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Abstract

In this paper we consider a continuous almost periodically correlated
process {X(t), t ∈ R} that is observed at the jump moments of a sta-
tionary Poisson point process {N(t), t ≥ 0}. The processes {X(t), t ∈
R} and {N(t), t ≥ 0} are assumed to be independent. We define the
kernel estimators of the Fourier coefficients of the autocovariance func-
tion of X(t) and investigate their asymptotic properties. Moreover, we
propose a bootstrap method that provides consistent pointwise and si-
multaneous confidence intervals for the considered coefficients. Finally,
to illustrate our results we provide a simulated data example.
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1 Introduction

Periodicity and almost periodicity appear naturally in many real datasets.
A wide variety of examples from different fields can be found in [1], [14],
[19], [28] and [29]. Often this type of data has a structure of periodic or
almost periodic correlation. To be more precise, a stochastic process that
has finite second order moments is almost periodically correlated (APC) if
its mean function and its shifted covariance function are almost periodic in
time [16]. The notion of an almost periodic function was introduced in [3].
Recall that a function f : R → R is called almost periodic if for every ε > 0,
there exists a number lε such that for any interval of length greater than lε,
there exists a number pε in this interval such that

sup
t∈R

|f(t+ pε) − f(t)| < ε.

Equivalently, the almost periodic functions can be defined as the uniform
limits of trigonometric polynomials (see [3]). Periodic functions are the only
class of almost periodic functions that have a period. In general, an almost
periodic function has no period. There is a large amount of papers con-
cerning periodically correlated (PC) processes (see e.g. [19] and references
therein), but still relatively few on general APC processes. Thus, the anal-
ysis of APC processes is challenging. It is usually performed using Fourier
expansions of the mean function and of the shifted autocovariance functions.
The other important issue is the fact that the considered processes cannot
be observed continuously and data are often sampled irregularly to avoid
aliasing and folding phenomena (see e.g. [26]).

In this paper we deal with an APC continuous process X = {X(t), t ∈ R}
that is observed at the jump moments Tk, k ≥ 1, of a stationary Poisson
point process N = {N(t), t ≥ 0} which is independent on X. This type of
sampling was considered e.g. in [5] (see also [7], [22], [23] and [30]). The
estimation problem of the Fourier coefficients of the mean function in this
framework was considered in [7] where the standard estimators have been
used. In the following we focus on the Fourier analysis of the shifted auto-
covariance function. In this case, the Fourier coefficients are computed from
products of the values of the process where distance in time is equal to an
arbitrary fixed lag τ ∈ R, i.e. X(t)X(t+ τ), t ∈ R (see relation (1)). How-
ever, using Poisson sampling we do not have at our disposal the necessary
information to perform some sampled versions of these products, thus we
cannot use the standard estimators. To deal with this problem we are go-
ing to apply a kernel method. Similar ideas for stationary processes can be
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found in [27] (see also [22]), and for harmonizable APC processes in [9]. The
second key issue is the construction of confidence intervals for the Fourier co-
efficients which we are estimating. The asymptotic covariance matrices are
very complicated and depend on unknown parameters (see Proposition 6.1).
Hence in practice it is very difficult or even impossible to estimate them.
Thus to get confidence intervals, resampling methods are used. In the liter-
ature the number of bootstrap and subsampling consistency results for the
Fourier coefficients of PC and APC processes is constantly growing. The
subsampling validity for the Fourier coefficients is established for PC time
series in [25], and for APC processes in [8]. Moreover, the consistency of the
Moving Block Bootstrap (MBB) for the Fourier coefficients of the shifted
autocovariance function for PC or APC time series was studied in [31] (see
also [12]). Additionally, for PC time series the Generalized Seasonal Block
Bootstrap (GSBB) was considered in [13]. The GSBB in contrary to the
MBB requires knowledge of the period length and hence cannot be applied
in the general case for APC processes. Finally, the modification of the MBB
method for the Poisson sampled APC process was considered in [7] for the
estimation problem of the cyclic mean.

In this paper we provide a consistent estimator for the Fourier coefficients
of the shifted autocovariance function of a continuous time APC process
from a Poisson sampled observation. Moreover, we obtain the validity of
some bootstrap approach that is based on the MBB method. As a result
construction of bootstrap confidence intervals is possible.

The paper is organized as follows. In Section 2 the necessary notation is
introduced and the problem is formulated. Additionally, the kernel estima-
tor of the Fourier coefficients is introduced. In Section 3 the assumptions
are discussed and asymptotic properties of the considered estimator are de-
rived. Moreover, the bootstrap method is described and its consistency is
shown. Section 4 contains multidimensional results and the construction
of the bootstrap simultaneous confidence intervals. In Section 5 a simu-
lated data example is presented. The proofs of the results can be found in
Section 6.

2 Problem formulation

Let X = {X(t), t ∈ R} be a real-valued zero-mean APC process that is
observed at the jump moments Tk, k ≥ 1, of a stationary Poisson point
process N = {N(t), t ≥ 0} with intensity β > 0. The processes X and
N are assumed to be independent. Moreover, let KX(t, t + τ) be the
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shifted autocovariance function of the real-valued zero-mean process X, i.e.
KX(t, t+ τ) := cov{X(t), X(t+ τ)} = E{X(t)X(t+ τ)}. Since the process
X is APC, the function (t, τ) 7→ K(t, t+ τ) is uniformly continuous, and for
each τ the function t 7→ K(t, t+τ) is almost periodic (see e.g. [16] and [18]).
Then the cyclic covariance of the process X is defined as Fourier-Bohr co-
efficients

aX(λ, τ) := lim
T→∞

1

T

∫ T

0
KX(t, t+ τ)e−iλt dt

= lim
T→∞

1

T

∫ T

0
E{X(t)X(t+ τ)}e−iλt dt (1)

for any λ ∈ R and any τ ∈ R. The set of cyclic frequencies Λ := {λ ∈ R :
aX(λ, τ) ̸= 0 for some τ ∈ R} is known to be countable (see [18]).

The estimation of the cyclic covariance is based on the observations
where the time distance is equal to τ , and τ ∈ R is fixed. Let us recall
that in the considered problem the process X is not observed continuously
and the time distances between the observations in general are not even
integer multiples of τ . To solve this problem we propose a kernel estimator
of aX(λ, τ).

Let T > 0. Assume that the observation of the process X is performed
during the time interval [0, T ]. This means that we observe the random
sequence X(Tk) at the sampling moments 0 ≤ Tk ≤ T , k = 1, . . . , N(T ).
Let us define wh(t) := w

(
t/h
)
/h, where the window width h = hT > 0

tends to 0 as T → ∞ and the weight function w : R → R is a non-negative
symmetric measurable function with support contained in [−1, 1]. Moreover
assume that

∫ 1
−1w(t) dt = 1.

Recall that E{X(t)} = 0. Then for all fixed λ and |τ | ≤ T −hT we define
the estimator of aX(λ, τ) as follows

âT = âT (λ, τ) :=
1

β2T

∑
n1,n2

N(T )∑
=1

I{n1 ̸=n2}whT
(τ − Tn2 + Tn1)X(Tn1)X(Tn2) e−iλTn1

=
1

β2T

∫ T

0

∫ T

0
whT

(τ − t+ s)X(s)X(t) e−iλs dN (2)(s, t),

where dN (2)(s, t) := I{s ̸=t} dN(s)dN(t). Hence

âT =
1

β2T

∫ T

−T

∫
I(T,t)

whT
(τ − t)X(s)X(s+ t) e−iλsN (2)(s+ ds, s+ t+ dt),
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where I(T, t) :=
{
s : 0 ≤ s ≤ T,−t ≤ s ≤ T − t

}
= [0, T ] ∩ [−t, T − t].

In this paper we assume that the intensity β of the Poisson process
{N(t), t ≥ 0} is known. When β is unknown, in the definition of âT it may
be replaced by β̂T = N(T )/T . Then the consistency of this estimator of
aX(λ, τ) as well as the consistency of the bootstrap method can be easily
established. However, this problem is beyond the scope of this paper.

3 Main results

In this section we present the asymptotic properties of the estimator âT and
its bootstrap version â∗T . At first we discuss the assumptions that will allow
us to establish the results.

(AP2) For each t ∈ R, E{X(t)} = 0 and E{X(t)2} < ∞; the function
(t, τ) 7→ E {X(t)X(t+ τ)}} is uniformly continuous on R × R and is
almost periodic in t uniformly with respect to τ varying in R.

(AP4) For each t ∈ R, E{X(t)4} < ∞; the function (t, τ1, τ2, τ3) 7→
E{X(t)X(t+ τ1)X(t+ τ2)X(t+ τ3)} is almost periodic in t uniformly
with respect to τ1, τ2, τ3 varying in R.

(CS(λ, τ)) Cycle separability : For fixed λ, τ ∈ R∑
λ′ ̸=λ

|aX(λ′, τ)|
|λ′ − λ|

<∞. (2)

(Lip) Lipschitz property of the shifted covariance : There exists a constant
L > 0 such that for all s, τ ∈ R and u ∈ [−1, 1] we have∣∣E {X(s)X(s+ τ − u)} − E {X(s)X(s+ τ)}

∣∣ ≤ L|u|. (3)

(M) Mixing property of the processs X:
X(t) is α-mixing and
(i) either {X(t), t ∈ R} is bounded and αX(·) ∈ L1([0,∞)),
(ii) or there exists δ > 0 such that supt E

{
X(t)4+δ

}
<∞ and αX(·) ∈

Lδ/(4+δ)([0,∞)).
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Assumptions (AP2) and (AP4) denote almost periodicity of the second
and fourth moments of the process X, respectively. Condition (CS(λ, τ))
is a separability condition on the cyclic frequencies. It is satisfied for all
λ, τ ∈ R whenever the set of cyclic frequencies Λ satisfies∑

λ∈Λ\{0}

|λ|−2 <∞.

The last inequality is fulfilled when the cyclic frequencies are separated by
at least a positive constant because ∑

λ′∈Λ\{λ}

|aX(λ′, τ)|
|λ′ − λ|

2

≤

 ∑
λ′∈Λ\{λ}

|aX(λ′, τ)|2
 ∑

λ′∈Λ\{λ}

|λ′ − λ|−2


and for any APC process we ave∑

λ′∈Λ
|aX(λ′, τ)|2 <∞.

Finally, the asymptotic results that we will present require some mixing
assumption (M). To be precise the process X is assumed to be α-mixing
(strong mixing) i.e. αX(k) → 0 as k → ∞, where

αX(u) = sup
t

sup
A∈FX (−∞,t)

B∈FX (t+u,∞)

|P (A ∩B) − P (A)P (B)| ,

and FX(−∞, t) = σ ({X(s) : s ≤ t}) and FX(t+u,∞) = σ ({X(s) : s ≥ t+ u}).
For more details and examples of other dependence measures that we could
considered we refer the reader to [10] and [6].

In the sequel we use the following symbols: O(·), o(·) and <<. Let f(·)
and g(·) be real valued functions defined on (0,∞) or on N. The notation
f(T ) = O(g(T )) denotes that |f(T )/g(T )| remains bounded as T → ∞. The
notation f(T ) = o(g(T )) stands for f(T )/g(T ) → 0 as T → ∞. We will also
use the notation f(T ) << g(T ) when f(T )/g(T ) → 0 as T → ∞.

3.1 Properties of âT

This section is dedicated to some asymptotic properties of âT . From now on
whenever we consider a complex number z we treat it as the bidimensional
vector with coordinates equal to the real and the imaginary parts of z. At
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first we study the bias, the convergence in quadratic mean and the almost
sure convergence of âT , as well as the rate of convergence. The last result
states the asymptotic normality of the considered estimator.

Proposition 3.1 Let {X(t), t ≥ 0} be an APC process which satisfies con-
dition (AP2). Then for all λ, τ ∈ R

lim
T→∞

E
{
âT (λ, τ)

}
= aX(λ, τ).

Furthermore, if in addition conditions (CS(λ, τ)) and (Lip) hold, and if
hT << T−1/3, then

lim
T→∞

√
ThT

(
E {âT (λ, τ)} − aX(λ, τ)

)
= 0.

Proposition 3.2 Let {X(t), t ≥ 0} be such that the APC condition (AP2)
and the mixing condition (M) are fulfilled. Assume also that T−1 << hT <<
1. Then for all λ, τ ∈ R

lim
T→∞

E
{∣∣âT (λ, τ) − aX(λ, τ)

∣∣2} = 0.

If in addition conditions (CS2(λ, τ)) and (Lip) are fulfilled and hT << T−1/3,
then for all λ, τ ∈ R

lim sup
T→∞

ThTE
{∣∣âT (λ, τ) − aX(λ, τ)

∣∣2} <∞

As a by-product of the rate of convergence in the quadratic mean, we state
the almost sure convergence of the estimator âT (λ, τ).

Proposition 3.3 In addition to all the conditions of Proposition 3.2, as-
sume that the window width hT is non-increasing, T−κ ≤ hT << T−1/3

for some 1/3 < κ < 1, there exists x > (1 − κ)−1 such that hnx =
h(n+1)x(1 + o(1)) as n→ ∞, and the kernel function w(·) is non-increasing
on (0,∞). Then âT (λ, τ) converges almost surely to aX(λ, τ) as T → ∞.

Furthermore under the hypotheses of the previous proposition, we can es-
tablish some rate of almost sure convergence. For instance when hT = T−κ,
we have

lim
T→∞

T (1−κ)ϵ
(
âT (λ, τ) − aX(λ, τ)

)
= 0 a.s.

for any 0 < ϵ < min
{(

2x(1 − κ)
)−1

, 1/2 −
(
2x(1 − κ)

)−1}
.

Next we state the asymptotic normality of the estimator.
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Theorem 3.4 Let {X(t), t ≥ 0} be an APC process and assume that con-
ditions (CS(λ, τ)), (Lip), (AP2) and (AP4) as well as the mixing condition
(M) are satisfied. Then

√
ThT

(
âT (λ, τ)−aX(λ, τ)

)
converges to a bidimen-

sional Gaussian distribution provided T−1 << hT << T−1/3.

The form of the asymptotic covariance matrix is very complicated (see
Proposition 6.1) and hence very difficult to estimate. Thus, in practice to
construct confidence intervals, resampling methods are used. In the sequel,
we introduce a bootstrap approach and provide results stating its consis-
tency.

3.2 Bootstrap method and consistency results

In this section we present a bootstrap technique that can be used to con-
struct the consistence bootstrap confidence intervals for the cyclic covari-
ances. The idea of this approach was introduced in [7] for the cyclic means.
Our bootstrap method is the modification of the usual Moving Block Boot-
strap. Before we describe the bootstrap algorithm let us introduce some
additional notation.

