
HAL Id: hal-01343348
https://hal.science/hal-01343348v1

Submitted on 8 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

D.1.3 – Protocols for emergent localities
Davide Frey, Achour Mostefaoui, Matthieu Perrin, Anne-Marie Kermarrec,

Christopher Maddock, Andreas Mauthe, Pierre-Louis Roman, François Taïani

To cite this version:
Davide Frey, Achour Mostefaoui, Matthieu Perrin, Anne-Marie Kermarrec, Christopher Maddock, et
al.. D.1.3 – Protocols for emergent localities. [Technical Report] D1.3, IRISA; LINA-University of
Nantes; Inria Rennes Bretagne Atlantique; Lancaster University. 2016. �hal-01343348�

https://hal.science/hal-01343348v1
https://hal.archives-ouvertes.fr

ANR-13-INFR-0003
socioplug.univ-nantes.fr

D.1.3 – Protocols for emergent
localities

Davide Frey1,2, Achour Mostéfaoui3, Matthieu Perrin3, Anne-Marie
Kermarrec2, Christopher Maddock4, Andreas Mauthe4, Pierre-Louis
Roman1,2,5, François Taïani1,2,5

1IRISA Rennes
2Inria Rennes - Bretagne Atlantique
3LINA, Université de Nantes
4School of Computing and Communications, Lancaster University, UK
5Université de Rennes 1 - ESIR
Email contact: {davide.frey,michel.raynal,francois.taiani}@irisa.fr,
matthieu.perrin@etu.univ-nantes.fr, achour.mostefaoui@univ-nantes.fr

This report presents two contributions that illustrate the potential of emerging-locality protocols in large-
scale decentralized systems, in two areas of decentralized social computing: recommendation, and eventual
consistency of mutable data structures.

The first contribution consists of a framework supporting the development of dynamically adaptive decen-
tralised recommendation systems. Decentralised recommenders have been proposed to deliver privacy-
preserving, personalised and highly scalable on-line recommendations. Current implementations tend,
however, to rely on a hard-wired similarity metric that cannot adapt. This constitutes a strong limitation
in the face of evolving needs. Our framework address this through a decentralised form of adaptation, in
which individual nodes can independently select, and update their own recommendation algorithm, while
still collectively contributing to the overall system’s mission.

Our second contribution addresses the growing demand for differentiated consistency requirements in large-
scale applications. A large number of today’s applications rely on Eventual Consistency, a consistency model
that emphasizes liveness over safety. Designers generally adopt this consistency model uniformly through-
out a distributed system due to its ability to scale as the number of users or devices grows larger. But this
clashes with the need for differentiated consistency requirements. In this contribution, we address this need
by introducing UPS, a novel consistency mechanism that offers differentiated eventual consistency and de-
livery speed by working in pair with a two-phase epidemic broadcast protocol. We propose a closed-form
analysis of our approach’s delivery speed, and we evaluate our complete protocol experimentally on a sim-
ulated network of one million nodes. To measure the consistency trade-off, we formally define a novel and
scalable consistency metric operating at runtime.

Keywords: Decentralized distributed systems, recommenders, eventual consistency

2 ANR SocioPlug – ANR-13-INFR-0003

1 Introduction

Modern distributed computer systems have reached sizes and extensions not envisaged even a
decade ago: modern datacenters routinely comprise tens of thousands of machines [VPK+15], and
on-line applications are typically distributed over several of these datacenters into complex geo-
distributed infrastructures [gda, LVA+15]. Such enormous scales come with a host of challenges
that distributed-system researchers have focused on over the last four decades.

The intuition underlying the SOCIOPLUG project is that decentralization can help address some
of these challenges by offering inherent scalability properties to key services of modern dis-
tributed systems. Organizing a decentralized system is however neither an easy, nor a straight-
forward task: constructing a global knowledge regarding the entire system’s current state is ex-
tremely costly, and in some cases not even possible. This difficulty lies in the intrinsic cost of
communication in a large-scale distributed system. Messages take time to travel, might not ar-
rive, or might arrive after unpredictable delays (asynchrony). Worse, if system nodes are subject
to failures, it is usually not possible to distinguish between a crashed node and one hampered by
very slow communications.

Decentralized systems address this challenge by exploiting local behaviors: they build on inter-
actions that only involve a few nodes, which know each other usually through overlay views of
limited size. Creating such local neighborhoods remains however often as much a craft as a science.
In this report we discuss two recent contributions of the SOCIOPLUG project that aim to provide a
more systematic way to construct such localities through emerging behaviors [FKM+15, FMP+16]:

• SIMILITUDE [FKM+15] considers the problem of decentralized recommendation in peer-to-
peer systems, a critical component of our envisioned decentralized social computing ecosys-
tem. Such decentralized recommenders usually rely on a similarity metric to implement a
collaborative filtering strategy. Selecting which best similarity metric to use is however a
difficult and complex task. In Section 2, we present a decentralized adaptive mechanism by
which each node may dynamically select the similarity metric that seems to best support its
recommending goals, thereby giving rise to a form of emerging similarity field.

• In a second contribution, UPS [FMP+16], we look at the problem of eventual consistency in
large scale systems. Ensuring that all nodes perceive the same consistent state of a common
shared data is often unpractical in such systems, a limitation that has prompted researchers
to propose an array of weak consistency conditions that allow the local states of replicated
data structures to diverge under well-defined rules. One highly popular such constraint is
eventual consistency, which ensures that during periods of stability the whole system pro-
gressively converges back to a global coherent state. Current eventual consistency proto-
cols unfortunately offer nowadays “one-size-fits-all” guarantees, and do not distinguish
between nodes with distinct consistency requirements within the same system. In Section 3
we present a novel consistency mechanism, termed UPS (for Update-Query Consistency with
Primaries and Secondaries), that provides different levels of eventual consistency within the
same system. UPS combines the update-query consistency protocol proposed in [PMJ15]
with a two-phase epidemic broadcast protocol (called GPS) involving two types of nodes:
Primary and Secondary. Primary nodes (the elite) seek to receive object modifications as fast
as possible while Secondary nodes (the masses) strive to minimize the amount of transient
inconsistencies they perceive (Figure 20).

Both contributions illustrate the capabilities that a generic service for emerging localities could
provide, paving the ways towards such a mechanism for large-scale decentralized systems.

D.1.3 – Protocols for emergent localities 3

Alice Bob

Carl

Dave Ellie

Frank

similarity measure

profile of Alice profile of Bob

recommendations

Figure 1: Implicit overlay

exchange of

neighbors lists

neighborhood

optimization
1 2

Alice Bob

Carl

Dave Ellie

Frank

Figure 2: Refining neighbourhoods

2 Similitude: Decentralised Adaptation in Large-Scale P2P Rec-
ommenders

2.1 Background

Modern on-line recommenders [KMM+97, Fac14, SDP, LSY03, DDGR07] remain, in their vast ma-
jority, based around centralised designs. Centralisation comes, however, with two critical draw-
backs. It first raises the spectre of a big-brother society, in which a few powerful players are able to
analyse large swaths of personal data under little oversight. It also leads to a data siloing effect. A
user’s personal information becomes scattered across many competing services, which makes it
very difficult for users themselves to exploit their data without intermediaries [YLL+09].

These crucial limitations have motivated research on decentralised recommendation systems [BFG+a,
BFG+13, BDMR13, MCR11], in particular based on implicit interest-based overlays [VS]. These
overlays organise users (represented by their machines, also called nodes) into implicit communi-
ties to compute recommendations in a fully decentralised manner.

2.1.1 Interest-based Implicit Overlays

More precisely, these overlays seek to connect users† with their k most similar other users (where k
is small) according to a predefined similarity metric. The resulting k-nearest-neighbour graph or knn
is used to deliver personalised recommendations in a scalable on-line manner. For instance, in
Figure 1, Alice has been found to be most similar to Frank, Ellie, and Bob, based on their browsing
histories; and Bob to Carl, Dave, and Alice.

Although Bob and Alice have been detected to be very similar, their browsing histories are not
identical: Bob has not visited Le Monde, but has read the New York Times, which Alice has not.
The system can use this information to recommend the New York Times to Alice, and recipro-
cally recommend Le Monde to Bob, thus providing a form of decentralised collaborative filter-
ing [GNOT92].

Gossip algorithms based on asynchronous rounds [DGH+, VS] turn out to be particularly use-
ful in building such interest-based overlays. Users typically start with a random neighbourhood,
provided by a random peer sampling service [JVG+07a]. They then repeatedly exchange infor-
mation with their neighbours, in order to improve their neighbourhood in terms of similarity.
This greedy sampling procedure is usually complemented by considering a few random peers
(returned by a decentralised peer sampling service [JVG+07a]) to escape local minima.

For instance, in Figure 2, Alice is interested in hearts, and is currently connected to Frank, and
to Ellie. After exchanging her neighbour list with Bob, she finds out about Carl, who appears to be
a better neighbour than Ellie. As such, Alice replaces Ellie with Carl in her neighbourhood.

† In the following we will use user and node interchangeably.

4 ANR SocioPlug – ANR-13-INFR-0003

2.1.2 Self-Adaptive Implicit Overlays

The overall performance of a service using a knn overlay critically depends on the similarity
metric it uses. Unfortunately, deciding at design time which similarity metric will work best is
highly challenging. The same metric might not work equally well for all users [KT]. Further, user
behaviour might evolve over time, thereby rendering a good initial static choice sub-efficient.

Instead of selecting a static metrics at design time, as most decentralised recommenders do
[BFG+a, BBG+, BDMR13], we propose to investigate whether each node can identify an optimal
metric dynamically, during the recommendation process. Adapting a node’s similarity metric is,
however, difficult for at least three reasons. First, nodes only possess a limited view of the whole
system (their neighbourhood) to make adaptation decisions. Second, there is a circular dependency
between the information available to nodes for adaptation decisions and the actual decision taken.
A node must rely on its neighbourhood to decide whether to switch to a new metric. But this
neighbourhood depends on the actual metric being used by the node, adding further instability
to the adaptation. Finally, because of the decentralised nature of these systems, nodes should
adapt independently of each other, in order to limit synchronisation and maximise scalability.

2.2 Decentralised Adaptation

We assume a peer-to-peer system in which each node p possesses a set of items, items(p), and
maintains a set of k neighbours (k = 10 in our evaluation). p’s neighbours are noted Γ(p), and
by extension, Γ2(p) are p’s neighbours’ neighbours. Each node p is associated with a similarity
metric, noted p.sim, which takes two sets of items and returns a similarity value.

The main loop of our algorithm (dubbed SIMILITUDE) is shown in Alg. 1 (when executed by
node p). Ignoring line 3 for the moment, lines 2-4 implement the greedy knn mechanism presented
in Section 2.1. At line 4, argtopk selects the k nodes of cand (the candidate nodes that may become
p’s new neighbours) that maximise the similarity expression p.sim

(
items(p), items(q)

)
.

Recommendations are generated at lines 5-6 from the set itΓ of items of all users in p’s neigh-
bourhood (noted items

(
Γ(p)

)
). Recommendations are ranked using the function SCORE at line 8,

with the similarity score of the user(s) they are sourced from. Recommendations suggested by
multiple users take the sum of all relevant scores. The top m recommendations from itΓ (line 6)
are suggested to the user (or all of them if there are less than m).

2.2.1 Dynamic Adaptation of Similarity

The adaptation mechanism we propose (ADAPTSIM) is called at line 3 of Alg. 1, and is shown
in Alg. 2. A node p estimates the potential of each available metric (s ∈ SIM, line 2) using the
function EVAL_SIM(s). In EVAL_SIM(s), p hides a fraction f of its own items (lines 6-7) and creates
a ‘temporary potential neighbourhood’ Γ f for each similarity metric available (line 8, f = 20%
in our evaluation). From each temporary neighbourhood, p generates a set of recommendations
(lines 9-10) and evaluates them against the fraction f of internally hidden items, resulting in a
score S for each similarity s (its precision (Figure 5)).

