit from hardware acceleration with little
effort.

VI. CONCLUSION

In this paper, we presented Ouessant, a new coprocessor in-
tegration approach based on the Molen original idea. Ouessant
provides easy, flexible, portable, and low-footprint integration
of hardware accelerators in a SoC. It has been implemented
and deployed on an Artix7 FPGA, with low resource and time
overhead. Using the approach for single 2D-IDCT processing
yields an acceleration factor of 1.67 in a Linux system. This
factor rises up to 85 for 256 complex points DFT computation
using the Spiral generated DFT core.

Ouessant is still under active development. Current work
in progress includes complete Zynq (AXI4) integration, and
Dynamic Partial Reconfiguration. Standalone operation is also
studied, to provide control for processor-free designs. The
instruction set is also being worked on, too provide higher
flexibility. Finally, automatic generation of Ouessant interfaces
for High-Level Synthesis of accelerators is under study. The
Ouessant project is available as an open source project [1].

REFERENCES

[1] “Ouessant Redmine server,’
bretagne.eu/ouessant.

[2] M. Vuletic, L. Pozzi, and P. Ienne, “Virtual memory window for
application-specific reconfigurable coprocessors,” IEEE Transactions on
VLSI Systems, vol. 14, no. 8, pp. 910-915, 2006.

[3] D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck, M. Frisbie, J. Ortiz,
E. Komp, and P. Ashenden, “Programming Models for Hybrid FPGA-
CPU Computational Components: A Missing Link,” Micro, IEEE, vol. 24,
no. 4, pp. 42 — 53, jul. 2004.

[4] W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot, and D. Andrews,
“Hthreads: A Computational Model for Reconfigurable Devices,” in Field
Programmable Logic and Applications, 2006. FPL ’06. International
Conference on, Aug 2006.

[5] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. Panainte, “The MOLEN polymorphic processor,” Computers, IEEE
Transactions on, vol. 53, no. 11, pp. 1363-1375, Nov 2004.

[6] E. M. Panainte, K. Bertels, and S. Vassiliadis, “The Molen compiler for
reconfigurable processors,” ACM Trans. Embedded Comput. Syst., vol. 6,
no. 1, 2007. [Online]. Available: http://doi.acm.org/10.1145/1210268.
1210274

[7] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers, 3rd
edition. O’Reilly, 2005.

[8] “Leon3.” http://www.gaisler.com/index.php/products/processors/leon3.

[9] M. Piischel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W.
Johnson, and N. Rizzolo, “SPIRAL: Code generation for DSP trans-
forms,” Proceedings of the IEEE, special issue on “Program Generation,
Optimization, and Adaptation”, vol. 93, no. 2, pp. 232- 275, 2005.

https://redmine.telecom-