Recall that we observe (X(Tk), Tk) at the sampling moments Tk in the
time interval [0, T ]. In the sequel P∗, E∗ and var∗ denote respectively con-
ditional probability, conditional expectation and conditional variance given
the sample.

Let 0 < bT < T be the block length, hT > 0 be the window width. With-
out loss of generality we assume that the considered time interval [0, T ] can
be split into lT disjoint subintervals of the length bT , i.e. T = lT bT , where
T, bT , lT ∈ N. To simplify the notation we write h, b and l for respec-
tively hT , bT and lT except when there is some risk of misunderstanding.
Throughout the paper we assume that h→ 0, b→ ∞ and l → ∞ as T → ∞.

BOOTSTRAP ALGORITHM:

1. Choose an integer number 0 < b < T .

2. For k = 0, . . . T − b define the blocks of observations as following

Bk := Bk,b := {(X(Ti), Ti) : k < Ti ≤ k + b, i ∈ N∗},

where N∗ = {1, 2, . . . }.

3. Select randomly with replacement l blocks from the set {B0, . . . , BT−b}.
This corresponds to the random selection with replacement of l num-
bers from the set {0, . . . , T − b}. More precisely let i∗1, . . . , i

∗
l be i.i.d.
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random variables on the set {0, 1, . . . , T − b}:

P∗ (i∗j = k
)

=
1

T − b+ 1
, k = 0, . . . , T − b, j = 1, . . . , l.

For simplicity of notation we write j∗ := i∗j+1 for j = 0, . . . , l − 1.

4. Join the l blocks (B∗
0 , B

∗
2 , . . . , B

∗
l−1) to obtain a bootstrap sample,

where
B∗

j := Bj∗ , j = 0, . . . , l − 1.

Before we construct a bootstrap version of the estimator âT of aX(λ, τ),
we introduce an estimator âk,b, which is the version of âT defined on the
subinterval (k, k + b], for 0 ≤ k < k + b ≤ T . Let

âk,b = âk,b(λ, τ)

:=
1

β2b

∑
n1,n2

N(k+b)∑
=N(k)+1

I{n1 ̸=n2}wh

(
τ−Tn2 +Tn1

)
X(Tn1)X(Tn2) e−iλTn1

=
1

β2b

∫ k+b

k

∫ k+b

k
wh(τ − t+ s)X(s)X(t) e−iλs dN (2)(s, t)

=
1

β2b

∫ b

0

∫ b

0
wh(τ−t+s)X(k+s)X(k+t) e−iλ(s+k)N (2)(k+s+ds, k+t+dt).

In [7] it is shown that in the case of cyclic mean estimation the original
estimator can be equivalently expressed as the sum of the estimators defined
on subintervals. Unfortunately, for the cyclic covariance estimation case such
decomposition does not hold. In general

âT ̸= 1

l

l−1∑
j=0

âjb,b.

However, we consider the bootstrap version of the estimator âT defined as

â∗T = â∗T (λ, τ) :=
1

l

l−1∑
j=0

âj∗,b(λ, τ),
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where

âj∗,b = âj∗,b(λ, τ)

:=
1

β2b

∫ j∗+b

j∗

∫ j∗+b

j∗
wh(τ − t+ s)X(s)X(t) e−iλs dN (2)(s, t)

=
1

β2b

N(T )∑
n1=1

N(T )∑
n2=1

I{n1 ̸=n2}I{j∗≤Tn1 ,Tn2≤j∗+b}wh(τ−Tn1 +Tn2)

×X(Tn1)X(Tn2)e−iλTn2 .

One can easily notice that â∗T (conditional on the observation) is a biased
estimator of âT .

E∗ {â∗T } =
1

l

l−1∑
j=0

1

T − b+ 1

T−b∑
k=0

âk,b =
1

T − b+ 1

T−b∑
k=0

âk,b ̸= âT .

Moreover for each j = 0, . . . , l − 1, we have

E∗ {â∗T } = E∗ {âj∗,b} , and var∗ {âT } = var∗ {âj∗,b} .

Next proposition states the asymptotic unbiasedness of â∗T .

Proposition 3.5 Assume that conditions (AP2) and (M) are satisfied. Then

lim
T→∞

E∗ {â∗T (λ, τ)} = aX(λ, τ) in q.m. (4)

Assume in addition that conditions (CS(λ, τ)) and (Lip) are fulfilled, and
that T−1 << h << min{T−1/3, b2T−1}, then

lim sup
T→∞

ThE
{∣∣E∗ {â∗T (λ, τ)} − aX(λ, τ)

∣∣2} <∞. (5)

Moreover, assume that the window width h = hT is non-increasing, T−κ ≤
hT << T−1/3 where 1/3 < κ < 1, the block length bT is non-decreasing,
1 << bT << T and there exists x > 0 such that x(1 − κ) > 1, hnx =
h(n+1)x(1 + o(1)) and b(n+1)x = bnx(1 + O(1/n)) as n → ∞. Assume also
that the kernel function w(·) is non-increasing on (0,∞). Then

lim
T→∞

E∗ {â∗T (λ, τ)} = aX(λ, τ) a.s.
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Furthermore, under the assumptions of the last proposition, we can obtain
some rate of convergence. For instance when hT = T−κ

lim
T→∞

T (1−κ)ϵ
(
E∗ {â∗T (λ, τ)} − aX(λ, τ)

)
= 0 a.s.

for any 0 < ϵ < min
{(

2x(1 − κ)
)−1

, 1/2 −
(
2x(1 − κ)

)−1}
.

Then we state the convergence in P-probability of the bootstrap variance.

Proposition 3.6 Let λ and τ be fixed. Assume that conditions (AP2),
(AP4), (CS(λ, τ)), and (Lip) are fulfilled. Assume that
– either the process {X(t), t ∈ R} is bounded and αX(·) ∈ L1([0,∞)),
– or supt E

{
|X(t)|8+δ

}
<∞ and αX(·) ∈ Lδ/(4+δ)([0,∞)).

Let T 1/3<<b<<T and b−1<<h<<min{T−1/3, b−3/2T 1/2}. Then Th var∗ {â∗T }
converges in P-mean (i.e. in L1(P)) so in P-probability to the variance ma-
trix of the bidimension Gaussian limit distribution obtained in Theorem 3.4.

Finally, we present the consistency of the bootstrap method.

Theorem 3.7
Let λ and τ be fixed. Assume that conditions (AP2), (AP4), (CS(λ, τ)
and (Lip) are fulfilled. Assume also that

– either the process {X(t), t ≥ 0} is bounded and

∫ ∞

0
t αX(t) dt <∞,

– or supt E
{
|X(t)|8+δ

}
<∞ and

∫ ∞

0
t αX(t)δ/(4+δ)dt <∞.

Let 0< θ ≤ 2/9, T 1/3 << b≤ T θ+1/3 and max{b−1, (bT−1)1/(2−3θ)}<< h<<
T−1/3. Then

ρ
(
L
{√

Th (âT (λ, τ) − aX(λ, τ))
}
,L∗

{√
Th (â∗T (λ, τ) − âT (λ, τ))

})
p−→ 0,

as T → ∞, where ρ is a metric metricizing weak convergence in R2.

In theorem above by L
{√

Th (âT (λ, τ) − aX(λ, τ))
}

we denote a probability

law of
√
Th (âT (λ, τ) − aX(λ, τ)) and by L∗

{√
Th (â∗T (λ, τ) − âT (λ, τ))

}
its

bootstrap counterpart.

4 Multidimensional results

In this section we provide the multidimensional versions of Theorems 3.4
and 3.7. Moreover, we discuss construction of the bootstrap simultaneous
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confidence intervals. At first let us introduce some additional notation. Let
r ∈ N be fixed and

λ = (λ1, . . . , λr)
′ , τ = (τ1, . . . , τr)

′

be vectors of frequencies and lags, respectively. Moreover, let

ℜaX (λ, τ ) = (ℜaX(λ1, τ1), . . . ,ℜaX(λr, τr))
′ ,

ℑaX (λ, τ ) = (ℑaX(λ1, τ1), . . . ,ℑaX(λr, τr))
′ ,

and

aX (λ, τ ) = (ℜaX(λ1, τ1),ℑaX(λ1, τ1), . . . ,ℜaX(λr, τr),ℑaX(λr, τr))
′ .

Additionally, by âT (λ, τ ) and â∗T (λ, τ ) we denote the estimator of aX (λ, τ )
and its bootstrap version.

Theorem 4.1 Under the assumptions of Theorem 3.4,
√
Th
(
âT (λ, τ ) −

aX(λ, τ )
)
converges to a 2r-dimensional Gaussian distribution with mean

zero.

The form of covariance matrix is presented in Proposition 6.1.

Theorem 4.2 Under the assumptions of Theorem 3.7

ρ
(
L
{√

Th (âT (λ, τ ) − aX (λ, τ ))
}
,L∗

{√
Th (â∗T (λ, τ ) − âT (λ, τ ))

})
p−→ 0,

where ρ is a metric metricizing weak convergence in R2r.

Thanks to the continuous mapping theorem one can easily deduce the
consistency of the bootstrap approach for smooth functions of aX (λ, τ ).
This is a key result for obtaining the bootstrap consistent confidence inter-
vals for the parameters of interest, which are very important in real data
applications. Below we briefly recall the construction of the (1 − 2α)%
bootstrap equal-tailed percentile simultaneous confidence intervals. In the
next section we use them to detect significant frequencies of some simulated
signal. Let

Kmax(x) := P ∗
(√

Thmax
i

ℜ (â∗T (λi, τ) − âT (λi, τ)) ≤ x

)
,

Kmin(x) := P ∗
(√

Thmin
i

ℜ (â∗T (λi, τ) − âT (λi, τ)) ≤ x

)
12



for x ∈ R, and we get the confidence region of the form(
ℜâT (λi, τ) − K−1

max (1 − α)√
Th

,ℜâT (λi, τ) −
K−1

min (α)√
Th

)

for i = 1, . . . , r, λ1, . . . , λr ∈ R and τ ∈ R. The confidence intervals for
imaginary case are defined correspondingly.

5 Simulated data example

In our study we consider the process X of the form

X(t) = 20 sin (2πt/5)OU(t),

where {OU(t), t ∈ R} is a zero-mean Ornstein-Uhlenbeck process generated
with the following parameters: the time step is 0.01, the relaxation time 0.1,
the diffusion constant 1 and the initial value OU(0) = 0 (for more details
please see [15]). The intensity of the Poisson process {N(t), t ≥ 0} is set to
β = 5.

Our aim is to identify significant frequencies for the shifted autocovari-
ance function applying the methodology presented in the previous sections.
In the considered example in the interval [0, π] there are two such frequencies
0 and 0.8π. To detect them we construct 95% bootstrap pointwise and si-
multaneous equal-tailed confidence intervals for aX(λ, τ), more precisely for
its real part ℜaX(λ, τ) and its imaginary part ℑaX(λ, τ). We take two sam-
ple sizes T ∈ {100, 400}, the number of bootstrap resamples B = 500 and
the block length b = ⌊

√
T ⌋ ∈ {10, 20}. Thus T 1/3 << b << T 5/9 (Theorem

3.7). The kernel function w(·) is of the form

wd(t) =


t/d for t ∈ [0, d]
1 for t ∈ [d, 1 − d]
(1 − t)/d for t ∈ [1 − d, 1].

with d = 0.5, 0.4, 0.2. Depending on the value of the constant d, we get a
trapezoidal (d < 0.5) or a triangular function (d = 0.5). Finally, the window
width h ∈ {20T−0.35, 20T−0.37}. The considered frequencies λ belong to the
set {0, 0.01, . . . , 3.14}. The lag is set τ = 0. One should be aware that none
of the values in the considered set of frequencies is precisely equal to the
true frequency 0.8π ≈ 2.51327.

13



In Figure 1 we present the estimated values of |aX(λ, 0)| for different ker-
nel functions and T = 100. The number of jumps of the generated Poisson
process is 495. Independently on the values of d and h one may observe a
high peak for λ = 0. There are also some other values that may be significant
and they can be observed not only around the true frequency λ = 0.8π.
Next we present the figures only for the real part ℜaX(λ, 0) of aX(λ, 0),
since they are very similar for the imaginary part ℑaX(λ, 0). Figure 2 il-
lustrates the obtained 95% bootstrap pointwise equal-tailed confidence in-
tervals. From the pointwise confidence intervals we detect many significant
frequencies. By significant we mean λ for which the confidence interval con-
structed for ℜaX(λ, 0) or ℑaX(λ, 0) does not contain 0. For example for
triangular kernel function (d = 0.5) and h = 20T−0.37 the following frequen-
cies have been detected for the real and the imaginary part, respectively:

{0, 0.01, 0.02, 0.38, 0.54, 0.55, 0.56, 0.93, 0.94, 1.09, 1.2, 1.3, 1.31,

1.76, 1.95, 1.96, 2.05, 2.23, 2.47, 2.5, 2.51, 2.52, 2.98, 2.99, 3.0}
{0.01, 0.02, 0.03, 0.04, 0.53, 0.54, 0.57, 0.9, 0.91, 0.92, 1.17, 1.28, 1.29, 1.73, 1.74,

1.97, 1.98, 1.99, 2.21, 2.22, 2.48, 2.49, 2.5, 2.53, 2.54, 2.59, 2.6, 2.96, 2.97} .

Some of the listed frequencies are equal to or close to the true frequencies,
but most of them are just incorrectly detected. In Table 1 we summarize
the results obtained for different parameters using the pointwise confidence
intervals. To make them more clear we aggregate detected frequencies into
4 intervals: [0, 0.1], [0.11, 2.4], [2.41, 2.61], [2.62, 3.14]. The first and the third
interval contain frequencies equal or close to the true ones (0 and 0.8π). One
can easily notice that independently of the choice of d and h the numbers
of detected frequencies are similar. Most of the detected frequencies are in
the wide interval [0.11, 2.4]. One may obtain similar conclusions looking at
the corresponding results for T = 400 (see Table 2 and Figure 5). The num-
ber of jumps of the generated Poisson process in this case is 2064. Figure
4, presenting the estimated values of |aX(λ, 0)|, shows that for any set of
parameters, two high peaks are observed. Moreover, the true frequencies
belong to the regions with local maxima. As for T = 100, from bootstrap
pointwise confidence intervals one detects too many frequencies. Most of
them belong to [0.11, 2.5] and the amount decreases when d is increasing.

In the second part of our study we constructed the 95% percentile si-
multaneous equal-tailed bootstrap confidence intervals for ℜaX(λ, 0) and
ℑaX(λ, 0). The results for T = 100 and T = 400 can be found in Tables 3,
4 and Figures 3, 6, respectively. For T = 100, independently on the values
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of d and h we detect always frequency λ = 0 and some frequencies that are
in its neighbourhood. For T = 400 in each considered case we detect λ = 0
and additionally for d = 0.2 frequency λ = 2.51. Hence, only in the last case
we managed to detect correctly both true frequencies. To be more precise,
we detect frequency λ = 2.51, which is the closest one from the considered
set of frequencies to the true frequency equal to 0.8π ≈ 2.51327.