This evaluation is repeated four times and averaged to yield a set of the highest-achieving
metrics (top_sims) (note that multiple metrics may achieve the same score). If the current metric-
in-use p.sim is not in top_sims, p switches to a random metric from top_sims (lines 3-4).

After selecting a new metric, a node suspends the metric-selection process for two rounds dur-
ing which it only refines its neighbours. This cool-off period allows the newly selected metric to
start building a stable neighbourhood thereby limiting oscillation and instability.

D.1.3 – Protocols for emergent localities 5

Algorithm 1 SIMILITUDE

1: in every round do
2: cand← Γ(p)∪Γ2(p)∪1 random node
3: ADAPTSIM(cand)

4: Γ(p)←
argtopk

q∈cand

(
p.sim

(
items(p), items(q)

))
5: itΓ← items

(
Γ(p)

)
\ items(p)

6: rec←
argtopm

i∈itΓ

(
SCORE

(
i, p.sim, items(p),Γ(p)

))
7: end round

8: function SCORE(i,sim, items,Γ)
9: return ∑

q∈Γ|i∈items(q)
sim(items, items(q))

Algorithm 2 ADAPTSIM

1: function ADAPTSIM(cand)
2: top_sims←

argmax
s∈SIM

(
avg4

(
EVAL_SIM(s,cand)

))
3: if p.sim 6∈ top_sims then
4: p.sim← random element from top_sims

5: function EVAL_SIM(s,cand)
6: hidden f ← proportion f of items(p)
7: visible f ← items(p)\hidden f

8: Γ f ← argtopk

q∈cand

(
s
(
visible f , items(q)

))
9: it f ← items

(
Γ f
)
\ visible f

10: rec f ←
argtopm

i∈it f

(
SCORE(i,s,visible f ,Γ f)

)
11: return S =

|rec f ∩hidden f |
|rec f |

2.2.2 Enhancements to Adaptation Process

We now extend the basic adaptation mechanism presented in Section 2.2.1 with three additional
modifiers that seek to improve the benefit estimation, and limit instability and bias: detCurrAlgo,
incPrevRounds and incSimNodes.

detCurrAlgo (short for “detriment current algorithm”) slightly detracts from the score of the cur-
rent metric in use. This modifier tries to compensate for the fact that metrics will always perform
better in neighbourhoods they have built up themselves. In our implementation, the score of the
current metric in use is reduced by 10%.

incPrevRounds (short for “incorporate previous rounds”) takes into consideration the scores Sr−i
obtained by a metric in previous rounds to compute a metric’s actual score in round r, S?r (Fig-
ure 3). In doing so, it aims at reducing the bias towards the current environment, thereby creating
a more stable network with respect to metric switching.

incSimNodes (short for “incorporate similar nodes”) prompts a node to refer to the metric choice
of the most similar nodes it is aware of in the system. This is based on the knowledge that similar
metrics are preferable for nodes with similar profiles, and thus if one node has discovered a metric
which it finds to produce highly effective results, this could be of significant interest to other
similar nodes. The modifier works by building up an additional score for each metric, based on
the number of nodes using the same metric in the neighbourhood. This additional score is then
balanced with the average of the different metrics’ score (Figure 4).

2.3 Evaluation Approach

We validate our adaptation strategies by simulation. In this section, we describe our evaluation
protocol; we then present our results in Section 2.4.

6 ANR SocioPlug – ANR-13-INFR-0003

S?r = Sr +
5
∑

i=1
(0.5− i

10)×S?r−i

Figure 3: Incorporating previous rounds

S?r,sim = Sr,sim + avg
x∈SIM

(Sr,x)× |sim in Γ(p)|
|Γ(p)|

Figure 4: Incorporating similar nodes

2.3.1 Data Sets

We evaluate SIMILITUDE on two datasets: Twitter, and MovieLens. The former contains the
feed subscriptions of 5,000 similarly-geolocated Twitter users, randomly selected from the larger
dataset presented in [CIK+]‡. Each user has a profile containing each of her Twitter subscriptions,
i.e., each subscribed feed counts as a positive rating. The MovieLens dataset [mov] contains 1
million movie ratings from 6038 users, each consisting of an integer value from 1 to 5. We count
values 3 and above as positive ratings. We pre-process each dataset by first removing the items
with less than 20 positive ratings because they are of little interest to the recommendation process.
Then, we discard the users with less than five remaining ratings. After pre-processing, the Twit-
ter dataset contains 4569 users with a mean of 105 ratings per user, while the MovieLens dataset
contains 6017 users with a mean of 68 ratings per user.

2.3.2 Evaluation Metrics

We evaluate recommendation quality using precision and recall (Figure 5). Precision measures
the ability to return few incorrect recommendations, while recall measures the ability to return
many correct recommendations. In addition, we evaluate specific aspects of our protocol. First,
we count how many nodes reach their optimal similarity metrics—we define more precisely what
we understand by optimal in Section 2.3.5. Finally, we observe the level of instability within the
system, by recording the number of nodes that switch metric during each round.

2.3.3 Simulator and Cross Validation

We measure recommendation quality using a cross-validation approach. We split the profile of
each user into a visible item set containing 80% of its items, and a hidden item set containing
the remaining 20%. We use the visible item set to construct the similarity-based overlay and
as a data source to generate recommendations as described in Section 2.2. We then consider a
recommendation as successful if the hidden item set contains a corresponding item.

In terms of protocol parameters, we randomly associate each node with an initial neighbour-
hood of 10 nodes, as well as with a randomly selected similarity metric to start the refinement
process. At each round, the protocol provides each node with a number of suggestions equal to
the average number of items per user. We use these suggestions to compute precision and recall.
Each simulation runs for 100 rounds; we repeat each run 10 times and average the results. Finally,
we use two rounds of cool-off by default.

2.3.4 Similarity Metrics

We consider four similarity metrics: Overlap, Big, OverBig and, FrereJacc [KT], shown in Figure 6.
These metrics are sufficiently different to represent distinct similarity choices for each node, and
offer a representative adaptation scenario.

Overlap counts the items shared by a user and its neighbour. As such, it tends to favour users
with a large number of items. Big simply counts the number of items of the neighbour, presuming
that the greater the number of items available, the more likely a match is to be found in the list.

‡ An anonymised version of this dataset is available at http://ftaiani.ouvaton.org/ressources/
onlyBayLocsAnonymised_21_Oct_2011.tgz

D.1.3 – Protocols for emergent localities 7

Precision(ui ∈ users) = |reci∩hiddeni|
|reci|

Recall(ui ∈ users) = |reci∩hiddeni|
|hiddeni|

Figure 5: Precision and recall

Overlap(ui,u j) = |itemsi∩ items j|
Big(ui,u j) = |items j|

OverBig(ui,u j) = Overlap(ui,u j)+Big(ui,u j)

FrereJacc(ui,u j) =
Overlap(ui,u j)

|itemsi|+|items j |

Figure 6: The four similarity metrics used

This likewise favours users with a larger number of items. OverBig works by combining Big and
Overlap—thereby discrediting the least similar high-item users. Finally FrereJacc normalises the
overlap of items by dividing it by the total number of items of the two users; it therefore provides
improved results for users with fewer items. FrereJacc§ consists of a variant of the well-known
Jaccard similarity metric.

It is important to note that the actual set of metrics is not our main focus. Rather, we are inter-
ested in the adaptation process, and seek to improve recommendations by adjusting the similarity
metrics of individual nodes.

2.3.5 Static Metric Allocations

We compare our approach to six static (i.e., non-adaptive) system configurations, which serve as
baselines for our evaluation. In the first four, we statically allocate the same metric to all nodes
from the set of metrics in Figure 6 (Overlap, Big, OverBig, and FrereJacc). These baselines are static
and homogeneous.

The fifth (HeterRand) and sixth (HeterOpt) baselines attempt to capture two extreme cases of
heterogeneous allocation. HeterRand randomly associates each node with one of the four above
metrics. This configuration corresponds to a system that has no a-priori knowledge regarding op-
timal metrics, and that does not use dynamic adaptation. HeterOpt associates each node with its
optimal similarity metric. To identify this optimal metric, we first run the first four baseline config-
urations (static and homogeneous metrics). For each node, HeterOpt selects one of the metrics for
which the node obtains the highest average precision. HeterOpt thus corresponds to a situation in
which each node is able to perfectly guess which similarity metric works best for itself.

2.4 Experimental Results

2.4.1 Static Baseline

We first determine the set of optimal metrics for each node in both datasets as described in Sec-
tion 2.3.5. To estimate variability, we repeat each experiment twice, and compare the two sets of
results node by node. 43.75% of the nodes report the same optimal metrics across both runs. Of
those that do not, 35.43% list optimal metrics that overlap across the two runs. In total, 79.18%
of nodes’ optimal metrics match either perfectly or partially across runs. Figure 7 depicts the
distribution obtained in the first run for both datasets.

2.4.2 Basic Similitude

We first test the basic SIMILITUDE with no modifiers, and a cool-off period of two rounds. Fig-
ures 8 and 9 present precision and recall (marked SIMILITUDE (BASIC)). Figure 10 depicts the
number of users selecting one of the optimal metrics, while Figure 11 shows the switching activ-
ity of users.

§ FrereJacc was erroneously labeled as Jaccard in the proceedings version.

8 ANR SocioPlug – ANR-13-INFR-0003

Big

FrereJacc

OverBig

Overlap MovieLens
Twitter

Distribution of optimal metrics (percentage)

0 20 40 60 80 100

15.76
24.2

75.31
81.4

15.85
24.25

50.49
36.43

Figure 7: Distribution of optimal metrics

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

Rounds of clustering

Similitude (basic)
incPrevRounds

incSimNodes
detCurrAlgo
All modifiers

HeterRand

Figure 8: Precision

0.10

0.15

0.20

0.25

0.30

 0 10 20 30 40 50 60 70 80 90 100

R
e
ca

ll

Rounds of clustering

Similitude (basic)
incPrevRounds

incSimNodes
detCurrAlgo
All modifiers

HeterRand

Figure 9: Recall

35

40

45

50

55

60

65

70

75

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s

o
n
 o

p
ti

m
a
l
m

e
tr

ic
s

Rounds of clustering

Similitude (basic)
incPrevRounds

incSimNodes
detCurrAlgo
All modifiers

Figure 10: Nodes optimal metrics

These results show that SIMILITUDE allows nodes to both find their optimal metric and switch
to it. Compared to a static random allocation of metrics (HeterRand), SIMILITUDE improves pre-
cision by 47.22%, and recall by 33.75%. A majority of nodes (59.55%) reach their optimal metrics,
but 17.43% remain unstable and keep switching metrics throughout the experiment.

2.4.3 Effects of the Modifiers

detCurrAlgo has a negative effect on every aspect: precision, recall, number of nodes on optimal
metrics, and stability (Figures 8 through 11). Precision and recall decrease by 5.08% and 6.93%
respectively compared to basic SIMILITUDE. At the same time, the final number of nodes on their
optimal metrics decreases by 6.02%, and unstable nodes increase by 35.29%.

This shows that, although reducing the current metric’s score might intuitively make sense be-
cause active metrics tend to shape a node’s neighbourhood to their advantage, this modifier ends
up disrupting the whole adaptation process. We believe this result depends on the distribution of
optimal metrics (Figure 7). Since one metric is optimal for a majority of nodes, reducing its score
only causes less optimal metrics to take over. It would be interesting to see how this modifier be-
haves on a dataset with a more balanced distribution of optimal metrics than the two we consider
here.

incPrevRounds, unlike detCurrAlgo, increases precision by 12.57% and recall by 24.75% with re-
spect to basic SIMILITUDE, while improving stability by 55.92%. The number of nodes reaching
an optimal metric improves by 18.81%.