Additionally, we checked how the presented bootstrap approach is work-
ing for τ = 1. The values of |aX(λ, 1)| are definitely smaller than the corre-
sponding ones of |aX(λ, 0)|, which makes detection more difficult. Below we
discuss the results for d = 0.2 and h = 20T−0.37. The estimated values of
|aX(λ, 1)| for T = 100 and T = 400 are presented in Figure 7. The results are
similar to those obtained for τ = 0. The main difference can be observed for
T = 400. In this case from the simultaneous confidence intervals, additional
frequencies were detected. Many of them belong to the neighbourhoods of
both true frequencies (see Table 5) but some are incorrectly detected.

d = 0.5 d = 0.4 d = 0.2

λ h1 h2 h1 h2 h1 h2
[0, 0.1] 3 3 3 3 3 3

4 4 4 3 3 3

[0.11, 2.40] 19 15 17 14 22 19
18 16 17 17 15 16

[2.41, 2.61] 4 4 4 4 4 4
6 7 7 7 7 7

[2.62, 3.14] 3 3 3 3 3 3
1 2 2 1 1 3

Table 1: Number of detected frequencies for sample size T = 100, b =
⌊
√
T ⌋ = 10, h1 = 20T−0.35 and h2 = 20T−0.37. For each specified range

of frequencies, each specified values of constant d and window width h,
first and second row contain the number of frequencies detected from the
95% bootstrap pointwise equal-tailed confidence intervals for ℜaX(λ, 0) and
ℑaX(λ, 0), respectively.
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d = 0.5 d = 0.4 d = 0.2

λ h1 h2 h1 h2 h1 h2
[0, 0.1] 1 1 1 1 1 1

1 1 1 1 1 1

[0.11, 2.40] 14 11 14 14 25 19
14 11 17 15 22 26

[2.41, 2.61] 1 1 1 1 1 2
3 3 3 3 3 4

[2.62, 3.14] 1 1 2 1 4 1
1 1 1 0 1 2

Table 2: Number of detected frequencies for sample size T = 400, b =
⌊
√
T ⌋ = 20, h1 = 20T−0.35 and h2 = 20T−0.37. For each specified range

of frequencies, each specified values of constant d and window width h,
first and second row contain the number of frequencies detected from the
95% bootstrap pointwise equal-tailed confidence intervals for ℜaX(λ, 0) and
ℑaX(λ, 0), respectively.

d = 0.5 d = 0.4 d = 0.2

h1 h2 h1 h2 h1 h2
0.00 0.00 0.00 0.00 0.00 0.00
0.01 0.01 0.01 0.01 0.01 0.01
0.02 0.02 0.02 0.02 0.02 0.02
0.03 0.03 0.03 0.03 0.03 0.03

Table 3: Frequencies detected from the 95% bootstrap simultaneous equal-
tailed confidence intervals for ℜaX(λ, 0) and ℑaX(λ, 0) for sample size T =
100, b = 10, h1 = 20T−0.35, h2 = 20T−0.37 and specified values of constant
d.

d = 0.5 d = 0.4 d = 0.2

h1 h2 h1 h2 h1 h2
0.00 0.00 0.00 0.00 0.00 0.00

2.51 2.51

Table 4: Frequencies detected from the 95% bootstrap simultaneous equal-
tailed confidence intervals for ℜaX(λ, 0) and ℑaX(λ, 0) for sample size T =
400, b = 20, h1 = 20T−0.35, h2 = 20T−0.37 and specified values of constant
d.
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Figure 1: Estimated values of |aX(λ, 0)| for λ ∈ {0, 0.01, . . . , 3.14} and sample size
T = 100, b = 10. Results for h = 20T−0.35 and h = 20T−0.37 in the left and the right
column, respectively. From top results for d = 0.5, 0.4, 0.2, respectively.
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Figure 2: Estimated values of ℜaX(λ, 0) for λ ∈ {0, 0.01, . . . , 3.14} and sample size T =
100, b = 10 (black line) together with the 95% bootstrap pointwise equal-tailed confidence
intervals (gray line) constructed with h = 20T−0.35 (left column) and h = 20T−0.37 (right
column). From top results for d = 0.5, 0.4, 0.2, respectively.
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Figure 3: Estimated values of ℜaX(λ, 0) for λ ∈ {0, 0.01, . . . , 3.14} and sample size
T = 100, b = 10 (black line) together with the 95% bootstrap simultaneous equal-tailed
confidence intervals (gray line) constructed with h = 20T−0.35 (left column) and h =
20T−0.37 (right column). From top results for d = 0.5, 0.4, 0.2, respectively.
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Figure 4: Estimated values of |aX(λ, 0)| for λ ∈ {0, 0.01, . . . , 3.14} and sample size
T = 400, b = 20. Results for h = 20T−0.35 (left column) and h = 20T−0.37 (right
column). From top results for d = 0.5, 0.4, 0.2, respectively.
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Figure 5: Estimated values of ℜaX(λ, 0) for λ ∈ {0, 0.01, . . . , 3.14} and sample size T =
400, b = 20 (black line) together with the 95% bootstrap pointwise equal-tailed confidence
intervals (gray line) constructed with h = 20T−0.35 (left column) and h = 20T−0.37 (right
column). From top results for d = 0.5, 0.4, 0.2, respectively.
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Figure 6: Estimated values of ℜaX(λ, 0) for λ ∈ {0, 0.01, . . . , 3.14} and sample size
T = 400, b = 20 (black line) together with the 95% bootstrap simultaneous equal-tailed
confidence intervals (gray line) constructed with h = 20T−0.35 (left column) and h =
20T−0.37 (right column). From top results for d = 0.5, 0.4, 0.2, respectively.
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Figure 7: Estimated values of |aX(λ, 1)| for λ ∈ {0, 0.01, . . . , 3.14}, sample size
T = 100 (left panel) and T = 400 (right panel), b = ⌊T 1/2⌋, h = 20T−0.37 and d = 0.2.
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T = 100 T = 400

0.00 0.00
0.01 0.01
0.02 0.02
0.03 0.03

0.07
0.33
0.65
0.72
0.93
2.51
2.52
2.92
2.94

Table 5: Frequencies detected from 95% bootstrap simultaneous equal-
tailed confidence intervals for ℜaX(λ, 1) and ℑaX(λ, 1) taking b = ⌊

√
T ⌋,

h = 20T−0.37 and d = 0.2.

6 Appendix

6.1 Asymptotic results for âT

Proofs of Propositions 3.1 and 3.2 ProofPropositions 3.1 and 3.2 are
particular cases of Lemmas 6.2 and 6.3, hence we refer the reader to the
proofs of these lemmas which are below.

Proof of Proposition 3.3 ProofTo establish the almost sure convergence
of âT we apply the usual technique based on the Borel-Cantelli lemma and
Markov inequality (Bienaymé-Chebychev inequality) to prove the almost
sure convergence for the sequence {ânx} for some x > 1 as n → ∞. Then
we establish the almost sure convergence to 0 of sup{|âT − ânx | : nx ≤ T <
(n+ 1)x}.

Indeed, from the rate of convergence in quadratic mean obtained in
Proposition 3.2 we easily obtain that the sequence {ânx} converges almost
surely to aX(λ, τ) as n→ ∞ when x(1−κ) > 1. Next, for nx ≤ T ≤ (n+1)x,
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we have

|ânx − âT |

≤
∣∣∣∣ 1

β2nx
− 1

β2(n+ 1)x

∣∣∣∣ ∫ nx

0

∫ nx

0
whnx (τ − t+ s)|X(s)X(t)| dN (2)(s, t)

+
1

β2nx

(∫ (n+1)x

0

∫ (n+1)x

nx

+

∫ (n+1)x

nx

∫ nx

0

)
whnx (τ − t+ s)|X(s)X(t)| dN (2)(s, t)

+
1

β2nx

∫ (n+1)x

0

∫ (n+1)x

0
|whnx (τ − t+ s) − whT

(τ − t+ s)| |X(s)X(t)| dN (2)(s, t).

Moreover∣∣∣∣ 1

nx
− 1

(n+ 1)x

∣∣∣∣ ≤ 1

nx

(
1 −

(
n

n+ 1

)x)
=

1

nx

(
x

n
+ o

(
1

n

))
.

Then since ∥X∥44 := supt E
{
X(t)4

}
< ∞, the independence between the

APC process X and the Poisson process N means that

E

{(∣∣∣∣ 1

nx
− 1

(n+ 1)x

∣∣∣∣ ∫ nx

0

∫ nx

0
whnx (τ − t+ s)|X(s)X(t)| dN (2)(s, t)

)2
}

≤ c

n2(1+x)

⌈nx⌉∑
k1=0

⌈nx⌉∑
k2=0

∫∫
Kk1

∫∫
Kk2

whnx (τ − t1 + s1)whnx (τ − t2 + s2) ×

×E
{
dN (2)(s1, t1)dN

(2)(s2, t2)
}

where Kki = (ki, ki + 1] × R, i = 1, 2. By Lemma 6.11 the right-hand side
of the last inequality is estimated by

c

n2(1+x)

⌈nx⌉∑
k1=0

⌈nx⌉∑
k2=0

(
1 +

1

hnx
I{|k1−k2|≤hnx+|τ |+1}

)
≤ c

n2

(
1 +

2

nx

)(
1 +

2

nx
+

2(2 + |τ |)
nxhnx

)
= O

(
1

n2

)
.

The last order of magnitude is due to the fact that nxhnx → ∞ as n →
∞. Here and in the following, c denotes a positive constant whose value
may differ from one expression to another. We deduce the almost sure
convergence to 0 of∣∣∣∣ 1

nx
− 1

(n+ 1)x

∣∣∣∣ ∫ nx

0

∫ nx

0
whnx (τ − t+ s)|X(s)X(t)| dN (2)(s, t).
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Following a similar method we easily get the almost sure convergence to 0
of

1

β2nx

(∫ (n+1)x

0

∫ (n+1)x

nx

+

∫ (n+1)x

nx

∫ nx

0

)
whnx (τ − t+ s)|X(s)X(t)| dN (2)(s, t).

Finally since the kernel function is symmetric on R, non-increasing on (0,∞),
and from the monotony properties of bT and hT , we have∫ (n+1)x

0

∫ (n+1)x

0
|whnx (τ − t+ s) − whT

(τ − t+ s)| |X(s)X(t)| dN (2)(s, t)

≤
∫ (n+1)x

0

∫ (n+1)x

0

(
1

h(n+1)x
− 1

hnx

)
w

(
τ − t+ s

hnx

)
|X(s)X(t)| dN (2)(s, t)

+

∫ (n+1)x

0

∫ (n+1)x

0

1

hnx

(
w

(
τ − t+ s

hnx

)
− w

(
τ − t+ s

h(n+1)x

))
|X(s)X(t)| dN (2)(s, t).

As previously we readily obtain the almost sure convergence to 0 of the two
terms of the right-hand side of the last inequality. This achieves the proof
of Proposition 3.3.

In the proof we obtained the different rates of convergence and taking
them under consideration one may state rate of almost sure convergence of
âT

Below we provide the limit covariances between the estimators âT cal-
culated for different frequencies and lags. For simplicity of presentation we
present the limit covariances for the estimators considered as complex ran-
dom variables. The reader can readily deduce the covariance matrices for
the estimators considered as bidimensional random vectors.

Proposition 6.1 Assume conditions (AP2), (AP4) and (M) are fulfilled.
If τ = τ1 = ±τ2, then

lim
T→∞

Thβ4 cov {âT (λ1, τ), âT (λ2,±τ)} = Γ±(λ1, λ2; τ).
If |τ1| ≠ |τ2|, then

lim
T→∞

Tβ4 cov {âT (λ1, τ1), âT (λ2, τ2)} = Γ
(
λ1, λ2; τ1, τ2

)
.

Here

Γ+
(
λ1, λ2; τ

)
:= a4(λ1 − λ2; τ, 0, τ) + a(2)(λ1 − λ2; τ, τ),

Γ−(λ1, λ2; τ) :=
(
a4(λ1 − λ2; τ, 0, τ) + a(2)(λ1 − λ2; τ, τ)

)
eiλ2τ ,
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Γ
(
λ1, λ2; τ1, τ2

)
:= C

(
λ1, λ2; τ1, τ2

)
+ a4(λ1 − λ2; τ1, 0, τ2)

+ a(2)(λ1−λ2; τ1, τ2)+
(
a4(λ1−λ2; τ1, 0,−τ2)+a(2)(λ1−λ2; τ1,−τ2)

)
e−iλ2τ2

+
(
a4(λ1 − λ2;−τ10, τ2) + a(2)(λ1 − λ2;−τ1, τ2)

)
eiλ1τ1 +

+
(
a4(λ1 − λ2;−τ1, 0,−τ2) + a(2)(λ1 − λ2;−τ1,−τ2)

)
ei(λ1τ1−λ2τ2),

C
(
λ1, λ2; τ1, τ2

)
:= 2

∫
R
a4
(
λ1 − λ2; τ2, s, s+ τ1

)
e−iλ1s ds

= 2

∫
R
a4
(
λ1 − λ2; τ1, s, s+ τ2

)
eiλ2s ds,

a4(λ; τ1, τ2, τ3) := lim
T→∞

1

T

∫ T

0
KX(u, u+ τ1;u+ τ2, u+ τ3) e

−iλu du,

KX(s1, t1; s2, t2) := cov {X(s1)X(t1), X(s2)X(t2)}

and

a(2)(λ; τ1, τ2) := lim
T→∞

1

T

∫ T

0
KX(t, t+ τ1)KX(t, t+ τ2) e

−iλtdt.

Proof See Lemma 6.4

6.2 Results for the estimators defined on the blocks of length
b

In the next lemma we study the bias of the estimators constructed on the
blocks of length b, i.e. âk,b (see Section 3.2).

Lemma 6.2 Let {X(t), t ≥ 0} be an APC process and suppose that condi-
tion (AP2) is fulfilled, and h→ 0 as b→ ∞. Then for all λ, τ ∈ R

lim
b→∞

E
{
âk,b
}

= aX(λ, τ).

uniformly with respect to k ∈ N. Furthermore, if in addition conditions
(CS(λ, τ)) and (Lip) hold, and h << b−1/3 as b→ ∞, then

lim
T→∞

sup
k

√
bh
∣∣E {âk,b(τ)} − aX(λ, τ)

∣∣ = 0.
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ProofLet k ≥ 0 be fixed. Notice that

E
{
N (2)(s+ ds, s+ t+ dt)

}
= E

{
I{t ̸=0}N(s+ ds)N(s+ t+ dt)

}
= β2dsdt.