As expected, incPrevRounds greatly improves the stability of the system; it even enhances every

D.1.3 – Protocols for emergent localities 9

evaluation metric we use. The large reduction in the number of unstable nodes, and the small
increase in that of nodes reaching their optimal metrics suggest that incPrevRounds causes nodes
to settle on a metric faster, whether or not that metric is optimal. One possible explanation is that,
if one metric performs especially well in a round with a particular set of neighbours, all future
rounds will be affected by the score of this round.

incSimNodes, like incPrevRounds, improves basic SIMILITUDE on every aspect. Precision increases
by 11.91%, recall by 16.88%, the number of nodes on their optimal metrics by 16.53%, and that of
unstable nodes decreases by 49.26%.

With this modifier, most of the nodes switch to the same similarity metric (FrereJacc). Since inc-
SimNodes tends to boost the most used metric in each node’s neighbourhood, it ends up boosting
the most used metric in the system, creating a snowball effect. Given that FrereJacc is the optimal
metric for most of the nodes, it is the one that benefits the most from incSimNodes.

Even if completely different by design, both incPrevRounds and incSimNodes have very similar
results when tested with Twitter. This observation cannot be generalised as the results are not the
same with MovieLens (Figures 15 and 16).

All modifiers activates all three modifiers with the hope of combining their effects. Results show
that this improves precision and recall by 29.11% and 43.99% respectively. The number of nodes
on optimal metrics also increases by 32.51%. Moreover none of the nodes switch metrics after the
first 25 rounds.

Activating all the modifiers causes most nodes to employ the metric that is optimal for most
nodes in Figure 7, in this case FrereJacc. This explains why no node switches metrics and why
the number of nodes reaching optimal metrics (70.15%) is very close to the number of nodes
with FrereJacc as an optimal metric (75.31%). The difference gets even thinner without cool-off
(Section 2.4.5): 73.43% of the nodes use their optimal metrics.

2.4.4 Weighting the Modifiers

We balance the effect of the two additive modifiers (incPrevRounds and incSimNodes) by associat-
ing each of them with a multiplicative weight. A value of 0 yields the basic SIMILITUDE, a value
of 1 applies the full effect of the modifier, while a value of 0.5 halves its effect. We use a default
weight of 0.5 for both of them because they perform best with this value when operating together.

Figure 12 shows the precision and recall of incPrevRounds and incSimNodes with their respective
weights ranging from 0 (basic SIMILITUDE) to 1, with a 0.1 step. incPrevRounds peaks at a weight
of 0.5 even when operating alone, while incSimNodes peaks at 0.7, but it still performs very well
at 0.5.

2.4.5 Varying the Cool-Off Period

As described in Section 2.2.1, the cool-off mechanism seeks to prevent nodes from settling too
easily on a particular metric. To assess the sensitivity of this parameter, Figures 13 and 14 compare
the results of SIMILITUDE with all the modifiers, when the cool-off period varies from 0 (no cool-
off) to 5 rounds.

Disabling cool-off results in a slight increase in precision (5.45%) and in recall (7.23%) when
compared to 2 rounds of cool-off. Optimal metrics are reached by 3.73% more nodes, and much
faster, attaining up to 73.43% nodes. Removing cool-off reduces a metric’s ability to optimise a
neighbourhood to its advantage, as there is only a single round of clustering before the metric
is tested again. While cool-off can offer additional stability in adaptive systems, the stability
provided by the modifiers appears to be sufficient in our model. Cool-off, instead, leads metrics

10 ANR SocioPlug – ANR-13-INFR-0003

0

20

40

60

80

100

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s

sw
it

ch
in

g
 m

e
tr

ic
s

Rounds of clustering

Similitude (basic)
incPrevRounds

incSimNodes
detCurrAlgo
All modifiers

Figure 11: Switching activity

0.043

0.044

0.045

0.046

0.047

0.048

0.049

0.050

 0 0.2 0.4 0.6 0.8 1
0.21

0.22

0.23

0.24

0.25

0.26

0.27

P
re

ci
si

o
n

R
e
ca

ll

Weighting

precision - incPrevRounds
recall - incPrevRounds

precision - incSimNodes
recall - incSimNodes

Figure 12: Weighting incPrevRounds and inc-
SimNodes

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

Rounds of clustering

All modifiers - 0 cool-off
All modifiers - 2 cool-off
All modifiers - 5 cool-off

Figure 13: Precision under different cool-off

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

 0 10 20 30 40 50 60 70 80 90 100

R
e
ca

ll

Rounds of clustering

All modifiers - 0 cool-off
All modifiers - 2 cool-off
All modifiers - 5 cool-off

Figure 14: Recall under different cool-off

to over-settle, and produces a negative effect.

2.4.6 MovieLens Results

Figures 15 and 16 show the effect of SIMILITUDE on precision and recall with the different modi-
fiers using the MovieLens dataset. The results are similar to those obtained with Twitter (Figures 8
and 9).

As with the Twitter dataset, basic SIMILITUDE outperforms HeterRand in precision by 24.52%
and in recall by 21.02%. By the end of the simulations, 59.95% of the nodes reach an optimal
metric and 15.73% still switch metrics.

The behaviour of the modifiers compared to basic SIMILITUDE is also similar. detCurrAlgo de-
grades precision by 7.58%, recall by 9.86%, the number of nodes on optimal metrics by 7.07%, and
the number of nodes switching metrics by 33.40%. incPrevRounds improves precision by 21.02%,
recall by 31.19%, the number of nodes on optimal metrics by 20.52%, and the number of nodes
switching metrics by 62.08%. incSimNodes improves precision by 15.75%, recall by 17.38%, the
number of nodes on optimal metrics by 15.12%, and the number of nodes switching metrics by
28.61%.

All modifiers improves precision by 29.11%, recall by 43.99%, the number of nodes on optimal
metrics by 32.51%, and there are no nodes switching metrics after the first 25 rounds. As with the
Twitter dataset, activating all the modifiers makes all the nodes use the similarity metric which is
optimal for the majority of the system: FrereJacc. The number of nodes reaching optimal metrics
(79.44%) and the number of nodes with FrereJacc as optimal metric (81.40%) are almost identical.

D.1.3 – Protocols for emergent localities 11

0.015

0.020

0.025

0.030

0.035

0.040

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

Rounds of clustering

Similitude (basic)
incPrevRounds

incSimNodes
detCurrAlgo
All modifiers

HeterRand

Figure 15: Precision (MovieLens)

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

 0 10 20 30 40 50 60 70 80 90 100

R
e
ca

ll

Rounds of clustering

Similitude (basic)
incPrevRounds

incSimNodes
detCurrAlgo
All modifiers

HeterRand

Figure 16: Recall (MovieLens)

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

Rounds of clustering

FrereJacc
Overlap

Big
OverBig

HeterOpt
HeterRand

Similitude (optimised)

Figure 17: SIMILITUDE against static solutions
(Twitter)

0.015

0.020

0.025

0.030

0.035

0.040

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

Rounds of clustering

FrereJacc
Overlap

Big
OverBig

HeterOpt
HeterRand

Similitude (optimised)

Figure 18: SIMILITUDE against static solutions
(MovieLens)

Without cool-off, SIMILITUDE even reaches 80.57% nodes on an optimal metric, getting even closer
to that last number.

2.4.7 Complete System

We now compare the results of the best SIMILITUDE variant (all the modifiers and 0 cool-off, noted
SIMILITUDE (OPTIMISED)) with the six static configurations we introduced in Section 2.3.5.

For the Twitter dataset, Figure 17 shows that our adaptive system out-performs the static ran-
dom allocation of metrics by 73.06% in precision, and overcomes all but one static homogeneous
metrics, FrereJacc, which is on par with SIMILITUDE (OPTIMISED). For the MovieLens dataset,
Figure 18 shows very similar results where SIMILITUDE (OPTIMISED) has a higher precision than
HeterRand by 65.85%, is on par with FrereJacc, and has a slightly lower precision than HeterOpt
(−2.6%). Selecting FrereJacc statically would however require knowing that this metric performs
best, which may not be possible in evolving systems (in which FrereJacc might be replaced by
another metric as users’ behaviours change).

2.4.8 Discussion

SIMILITUDE (OPTIMISED) enables a vast majority of the nodes (73.43% for Twitter, 80.57% for
MovieLens) to eventually switch to an optimal metric, which corresponds to the number of nodes
having FrereJacc as their optimal metric (Figure 7). By looking at these number, we can say that our
system has the ability to discover which metric is the best suited for the system without needing
prior evaluation. While this already constitutes a very good result, there remains a difference

12 ANR SocioPlug – ANR-13-INFR-0003

between SIMILITUDE and HeterOpt (the optimal allocation of metrics to nodes), which represents
the upper bound that a dynamically adaptive system might be able to reach. Although achieving
the performance of a perfect system might prove unrealistic, we are currently exploring potential
improvements.

First, incSimNodes could be reworked in order to have a more balanced behaviour to avoid
making the whole system use only one similarity metric, even if it is the most suited one for
the majority of the nodes. Next, we observe that nodes appear to optimise their neighbourhood
depending on their current metric, as opposed to basing their metric choice on their neighbour-
hood. This may lead to local optima because metrics perform notably better in neighbourhoods
they have themselves refined. Our initial attempt at avoiding such local optima with the detCur-
rAlgo proved unsuccessful, but further investigation could result in rewarding future work. For
example, we are considering decoupling the choice of the metric from the choice of the neighbour-
hood. Nodes may compare the performance of metrics using randomly selected neighbourhoods,
and then move to the clustering process only using the best-performing metric.

Finally, it would be interesting to see how detCurrAlgo, incSimNodes and more generally SIMIL-
ITUDE behave on a dataset with a more balanced distribution of optimal metrics since their effects
and results highly depend on it.

2.5 Related Work

Several efforts have recently concentrated on decentralised recommenders [HXYS04, MKR04, tri,
BFG+b, SRF11] to investigate their advantages in terms of scalability and privacy. Earlier ap-
proaches exploit DHTs in the context of recommendation. For example, PipeCF [HXYS04] and
PocketLens [MKR04] propose Chord-based CF systems to decentralise the recommendation pro-
cess on a P2P infrastructure. Yet, more recent solutions have focused on using randomised and
gossip-based protocols [BFG+a, KLMT, BDMR13].

Recognised as a fundamental tool for information dissemination [JMB09, MMP], Gossip pro-
tocols exhibit innate scalability and resilience to failures. As they copy information over many
links, gossip protocols generally exhibit high failure resilience. Yet, their probabilistic nature also
makes them particularly suited to applications involving uncertain data, like recommendation.

Olsson’s Yenta [Ols] was one of the first systems to employ gossip protocols in the context of
recommendation. This theoretical work enhances decentralised recommendation by taking trust
between users into account. Gossple [BFG+a] uses a similar theory to enhance navigation through
query expansion and was later extended to news recommendation [BFG+13]. Finally, in [HOJ],
Hegedűs et al. present a gossip-based learning algorithm that carries out ‘random walks’ through
a network to monitor concept drift and adapt to change in P2P data-mining.

3 UPS: differentiating eventual consistency in large-scale distributed
systems

3.1 Motivation

One of the key challenges of building distributed systems arises from the inherent tension be-
tween fault-tolerance, performance, and consistency, elegantly captured by the CAP impossibility
theorem [GL02]. As systems grow in size, the data they hold must be replicated for reasons of both
performance (to mitigate the inherent latency of widely distributed systems) and fault-tolerance
(to avoid service interruption in the presence of faults). Replicated data is unfortunately difficult
to keep consistent: strong consistency (such as linearizability or sequential consistency) is partic-
ularly expensive to implement in large-scale systems, and cannot be simultaneously guaranteed

D.1.3 – Protocols for emergent localities 13

P m.append(1) m.read()→ (1) m.read()→ (1,2)

Q m.append(2) m.read()→ (2) m.read()→ (1,2)

Figure 19: An eventually consistent append-only message queue.

together with availability, when using a realistic unreliable network [GL02].

The cost and limitations of strong consistency have prompted an increased interest in weaker
consistency conditions for large scale systems, such as PRAM or causal consistency [BGHS13,
ALR13, LFKA11]. Among these conditions, eventual consistency [Vog09, SPBZ11] aims to strike a
balance between speed, dynamicity, and agreement within a system. Intuitively, eventual con-
sistency allows the replicas of a distributed shared object to temporarily diverge, as long as they
eventually converge back to a unique global state.

Formally, this global consistent state should be reached once updates on the object stop (with
additional constraints usually linking the object’s final value to its sequential specification) [PMJ15].
In a practical system, a consistent state should be reached every time updates stop for long enough [LVA+15].
How long is long enough depends on the properties of the underlying communication service,
notably on its latency and ordering guarantees. These two key properties stand in a natural trade-
off, in which latency can be traded off for better (probabilistic) ordering properties [MMF+15,
BGL+06, SPMO02]. This inherent tension builds a picture in which an eventually consistent ob-
ject must strike a compromise between speed (how fast are changes visible to other nodes) and
consistency (to which extend do different nodes agree on the system’s state).

Figure 19, for instance, shows the case of a distributed append-only message queue m manipu-
lated by two processes P and Q. m supports two operations append(x), which appends an integer
x to the queue, and read(), which returns the current content of m. In Figure 19, both P and Q
eventually converge to the same consistent global state (1,2), that includes both modifications
m.append(1) by P and m.append(2) by Q, in this order. Q, however, experiences an intermediate
inconsistent state when it reads (2): this read does not “see” the append operation by P which
has been ordered before m.append(2), and is inconsistent with the final state (1,2)¶. Q could in-
crease the odds of avoiding this particular inconsistency by delaying its first read operation, thus
augmenting its chances of receiving information regarding P’s append operation on time (dashed
circle). Such delays improve consistency, but reduce the speed of change propagation across repli-
cas, and must be chosen with care.

Most existing solutions to eventual consistency resolve this tension between speed and consis-
tency by applying one trade-off point uniformly to all the nodes in a system [LVA+15, MMF+15].
However, as systems continue to grow in size and expand in geographic span, they become more
diverse, and must cater for diverging requirements. In this report, we argue that this heterogene-
ity increasingly call for differentiated consistency levels in large scale systems. This observation
has been made by other researchers, who have proposed a range of hybrid consistency condi-
tions over the years [XSK+14, FRT15, Fri95, LPC+12], but none of them has so far considered how
eventual consistency on its own could offer differentiated levels of speed and consistency within
the same system.

Designing such a protocol raises however an important methodological point: how to measure
consistency. Consistency conditions are typically formally defined as predicates on execution his-
tories; a system execution is thus either consistent, or it is not. However, practitioners using even-
tual consistency are often interested in the current “level” of consistency of a live system, i.e. how
far the system currently is from a consistent situation. Quantitatively measuring a system’s incon-

¶ This inconsistency causes in particular Q to observe an illegal state transition from (2) to (1,2).

14 ANR SocioPlug – ANR-13-INFR-0003

Uniform Eventual
Consistency

UPS: Primary

UPS: Secondary

In
co

ns
is

te
nc

y

Latency

Figure 20: Aimed trade-off between consistency and speed in UPS

sistencies is unfortunately not straightforward: some practical works [LVA+15] measure the level
of “agreement” between nodes, i.e. how many nodes see the same state, but this approach has
little theoretical grounding and can thus lead to paradoxes. For instance, returning to Figure 19,
if we assume a large number of nodes (e.g. Q1,Q2, ..,Qn) reading the same inconsistent state (2)
as Q, the system will appear close to agreement (many nodes see the same state), although it is in
fact largely inconsistent.

To address the above challenges, this report makes the following contributions:

• We propose a novel consistency mechanism, termed UPS (for Update-Query Consistency with
Primaries and Secondaries), that provides different levels of eventual consistency within the
same system (Sections 3.3.2,3.3.3). UPS combines the update-query consistency protocol
proposed in [PMJ15] with a two-phase epidemic broadcast protocol (called GPS) involving
two types of nodes: Primary and Secondary. Primary nodes (the elite) seek to receive object
modifications as fast as possible while Secondary nodes (the masses) strive to minimize the
amount of transient inconsistencies they perceive (Figure 20).

• We formally analyze the latency behavior of the GPS-part of UPS by providing closed-form
approximations for the latency incurred by Primary and Secondary nodes. (Section 3.3.4)

• We introduce a novel consistency metric that allows us to quantify the amount of inconsis-
tency experienced by Primary and Secondary nodes executing UPS (Section 3.4).

• We experimentally evaluate the performance of UPS by measuring its consistency and la-
tency properties in large-scale simulated networks of 1M nodes (Section 3.5). We show in
particular that the cost paid by each class of nodes is in fact very small compared to an
undifferentiated system: Primary nodes experience similar levels of inconsistency as undif-
ferentiated nodes with lower latency, while Secondary nodes observe less inconsistency at a
minimal latency costs.

3.2 Background and Problem Statement

3.2.1 Update Consistency

As we hinted at, in Section 3.1, eventual consistency requires replicated objects to converge to a
globally consistent state when update operations stop for “long enough”. By itself, this condition
turns out to be too weak as the convergence state does not need to depend on the operations

D.1.3 – Protocols for emergent localities 15

carried out on the object. For this reason, actual implementations of eventually consistent objects
refine eventual consistency by linking the convergence state to its sequential specification.

In this report, we focus on one such refinement, Update consistency [PMJ15]. Let us consider the
append-only queue object of Figure 19. Its sequential specification consists of two operations.

• append(x), with x ∈ Z, appends the value x at the end of the queue.

• read(), returns the sequence of all the elements ever appended, in their append order.

When multiple distributed agents update the queue, update consistency requires the final con-
vergence state to be the result of a total ordering of all the append operations which respects the
program order. For example, the scenario in Figure 19 satisfies update consistency because the fi-
nal convergence state results from the ordering m.append(1),m.append(2), which itself respects the
program order. An equivalent definition [PMJ15] states that an execution history respects update
consistency if it contains an infinite number of updates or if it is possible to remove a finite num-
ber of queries from it, so that the resulting pruned history is sequentially consistent. In Figure 19,
removing R(2) achieves this.

Algorithm 3 shows an algorithm from [PMJ15] that implements the update-consistent append-
only queue of Figure 19. Unlike CRDTs [SPBZ11] that rely on commutative (“conflict-free”) oper-
ations, Algorithm 3 exploits a broadcast operation together with Lamport Clocks, a form of logical
time-stamps that makes it possible to reconstruct a total order of operations after the fact [PMJ15].
Relying on this after-the-fact total order allows update consistency to support non-commutative
operations, like the queue in this case.

3.2.2 Problem Statement

The key feature of update consistency lies in the ability to define precisely the nature of the con-
vergence state reached once all updates have been issued. However, the nature of intermediate
states also has an important impact in practical systems. This raises two important challenges.
First, existing systems address the consistency of intermediate states by implementing uniform
constraints that all the nodes in a system must follow [BGYZ14]. But different actors in a dis-
tributed application may have different requirements regarding the consistency of these interme-
diate states. Second, even measuring the level of inconsistency of these states remains an open
question. Existing systems-oriented metrics do not take into account the ordering of update op-
erations (append in our case) [LVA+15, GLS11, GRA+14, PPR+11], while theoretical ones require
global knowledge of the system [ZK12] which makes them impractical at large scale.

In this following sections, we address both of these challenges. First we propose a novel broad-
cast mechanism that, together with Algorithm 3, satisfies update consistency, while supporting
differentiated levels of consistency for query operations that occur before the convergence state.
Specifically, we exploit the evident trade-off between speed of delivery and consistency, and we
target heterogeneous populations consisting of an elite of Primary nodes that should receive fast,
albeit possibly inconsistent, information, and a mass of Secondary nodes that should only receive
stable consistent information, albeit more slowly. Second, we propose a novel metric to measure
the level of inconsistency of an append-only queue, and use it to evaluate our protocol.

3.3 The GPS broadcast protocol

3.3.1 System model

We consider a large set of nodes p1, ..., pN that communicate using point-to-point messages. Any
node can communicate with any other node, given its identifier. We use probabilistic algorithms

16 ANR SocioPlug – ANR-13-INFR-0003

Algorithm 3 Update consistency for an append-only queue

1: variables
2: int id . Node identifier
3: set <int, int, V> U ← /0 . Set of updates to the queue
4: int clockid← 0 . Node’s logical clock

5: procedure APPEND(v) . Append a value v to the queue
6: clockid← clockid+1
7: U ←U ∪{< clockid, id,v >}
8: BROADCAST (< clockid, id,v >)

9: upon receive (< ckmsg, idmsg,vmsg >) do
10: clockid←MAX(clockid,ckmsg)
11: U ←U ∪{< ckmsg, idmsg,vmsg >}
12:
13: procedure READ() . Read the current state of the queue
14: q← () . Empty queue
15: for all < clockid, id,v >∈U sorted by (clockid, id) do
16: q← q · v
17: return q

time!

%
 n

od
es
!

t0! t1! tf!tm!

broadcast sent!

first receive!

final receive!

λ"
δ"

100%!

0%!

Secondary

Primary

1

432

Figure 21: Two sorts of speeds: latency (λ)
and jitter (δ)

Figure 22: Model of GPS and path of an up-
date in the system.

in the following that are naturally robust to crashes and message losses, but do not consider these
aspects in the rest of the report for simplicity. Nodes are categorized in two classes: a small
number of Primary nodes (the elite) and a large number of Secondary nodes (the masses). The class
of a node is an application-dependent parameter that captures the node’s requirements in terms of
update query consistency: Primary nodes should perceive object modification as fast as possible,
while Secondary nodes should experience as few inconsistencies as possible.

3.3.2 Intuition and overview

We have repeatedly referred to the inherent trade-off between speed and consistency in eventu-
ally consistent systems. On deeper examination, this trade-off might appear counter-intuitive: if
Primary nodes receive updates faster, why should not they also experience higher levels of con-
sistency? This apparent paradox arises because we have so far silently confused speed and latency.
The situation within a large-scale broadcast is in fact more subtle and involves two sorts of speeds
(Figure 21): latency (λ, shown as an average over all nodes in the figure) is the time a message m
takes to reach individual nodes, from the point in time of m’s sending (t0). Jitter (δ), by contrast, is

D.1.3 – Protocols for emergent localities 17

the delay between the first (t1) and the last receipt (t f) of a broadcast. (In most large-scale broad-
cast scenarios, t0− t1 is small, and the two notions tend to overlap.) Inconsistencies typically arise
in Algorithm 3 when some updates have only partially propagated within a system, and are thus
predominantly governed by the jitter δ rather than the average latency λ. The gossip-based broad-
cast protocol we propose, Gossip Primary-Secondary (GPS), exploits this distinction and reduces λ

for Primary nodes (thus increasing the speed at which updates are visible), while reducing δ for
Secondary nodes (thus increasing consistency, but at the cost of a slightly higher λ).

More precisely, GPS uses the set Primary nodes as a sort of message “concentrator” that accu-
mulates copies of an update u before collectively forwarding it to Secondary nodes. The main
phases of this sequence is shown in Figure 22:

1. A new update u is first sent to Primary nodes (1);

2. Primary nodes disseminate u among themselves (2);

3. Once most Primary nodes have received u, they forward it to Secondary nodes (3);

4. Finally, Secondary nodes disseminate u among themselves (4).

A key difficulty in this sequence consists in deciding when to switch from Phase 2 to 3. A
collective, coordinated transition would require some global synchronization mechanism, a costly
and generally impracticable solution in a very large system. Instead, GPS relies on less accurate
but more scalable local procedure based on broadcast counts, which allows each Primary to decide
locally when to start forwarding to secondaries.