Then

E {âk,b} =
1

β2b

∫ k+b

k

∫ k+b

k
wh(τ − t+ s)E {X(s)X(t)} e−iλs E

{
dN (2)(s, t)

}
=

1

β2b

∫ b

−b

∫
I(b,t)

wh(τ − t)E {X(k + s)X(k + s+ t)} e−iλ(k+s)

×E
{
N (2)(k + s+ ds, k + s+ t+ dt)

}
=

∫ b

−b
wh(τ − t)

(
1

b

∫
I(b,t)

E {X(k + s)X(k + s+ t)} e−iλ(k+s) ds

)
dt

=

∫ τ+b

τ−b
wh(u)

(
1

b

∫
I(b,τ−u)

E {X(k + s)X(k + s+ τ − u)} e−iλ(k+s) ds

)
du.

Since the support of the weight function w(·) is contained in [−1, 1] we get

E {âk,b} =

∫ 1

−1
w(u)

(
1

b

∫
I(b,τ−uh)

E{X(k + s)X(k + s+ τ − uh)}e−iλ(k+s)ds

)
du

=

∫ 1

−1
w(u)

(
1

b

∫
I(b,τ−uh)

(
E {X(k + s)X(k + s+ τ − uh)}

−E {X(k + s)X(k + s+ τ)}
)
e−iλ(k+s)ds

)
du+

∫ 1

−1
w(u)

(
1 − |τ − uh|

b

)

×

(
1

b− |τ − uh|

∫
I(b,τ−uh)

E {X(k + s)X(k + s+ τ)} e−iλ(k+s) ds

)
du.

Assumption (AP2) with the Lebesgue dominated convergence theorem means
that

lim
b→∞

E {âk,b} =

(∫ 1

−1
w(u) du

)
ax(λ, τ) = aX(λ, τ)

uniformly with respect to k ∈ R. Moreover, under (CS(λ, τ)) and (Lip) we
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obtain the rate of convergence uniform with respect to k. Indeed

E {âk,b} − aX(λ, τ)

=

∫ 1

−1
w(u)

(
1

b

∫
I(b,τ−uh)

E {X(k + s)X(k + s+ τ − uh)}e−iλ(k+s)ds− aX(λ, τ)

)
du

=

∫ 1

−1
w(u)

(
1

b

∫
I(b,τ−uh)

(
E {X(k + s)X(k + s+ τ − uh)}

−E {X(k + s)X(k + s+ τ)}
)
e−iλ(k+s) ds

)
du+

∫ 1

−1
w(u)

(
1 − |τ − uh|

b

)

×

(
1

b− |τ − uh|

∫
I(b,τ−uh)

E {X(k + s)X(k + s+ τ)}e−iλ(k+s)ds− aX(λ, τ)

)
du

−
(∫ 1

−1
w(u)

|τ − uh|
b

du

)
aX(λ, τ).

From the almost periodicity of the shifted covariance function, we have∣∣∣∣∣ 1

b− |τ − uh|

∫
I(b,τ−uh)

E {X(k + s)X(k + s+ τ)} e−iλ(k+s) ds− aX(λ, τ)

∣∣∣∣∣
≤ 1

b− |τ − uh|
∑
λ′ ̸=λ

|aX(λ′, τ)|
|λ′ − λ|

.

Thus,∣∣E {âk,b} − aX(λ, τ)
∣∣

≤ sup
s

∫ 1

−1
w(u)

∣∣E {X(s)X(s+ τ − uh)} − E {X(s)X(s+ τ)}
∣∣ du

+
1

b

∑
λ′ ̸=λ

|aX(λ′, τ)|
|λ′ − λ|

+
1

b

(∫ 1

−1
w(u)|τ − uh| du

) ∣∣aX(λ, τ)
∣∣ ≤ c (h+ b−1).

Hence, if h << b−1/3 then
√
bh supk |E {âk,b} − aX(λ, τ)| = o(1).

Below we present a few additional results concerning the consistency and
the rate of convergence of the estimators defined on the blocks.

Lemma 6.3 Let {X(t), t ≥ 0} be an APC process which satisfies condi-
tions (AP2) and (M). Assume also that b−1 << h << 1 as b→ ∞. Then for
all λ, τ ∈ R

lim
b→∞

sup
k

E
{∣∣âk,b(λ, τ) − aX(λ, τ)

∣∣2} = 0.

28



If, additionally, conditions (CS(λ, τ)) and (Lip) are fulfilled, and if h <<
b−1/3, then for all λ, τ ∈ R

lim sup
b→∞

sup
k
bhE

{∣∣âk,b(λ, τ) − aX(λ, τ)
∣∣2} <∞.

ProofThe covariance mixing inequalities established in Lemma 6.10, means
that

∣∣var {âk,b(τ)}
∣∣ ≤ c

b2

(
1 +

1

h

)(
h+ |τ |

)2
+
c(2|τ | + 3)

bh
+
c

b

b−1∑
s=0

αX(s) (6)

when the process X is bounded. In the case when the process X is not
bounded, but supt E

{
|X(t)|4+δ

}
< ∞, in the relation above αX(s) will be

replaced by αX(s)δ/(4+δ). Finally, to finish the proof Lemma 6.2 needs to
be used.

Similarly to âT case (Proposition 3.3) the almost sure convergence of âk,b
can be obtained. The technical details are left to the reader.

Next, we compute the limit covariances between the estimators âk,b(λ, τ)
calculated for different frequencies λ and lags τ .

Lemma 6.4 Assume that conditions (AP2), (AP4) and (M) are fulfilled,
and h→ 0 as b→ ∞.
If τ = τ1 = ±τ2 then

lim
b→∞

sup
k

∣∣bhβ4 cov {âk,b(λ1, τ), âk,b(λ2,±τ)} − Γ±(λ1, λ2; τ)∣∣ = 0.

If |τ1| ≠ |τ2| then

lim
b→∞

sup
k≥0

∣∣bβ4 cov {âk,b(λ1, τ1), âk,b(λ2, τ2)} − Γ
(
λ1, λ2; τ1, τ2

)∣∣ = 0.

ProofFrom the independence of the process {X(t) : t ∈ R} and the Poisson
process {N(t) : t > 0} we have that

bβ4cov {âk,b(λ1, τ1), âk,b(λ2, τ2)}

=
1

b

∫ b

0

∫ b

0

∫ b

0

∫ b

0
wh(τ1 − t1 + s1)wh(τ2 − t2 + s2) e

−iλ1(k+s1)+iλ2(k+s2)

× cov {Z(k + s1 + ds1, k + t1 + dt1), Z(k + s2 + ds2, k + t2 + dt2)} , (7)
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where
dZ(s, t) = Z(s+ ds, t+ dt) := X(s)X(t) dN (2)(s, t).

Note that

cov {Z(k + s1 + ds1, k + t1 + dt1), Z(k + s2 + ds2, k + t2 + dt2)} =

= β4KX(k + s1, k + t1; k + s2, k + t2) ds1dt1ds2dt2

+ E {X(k + s1)X(k + t1)X(k + s2)X(k + t2)} ×
{
β3δ{s1=s2}(ds1)dt1ds2dt2

+β3δ{s1=t2}(ds1)dt1ds2dt2 + β3δ{t1=s2}(dt1)ds1ds2dt2

+β3δ{t1=t2}(dt1)ds1ds2dt2 + β2δ{s1=s2}(ds1)ds2δ{t1=t2}(dt1)dt2

+β2δ{s1=t2}(ds1)dt2δ{t1=s2}(dt1)ds2

}
.

Since the reasoning for all summands on the right hand side of equality (7)
is quite similar and requires the same techniques, we study in detail only two
of them, which illustrate how we obtain the two parts of the proposition:
the one containing expression δ{s1=s2}(ds1)dt1ds2dt2 and the one containing
δ{s1=s2}(ds1)δ{t1=t2}(dt1)ds2dt2. In particular, analyzing the last term pro-
vides the information why the factor h appears when τ1 = τ2. Recall that
h→ 0 as b→ ∞.

(i) The summand containing δ{s1=s2}(ds1)dt1ds2dt2 is equal to

1

b

∫ b

0

∫ b

0

∫ b

0

∫ b

0
wh(τ1 − t1 + s1)wh(τ2 − t2 + s2) e

−iλ1(k+s1)+iλ2(k+s2)

×E {X(k + s1)X(k + t1)X(k + s2)X(k + t2)} δ{s1=s2}(ds1)dt1ds2dt2

=
1

b

∫ b

0

∫ b

0

∫ b

0
wh(τ1 − t1 + s)wh(τ2 − t2 + s) e−i(λ1−λ2)(k+s)

×KX(k + s, k + t1; k + s, k + t2) dsdt1dt2

+
1

b

∫ b

0

∫ b

0

∫ b

0
wh(τ1 − t1 + s)wh(τ2 − t2 + s) e−i(λ1−λ2)(k+s)

×E {X(k + s)X(k + t1)}E {X(k + s)X(k + t2)} dsdt1dt2.

Changing the variables to u1 := t1 − s1 and u2 := t2 − s2, the first term of
the right-hand side is equal to∫ b

−b

∫ b

−b
wh(τ1 − u1)wh(τ2 − u2)

×

(
1

b

∫
J(b,u1,u2)

KX(k + s, k + s+ u1; k + s, k + s+ u2) e
−i(λ1−λ2)(k+s) ds

)
du1du2
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and converges to a4(λ1 − λ2; τ1, 0, τ2) as T → ∞. Here J(b, u1, u2) := {s :
max{0,−u1,−u2} ≤ s ≤ min{b, b − u1, b − u2}}. Additionally, the second
term coincides with∫ b

−b

∫ b

−b
wh(τ1 − u1)wh(τ2 − u2)

(
1

b

∫
J(b,u1,u2)

E {X(k + s)X(k + s+ u1)}

×E {X(k + s)X(k + s+ u2)} e−i(λ1−λ2)(k+s) ds

)
du1du2,

which converges to∑
λ

aX(λ, τ1) aX(λ− λ1 + λ2, τ2) =
∑
λ

aX(λ, τ1) aX(λ1 − λ2 − λ, τ2).

(ii) The summand of equality (7) containing δ{s1=s2}(ds1)δ{t1=t2}(dt1)ds2dt2
is equal to

1

b

∫ b

0

∫ b

0
wh(τ1−t+s)wh(τ2−t+s)E

{
X(k + s)X(k + t)2

}
e−i(λ1−λ2)(k+s)dsdt.

Taking u := t− s, we get∫ b

−b
wh(τ1 − u)wh(τ2 − u)

×

(
1

b

∫
I(b,u)

E
{
X(k + s)2X(k + s+ u)2

}
e−i(λ1−λ2)(k+s) ds

)
du,

which converges to 0 when τ1 ̸= τ2. Indeed it is null for 2h ≤ |τ1 − τ2| since
the support of w(·) is contained in [−1, 1], and h → 0 as b → ∞. When
τ = τ1 = τ2, with the change of variable t := (τ − u)/h, the summand
coincides with

1

h

∫ (τ+b)/h

(τ−b)/h
w(t)2

×

(
1

b

∫
I(b,τ−th)

E
{
X(k + s)2X(k + s+ τ − th)2

}
e−i(λ1−λ2)(k+s) ds

)
dt.

From conditions (AP2) and (AP4) this term multiplied by the factor h con-
verges to∫ 1

−1
w(t)2dt

(
a4(λ1 − λ2; τ, 0, τ) +

∑
λ

aX(λ, τ) aX(λ− λ1 + λ2, τ)

)

=

∫ 1

−1
w(t)2dt

(
a4(λ1 − λ2; τ, 0, τ)+,

∑
λ

aX(λ, τ1) aX(λ1 − λ2 − λ, τ)

)
.
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This achieves the proof of Lemma 6.4.

6.3 Proof of Theorems 3.4 and 4.1

The proof of Theorem 4.1 is a direct consequence of the Cramér-Wold device
and the reasoning presented in the proof of the one-dimensional case in
Theorem 3.4. Thus, we skip the technical details and we only present the
proof for the one-dimensional case. Moreover to get the desired convergence
to the bidimensional normal distribution in Theorem 3.4, it is enough to
prove the corresponding result for the estimator âk,b.

Lemma 6.5 Under assumptions of Theorem 3.4,
√
bh
(
âk,b(λ, τ)−aX(λ, τ)

)
converges to a bidimensional Gaussian distribution as b→ ∞ provided that
b−1 << h << b−1/3.

The limit covariance matrix may be deduced from Lemma 6.4. ProofNote
that

√
bh
(
âk,b − aX(λ, τ)

)
=

√
bh
(
âk,b(τ) − E{âk,b}

)
+
√
bh
(
E{âk,b} − aX(λ, τ)

)
.

Lemma 6.2 means that the second term of the right-hand side converges to
0. The convergence in law of the first term is a consequence of Lemma 6.4
and the following central limit result.

Proposition 6.6 Let {X(t), t ≥ 0} be a real-valued APC process and {N(t), t ≥
0} be a Poisson point process with intensity β, which is independent on
{X(t) : t ≥ 0} and g : R → R be an almost periodic function. Let τ ∈ R be
fixed. Denote

ST :=

∫ T

0

∫ T

0
wh(τ − t+ s)g(s)X(s)X(t) dN (2)(s, t)

and σ2T := var {ST }. Assume that that the mixing condition (M) is satisfied.
Then lim supT T

−1hσ2T <∞ as h→ 0 and T → ∞.
If additionally lim infT T

−1hσ2T > 0, then

σ−1
T

(
ST − E{ST }

) L−→ N (0, 1)

as h→ 0 and T → ∞ with Th→ ∞.
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ProofThe idea of the proof is based on the Stein Lemma (see relation (8))
applied in a similar way to the central limit theorem in [4] (see also Theorem
3.2 in [17]). To simplify the presentation we consider the following random
variable

ST :=

∫ T

0

∫
R
wh(τ − t+ s)g(s)X(s)X(t) dN (2)(s, t)

and we establish its asymptotic equivalence with ST . Note that

ST − ST =

∫ 0∨(−τ+h)

0

∫ 0

τ+s−h
wh(τ − t+ s)g(s)X(s)X(t) dN (2)(s, t)

+

∫ T

T∧(T−τ−h)

∫ τ+s+h

T
wh(τ − t+ s)g(s)X(s)X(t) dN (2)(s, t).