3.3.3 The GPS algorithm

The pseudo-code of GPS is shown in Algorithm 4. GPS follows the standard models of reactive
epidemic broadcast protocols [KMG03, TLB]. Each node keeps a history of the messages received
so far (in the R variable, line 8), and decide whether to re-transmit a received broadcast to fanout
other nodes based on this history. Contrary to a standard epidemic broadcast, however, GPS
handles Primary and Secondary nodes differently.

• First, GPS uses two distinct Random Peer Sampling protocols (RPS) [JVG+07b] (lines 10-11)
to track the two classes of nodes. Both Primary and Secondary nodes use the RPS view of
their category to re-transmit a message they receive for the first time to fanout other nodes
in their own category (lines 23 and 24), thus implementing Phases 2 and 4.

• Second, GPS handles retransmissions differently depending on a node’s class (Primary or Sec-
ondary). Primary nodes use the inherent presence of message duplicates in gossip protocols,
to decide locally when to switch from Phase 2 to 3. More specifically, each node keeps count
of the received copies of individual messages (lines 8, 13, 20). Primary nodes use this count
to detect duplicates, and forward this message to fanout Secondary nodes (line 24) when a
duplicate is received for the first time, thus triggering Phase 3.

We can summarize the behavior of both classes by saying that Primary nodes infect twice and
die, whereas Secondary nodes infect and die. For comparison, an standard infect and die gossip
without classes (called Uniform Gossip in the following), is shown in Algorithm 5. We will use
Uniform Gossip as our baseline for our analysis (Section 3.3.4) and our experimental evaluation
(Section 3.5).

18 ANR SocioPlug – ANR-13-INFR-0003

Algorithm 4 – Gossip Primary-Secondary for a node
1: parameters
2: integer fanout . Number of nodes to send to
3: integer rpsViewSize . Out-degree per class of each node
4: boolean isPrimary . Class of the node

5: initialization
6: set{node} ΓP← /0 . Set of Primary neighbors
7: set{node} ΓS← /0 . Set of Secondary neighbors
8: map{message, int} R← /0 . Counters of message

. duplicates received
9: periodically

10: ΓP← rpsViewSize nodes from Primary-RPS
11: ΓS← rpsViewSize nodes from Secondary-RPS

12: procedure BROADCAST(msg) . Called by the application
13: R← R∪{(msg,1)}
14: GOSSIP(msg,ΓP)

15: procedure GOSSIP(msg, targets)
16: for all j ∈ {fanout random nodes in targets} do
17: SENDTONETWORK(msg, j)

18: upon receive (msg) do
19: counter← R[msg]+1
20: R← R∪{(msg,counter)}
21: if counter = 1 then DELIVER(msg) . Deliver 1st receipt
22: if isPrimary then
23: if counter = 1 then GOSSIP(msg,ΓP)
24: if counter = 2 then GOSSIP(msg,ΓS)
25: else
26: if counter = 1 then GOSSIP(msg,ΓS)

3.3.4 Analysis of GPS

In the following we compare analytically the expected performance of GPS and compare it to
Uniform Gossip in terms of message complexity and latency.

Our analysis uses the following parameters:

• Network N of size: |N| ∈ N.

• Fanout: f ∈ N.

• Density of Primary nodes: d ∈ R[0,1] (assumed ≤ 1/ f).

Uniform Gossip uses a simple infect and die procedure. For each unique message it receives, the
node will send it to f other nodes. If we consider only one source, and assume that most nodes
are reached by the message, the number of messages exchanged in the system can be estimated
as

|msg|uniform ≈ f ×|N|. (1)

In the rest of our analysis, we assume, following [EGKM04], that the number of rounds needed
by Uniform Gossip to infect a high proportion of nodes can be approximated by the following

D.1.3 – Protocols for emergent localities 19

Algorithm 5 – Uniform Gossip for a node (baseline)
(only showing main differences to Algorithm 4)

9’: periodically Γ← rpsViewSize nodes from RPS

15’: procedure GOSSIP(msg)
16’: for all j ∈ {fanout random nodes in Γ} do
17’: SENDTONETWORK(msg, j)

18’: upon receive (msg) do
19’: if msg ∈ R then
20’: return . Infect and die: ignore if msg already received
21’: R← R∪{msg}
22’: DELIVER(msg) . Deliver the message to the application
23’: GOSSIP(msg)

expression when N→ ∞:
λuniform ≈ log f (|N|)+C, (2)

where C is a constant, independent of N.

GPS distinguished two subcategories of nodes: Primary nodes and Secondary nodes, noted P
and S, that partition N. The density of Primary nodes, noted d, defines the size of both subsets:

|P|= d×|N|, |S|= (1−d)×|N|.

Primary nodes disseminate twice, while Secondary nodes disseminate once. Expressed differ-
ently, each node disseminates once, and Primary nodes disseminate once more. Applying the
same estimation as for Uniform Gossip gives us:

|msg|GPS ≈ f ×|N|+ f ×|P|
≈ f ×|N|+ f ×d×|N|
≈ (1+d)× f ×|N|
≈ (1+d)×|msg|uniform (3)

(1) and (3) show that GPS only generates d times more messages than Uniform Gossip, with
d ∈ R[0,1]. For instance, having 1% Primary nodes in the network means having only 1% more
messages compared to Uniform Gossip.

If we now turn to the latency behavior of GPS, the latency of the Primary nodes is equivalent to
that of Uniform Gossip executing on a sub-network composed only of d×|N| nodes, i.e.

λP ≈ log f (d×|N|)+C. (4)

Combining (2) and (4), we conclude that Primary nodes gain log f (d) rounds compared to nodes
in Uniform Gossip:

∆λP ≈−log f (d). (5)

Considering now Secondary nodes, their latency can be estimated a sum of three elements:

• the latency of Primary nodes;

• an extra round for Primary nodes to receive messages a second time;

20 ANR SocioPlug – ANR-13-INFR-0003

• the latency of a Uniform Gossip among Secondary nodes with d×|N| nodes, corresponding
to the Primary nodes, already infected;

which we approximate for d� 1 as

λS ≈ log f (d×|N|)+1+ log f (
(1−d)×|N|

d×|N|
)+2C,

≈ log f ((1−d)×|N|)+1+2C. (6)

In summary, this analysis shows that GPS only generates a small number of additional mes-
sages, proportional to the density d of Primary nodes, and that the latency cost paid by Secondary
is bounded by a constant value (1+C) that is independent of the Primary density d.

3.4 Consistency Metric

Our second contribution is a novel metric that measures the consistency level of the intermediate
states of an update-consistent execution. As discussed in Section 3.2, existing consistency metrics
fall short either because they do not capture the ordering of operations, or because they cannot
be computed without global system knowledge. Our novel metric satisfies both of these require-
ments.

3.4.1 A General Consistency Metric

We start by observing that the algorithm for an update-consistent append-only message-queue
that we introduced in Section 3.2 (Algorithm 3, page 16) guarantees that all its execution his-
tories respect update consistency. To measure the consistency level of intermediate states, we
therefore evaluate how the history deviates from a stronger consistency model, sequential consis-
tency [Lam79]. An execution respects sequential consistency if it is equivalent to some sequential
(i.e. totally ordered) execution that contains the same operations, and respects the sequential
(process) order of each node.

Since update consistency relies itself on a total order, the gist of our metric consists in counting
the number of read operations that do not conform with a total order of updates that leads to
the final convergence state. Given one such total order, we may transform the execution into one
that conforms with it by removing some read operations. In general, a data object may reach
a given final convergence state by means of different possible total orders, and for each such
total order we may have different sets of read operations whose removal makes the execution
sequentially consistent. We thus count the level of inconsistency by taking the minimum over
these two degrees of freedom: choice of the total order, and choice of the set||.

More formally, we define a transient inconsistency of an execution Ex as a finite set of query
events that, when removed from Ex, makes it sequentially consistent. We denote the set of all
the transient inconsistencies of execution Ex over all compatible total orders by TI(Ex). We then
define the relative inconsistency RI of an execution Ex as the minimal number of query events that
must be removed from Ex to make it sequentially consistent.

RI(Ex) =

{
min

E∈TI(Ex)
|E| if TI(Ex) 6= /0

+∞ otherwise

|| With reference to Figure 19, if we consider the total order < m.append(1), m.append(2), m.read(1), m.read(2), m.read(1,2),
m.read(1,2) > then we need to remove both m.read(1) and m.read(2), while if we consider < m.append(1), m.read(1),
m.append(2) , m.read(2), m.read(1,2), m.read(1,2)>, we need to remove only m.read(2).

D.1.3 – Protocols for emergent localities 21

0%

2%

4%

6%

8%

10%

 0 2 4 6 8 10

M
a
x
im

u
m

 n
u
m

b
e
r

o
f

in
co

n
si

st
e
n
t

n
o
d

e
s

Latency

UPS: d=0.1 P
UPS: d=0.1 S
UPS: d=0.01 P
UPS: d=0.01 S

UPS: d=0.001 P
UPS: d=0.001 S
Uniform

(a) Experimental trade-off between
consistency and latency (closer to the
bottom left corner is better). A big
gain on one side of the balance incurs
a small penalty on the other side of the
balance for a class.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

Uniform P S P+S

M
a
x
im

u
m

 n
u
m

b
e
r

o
f

in
co

n
si

st
e
n
t

n
o
d

e
s

Node class

Uniform
UPS: d=0.1
UPS: d=0.01
UPS: d=0.001

(b) Consistency trade-off in UPS (lower
is better). Secondary nodes are much
more consistent than nodes in the base-
line while Primary nodes only experi-
ence a small consistency penalty. The
consistency of both Primary and Sec-
ondary nodes improves as the density
of Primary nodes increases.

1

2

3

4

5

6

7

8

9

10

Uniform P S P+S

M
e
ss

a
g

e
 l
a
te

n
cy

 (
ro

u
n
d

s)

Node class

Uniform
UPS: d=0.1
UPS: d=0.01
UPS: d=0.001

(c) Latency trade-off in UPS (lower is
better). Primary nodes latency is lower
than that of the baseline, the less Pri-
mary nodes, the lower their latency.
Secondary nodes remain half a round
slower than the baseline, regardless of
the density of Primary nodes.

Figure 23: Consistency and latency trade-off in UPS. Primary nodes are faster and a bit less con-
sistent, while Secondary are more consistent and a bit slower. The top of the bars is the mean while
the ends of the error bars are the 5th and 95th percentiles.

For example, in Figure 19, removing m.read(2) suffices to make the execution sequentially con-
sistent. Therefore its relative inconsistency is 1.

The metric RI is particularly adapted to compare the consistency level of implementations of
update consistency: the lower, the more consistent. In the best case scenario where Ex is se-
quentially consistent, TI(Ex) is a singleton containing the empty set, resulting in RI(Ex) = 0. In the
worst case scenario where the execution never converges (i.e. some nodes indefinitely read incom-
patible local states), every set of queries that needs to be removed to obtain a sequentially consis-
tent execution is infinite. Since TI only contains finite sets of queries, TI(Ex) = /0 and RI(Ex) = +∞.

3.4.2 The Simpler Case of Append-Only Queues

In general, RI(Ex) is complex to compute: it is necessary to consider all possible total orders of
events that can fit for sequential consistency and all possible finite sets of queries to check whether
there are transient inconsistencies. But in the case of an append-only queue implemented with
Algorithm 3, we can easily show that there exists exactly one minimal set of transient inconsis-
tencies.

To understand why, we first observe that the append(x) is non-commutative. This implies that
there exists a single total order of append operations that yields a given final convergence state.
Second, Algorithm 3 guarantees that size of the successive sequences read by a node can only
increase and that read operations always reflect the writes made on the same node. Consequently,
in order to have a sequentially consistent execution, it is necessary and sufficient to remove all the
query operations that return a sequence that is not a prefix of the sequence read after convergence.
These read operations constitute the minimal set of transient inconsistencies TImin.

3.5 Experimental Results

We perform the evaluation of UPS via PeerSim [MJ09], a well-known Peer-to-Peer simulator. A
repository containing the code and the results is available on-line**. To assess the trade-offs be-
tween consistency levels and latency as well as the overhead of UPS, we focus the evaluation on
three metrics:
** https://gforge.inria.fr/projects/pgossip-exp/

22 ANR SocioPlug – ANR-13-INFR-0003

• the level of consistency of the replicated object;

• the latency of messages;

• the overhead in number of messages.

3.5.1 Methodology

Network Settings We use a network with 1 million nodes, a fanout of 10 and an RPS view size of
100. These parameters yield a broadcast reliability (i.e. the probability that a node receives a mes-
sage) that is above 99.9%. Reliability could be further increased with a higher fanout [KMG03],
but these parameters, because they are all powers of 10, make it convenient to understand our
experimental results.

We use density values of Primary nodes of: 10−1,10−2 and 10−3. According to Equation 4 in
Section 3.3.4, we expect to see a latency gain for Primary nodes of 1, 2, and 3 rounds respectively.
We evaluate four protocol configurations: one for Uniform Gossip (baseline), and three for UPS
with the three above densities. then run each configuration 25 times and record the resulting
distribution.

Scenario We consider a scenario where all nodes share an instance of an update-consistent
append-only message queue, as defined in Section 3.4. Following the definition of update consis-
tency, nodes converge into a strongly consistent state once they stop modifying the queue.

We opt for a scenario where 10 append(x) operations are performed on the queue by 10 random
nodes, over the first 10 rounds of the simulations at the frequency of one update per round. In
addition, all nodes repeatedly read their local copy of the queue in each round.

We expect the system to experience two periods: first, a transient situation during which up-
dates are issued and disseminated (simulating a system continuously performing updates), fol-
lowed by a stabilized state after updates have finished propagating and most nodes have con-
verged to a strongly consistent state.

Consistency Metric Our experimental setting allows us to further refine the generic consistency
metric we introduced in Section 3.4. In all our experiments, the number of update operations is
finite and each node performs a query (read) operation during each round. For each round r,
we define the sets QP(r) and QS(r) as the sets of all the query (aka read) operations performed at
round r by the Primary and Secondary nodes, respectively.

This allows us to define a more precise metric to compare the evolution of the inconsistency
of Primary and Secondary nodes through time. More precisely, InconsP(r) and InconsS(r) represent
the proportion of Primary and Secondary nodes whose query are not correct at round r (i.e., the
query is in TImin).

InconsP(r) =
|TImin∩QP(r)|

d · |N|

InconsS(r) =
|TImin∩QS(r)|
(1−d) · |N|

InconsP+S(r) = d · InconsP(r)+(1−d) · InconsS(r)

As a result, the relative inconsistency of an experimental run Ex can be expressed as

RI(Ex) = |N| ·
∞

∑
r=0

(InconsP+S(r)),

D.1.3 – Protocols for emergent localities 23

0%

1%

2%

3%

4%

5%

6%

7%

8%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
u
m

b
e
r

o
f

in
co

n
si

st
e
n
t

n
o
d

e
s

Rounds

Uniform
UPS: d=0.1: P
UPS: d=0.1: S
UPS: d=0.1: P+S

(a) density = 10−1

0%

1%

2%

3%

4%

5%

6%

7%

8%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
u
m

b
e
r

o
f

in
co

n
si

st
e
n
t

n
o
d

e
s

Rounds

Uniform
UPS: d=0.01: P
UPS: d=0.01: S
UPS: d=0.01: P+S

(b) density = 10−2

0%

1%

2%

3%

4%

5%

6%

7%

8%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
u
m

b
e
r

o
f

in
co

n
si

st
e
n
t

n
o
d

e
s

Rounds

Uniform
UPS: d=0.001: P
UPS: d=0.001: S
UPS: d=0.001: P+S

(c) density = 10−3

Figure 24: While updates are being disseminated, Secondary nodes are more consistent than the
baseline and Primary nodes are almost as consistent as the baseline. The more Primary nodes are in
the system, the more Secondary nodes are consistent. Once updates are done being disseminated,
Primary nodes converge faster to a consistent state.

and the metrics InconsX (r) discussed above can be interpreted as the proportion of inconsistent
queries introduced in round r. For ease of exposition, we focus in the following on this instanta-
neous per-round measure, which is overall equivalent to RI(Ex).

Plots Unless stated otherwise, plots use boxes and whiskers to represent the distribution of
measures obtained over all runs for the represented metric. In the case of latency, the distribution
is over all nodes within all runs. For inconsistency measures, the distribution is over all runs.
The end of the boxes show the first and third quartiles, the end of the whiskers the minimum and
maximum values, while the horizontal bar inside the boxes is the mean. In some cases, the low
variance of the results makes it difficult to see the boxes and whiskers.

For clarity purposes, curves are slightly shifted to the right to avoid overlap between them. All
the points between rounds r and r+1 belong to round r. In the following plots, Primary nodes are
noted P, Secondary nodes are noted S and the system as a whole is noted P+S. Since only a small
fraction of nodes are Primary nodes, the results of P+S are naturally close to those of S.

3.5.2 Overall results

Figure 23a mirrors Figure 20 discussed in Section 3.1 and provides an overview of our experimen-
tal results in terms of consistency/latency trade-off for the different groups of nodes involved in
our scenario. Each UPS configuration is shown as a pair of points representing Primary and Sec-
ondary nodes: Primary nodes are depicted with hollow shapes, while Secondary nodes use solid
symbols. Uniform Gossip is represented by a single black cross. The position on the x-axis charts
the average update latency experienced by each group of nodes, and the y-axis their perceived
level of inconsistency, taken as the maximum InconsX (r) value measured over all runs.

The figure clearly shows that UPS deliver the differentiated consistency/latency trade-offs we
set out to achieve in our introduction: Secondary nodes enjoy higher consistency levels than they
would in an uniform update-query consistency protocol, while paying only a small cost in terms
of latency. The consistency boost strongly depends on d, while the cost in latency does not, re-
flecting our analysis of Section 3.3.4. Primary nodes present the reverse behavior, with the latency
gains of Primary nodes evolving in the reverse direction of the consistency gains of Secondary
nodes. We discuss both aspects in more details in the rest of this section.

3.5.3 Level of Consistency

Figure 23b details the consistency levels provided by UPS by showing the worst consistency that
nodes experience over all simulations. We note an evident improvement of the maximum incon-

24 ANR SocioPlug – ANR-13-INFR-0003

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

9 10 11 12 13 14 15 16 17 18 19

C
D

F
fu

lly
 i
n
fe

ct
e
d

 n
o
d

e
s

Rounds

Uniform
UPS: d=0.1: P
UPS: d=0.1: S
UPS: d=0.1: P+S

(a) density = 10−1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

9 10 11 12 13 14 15 16 17 18 19

C
D

F
fu

lly
 i
n
fe

ct
e
d

 n
o
d

e
s

Rounds

Uniform
UPS: d=0.01: P
UPS: d=0.01: S
UPS: d=0.01: P+S

(b) density = 10−2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

9 10 11 12 13 14 15 16 17 18 19

C
D

F
fu

lly
 i
n
fe

ct
e
d

 n
o
d

e
s

Rounds

Uniform
UPS: d=0.001: P
UPS: d=0.001: S
UPS: d=0.001: P+S

(c) density = 10−3

Figure 25: Primary nodes receive all the updates faster than nodes in Uniform Gossip, they gain 1,
2 and 3 rounds for densities of 10−1,10−2 and 10−3 respectively. While Secondary nodes receive all
the updates only half a round later on average compared to nodes in Uniform Gossip.

sistency level of Secondary nodes over the baseline and a slight decrease for Primary nodes. In
addition, this figure clearly shows the impact of the density of Primary nodes over the consistency
of Secondary nodes, and to a lesser extent over the consistency of Primary nodes.

Figures 24a, 24b and 24c show the evolution over time of the inconsistency measures InconsP(r),
InconsS(r) and InconsP+S(r) defined in Section 3.5.1. We can observe an increase of inconsistencies
during the transient phase for all configurations and a return to a consistent state once every node
has received every update.

During the transient phase, the inconsistency level of Primary nodes is equivalent to that of
nodes in Uniform Gossip. In that phase, around 4.6% of nodes are inconsistent with a higher
variance at lower densities.

Meanwhile, the inconsistency level of Secondary nodes is much lower than that of nodes in
Uniform Gossip. The density of Primary nodes plays a key role in this difference; the higher the
density, the lower the inconsistency level of Secondary nodes. This level remains under 1.0% for
the highest density but goes up to 4.0% for the lowest density.

The jitter, as defined in Section 3.3.2, is a good metric to compare the consistency of different
sets of nodes: a lower jitter implies a higher consistency. The error bars in Figure 23c provide an
approximation of the jitter of a set of nodes since they represent the bounds in latency of 90% of
the nodes in the set. These error bars show that 90% of Secondary nodes receive updates within
1 round of margin, while the same proportion of Primary nodes and nodes in Uniform Gossip
receive updates within 2 rounds of margin. This difference in jitter explains why Secondary nodes
are more consistent than Primary nodes and nodes in Uniform Gossip.

Once the dissemination reaches a critical mass of Primary nodes, the infection of Secondary
nodes occurs quickly. If the density of Primary nodes is high enough, then it becomes possible
for a majority of Secondary nodes to receive the same update at the same time. Since it takes fewer
rounds for Secondary nodes to be fully infected compared to Primary nodes, Secondary nodes turn
out to be more consistent.

3.5.4 Messages Latency

Figure 23c represents the distribution of all the values of message latency over all the simulation
runs. The three P+ S bars and the Uniform bar contain each 250 million message latency values
(25 runs × 1 million nodes × 10 sources with a reliability of 99.9%).

This figure shows that UPS infects Primary nodes faster than Uniform Gossip. Specifically, Pri-
mary nodes obtain a latency gain of 1, 2 and 3 rounds with densities of 10−1, 10−2 and 10−3 respec-
tively. Secondary nodes, on the other hand, are infected half a round slower than nodes in Uniform

D.1.3 – Protocols for emergent localities 25

Gossip for all density values.

Figures 25a, 25b and 25c compare the evolution of the dissemination of updates between Uni-
form Gossip and UPS with different densities. Again, Primary nodes have a 1, 2 and 3 rounds speed
advantage over the baseline while Secondary nodes are no more than a round slower.

We can also observe this effect on Figure 24 by looking at how fast all the nodes of a class return
to a consistent state. We notice similar speed gain for Primary nodes and loss for Secondary nodes.

Overall, the simulation results match the analysis in Section 3.3.4 and confirm the speed advan-
tage of Primary nodes over Uniform Gossip (Equation 5) and the small latency penalty of Secondary
nodes (Equation 6).

3.5.5 Network Overhead

The number of messages exchanged in the simulated system confirms Equation 3 in Section 3.3.4.
Considering the experienced reliability, we observe an increase in the number of messages of
10−1, 10−2 and 10−3 compared to Uniform Gossip for all three densities of 10−1, 10−2 and 10−3

respectively.

3.6 Related Work

UPS lies at the crossroad between differentiated consistency and gossip protocols (for the GPS-
part). In the following, we review some of the most relevant works from these two areas.

Differentiated consistency A large number of works have looked at hybrid consistency con-
ditions, originally for distributed shared memory [Fri95, AF96, KCZ92], and more recently in
the context of geo-distributed systems [XSK+14, FRT15, LPC+12, TPK+13]. Fisheye [FRT15] and
RedBlue [LPC+12] for instance both propose to implement hybrid conditions for geo-replicated
systems. Fisheye consistency provides a generic approach in which nodes that are topologically
close satisfy a strong consistency criterion, such as sequential consistency, while remote nodes
satisfy a weaker one, such as causal consistency. This formal work focuses exclusively on imme-
diate (i.e. non-eventual) consistency criteria and does not take convergence speed into account.
RedBlue consistency offers a trade-off similar to that of UPS, but focuses on operations, rather
than nodes, as we do. Blue operations are fast and eventually consistent while red operations are
slow and strongly consistent.