From Lemma 6.11 we get

E

(∫ −τ+h

0

∫ 0

τ+s−h
wh(τ − t+ s)g(s)X(s)X(t) dN (2)(s, t)

)2

≤c ∥X∥44(|τ | + h)2(1 + h−1)

for h > τ and

E

(∫ T

T−τ−h

∫ τ+s+h

T
wh(τ − t+ s)g(s)X(s)X(t) dN (2)(s, t)

)2

≤ c ∥X∥44(|τ | + h)2(1 + h−1)

for T − τ −h < T , i.e. h > −τ . Here and thereafter ∥X∥44 := supt E{X(t)4}.
Hence

lim
T→∞

T−1hE
{

(ST − ST )2
}

= 0

and as a consequence

lim
T→∞

T−1h(E{ST } − E{ST })2 and lim
T→∞

T−1h(σ2T − ς2T ) = 0,

where ς2T := var{ST }. Thus, to prove the convergence in law of σ−1
T (ST −

E{ST }) we can replace ST by ST , thus we are going to study ς−1
T (ST −

E{ST }).

For simplicity of notation, let T = n + 1, 0 < h = hn < 1 Kk :=
]k, k + 1] × R, k ∈ Dn := {0, . . . , n} ∩ [−τ + 1, n − τ − 1]. The random
variable Yk is defined as

Yk :=

∫∫
Kk

wh(τ − t+ s)g(s)X(s)X(t) dN (2)(s, t).
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To simplify the presentation put ατ (k) := αX(k−2|τ |−3) when k ≥ 2|τ |+3,
and ατ (k) = c when k ≤ 2|τ | + 3, for some c ≥ 1.

1) Boundedness of the variance ς2T . The covariance mixing inequalities in
Lemma 6.10 and the fact that the function g(·) is bounded means that

T−1h ς2T ≤ c

T
(h+ 1)(h+ |τ |)2 + c(2|τ | + 3) + ch

T−1∑
s=0

αX(s)

when the process X is bounded. When it is not bounded, we replace αX(s)
by αX(s)δ/(4+δ). Then the mixing hypothesis (M) implies that

lim sup
T→∞

T−1h ς2T <∞.

2) Central limit theorem in the case of a bounded process. Here we assume
that the process {X(t), t ≥ 0} is bounded : ∥X∥∞ := supt ess sup |X(t)| <
∞.

(i) Let (rn)n ⊂ N be such that 1 << r2n << n << αX(rn)−2 as n → ∞. Such
sequence (rn)n exists. Indeed, since the function αX(·) is non-increasing and
integrable in [0,∞), we have that αX(t) << t−1 as t → ∞. Hence, we can
define

rn := min{r ∈ N : r ≤ n ≤ rαX(r)−1},
which has the required behaviour. Moreover we can assume that rn ≥
2|τ | + 3.

(ii) Let us define

Sk,n :=
∑

l∈Dn,|l−k|≤rn

Yl, γn :=
∑
k∈Dn

cov {Yk, Sk,n} ,

S̄n := γ
−1/2
h,n Sn, S̄k,n := γ−1/2

n Sk,n.

Thus,

ς2n := var{Sn} =
∑
k∈Dn

cov {Yk, Sn} = γn +
∑
k∈Dn

cov {Yk, Sn − Sk,n} .

Since 0 < h < 1 and rn > 2|τ | + 3 ≥ 2h + 2|τ | + 1, from the mixing
covariance inequality (20) we get that∣∣∣∣∣∣

∑
k∈Dn

cov{Yk, Sn − Sk,n}

∣∣∣∣∣∣ ≤
∑ ∑
k1,k2∈Dn,|k1−k2|>rn

∣∣cov{Yk1 ,Yk2}
∣∣

≤ c ∥X∥4∞ n
∑
k>rn

ατ (k).
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We used the fact that the function g(·) is almost periodic, so bounded. Since
rn → ∞ and

∑
k ατ (k) <∞, this expression is o(n) as n→ ∞, and we have

ς2n = γn + o(n).
When 0 < lim infn n

−1h ς2n ≤ lim supn n
−1h ς2n < ∞ the previous com-

putations imply that 0 < lim infn n
−1hγn ≤ lim supn n

−1hγn < ∞ and
ς2n = γn(1 + o(1)).

(iii) Asymptotic normality of S̄n. As 0 < lim infn n
−1hγn ≤ lim supn n

−1hγn <

∞, we have that supn var{S̄n} = supn E
{(˜̄Sn

)2}
< ∞ and the asymptotic

normality will follow from the Stein Lemma. We show that

lim
n−→∞

E
{

(iλ− ˜̄Sn)eiλ
˜̄Sn

}
= 0. (8)

For that purpose we use the following decomposition

(iλ− ˜̄Sn)eiλ
˜̄Sn = A1 −A2 −A3,

where

A1 := iλ eiλ
˜̄Sn

1 − γ−1
n

∑
k∈Dn

ỸkS̃k,n

 ,

A2 := γ
− 1

2
n eiλ

˜̄Sn
∑
k∈Dn

Ỹk

(
1 − iλ˜̄Sk,n − e−iλ˜̄Sk,n

)
,

A3 := γ
− 1

2
n

∑
k∈Dn

Ỹke
iλ(˜̄Sn−˜̄Sk,n).

Below we present the reasoning only for A1. The two other cases, A2 and
A3, are similar thus we skip the technical details. We have that

E
{
|A1|2

}
≤ λ2γ−2

h,n

∑ ∑
k1,k2,l1,l2∈Dn,

∑ ∑
|k1−l1|,|k2−l2|≤rn

∣∣cov
{
Ỹk1Ỹl1 , Ỹk2Ỹl2

}∣∣.
Using the covariance inequality for bounded variables we deduce that:
– if r := |k1 − k2| − 2h − 2|τ | − 1 > 2rn, |k1 − l1| ≤ rn and |k2 − l2| ≤ rn
then by inequality (21) in Lemma 6.10,∣∣cov

{
Ỹk1Ỹl1 , Ỹk2Ỹl2

} ∣∣ ≤ c ∥X∥8∞ ατ (r)
(
1 + h−1 + h−2

)
;

– if r := min{l1, k2, l2} − k1 − 2h − 2|τ | − 1 > 0 then by inequalities (18),
(20) and (22) in Lemma 6.10∣∣cov

{
Ỹk1Ỹl1 , Ỹk2Ỹl2

}∣∣
≤
∣∣E{Ỹk1Ỹl1

}
× E

{
Ỹk2Ỹl2

}∣∣+
∣∣cov

{
Ỹk1 , Ỹl1Ỹk2Ỹl2

}∣∣
≤ c ∥X∥8∞ ατ (r) ×

(
1 + h−1

)
+ c ∥X∥8∞ ατ (r)

(
1 + h−1 + h−2

)
;

35



– in any case, by Lemma 6.11∣∣cov
{
Ỹk1Ỹl1 , Ỹk2Ỹl2

}∣∣
≤ c ∥X∥8∞

(
1 +

(
h−1 + h−2 + h−3

)
I{maxi,i′{|ki−ki′ |,|ki−li′ |}≤h+|τ |+1}

)
.

Finally, we obtain

E
{
|A1|2

}
≤ c λ2γ−2

n nr2n∥X∥8∞

( ∞∑
r=2rn+1

ατ (r − 2rn) +

2rn∑
r=1

ατ (r) + 1

)
×
(
1 + h−1 + h−2

)
+ cλ2γ−2

n h−3∥X∥8∞(h+ |τ | + 1)4

≤ c λ2 γ−2
n nr2n∥X∥8∞

∞∑
r=0

ατ (r)
(

1 + h−1 + h−2
)

+c λ2γ−2
n h−3∥X∥8∞(h+ |τ | + 1)4

≤ c λ2 γ−2
n nr2nh

−2 + c λ2 γ−2
n h−3.

Since γ−1
n = O(n−1h) and rn = o(n1/2), we have γ−2

n nr2nh
−2 = O(n−1r2n) =

o(1) and γ−2
n h−3 = O(n−1h−1) = o(1). Moreover we know that

∑
r ατ (r) <

∞, so we deduce that |E {A1}|2 ≤ E
{
A2

1

}
= o(1) as n→ ∞.

The reasoning behind A2 and A3 is similar. In the case of A2 the following
inequality is used: |1 − ix− eix| ≤ x2 for any x ∈ R. Finally, we get

E{|A2|} ≤ cγ−3/2
n λ2∥X∥6∞n

(
rn + rnh

−1 + h−2
)
,

|E {A3}| ≤ cγ
−1/2
h,n ∥X∥∞nατ (rn).

Then we easily state the convergence to 0 of E{|A2|} and E{A3} as n→ ∞.
Hence convergence (8) is proved. This achieves the proof of the theorem in
the case of a bounded APC process X.

3) In the last step of the proof we assume that the process {X(t), t ≥ 0} is
not necessarily bounded and we show that the problem can be reduced to
the bounded case following the well-known truncation method (see e.g. [21]).
(i) Truncation. Let C > 0 be fixed. Define

f (C)(x) := x if |x| ≤ C, f (C)(x) := 0 otherwise.

Denote V(C)(s, t) := f (C)(X(s))f (C)(X(t)) and V(Cc)(s, t) := V(s, t)−V(C)(s, t)
and

Y(C)
k :=

∫∫
Kk

wh(τ − t+ s)g(s)V(C)(s, t) dN (2)(s, t),

Y(Cc)
k :=

∫∫
Kk

wh(τ − t+ s)g(s)VCc(s, t) dN (2)(s, t).
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Notice that the process X(C) := {X(C)(t) : t ≥ 0} is bounded by C. From
inequality (18) we deduce that∣∣cov{Y(C)

k1
,Y(C)

k2
}
∣∣ ≤ c ∥X(C)∥4∞ ×

(
1 + h−1I{|k1−k2|≤h+|τ |+1}

)
≤ cC4 ×

(
1 + h−1I{|k1−k2|≤h+|τ |+1}

)
.

Moreover, note that∣∣V(Cc)(s, t)
∣∣ =

∣∣X(s)X(t) −X(C)(s)X(C)(t)
∣∣ =

= |X(s)X(t)|
(
1 − I{|X(s)|≤C}I{|X(t)≤C}

)
≤ |X(s)X(t)| × |X(s)X(t)|δ/4

Cδ/2
≤ C−δ/2|X(s)X(t)|1+δ/4.

Hence ∥∥V(Cc)(s, t)
∥∥2
2
≤ C−δ

∥∥X(s)X(t)
∥∥2+δ/2

2+δ/2
≤ C−δ∥X∥4+δ

4+δ

and finally∣∣cov{Y(Cc)
k1

,Y(Cc)
k2

}
∣∣ ≤ cC−δ∥X∥4+δ

4+δ ×
(
1 + h−1I{|k1−k2|≤h+|τ |+1}

)
.

Here and thereafter ∥X∥4+δ
4+δ := supt E

{
|X(t)|4+δ

}
. Moreover, from inequal-

ity (20) we have that∣∣cov{Y(C)
k1

,Y(C)
k2

}
∣∣ ≤ cατ (|k1 − k2|)∥X(C)∥4∞ ≤ cατ (|k1 − k2|)C4.

Additionally, from inequality (19),∣∣cov{Y(Cc)
k1

,Y(Cc)
k2

}
∣∣ ≤ cατ (|k1 − k2|)

δ
4+δ ∥X∥44+δ,

for |k1 − k2| ≥ 2h+ 2|τ | + 1.

(ii) Since Yk = Y(C)
k + Y(Cc)

k , we can decompose Sn as follows

Sn = S(C)
n + S(Cc)

n :=
∑
k∈Dn

Y(C)
k +

∑
j∈Dn

Y(Cc)
k .

Following the technique of truncation (see proof of Theorem 17.2.2 in [21])
we get

var
{
S(Cc)
n

}
=

∑
k1,k2∈Dn

cov
{
Y(Cc)
k1

,Y(Cc)
k2

}
=
∑
j∈Z

∑
k∈Dn(j)

cov
{
Y(Cc)
k ,Y(Cc)

j+k

}
=
∑
|j|<A

∑
k∈Dn(j)

cov
{
Y(Cc)
k ,Y(Cc)

j+k

}
+
∑
|j|≥A

∑
k∈Dn(j)

cov
{
Y(Cc)
k ,Y(Cc)

j+k

}
,
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where Dn(j) := {k ∈ Dn : k + j ∈ Dn} and A is any integer such that
A ≥ 2h + 2|τ | + 1. Note that cardDn(j) ≤ n. Then, for any integer
A ≥ 2h+ 2|τ | + 1

var
{
S(Cc)
n

}
≤ c
∑
|j|<A

n∥X∥44
(
1 + h−1I{|j|≤h+|τ |+1}

)
+ c
∑
|j|≥A

nατ (|j|)δ/(4+δ)∥X∥44+δ

≤ cn

hA+ (h+ |τ | + 1)

h
C−δ∥X∥4+δ

4+δ +

∞∑
j=A

ατ (j)δ/(4+δ)∥X∥44+δ

 .

Taking A = ⌊Cδ⌋, and since h = hn << 1 we obtain

lim
C→∞

sup
n
n−1h var{S(Cc)

n } = 0.

On the other hand, we have that∣∣var
{
S(C)
n + S(Cc)

n

}1/2
− var

{
S(C)
n

}1/2 ∣∣ ≤ var
{
S(Cc)
n

}1/2
.

Since supn n
−1h var

{
S
(Cc)
n

}
→ 0 as C → ∞ we deduce that

lim
C→∞

sup
n
n−1h

∣∣∣var
{
S(C)
n + S(Cc)

n

}
− var

{
S(C)
n

}∣∣∣ = 0.

Thus, if in addition

s2 := lim inf
n

n−1h ς2T = lim inf
n

n−1h var
{
S(C)
n + S(Cc)

n

}
> 0

then there exists C1 > 0 such that for any C > C1, we have

lim inf
n

n−1h var
{
S(C)
n

}
≥ s2

2
> 0.