Measuring Inconsistency Several papers have proposed metrics to evaluate a system’s over-
all consistency. The approach of Zellag and Kemme [ZK12] detects inconsistencies in cloud
services by finding cycles in a dependency graph composed of transactions (nodes) and conflicts
between them (edges). Counting cycles in the dependency graph yields a measure of consis-
tency that is formally grounded. It requires however a global knowledge of the system, which
makes it difficult to use in practice at in large scale systems. Golab et al. introduced first ∆-
atomicity [RGA+12, GLS11] and then Γ [GRA+14], two metrics that quantify data staleness in
Lamport-atomic [Lam86] traces in the context of key-value stores. These metrics are not suitable
for our problem since they do not take into account the ordering of update operations.

More practical works [LVA+15, PPR+11] evaluate consistency by relying on system specific
information such as the similarity between different cache levels or the read-after-write latency
(the first time a node reads the value that was last written).

Finally, CRDTs [SPBZ11] remove the need to measure consistency by only supporting opera-
tions that cannot create conflicts. This naturally leads to eventual consistency without additional
ordering requirements on communication protocols.

26 ANR SocioPlug – ANR-13-INFR-0003

Biased gossip protocols Many gossip broadcast protocols use biases to accommodate system
heterogeneity. To the best of our knowledge, however, GPS is the first such protocol to target
heterogeneous consistency requirements.

Directional gossip [LM99], for instance, favors weakly connected nodes in order to improve
its overall reliability. It does not, however, target speed or consistency, as we do. The work
in [CPOR07] looks at reducing a broadcast’s message complexity by considering two classes of
user-defined nodes: good and bad nodes. A new broadcast is disseminated to good nodes first
using a reactive epidemic protocol, while bad nodes are reached through a slower periodic push
procedure. As a result, the overall number of messages is reduced, at the cost of higher delivery
latency for bad nodes. Similarly, Gravitational gossip [HJB+09] proposes a multicast protocol with
differential reliability to better balance the communication workload between nodes, according
to their capacities. Gravitational gossip associates each node with a susceptibility Sr and an infec-
tivity Ir value that depend on a user-defined quality rating r. Nodes of rating r receive a fraction r
of the messages before they time out. Gravitational gossip thus offers a cost/reliability trade-off,
while GPS consider a consistency/latency trade-off. Hierarchical gossip [GKG06] also aims to re-
duce overheads but focuses on those associated with the physical network topology. To this end,
it favors gossip targets that are close in the network hierarchy. This leads to a slight decrease in
reliability and an increase of delivery latency.

In the context of video streaming, HEAP [FGK+09b] adapts the fanout of nodes to reduce de-
livery latency in the presence of heterogeneous bandwidth capabilities. In addition, nodes do
not wait for late messages, but they simply ignore them. This dropping policy is well adapted
to video streaming, cannot be applied to GPS. Finally, epidemic total order algorithms such as
EpTO [MMF+15] and ecBroadcast [BGL+06] can be used to implement (probabilistic) strong con-
sistency conditions, but at the cost of higher latency, and a higher number of messages for EpTO.

4 Conclusion

In this report, we have presented two contributions developed within the SOCIOPLUG project
targeting the construction of emerging localities. The first contribution, SIMILITUDE, provides a
decentralised overlay-based recommender that is able to adapt at runtime the similarity used by
individual nodes. SIMILITUDE demonstrates the viability of decentralised locality adaptation for
very large distributed systems, and shows it can compete against static schemes.

The second contribution, Update-Query Consistency with Primaries and Secondaries (UPS), is a
novel eventual consistency mechanism that offers heterogeneous properties in terms of data con-
sistency and delivery latency. Primary nodes can deliver updates faster, while Secondary nodes
experience stronger data consistency at the expense of a small latency penalty. Both sets of nodes
observe a consistent state with high probability once dissemination completes.

Both contributions illustrate the interest of systematic mechanisms for the construction of locality-
based services in very large systems, and open promising avenues for future work. In particular,
in the case of SIMILITUDE, we would like to see how a dataset with a more balanced distribution
of optimal metrics affects SIMILITUDE and its modifiers. We also think that the detCurrAlgo and
incSimNodes modifiers could benefit from further improvements, and thus bring the performance
of SIMILITUDE closer to that of a static optimal-metric allocation.

Considering UPS, our future plans include deploying UPS in a real system and performing live
experiments to confront the algorithm to real-life conditions. We also plan to investigate how UPS
could be combined with a complementary anti-entropy protocol [DGH+87] to reach the last few
susceptible nodes and further improve its performance.

D.1.3 – Protocols for emergent localities 27

References
[AAFE11] Ashraf M Attia, Nergis Aziz, Barry Friedman, and Mahdy F Elhusseiny. Commen-

tary: The impact of social networking tools on political change in egypt’s "revolution
2.0". Electronic Commerce Research and Applications, 2011.

[AEK00] Asim Ansari, Skander Essegaier, and Rajeev Kohli. Internet recommendation sys-
tems. Journal of Marketing research, 2000.

[AF96] Hagit Attiya and Roy Friedman. Limitations of fast consistency conditions for dis-
tributed shared memories. Inf. Proc. Letters, 57(5), 1996.

[ALR13] Sérgio Almeida, João Leitão, and Luís Rodrigues. Chainreaction: a causal+ consistent
datastore based on chain replication. In EuroSys. ACM, 2013.

[AR12] Luca Maria Aiello and Giancarlo Ruffo. Lotusnet: tunable privacy for distributed
online social network services. Computer Communications, 2012.

[BBG+] X. Bai, M. Bertier, R. Guerraoui, A.-M. Kermarrec, and V. Leroy. Gossiping personal-
ized queries. In EDBT’2010.

[BD] Sonja Buchegger and Anwitaman Datta. A case for p2p infrastructure for social
networks-opportunities & challenges. In IEEE WONS 2009.

[BDMR13] Ranieri Baraglia, Patrizio Dazzi, Matteo Mordacchini, and Laura Ricci. A peer-to-peer
recommender system for self-emerging user communities based on gossip overlays.
J. of Comp. and Sys. Sciences, 2013.

[BFG+a] Marin Bertier, Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, and Vincent
Leroy. The gossple anonymous social network. In Middleware’2010.

[BFG+b] Antoine Boutet, Davide Frey, Rachid Guerraoui, Arnaud Jégou, and Anne-Marie Ker-
marrec. Privacy-Preserving Distributed Collaborative Filtering. In NETYS’2014.

[BFG+13] A. Boutet, D. Frey, R. Guerraoui, A. Jégou, and A.-M. Kermarrec. WhatsUp Decen-
tralized Instant News Recommender. In IPDPS, 2013.

[BGHS13] Peter Bailis, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. Bolt-on causal consis-
tency. In ACM SIGMOD Int. Conf. on Man. of Data, 2013.

[BGL+06] Roberto Baldoni, Rachid Guerraoui, Ron R. Levy, Vivien Quéma, and Sara Tucci Pier-
giovanni. Unconscious Eventual Consistency with Gossips. In SSS. 2006.

[BGYZ14] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Repli-
cated data types: Specification, verification, optimality. SIGPLAN Not., 49(1), 2014.

[BHG+] Ames Bielenberg, Lara Helm, Anthony Gentilucci, Dan Stefanescu, and Honggang
Zhang. The growth of diaspora-a decentralized online social network in the wild. In
IEEE INFOCOM 2012 Comp. Comm. Workshops.

[Bir07] Ken Birman. The Promise, and Limitations, of Gossip Protocols. SIGOPS Oper. Syst.
Rev., 41(5), 2007.

[Bre00] Eric A. Brewer. Towards robust distributed systems. In PODC, volume 7, 2000.

[BSVD] Sonja Buchegger, Doris Schiöberg, Le-Hung Vu, and Anwitaman Datta. Peerson: P2p
social networking: early experiences and insights. In SNS’2009.

28 ANR SocioPlug – ANR-13-INFR-0003

[CIK+] Jesús Carretero, Florin Isaila, A-M Kermarrec, François Taïani, and Juan M Tirado.
Geology: Modular georecommendation in gossip-based social networks. In ICDCS
2012.

[CMS] Leucio Antonio Cutillo, Refik Molva, and Thorsten Strufe. Leveraging social links for
trust and privacy in networks. In iNetSec 2009.

[CPOR07] N. Carvalho, J. Pereira, R. Oliveira, and L. Rodrigues. Emergent Structure in Unstruc-
tured Epidemic Multicast. In DSN, 2007.

[DDGR07] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable
online collaborative filtering. In WWW, 2007.

[DGH+] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic Algorithms for Repli-
cated Database Maintenance. In PODC’87.

[DGH+87] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic Algorithms for Repli-
cated Database Maintenance. In PODC. ACM, 1987.

[dia] diaspora* statistics hub. http://web.archive.org/web/20140320220658/
http://pods.jasonrobinson.me/. Accessed: 2014-03-20.

[DNDM] Elisabetta Di Nitto, Daniel J Dubois, and Alessandro Margara. Reconfiguration prim-
itives for self-adapting overlays in distributed publish-subscribe systems. In SASO
2012.

[DS] Anwitaman Datta and Rajesh Sharma. Godisco: selective gossip based dissemination
of information in social community based overlays. In ICDCN 2011.

[ea03] A. Ganesh et al. Peer-to-peer membership management for gossip-based protocols.
IEEE ToC, 2003.

[EDPK09] M. El Dick, E. Pacitti, and B. Kemme. Flower-cdn: a hybrid p2p overlay for efficient
query processing in cdn. In EDBT. ACM, 2009.

[EGH+03] P. Th. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M. Kermar-
rec. Lightweight Probabilistic Broadcast. ACM ToCS, 21(4), November 2003.

[EGKM04] P Th Eugster, Rachid Guerraoui, A-M Kermarrec, and Laurent Massoulié. From epi-
demics to distributed computing. IEEE computer, 37(LPD-ARTICLE-2006-004):60–67,
2004.

[fac13] Facebook press statement: Q4 and full year 2012 results. http://investor.fb.
com/releasedetail.cfm?ReleaseID=736911, 2013. Accessed: 2014-05-03.

[Fac14] Facebook Inc. Facebook: Company info – statistics. https://newsroom.fb.com/
company-info/, March 2014. Accessed: 2014-05-13.

[FGK+09a] Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, Boris Koldehofe, Martin Mo-
gensen, Maxime Monod, and Vivien Quéma. Heterogeneous Gossip. In Middleware,
2009.

[FGK+09b] Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, Boris Koldehofe, Martin Mo-
gensen, Maxime Monod, and Vivien Quéma. Heterogeneous Gossip. In Middleware,
2009.

D.1.3 – Protocols for emergent localities 29

[FGK+09c] Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, Maxime Monod, and Vivien
Quéma. Stretching Gossip with Live Streaming. In DSN, 2009.

[FGK14] Davide Frey, Mathieu Goessens, and Anne-Marie Kermarrec. Behave: Behavioral
cache for web content. In DAIS, 2014.

[FGKM10] Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, and Maxime Monod. Boost-
ing Gossip for Live Streaming. In P2P, 2010.

[FKM+] Davide Frey, Anne-Marie Kermarrec, Christopher Maddock, Andreas Mauthe, and
François Taïani. Adaptation for the masses: Towards decentralized adaptation in
large-scale p2p recommenders. In 13th Workshop on Adaptive & Reflective Middleware,
ARM ’14.

[FKM+15] Davide Frey, Anne-Marie Kermarrec, Christopher Maddock, Andreas Mauthe,
Pierre-Louis Roman, and François Taïani. Similitude: Decentralised adaptation in
large-scale P2P recommenders. In Alysson Bessani and Sara Bouchenak, editors, Dis-
tributed Applications and Interoperable Systems - 15th IFIP WG 6.1 International Confer-
ence, DAIS 2015, Held as Part of the 10th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2015, Grenoble, France, June 2-4, 2015, Proceedings, vol-
ume 9038 of Lecture Notes in Computer Science, pages 51–65. Springer, 2015.

[FMP+16] Davide Frey, Achour Mostefaoui, Matthieu Perrin, Pierre-Louis Roman, and François
Taïani. Speed for the elite, consistency for the masses: differentiating eventual con-
sistency in large-scale distributed systems. In to appear in the proceedings of the 35th
Symposium on Reliable Distributed Systems, Budapest, Hungary, September 2016.

[Fri95] Roy Friedman. Implementing hybrid consistency with high-level synchronization
operations. Dist. Comp., 9(3), 1995.

[FRT15] Roy Friedman, Michel Raynal, and François Taïani. Fisheye Consistency: Keeping
Data in Synch in a Georeplicated World. In NETYS, 2015.

[gda] Google data centers, data center locations. https://www.google.com/about/
datacenters/inside/locations/index.html. accessed Sep. 10 2015.

[GKG06] I. Gupta, A.-M. Kermarrec, and A.J. Ganesh. Efficient and adaptive epidemic-style
protocols for reliable and scalable multicast. IEEE TPDS, 17(7), 2006.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM SIGACT News, 33(2), 2002.

[GLS11] Wojciech Golab, Xiaozhou Li, and Mehul A. Shah. Analyzing consistency properties
for fun and profit. In PODC, 2011.

[GNOT92] David Goldberg, David Nichols, Brian M Oki, and Douglas Terry. Using collaborative
filtering to weave an information tapestry. CACM, 1992.

[GRA+14] Wojciech Golab, Muntasir Raihan Rahman, Alvin AuYoung, Kimberly Keeton, and
Indarchand Gupta. Client-centric benchmarking of eventual consistency for cloud
storage systems. In ICDCS. IEEE, 2014.

[HJB+09] K. Hopkinson, K. Jenkins, K. Birman, J. Thorp, G. Toussaint, and M. Parashar.
Adaptive Gravitational Gossip: A Gossip-Based Communication Protocol with User-
Selectable Rates. IEEE TPDS, 20(12), 2009.

[HOJ] István Hegedus, Róbert Ormándi, and Márk Jelasity. Gossip-based learning under
drifting concepts in fully distributed networks. In SASO 2012.

30 ANR SocioPlug – ANR-13-INFR-0003

[HXYS04] P. Han, B. Xie, F. Yang, and R. Shen. A scalable p2p recommender system based on
distributed collaborative filtering. Expert Systems with Applications, 2004.

[IPKA10] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson. Privacy-preserving p2p data
sharing with oneswarm. SIGCOMM Computer Communication Review, 2010.

[JMB09] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. T-man: Gossip-based fast
overlay topology construction. Computer networks, 53(13):2321–2339, 2009.

[JVG+07a] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and
Maarten van Steen. Gossip-based peer sampling. ACM TOCS, 25, 2007.

[JVG+07b] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and
Maarten Van Steen. Gossip-based peer sampling. ACM ToCS, 25(3), 2007.

[JVG+07c] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and
Maarten Van Steen. Gossip-based peer sampling. ACM ToCS, 25(3):8, 2007.

[KCZ92] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy release consistency for soft-
ware distributed shared memory. In ISCA. ACM, 1992.

[KLM] Irwin King, Michael R Lyu, and Hao Ma. Introduction to social recommendation. In
WWW 2010.

[KLMT] Anne-Marie Kermarrec, Vincent Leroy, Afshin Moin, and Christopher Thraves. Ap-
plication of random walks to decentralized recommender systems. In OPODIS’10.

[KMG03] A.-M. Kermarrec, L. Massoulie, and A.J. Ganesh. Probabilistic reliable dissemination
in large-scale systems. IEEE TPDS, 14(3), 2003.

[KMM+97] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R.
Gordon, and John Riedl. Grouplens: Applying collaborative filtering to usenet news.
CACM, 1997.

[Kor] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In ACM KDD’2008).

[KT] Anne-Marie Kermarrec and François Taïani. Diverging towards the common good:
heterogeneous self-organisation in decentralised recommenders. In SNS’2012.

[KT+11] Anne-Marie Kermarrec, François Taïani, et al. Constellation: Programming decen-
tralised social networks. 2011.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE ToC, 100(9), 1979.

[Lam86] Leslie Lamport. On interprocess communication. Distributed Computing, 1(2), 1986.

[LCB] V. Leroy, B. B. Cambazoglu, and F. Bonchi. Cold start link prediction. In KDD’2010.

[LFKA11] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen. Don’t
settle for eventual: scalable causal consistency for wide-area storage with COPS. In
SOSP. ACM, 2011.

[LM99] Meng-Jang Lin and Keith Marzullo. Directional Gossip: Gossip in a Wide Area Net-
work. In EDCC. 1999.

D.1.3 – Protocols for emergent localities 31

[LPC+12] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Ro-
drigo Rodrigues. Making geo-replicated systems fast as possible, consistent when
necessary. In OSDI, 2012.

[LPR07] J. Leitão, J. Pereira, and L. Rodrigues. HyParView: A Membership Protocol for Reli-
able Gossip-Based Broadcast. In DSN, 2007.

[LSY03] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations: Item-
to-item collaborative filtering. IEEE Internet Computing, 2003.

[LVA+15] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun Song,
Wendy Tobagus, Sanjeev Kumar, and Wyatt Lloyd. Existential Consistency: Mea-
suring and Understanding Consistency at Facebook. In SOSP. ACM, 2015.

[MCR11] Andres Moreno, Harold Castro, and Michel Riveill. Decentralized recommender sys-
tems for mobile advertisement. In Workshop on Personalization in Mobile Applications
(PEMA’11), Chicago, Illinois, USA, October 2011. ACM.

[MJ09] A. Montresor and M. Jelasity. PeerSim: A scalable P2p simulator. In P2P. IEEE, 2009.

[MKR04] B. N. Miller, J. A. Konstan, and J. Riedl. Pocketlens: toward a personal recommender
system. TOIS, 2004.

[MMF+15] Miguel Matos, Hugues Mercier, Pascal Felber, Rui Oliveira, and José Pereira. EpTO:
An Epidemic Total Order Algorithm for Large-Scale Distributed Systems. In Middle-
ware. ACM, 2015.

[MMP] Giuliano Mega, Alberto Montresor, and Gian Pietro Picco. Efficient dissemination in
decentralized social networks. In IEEE P2P 2011.

[mov] Movielens 1 million ratings dataset. http://grouplens.org/datasets/
movielens.

[nei09] Time spent on facebook up 700 percent, but myspace.com still tops for video, ac-
cording to nielsen. www.nielsen.com/us/en/press-room/2009/time_on_
facebook.html, 2009. Accessed: 2014-05-03.

[nie] Nielsen social media report — q3 2011. http://cn.nielsen.com/documents/
Nielsen-Social-Media-Report_FINAL_090911.pdf. Accessed: 2014-05-03.

[Ols] Tomas Olsson. Decentralised social filtering based on trust. In AAAI-98 Recommender
Systems Workshop.

[PES+] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra, and P. Ro-
driguez. The little engine(s) that could: scaling online social networks. In SIGCOMM
2010.

[pin13] pingdom: Twitter.com (history). http://stats.pingdom.com/wx4vra365911/
23773/history, 2013. Accessed: 2013-04-22.

[PMJ15] Matthieu Perrin, Achour Mostefaoui, and Claude Jard. Update Consistency for Wait-
free Concurrent Objects. In IPDPS. IEEE, 2015.

[PPR+11] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio López, Garth
Gibson, Adam Fuchs, and Billie Rinaldi. YCSB++: benchmarking and performance
debugging advanced features in scalable table stores. In Symp. on Cloud Comp. (SoCC).
ACM, 2011.

32 ANR SocioPlug – ANR-13-INFR-0003

[RGA+12] Muntasir Raihan Rahman, Wojciech Golab, Alvin AuYoung, Kimberly Keeton, and
Jay J. Wylie. Toward a principled framework for benchmarking consistency. In Hot-
Dep, 2012.

[SD] Rajesh Sharma and Anwitaman Datta. Decentralized information dissemination in
multidimensional semantic social overlays. In ICDCN 2012.

[SDP] Yading Song, Simon Dixon, and Marcus Pearce. A survey of music recommendation
systems and future perspectives. In CMMR’2012.

[SNM] S. Scellato, A. Noulas, and C. Mascolo. Exploiting place features in link prediction on
location-based social networks. In ACM KDD’2011).

[SPBZ11] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-Free
Replicated Data Types. In SSS. 2011.

[SPMO02] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic total order in wide area
networks. In SRDS. IEEE, 2002.

[SRF11] V. Schiavoni, E. Rivière, and P. Felber. Whisper: Middleware for confidential commu-
nication in large-scale networks. In ICDCS 2011, June 2011.

[SvSVV12] Vinay Setty, Maarten van Steen, Roman Vitenberg, and Spyros Voulgaris. PolderCast:
Fast, Robust, and Scalable Architecture for P2p Topic-based Pub/Sub. In Middleware,
2012.

[THI+10] Juan M Tirado, Daniel Higuero, Florin Isaila, Jesús Carretero, and Adriana Iamnitchi.
Affinity p2p: A self-organizing content-based locality-aware collaborative peer-to-
peer network. Comp. Net., 54, 2010.

[TLB] François Taïani, Shen Lin, and Gordon S. Blair. GossipKit: A unified component-
framework for gossip. IEEE TSE, 40(2).

[TPK+13] Douglas B Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan,
Marcos K Aguilera, and Hussam Abu-Libdeh. Consistency-based service level agree-
ments for cloud storage. In SOSP. ACM, 2013.

[tri] Tribler. http://www.tribler.org.

[VN11] Steven Vaughan-Nichols. How skype does, and doesn’t, work. www.zdnet.com/
blog/networking/how-skype-does-and-doesnt-work/1051, 2011. Ac-
cessed: 2013-04-22.

[Vog09] Werner Vogels. Eventually Consistent. CACM, 52(1), January 2009.

[VPK+15] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. Large-scale cluster management at google with borg. In
EuroSys. ACM, 2015.

[VS] S. Voulgaris and M. v. Steen. Epidemic-style management of semantic overlays for
content-based searching. In Euro-Par’05.

[WUM10] Stéphane Weiss, Pascal Urso, and Pascal Molli. Logoot-undo: Distributed collabora-
tive editing system on P2P networks. IEEE TPDS, 21(8), 2010.

[WZC+11] Dong Wei, Tao Zhou, Giulio Cimini, Pei Wu, Weiping Liu, and Yi-Cheng Zhang. Ef-
fective mechanism for social recommendation of news. Physica A: Statistical Mechanics
and its Applications, 2011.

D.1.3 – Protocols for emergent localities 33

[XSK+14] Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid Yaghmazadeh, Lorenzo
Alvisi, and Prince Mahajan. Salt: Combining acid and base in a distributed database.
In OSDI, 2014.

[YLL+09] Ching-man Au Yeung, Ilaria Liccardi, Kanghao Lu, Oshani Seneviratne, and Tim
Berners-Lee. Decentralization: The future of online social networking. In W3C Work-
shop on the Future of Social Networking, 2009.

[Zie05] Cai-Nicolas Ziegler. Towards decentralized recommender systems. PhD thesis, Univ. of
Freiburg, 2005.

[ZK12] Kamal Zellag and Bettina Kemme. How consistent is your cloud application? In
Symp. on Cloud Comp. (SoCC). ACM, 2012.