(iii) Convergence of the sequence of characteristic functions. Let

ς2n = var {Sn}, (ς(C)
n )2 = var

{
S(C)
n

}
, (ς(Cc)

n )2 = var
{
S(Cc)
n

}
.
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Then∣∣∣∣E{exp
{ it
ςn
S̃n

}}
− exp

{
− t2

2

}∣∣∣∣ ≤ E

{∣∣∣∣exp
{ it
ςn
S̃n

}
− exp

{ it
ςn
S̃(C)
n

}∣∣∣∣}
+ E

{∣∣∣∣∣exp
{ it
ςn
S(Cc)
n

}
− exp

{ it

ς
(C)
n

S(Cc)
n

}∣∣∣∣∣
}

+

{∣∣∣∣∣E
{

exp
{ it

ς
(C)
n

S(Cc)
n

}}
− exp

{−t2
2

}∣∣∣∣∣
}

≤ E

∣∣∣∣exp
{ it
ςn
S(Cc)
n

}
− 1

∣∣∣∣+ E

∣∣∣∣∣exp
{ it

ς
(C)
n

( ς(C)
n

ςn
− 1
)
S̃(C)
n

}
− 1

∣∣∣∣∣+ gC,n(t)

≤ |t|E
{

1

ςn

∣∣S(Cc)
n |

}
+ |t|

∣∣∣ ς(C)
n

ςn
− 1
∣∣∣E{ 1

ςn

∣∣S(Cc)
n

∣∣}+ gC,n(t)

≤ |t| ς
(Cc)
n

ςn
+ |t|

∣∣∣ ς(C)
n

ςn
− 1
∣∣∣ ς(C)

n

ςn
+ gC,n(t)

for any C > 0. The last two inequalities are due to the Cauchy-Schwarz
inequality and to the fact that |eit− 1| ≤ |t|. Hence it remains to prove that
for each t

gC,n(t) :=

∣∣∣∣∣E
{

exp
{ it

ς
(C)
n

S̃(C)
n

}}
− exp

{−t2
2

}∣∣∣∣∣
converges to 0 as n→ ∞, i.e.

(
ς
(C)
n

)−1
S̃
(C)
n converges in law to N (0, 1), but

this was already shown in the second part of the proof. Thus the proposition
is proved.

6.4 Bootstrap consistency

For the sake of clarity of the proof of Theorem 3.7 at first we present a few
lemmas and we introduce some additional notation. Let ̂̂aT be the average
of the estimators defined on the blocks:

̂̂aT :=
1

T − b+ 1

T−b∑
k=0

âk,b. (9)

Notice that ̂̂aT = E∗ {â∗T } (see Section 3.2).

The next lemma investigates the relationship between the estimator âT
and the estimator based on the blocks of length b.
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Lemma 6.7 Let 1 << b << T and h << min{1, b2T−1}. If supt E{X(t)2} <
∞, then

lim
T→∞

√
ThE


∣∣∣∣∣∣âT (λ, τ) − 1

l

l−1∑
j=0

âjb,b(λ, τ)

∣∣∣∣∣∣
 = 0

and

lim
T→∞

sup
r=0,...,b−1

√
ThE


∣∣∣∣∣∣âT (λ, τ) − 1

l − 1

l−2∑
j=0

âjb+r,b(λ, τ)

∣∣∣∣∣∣
 = 0.

When supt E{X(t)4} <∞, then

lim
T→∞

ThE


∣∣∣∣∣∣âT (λ, τ) − 1

l

l−1∑
j=0

âjb,b(λ, τ)

∣∣∣∣∣∣
2 = 0

and

lim
T→∞

sup
r=0,...,b−1

ThE


∣∣∣∣∣∣âT (λ, τ) − 1

l − 1

l−2∑
j=0

âjb+r,b(λ, τ)

∣∣∣∣∣∣
2 = 0.

Proof Since T = lb with l ∈ N, we have

âT =
b

β2T

l−1∑
j=0

âjb,b(λ, τ)

+
1

β2T

∑
j1,

l−1∑
j2=0

I{j1 ̸=j2}

∫ j1b+b

j1b

∫ j2b+b

j2b
wh(τ − t+ s) e−iλs dZ(s, t).

Moreover, one can note that∫ j1b+b

j1b

∫ j2b+b

j2b
wh(τ − t+ s) e−iλs dZ(s, t)

=

∫ j1b+b

j1b

∫
I(j2b,b,s+τ,h)

wh(τ − t+ s) e−iλs dZ(s, t).

where I(k, b, s+ τ, h) := {t : k ≤ t ≤ k + b and s+ τ − h ≤ t ≤ s+ τ + h}.
Remark that if −b < τ − h < τ + h < b, |j2 − j1| > 1 and j1b ≤ s ≤ j1b+ b
then the domain of integration I(j2b, b, s+ τ, h) is empty, so the integral is

40



null.

To simplify the computations from now on we assume that T is large
enough so that 0 < h < 1, l ≥ 2 and −b < τ − 1 < τ + 1 < b. Then we get

âT =
1

l

l−1∑
j=0

âjb,b(τ) +
1

β2T

l−2∑
j=0

∫ jb+b

jb

∫ jb+2b

jb+b
wh(τ − t+ s) e−iλs dZ(s, t)

+
1

β2T

l−2∑
j=0

∫ jb+2b

jb+b

∫ jb+b

jb
wh(τ − t+ s) e−iλs dZ(s, t). (10)

Moreover, for r = 0, . . . , b− 1 we can also decompose âT as follows

âT =
r

T
â0,r +

1

l

l−2∑
j=0

âjb+r,b(λ, τ) +
b− r

T
â(l−1)b+r,b−r (11)

+
1

β2T

∫ r

0

∫ r+b

r
wh(τ − t+ s) e−iλs dZ(s, t)

+
1

β2T

∫ r+b

r

∫ r

0
wh(τ − t+ s) e−iλs dZ(s, t)

+
1

β2T

l−3∑
j=0

∫ jb+b+r

jb+r

∫ jb+r+2b

jb+r+b
wh(τ − t+ s) e−iλs dZ(s, t)

+
1

β2T

l−3∑
j=0

∫ jb+r+2b

jb+r+b

∫ jb+r+b

jb+r
wh(τ − t+ s) e−iλs dZ(s, t)

+
1

β2T

∫ (l−1)b+r

(l−2)b+r

∫ lb

(l−1)b+r
wh(τ − t+ s) e−iλs dZ(s, t)

+
1

β2T

∫ lb

(l−1)b+r

∫ (l−1)b+r

(l−2)b+r
wh(τ − t+ s) e−iλs dZ(s, t).

In the decomposition (10) of the estimator âT , the 2nd and the 3rd term are
negligible. In the second decomposition all the terms except the 2nd one are
negligible. For simplicity of presentation, we only study the first cross term
in decomposition (10) of âT taking r = 0.
Let j = 0, . . . , l − 2 and

Aj :=

∫ jb+b

jb

∫ jb+2b

jb+b
wh(τ − t+ s) e−iλs dZ(s, t).
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Then

|Aj | ≤
∫ jb+b

jb

∫ jb+2b

jb+b
wh(τ − t+ s)

∣∣X(s)X(t)
∣∣ dN (2)(s, t).

From the independence property of the increments of the Poisson process,
and since the intervals (jb, jb+b] and (jb+b, jb+2b] are disjoint, we deduce
that

E{|Aj |} ≤
∫ jb+b

jb

∫ jb+2b

jb+b
wh(τ − t+ s) E

{∣∣X(s)X(t)
∣∣}β2 dsdt

≤ β2 sup
t

E
{
X(t)2

} ∫ jb+b

jb

∫ jb+2b

jb+b
wh(τ − t+ s) dsdt

= β2 sup
t

E
{
X(t)2

}∫ 0

−b

(∫
I(0,b,s+τ,h)

wh(τ − t+ s) dt

)
ds,

where I(0, b, s+ τ, h) = {t : 0 ≤ t ≤ b, s+ τ − h ≤ t ≤ s+ τ + h}.
We now investigate the last integral with respect to (s, t) for −b ≤ s ≤ 0 ≤
t ≤ b and τ − h < t− s < τ + h. For that purpose we consider three cases:
(i) −b < τ − h < τ + h < 0, (ii) −b < τ − h < 0 ≤ τ + h < 0 and (iii)
0 ≤ τ − h < τ + h < 0.

(i) In this case the integration domain in empty, so the integral is null.

(ii) Note that −h < τ < h. The integration domain is {(s, t) : −τ − h ≤
s ≤ 0 and 0 ≤ t ≤ s+ τ + h} and∫ 0

−τ−h

(∫ s+τ+h

0
wh(τ − t+ s)dt

)
ds =

∫ 0

−τ−h

(∫ 1

− s+τ
h

w(u)du

)
ds ≤ |τ |+h.

(iii) Note that h ≤ τ < b − h. The integration domain can be split into
two parts : {(s, t) : −τ − h ≤ s ≤ −τ + h and 0 ≤ t ≤ s+ τ + h} and
{(s, t) : −τ + h ≤ s ≤ 0 and s+ τ − h ≤ t ≤ s+ τ + h}. For the first
part we have∫ −τ+h

−τ−h

(∫ s+τ+h

0
wh(τ − t+ s) dt

)
ds =

∫ −τ+h

−τ−h

(∫ 1

− s+τ
h

w(u) du

)
ds ≤ 2h

and for the second part∫ 0

−τ−h

(∫ s+τ+h

s+τ−h
wh(τ − t+ s) dt

)
ds =

∫ 0

−τ−h

(∫ 1

−1
w(u) du

)
ds ≤ |τ |+h.
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Then we obtain that E{|Aj |} ≤ β2 supt E{X(t)2} (|τ |+ 3h). The same tech-
nique applied to the other summands of the decomposition (11) of âT gives

E


∣∣∣∣∣∣âT − 1

l

l−1∑
j=0

âjb,b

∣∣∣∣∣∣
 ≤ 2l

T
(|τ |+3h) sup

t
E{X(t)2} ≤ 2

b
(|τ |+3h) sup

t
E{X(t)2}

and
√
ThE


∣∣∣∣∣∣âT − 1

l

l−1∑
j=0

âjb+r,b

∣∣∣∣∣∣
 ≤ c

√
Th

b
(|τ | + h).

This entails the first part of the lemma. The proof of second part follows
the same way.

The lemma below is a direct consequence of Lemma 6.7.

Lemma 6.8 Let 1 << b << T and h << min{1, b2T−1}. If supt E{X(t)2} <
∞, then

lim
T→∞

√
ThE

{∣∣∣âT − ̂̂aT ∣∣∣} = 0.

If supt E{X(t)4} <∞, then

lim
T→∞

ThE

{∣∣∣âT (τ) − ̂̂aT (τ)
∣∣∣2} = 0. (12)

Proof of Proposition 3.5

Recall that ̂̂aT = E∗ {â∗T }. Then
∣∣E∗ {â∗T } − aX(λ, τ)

∣∣ ≤ ∣∣̂̂aT − âT
∣∣ +

∣∣âT −
aX(λ, τ)

∣∣. The asymptotic unbiasedness (4) in the quadratic mean of â∗T
and the rate of convergence (5) are consequences of Propositions 3.1, 3.2
and Lemma 6.8. Moreover, from Proposition 3.3 the estimator âT converges
almost surely to aX(λ, τ). To state the almost sure convergence of ̂̂aT we

decompose ̂̂aT − âT as follows

̂̂aT − âT =
(̂̂aT − ̂̂anx

)
+
(̂̂anx − ânx

)
+ (ânx − âT )

for nx ≤ T ≤ (n + 1)x. From the proof of Proposition 3.3 we know that
sup{|ânx − âT | : nx ≤ T ≤ nx+1} converges almost surely to 0 as n → ∞.
Applying again the Bienaymé-Chebychev inequality as well as the Borel-
Cantelli lemma with relation (12), we obtain that ̂̂anx−ânx converges almost
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surely to 0. Finally, the almost sure convergence to 0 of sup{|âT − ânx | :
nx ≤ T ≤ nx+1} as n→ ∞ is deduced from the decomposition

∣∣∣̂̂anx − ̂̂aT ∣∣∣ ≤ ∣∣∣∣ 1

nx − bnx + 1
− 1

T − bT + 1

∣∣∣∣
∣∣∣∣∣
nx−bnx∑
k=0

âk,bnx

∣∣∣∣∣
+

1

T − bT + 1

nx−bnx∑
k=0

∣∣âk,bnx − âk,bT
∣∣+

1

T − bT + 1

∣∣∣∣∣∣
T−bT∑

k=nx−bnx+1

âk,bT

∣∣∣∣∣∣ .
Then similar arguments to the last part of the proof of Proposition 3.3
achieve the proof of the lemma. The details are left to the reader. Further-
more, taking under consideration the different rates of convergence along
with the previous computations, it is easy to deduce some rate of almost
sure convergence. �

Proof of Proposition 3.6

Since the random variables âj∗,b, j = 1, . . . , l are P∗-independent and ̂̂aT =
E∗ {âj∗,b}, we have

l var∗ {â∗T } =
1

l

l−1∑
j=0

var∗ {âj∗,b} =
1

T − b+ 1

T−b∑
k=0

(
âk,b − ̂̂aT ) (âk,b − ̂̂aT )′

Recall that we consider the complex numbers as bidimensional real vectors
and the notation (v)′ indicates the transpose of the column vector v. Thus
var∗ {â∗T } is 2 × 2 square matrix. Define the random matrix

Vk,b :=
(
âk,b − E {âk,b}

) (
âk,b − E {âk,b}

)′
Then we have

E

{∣∣∣∣∣var∗ {âj∗,b} −
1

T − b+ 1

T−b∑
k=0

Vk,b

∣∣∣∣∣
}

≤ 2

T − b+ 1

T−b∑
k=0

E

{∣∣∣E {âk,b} − ̂̂aT ∣∣∣2}1/2

× E
{∣∣âk,b − E {âk,b}

∣∣2}1/2

+
1

T − b+ 1

T−b∑
k=0

E
{∣∣E {âk,b} − ̂̂aT ∣∣2} .
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Since T 1/3 << b << T and b−1 << h << T−1/3 << b2T−1, by Proposition 3.1
and Lemmas 6.2, 6.3 and 6.8, we deduce that

lim
T→∞

E

{∣∣∣∣∣Thvar∗ {â∗T } −
bh

T − b+ 1

T−b∑
k=0

Vk,b

∣∣∣∣∣
}

= lim
T→∞

bhE

{∣∣∣∣∣var∗ {âj∗,b} −
1

T − b+ 1

T−b∑
k=0

Vk,b

∣∣∣∣∣
}

= 0.

Now we study the behaviour of Vk,b. First by Lemma 6.3

lim
T→∞

E

{
bh

T − b+ 1

T−b∑
k=0

Vk,b

}
= β−4Γ+(λ, λ; τ) := Σ.

Next, to state the convergence in P-probability of bh
T−b+1

∑T−b
k=0 Vk,b, we are

going to show that its covariance is converging to 0. From Lemma 6.10 we
can state that :
– |cov {Vk,b, Vk+r,b}| ≤ c ∥X∥88, for |r| ≤ b− 2|τ | − 2;
– |cov {Vk,b, Vk+r,b}| ≤ c αX

(
r− b− 2|τ | − 2

)
∥X∥8∞, for |r| > b− 2|τ | − 2

when the process X is bounded (∥X∥∞ <∞). Hence, in this case∣∣∣∣∣var

{
bh

T − b+ 1

T−b∑
k=0

Vk,b

}∣∣∣∣∣ =
(bh)2

(T − b+ 1)2

∣∣∣∣∣∣
T−b∑
k1=0

T−b∑
k2=0

cov {Vk1,b, Vk2,b}

∣∣∣∣∣∣
≤ (bh)2

(T − b+ 1)2

T−b∑
r=−T+b

∑
k∈I(T−b,r)

|cov {Vk,b, Vk+r,b}|

≤ c b3h2∥X∥88
(T − b+ 1)

+
c (bh)2∥X∥8∞
(T − b+ 1)

T−b∑
r=0

αX(r),

which converges to 0 since h << T 1/2b−3/2. This achieves the proof of
the Lemma when the process X is bounded. Otherwise, when ∥X∥8+δ

8+δ :=

supt E
{
|X(t)|8+δ

}
<∞, we replace ∥X∥∞ by ∥X∥8+δ, and αX(r) by αX(r)δ/(4+δ).

�

Finally, we state a Rosenthal-type inequality which will be useful for the
proof of the consistency of the bootstrap method (Theorems 3.7 and 4.2).
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Lemma 6.9 Assume that

either the process {X(t), t ≥ 0} is bounded and

∫ ∞

0
t αX(t) dt <∞,

or supt E
{
|X(t)|8+δ

}
<∞ and

∫ ∞

0
t αX(t)δ/(4+δ)dt <∞ for some δ > 0.

Then there exists K > 0 such that for all b > 1 and 0 < h < b−1/3,

sup
k

(bh)2E

{∣∣∣âk,b − E
{̂̂aT}∣∣∣4} ≤ Kh−1.

Proof By the inequality |x+ y|4 ≤ 8|x|4 + 8|y|4 fo all x and y, we have

(bh)2E

{∣∣∣âk,b − E
{̂̂aT})

∣∣∣4}
≤ 8(bh)2E

{∣∣âk,b− E {âk,b}
∣∣4}+ 8(bh)2

∣∣∣E {âk,b} − E
{̂̂aT}∣∣∣4 .

From the proof of Lemma 6.2 we know that∣∣∣E{âk,b} − E
{̂̂aT}∣∣∣ ≤ ∣∣E {âk,b}−aX(λ, τ)

∣∣+∣∣∣E{̂̂aT}− aX(λ, τ)
∣∣∣ ≤ c (h+b−1),

for some c > 0 which does not depend on k, h, b and T . Since 0 < h < b−3 <
1, we deduce that

√
bh
∣∣∣E{âk,b} − E

{̂̂aT}∣∣∣ ≤ c (bh3)1/2 + c b−1/2h1/2 ≤ 2c.

Thus, it remains to study

sup
k

(bh)2E
{∣∣âk,b − E {âk,b}

∣∣4} .
For this purpose we adapt our framework to the method developed in [11]
(see also [10] and [24]). By Lemma 6.11 we have

E
{∣∣Yj1Yj2Yj3Yj4

∣∣4}
≤ sup

t
E
{
|X(t)|8

}
E

{
4∏

i=1

∫ ji+1

ji

∫
R
wh(τ − ti + si)dN

(2)(si, tj)

}
≤ c sup

t
E
{
|X(t)|8

}(
1 +

(
h−1 + h−2 + h−3

)
I{maxi,i′ |ji−ji′ |≤h+|τ |+1}

)
,

for some c > 0 which does not depend on k, h, b and T . Following the
arguments presented in [11] and applying mixing inequalities (21), (22) and
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(23) we obtain that

b4β8E
{∣∣âk,b − E {âk,b}

∣∣4} = E


∣∣∣∣∣∣
k+b−1∑
j=k

(
Yk − E {Yk}

)∣∣∣∣∣∣
4

≤ c b2 sup
t

E
{
|X(t)|8

} (
1 + h−3

)2h+ 2|τ | + 1 +

b∑
j=1

jαX(j)

 ,

when the process {X(t), t ≥ 0} is bounded. Otherwise, when {X(t), t ≥ 0}
is not bounded but supt E{|X(t)|8+δ} <∞, we get that

b4β8E
{∣∣âk,b − E {âk,b}

∣∣4} = E


∣∣∣∣∣∣
k+b−1∑
j=k

(
Yk − E {Yk}

)∣∣∣∣∣∣
4

≤ c b2 sup
t

E
{
|X(t)|8+δ

} 4
4+δ (

1 + h−3
)2h+ 2|τ | + 1 +

b∑
j=1

jαX(j)
δ

4+δ

 .

Then we can readily complete the proof of the lemma.

Proof of Theorems 3.7 and 4.2

Since the proof of Theorem 4.2 is a direct consequence of the Cramér-Wold
device and the reasoning used in one-dimensional case, we skip the technical
details and we concentrate only on the proof of Theorem 3.7.

In the following we consider distribution functions defined on R2. We
use the following notation : for x = (x1, x2) and y = (y1, y2) in R2 we write
x ≼ y, when x1 ≤ y1 and x2 ≤ y2.

Moreover, it is worth keeping in mind that the condition T 1/3 << b ≤
T θ+1/3 for some 0 < θ ≤ 2/9, implies that T 1/3 << b ≤ T 5/9, T−1/3 ≤
b−3/2T 1/2 and T−1/3 << b2T−1.

Furthermore from Theorem 3.4 we know that
√
Th (âT − aX(λ, τ)) con-

verges in law to a bidimensional Gaussian distribution which is denoted by
F . To simplify the presentation of the proof, we assume that this bidimen-
sional Gaussian distribution F is non-degenerate, i.e. the determinant of its
covariance matrix is positive, thus its distribution function F (·) is uniformly
continuous on R2.

47



1) At first we state that the bootstrap distribution P∗
{√

Th (â∗T − âT ) ≼ x
}

can be equivalently replaced by P∗
{√

Th
(
â∗T − ̂̂aT) ≼ x

}
, for x ∈ R2. In-

deed let ϵ = (ε, ε)/
√

2, ε > 0 be fixed. Then we have

P∗
{√

Th (â∗T − âT ) ≼ x
}
≤ P∗

{√
Th
(
â∗T − ̂̂aT ) ≼ x + ϵ

}
+I{√Th|̂̂aT−âT |>ε}

and

P∗
{√

Th (â∗T − âT ) ≼ x
}
≥ P∗

{√
Th
(
â∗T − ̂̂aT ) ≼ x− ϵ

}
I{√Th|̂̂aT−âT |≤ε}.

Hence∣∣∣P∗
{√

Th (â∗T − âT ) ≼ x
}
− F (x)

∣∣∣
≤
∣∣∣P∗

{√
Th
(
â∗T − ̂̂aT ) ≼ x− ϵ

}
− F (x− ϵ)

∣∣∣+
∣∣F (x− ϵ) − F (x)

∣∣
+
∣∣∣P∗

{√
Th
(
â∗T − ̂̂aT ) ≼ x + ϵ

}
− F (x + ϵ)

∣∣∣+
∣∣F (x + ϵ) − F (x)

∣∣
+ I{√Th|̂̂aT−âT |>ε}.

Thus, for each η > 0

P

{
sup
x

∣∣∣P∗
{√

Th (â∗T − âT ) ≼ x
}
− F (x)

∣∣∣ > η

}
≤ P

{
2 sup

x

∣∣∣P∗
{√

Th
(
â∗T − ̂̂aT ) ≼ x

}
− F (x)

∣∣∣ > η

4

}
+ P

{
I{√Th|̂̂aT−âT |≤ε} >

η

4

}
+ I{supx |F (x−ϵ)−F (x)|> η

4
} + I{supx |F (x+ϵ)−F (x)|> η

4
}.

Since
√
Th
(
âT −aX(λ, τ)

)
converges in law to the same bidimensional Gaus-

sian distribution F , by Lemma 6.8 and by the uniform continuity of the
distribution function F (·), to prove Theorem 3.7 it remains to show the
convergence to 0 of the first summand on the right-hand side of the last
inequality.

2) To prove the convergence in P-probability of L∗
{√

Th
(
â∗T − ̂̂aT)}

to the bidimensional Gaussian distribution F , we are going to apply Corol-
lary 2.4.8 from [2]. Let us define

Zk,T :=

√
Th

l

(
âk,b − E

{̂̂aT}) =

√
bh√
l

(
âk,b − E

{̂̂aT})
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for k = 0, 1, . . . , T − b. Then

Zj∗,T =

√
Th

l

T−b∑
k=0

(
âk,b − E

{̂̂aT}) I{j∗=k} =

√
Th

l

(
âj∗,b − E

{̂̂aT}) .
Note that the random variables Zj∗,T are conditionally independent. More-
over,

E∗ {Zj∗,T } =

√
Th

l(T − b+ 1)

T−b∑
k=0

(
âk,b − E

{̂̂aT}) =

√
Th

l

(̂̂aT − E
{̂̂aT})

and hence E {Zj∗,T } = E {E∗ {Zj∗,T }} = 0. Furthermore

l−1∑
j=0

Zj∗,T =

√
Th

l

l−1∑
j=0

(
âj∗,b − E

{̂̂aT}) =
√
Th
(
â∗T − E

{̂̂aT}) .
Corollary 2.4.8 in [2] requires the following three conditions, to ensure the
desired limit:

(i) for every ϵ > 0

lim
T→∞

l−1∑
j=0

P∗ {|Zj∗,T | > ϵ} = 0 in P − probability;

(ii) for some η > 0

lim
T→∞

l−1∑
j=0

E∗
{
Zj∗,T I{|Zj∗,T |≤η}

}
−
√
Th
(̂̂aT − E

{̂̂aT})= 0 in P−probability;

(iii) for some η > 0

lim
T→∞

l−1∑
j=0

var∗
{
Zj∗,T I{|Zj∗,T |≤η}

}
= β−4Γ+(λ, λ; τ) := Σ in P−probability.

Convergence (i). Let ϵ > 0 be fixed and notice that

l−1∑
j=0

P∗ {|Zj∗,T | > ϵ} =
l

T − b+ 1

T−b∑
k=0

I{|Zk,T |>ϵ}.
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Let Uk,T := l I{|Zk,T |>ϵ} and AT > 0. Then

Uk,T =
˜̃
Uk,T + E

{
Uk,T I{Uk,T<AT }

}
+ Uk,T I{Uk,T≥AT }, (13)

where
˜̃
Uk,T := Uk,T I{Uk,T<AT } − E

{
Uk,T I{Uk,T<AT }

}
. For every γ > 0, by

the Bienaymé-Chebychev inequality

P

{∣∣∣∣∣ 1

T−b+1

T−b∑
k=0

˜̃
Uk,T

∣∣∣∣∣ > γ

}
≤ 1

(T − b+ 1)2γ2

T−b∑
k1=0

T−b∑
k2=0

∣∣∣∣cov

{˜̃
Uk1,T ,

˜̃
Uk2,T

}∣∣∣∣
≤ 1

(T − b+ 1)2γ2

T−b∑
k1=0

T−b∑
k2=0

∣∣∣cov
{
Uk1,T I{|Uk1,T

|<AT }, Uk2,T I{Uk2,T
|<AT }

}∣∣∣ .
Then using the mixing covariance inequality (Lemma 6.12) for bounded
random variables we deduce that

P

{∣∣∣∣∣ 1

T−b+1

T−b∑
k=0

˜̃
Uk,T

∣∣∣∣∣>γ
}
≤ c

(T−b+1)2γ2

T−b∑
k1=0

T−b∑
k2=0

αX(|k1−k2|−b−2|τ |−3)A2
T

≤ c |AT |2

(T − b+ 1)γ2

(
b+ 2|τ | + 3 +

T−b∑
k=0

αX(k)

)
.

The right-hand side tends to 0 if AT << l1/2. Moreover, we have

E
{
Uk,T I{Uk,T<AT }

}
= lP {|Zk,T | > ϵ and l < AT } .

The right-hand side of the last equality is equal to 0 for T large enough
when AT << l1/2. As for the third term of decomposition (13), the Markov
inequality means that

P

{∣∣∣∣∣ 1

T−b+1

T−b∑
k=0

Uk,T I{Uk,T≥AT }

∣∣∣∣∣ >γ
}

≤ 1

(T − b+ 1)γ

T−b∑
k1=0

E
{
Uk,T I{Uk,T≥AT }

}
.

Remark that 0 ≤ Uk,T ≤ l|Zk,T |/ϵ so 0 ≤ I{Uk,T>AT } ≤ Uk,T /AT . Then for
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all µ, ν > 0 we get

P

{∣∣∣∣∣ 1

T − b+ 1

T−b∑
k=0

Uk,T I{Uk,T≥AT }

∣∣∣∣∣ > γ

}
≤ 1

(T−b+1)γAµ
T

T−b∑
k=0

E
{
U1+µ
k,T

}
≤ l1+µ

(T−b+1)γAµ
T

T−b∑
k=0

E
{
I{|Zk,T |>ϵ}

}
≤ lµ−ν/2

(T−b+1)γϵνAµ
T

T−b∑
k=0

E
{
l1+

ν
2 |Zk,T |2+ν

}
≤ lµ−ν/2

(T − b+ 1)γϵνAµ
T

T−b∑
k=0

E

{∣∣∣√bh(âk,b − E
{̂̂aT})∣∣∣2+ν

}
. (14)

Using Lemma 6.9, for 0 < ν ≤ 2 we know that

E
∣∣∣√bh(âk,b − E

{̂̂aT})∣∣∣2+ν
≤ E

{∣∣∣√bh(âk,b − E
{̂̂aT})∣∣∣4} 2+ν

4

≤ K
2+ν
4 h−

2+ν
4 .

Hence expression (14) tends to 0 when lµ−ν/2h−(2+ν)/4 << Aµ
T .

Consequently to state (i), choose AT → ∞ such that lµ−ν/2h−(2+ν)/4 <
< Aµ

T << lµ/2. This is possible only when l2(µ−ν)h−(2+ν) << 1. Hence
l2(µ−ν)/(2+ν) << h. Thus, it suffices to take 0 < µ < ν < 2 such that
(2 + ν)/2(ν − µ) = 2 − 3θ. This ends the proof of (i).

Convergence (ii). Remark that for each η > 0

l−1∑
j=0

E∗
{
Zj∗,T I{|Zj∗,T |≤η}

}
−

√
bh
(̂̂aT − E

{̂̂aT})

=
l−1∑
j=0

E∗
{
Zj∗,T I{|Zj∗,T |>η}

}
=

l

T − b+ 1

T−b∑
k=0

Zk,T I{|Zk,T |>η}.

The expectation of the norm of the last expression can be bounded by

l

(T − b+ 1)

T−b∑
k=0

E
{
|Zk,T | I{|Zk,T |>η}

}
≤ l

(T − b+ 1)η1+ρ

T−b∑
k=0

E
{
|Zk,T |2+ρ

}
≤ l−ρ/2

(T − b+ 1)η1+ρ

T−b∑
k=0

E

{∣∣∣√bh(âk,b − E
{̂̂aT})∣∣∣2+ρ

}
.

From Lemma 6.9, for 0 < ρ ≤ 2 we have

E

{∣∣∣√bh(âk,b − E
{̂̂aT})∣∣∣2+ρ

}
≤ K

2+ρ
4 h−

2+ρ
4 .
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When l−ρ/2h−(2+ρ)/4 << 1 as T → ∞, we obtain (ii). Taking ρ = 2/ 3(1−2θ)
gives convergence (ii).

Convergence (iii). The definition of the random variables Zj∗,T , j =
0, . . . , l−1, and the fact that they are conditionally independent imply that

l−1∑
j=0

var∗ {Zj∗,T } = var∗


l−1∑
j=0

Zj∗,T

 = Th var∗ {â∗T } ,

which converges in P-mean to Σ by Proposition 3.6. Now let η > 0. Then∣∣∣var∗
{
Zj∗,T I{|Zj∗,T |≤η}

}
− var∗ {Zj∗,T }

∣∣∣
≤
∣∣∣var∗

{
Zj∗,T I{|Zj∗,T |>η}

}∣∣∣+ 2
∣∣∣cov∗

{
Zj∗,T , Zj∗,T I{|Zj∗,T |>η}

}∣∣∣ .
From the Bienaymé-Chebychev inequality∣∣∣cov∗

{
Zj∗,T , Zj∗,T I{|Zj∗,T |>η}

}∣∣∣2 ≤ c
∣∣∣var∗ {Zj∗,T}

∣∣∣×∣∣∣var∗
{
Zj∗,T I{|Zj∗,T |>η}

}∣∣∣ .
On the one hand we know that l2var∗ {Zj∗,T} = Th var∗ {â∗T } converges in
P-mean. On the other hand

l−1∑
j=0

∣∣∣var∗
{
Zj∗,T I{|Zj∗,T |>η}

}∣∣∣ ≤ c

l−1∑
j=0

E∗
{
|Zj∗,T |2 I{|Zj∗,T |>η}

}

≤ c l

T − b+ 1

T−b∑
k=0

E
{
|Zk,T |2 I{|Zk,T |>η}

}
≤ c l

(T − b+ 1)ηρ

T−b∑
k=0

E
{
|Zk,T |2+ρ

}
=

c l−ρ/2

(T − b)ηρ

T−b∑
k=0

E

{∣∣∣√bh(âk,b − E
{̂̂aT})∣∣∣2+ρ

}
. (15)

Lemma 6.9 implies for 0 < ρ ≤ 2 that

E

{∣∣∣√bh(âk,b − E
{̂̂aT})∣∣∣2+ρ

}
≤ K

2+ρ
4 h−

2+ρ
4 .

When l−ρ/2h−(2+ρ)/4 << 1, the right-hand side of inequality (15) converges
to 0 as T → ∞. Consequently we choose 0 < ρ < 2 such that l−2ρ/(2+ρ) <<
h << T−1/3. It suffices to take ρ = 2/ 3(1 − 2θ).
This ends the proof of (iii) and simultaneously the proof of the theorem. �
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6.5 Covariance mixing inequalities

In this subsection we provide some covariance inequalities for the observa-
tion, which are the consequence of the mixing property of the process X.
For the sake of simplicity and clarity we introduce some additional notation.
Let

dZ(s, t) := X(s)X(t) dN (2)(s, t),

V(s, t) := X(s)X(t),

Yk :=

∫∫
Kk

wh(τ − t+ s)g(s) dZ(s, t), (16)

where Kk :=]k, k+ 1]×R, k ∈ N and g : R → R is any bounded measurable
function. Recall that the kernel function w(·) is nonnegative, its support is
contained in [−1, 1] and

∫ 1
−1w(t) dt = 1.

Lemma 6.10 Assume that 0 < h < 1. Then the following inequalities are
valid.
1) For all k1 and k2∣∣E{Yk1Yk2}

∣∣ ≤ c∥X∥44 ×
(
1 + h−1I{|k1−k2|≤h+|τ |+1}

)
(17)

and ∣∣cov{Yk1 ,Yk2}
∣∣ ≤ c∥X∥44 ×

(
1 + h−1I{|k1−k2|≤h+|τ |+1}

)
. (18)

where c depends only on w(·) and β.

2) Assume that there exists δ > 0 such that ∥X∥4+δ := supt E{|X(t)|4+δ}1/(4+δ) <
∞. Then for |k1 − k2| ≥ 2h+ 2|τ | + 1, we have∣∣cov{Yk1 ,Yk2}

∣∣ ≤ c ∥X∥44+δ αX(|k2 − k1| − 2h− 2|τ | − 1)δ/(4+δ). (19)

3) Assume that the process {X(t), t ≥ 0} is bounded : ∥X∥∞ := supt ess sup |X(t) <
∞. Then

(i) for |k1 − k2| ≥ 2h+ 2|τ | + 1 we have∣∣cov{Yk1 ,Yk2}
∣∣ ≤ c ∥X∥4∞ αX

(
|k2 − k1| − 2h− 2|τ | − 1

)
; (20)

(ii) furthermore for min{k3, k4} − max{k1, k2} ≥ 2h+ 2|τ | + 1∣∣cov {Yk1Yk2 ,Yk3Yk4}
∣∣ ≤

≤ c ∥X∥8∞ αX

(
min{k3, k4} − max{k1, k2} − 2h− 2|τ | − 1

)
×
(
1 + h−1I{|k1−k2|≤h+|τ |+1}

)(
1 + h−1I{|k3−k4|≤h+|τ |+1}

)
; (21)
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(iii) for min{k2, k3, k4} − k1 ≥ 2h+ 2|τ | + 1∣∣cov {Yk1 ,Yk2Yk3Yk4}
∣∣ ≤

≤ c ∥X∥8∞ αX

(
min{k2, k3, k4} − k1 − 2h− 2|τ | − 1

)(
1 + h−1 + h−2

)
; (22)

(iv) for k1 − max{k2, k3, k4} ≥ 2h+ 2|τ | + 1∣∣cov {Yk1 ,Yk2Yk3Yk4}
∣∣

≤ c ∥X∥8∞ αX

(
k1−max{k2, k3, k4}−2h−2|τ |−1

)(
1 + h−1 + h−2

)
.(23)

ProofTo establish these inequalities, we readily develop an expression for
the different covariances using the independence between the APC pro-
cess X and the Poisson process N (see the proof of Lemma 6.4). Then
we apply the classical mixing covariance inequalities to the process X (see
e.g. [10], [20], [32]), and Lemma 6.11 below. The details of the proof are left
to the reader.

Lemma 6.11 For j ∈ {1, 2, 3}

E

{
j+1∏
i=1

∫∫
Ki

wh(τ − ti + si)dN
(2)(si, ti)

}
≤ c+ c

(
h−1 + · · · + h−j

)
I{maxi1,i2 |ki1−ki2 |≤h+|τ |+1}.

Proof The idea of the proof is to consider all possible relations between
s1, . . . , s4 and t1, . . . , t4. Since the reasoning in all cases is similar we present
the details for only one of them. Let s := s1 = s2 = s3 = s4 and t := t1 =
t2 = t3 = t4. Then we obtain∫∫

K1

∫∫
K2

∫∫
K3

∫∫
K4

wh(τ−t1+s1)wh(τ − t2 + s2)wh(τ − t3 + s3)wh(τ − t4 + s4)

× dδ{s4}(s1)dδ{t4}(t1) dδ{s4}(s2)dδ{t4}(t2) dδ{s4}(s3)dδ{t4}(t3) ds4dt4 =

=
1

h4

∫ k1+1

k1

∫
R
w
(τ − t+ s

h

)4
dsdt I{k1=k2=k3=k4}

=
1

h3

(∫ 1

−1
w(u)4 du

)
I{k1=k2=k3=k4}.

Thus, one may understand how the terms h−3 appears in the final inequality.

The following lemma provides another covariance mixing inequality that
is useful in the proof of the central limit proposition 6.6 as well in the proof
of the consistency of the bootstrap method (Theorem 3.7).
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Lemma 6.12 Let j, l, b be nonzero fixed integers, and let ξ and ζ be two
bounded real valued random variables, ξ being F j(Y)-measurable and ζ being

F j+l+b
j+l (Y)-measurable where Y = {Yk} has been defined by (16). Then for

l ≥ 2h+ 2|τ | + 1 we have

|cov {ξ, ζ}| ≤ cαX(l − 2h− 2|τ | − 1)∥ξ∥∞∥ζ∥∞. (24)

Remark. Notice that the sequence {Yk}k∈N is not necessarily bounded
even if the process {X(t), t ≥ 0} is bounded. Thus, inequalities (20) and (21)
are not direct consequences of inequality (24).

Proof
It is well known that since ξ is a real-valued random variable which

is measurable with respect to the real-valued random variables Y0,. . . , Yj ,
there exists a measurable function f : Rj+1 → R such that ξ = f(Y0, . . . ,Yj).
Then for k ≥ 0 we have

Yk =

∫ k+1

k

(∫ s+τ+h

s+τ−h
wh(τ − t+ s)g(s)X(s)X(t)I{s̸=t}N(t+ dt)

)
N(s+ ds).

Since {(s, t) : k ≤ s ≤ k+1, s+τ−h ≤ t ≤ s+τ+h} ⊂ [k−|τ |−1, k+|τ |+2]2,
(recalling that 0 < h ≤ 1) we deduce that there exist a constant value ψ0

and some measurable functions ψk : R2k → R, k ∈ N∗, such that

ξ = ψ0I{N(j+|τ |+2)=0}+
∑
k∈N∗

ψk

(
X(T1), . . . , X(Tk);T1, . . . , Tk

)
IN(j+|τ |+2)=k}.

(25)
Similarly there exist a constant value ϕ0 and some measurable functions
ϕκ : R2κ → R, κ ∈ N∗, such that

ζ = ϕ0I{N(j+r+b+|τ |+2)−N(j+r−|τ |−1)=0} +
∑
κ∈N∗

ϕκ

(
X(TN(j+r−|τ |−1)+1),

. . . , X(TN(j+r−|τ |−1)+κ);TN(j+r−|τ |−1)+1, . . . , TN(j+r−|τ |−1)+κ

)
× I{N(j+r+b+|τ |+2)−N(j+r−|τ |−1)=κ}. (26)

For the sake of simplicity we denote

Ψk

(
t1, . . . , tk

)
:= ψk

(
X(t1), . . . , X(tk); t1, . . . , tk

)
and

Φκ

(
u1, . . . , uκ

)
:= ϕκ

(
X(u1), . . . , X(uκ);u1, . . . , uκ)

)
,
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where 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, and 0 ≤ u1 ≤ u2 ≤ · · · ≤ uκ.
As a consequence, since |τ | + 2 ≤ r + b, we deduce that

E
[
ξ
∣∣F(N)

]
= E

[
ξ
∣∣F j+r+b

0 (N)
]

= ψ0I{N(j+|τ |+2)=0}

+
∑
k∈N∗

E
[
Ψk

(
T1, . . . , Tk

) ∣∣∣ I{N(j+|τ |+2)=k}, T1, . . . , Tk

]
I{N(j+|τ |+2)=k}

and

E
[
ζ
∣∣F(N)

]
= E

[
ζ
∣∣F j+r+b+|τ |+2

0 (N)
]

= E
[
ζ
∣∣F j+r+b+|τ |+2

j+r−|τ |−1 (N)
]

=

= ϕ0IA0 +
∑
κ∈N∗

E
[
Φκ

(
TN(j+r−|τ |−1)+1, . . . , TN(j+r−|τ |−1)+κ

) ∣∣∣
IAκTN(j+r−|τ |−1)+1, . . . , TN(j+r−|τ |−1)+κ

]
IAκ ,

where Aκ := {N(j + r + b + |τ | + 2) −N(j + r − |τ | − 1) = κ}. Moreover,
F(N) := F{N(t) : t > 0} = F{T1, T2, . . . }, F j

0(N) := F{N(t) : 0 < t ≤
j} = F{I{N(j)=0}} ∨ F

{
I{N(j)>0}, N(j), Tp : i = 1, . . . , N(j)

}
and

F j+r+b
j+r (N) := F{N(t) : j+r < t ≤ j+r+b} = F{IA0}∨F

{∏
κ∈N∗IAκ , N(j+

r), Tq : q = N(j + r) + 1, . . . , N(j + r + b)
}

.

Additionally,

cov {ξ, ζ} = cov
{

E
[
ξ
∣∣F(N)

]
,E
[
ζ
∣∣F(N)

]}
+ E

{
cov

[
ξ, ζ

∣∣F(N)
]}
.

Using properties of Poisson process and the independence between X(t) and
N(t) one can show that the random variables E

[
ξ
∣∣F(N)

]
and E

[
ζ
∣∣F(N)

]
are not correlated, i.e.

cov
{

E
[
ξ
∣∣F(N)

]
,E
[
ζ
∣∣F(N)

]}
= 0. (27)

Finally, the covariance inequality for bounded random variables (see [20]),
the mixing hypothesis on the process {X(t), t ≥ 0} and the independence
between {X(t), t ≥ 0} and the Poisson point process {N(t), t ≥ 0} mean
that ∣∣E{cov

[
ξ, ζ

∣∣F(N)
]}∣∣ ≤ 4αX(l − 2h− 2|τ | − 1)∥ξ∥∞∥ζ∥∞. (28)

Indeed

E
{

cov
[
ξ, ζ

∣∣F(N)
]}

=
∑
k∈N

∑
κ0∈N

∑
κ∈N

∫
· · ·
∫
Rk
+×Rκ

+

cov {Ψk(t.),Φκ(j + τ + u.)}

× dP
(T1,...,Tk,U1,... Uκ)

∣∣B(k,κ0,κ)
[t1, . . . , tk, u1, . . . , uκ]

×P{N(j + 2|τ | + 3) = k,N(r − 2|τ | − 3) = κ0, N(b+ 2|τ | + 3) = κ}.(29)
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Since the random variables ξ and ζ are bounded, the functions ψk and ϕκ can
be chosen such that |Ψk(t.)| = |ψk(ξ, t·)| ≤ ∥ξ∥∞ and |Φκ(j+r+u·)| ≤ ∥ζ∥∞.
Then from the definition of the functions ψk and ϕκ, the mixing property of
the process {X(t) : t ≥ 0} we obtain that

|cov {Ψk(t.),Φκ(j+τ+u.)}|≤4αX(l− 2h−2|τ |−1)∥Ψk(t·)∥∞∥Φκ(j+r +u·)∥∞
≤ 4αX(l − 2|τ | − 3)∥ξ∥∞∥ζ∥∞.

Thus, using relation (29) one obtains inequality (28). Additionally, taking
into account equality (27), we deduce inequality (24).
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