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Maximum Distortion Attacks in Electricity Grids
Iñaki Esnaola, Samir M. Perlaza, H. Vincent Poor, and Oliver Kosut.

Abstract—Multiple attacker data injection attack construction
in electricity grids with minimum-mean-square-error state es-
timation is studied for centralized and decentralized scenarios.
A performance analysis of the trade-off between the maximum
distortion that an attack can introduce and the probability of
the attack being detected by the network operator is considered.
In this setting, optimal centralized attack construction strategies
are studied. The decentralized case is examined in a game-
theoretic setting. A novel utility function is proposed to model
this trade-off and it is shown that the resulting game is a potential
game. The existence and cardinality of the corresponding set of
Nash Equilibria (NEs) of the game is analyzed. Interestingly, the
attackers can exploit the correlation among the state variables
to facilitate the attack construction. It is shown that attackers
can agree on a data injection vector construction that achieves
the best trade-off between distortion and detection probability by
sharing only a limited number of bits offlline. For the particular
case of two attackers, numerical results based on IEEE test
systems are presented.

Index Terms—Data-injection attacks, MMSE estimation, de-
centralized attacks, game theory.

I. INTRODUCTION

The smart grid paradigm is founded on the integration of
existing power systems with advanced sensing and commu-
nication infrastructures. While the benefits provided by this
setting are crucial for the development of future applications
and services in electricity grids, it also paves the way for cyber-
security threats [1].

In this paper, data injection attacks against electricity grids
are studied. The fundamental assumption of this work is that
malicious attackers have access to a subset of meters and
thus, are able to tamper with their measurements to distort
the global state estimate [2] obtained by a network operator.
This problem is first formulated in [3]. Therein, attacks are
studied and construction procedures for attackers with access
to a limited number of meters are presented. However, the
analysis in [3] relies on algebraic tools and assumes that the
detector ignores the stochastic nature of the state variables.
With growing data mining and analysis capabilities provided
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by modern computing, it is reasonable to assume that network
operators can learn the statistical structure of the system and
use attack detection strategies that incorporate the underlying
stochastic process governing the network. Similarly, from the
attacker’s perspective, data injection attacks can be formulated
within a Bayesian framework in which the statistical structure
of the state variables is exploited. In [4], [5], [6] and [7],
the state variables are modeled as a multivariate Gaussian
process whose second order moments are available to the
attacker and the operator. Admittedly, restricting the analysis
to Gaussian processes limits the generality of the analysis.
However, Gaussian processes have successfully been used to
describe a broad set of spatial and temporal dynamics in real
systems. In this work, it is assumed that the second order
moments of the Gaussian process modelling the state variables
are known to the attacker. The rationale for this is to consider
a worst-case scenario setting for the operator. In [6] an attack
construction that increases the mean square error inflicted
to the network operator estimates is proposed. However,
this construction does not take into account the probability
with which the attacker is detected. In [8] it is shown that
correlation among measurements can be exploited to identify
bad data and remove its effect on a modified residual test. A
bad data detection procedure based on partitioning is proposed
in [9]. A framework for analyzing the joint estimation and
attack detection under structured data attacks is presented in
[10]. Attack construction and detection with imperfect system
model information are studied in [11] and [12]. For the case in
which the attacker has no access to the topology of the network
a novel attack construction is proposed in [13]. Alternatively,
if the operator has access to training data, machine learning
techniques are effective for attack detection [14]. Mitigation
strategies for attacks that compromise the communication
network used to deliver measurement data are studied in [15].

Given the complexity and extent of most electricity grids,
it is plausible to think of scenarios in which several attackers
intrude upon the network at different locations. Similarly, it
is common for network operators to interconnect their grids,
which results in a larger and more complex system and
which is often not managed in a centralized fashion. In this
scenario in which multiple attackers are present and/or limited
communication is available among different instantiations of
the same attacker raises the notion of distributed attacks.
Within the aforementioned algebraic framework, distributed
attack and detection strategies are investigated in [4], [16].

The decentralized system with different actors operating
over a large number of processes poses a suitable framework
for the exploration of game theoretic techniques. A com-
prehensive account of smart grid services and applications
that can be tackled with game theory is given in [17]. In
[18], centralized data injection attacks are studied in a game
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theoretic setting in which the operator performs least squares
estimation. Attack constructions that aim to manipulate market
prices are modelled as a zero-sum game in [19]. However, the
case in which several attackers disrupt the state estimation
process in an uncoordinated way is still not well understood.
Furthermore, the impact of making the statistical structure
of the state variables available to attackers in decentralized
settings has not been studied either.

The main results of this paper are inscribed in the context of
both centralized and distributed attack construction problems.
The setting assumes that the state variables are described by
a multivariate Gaussian process and that the operator per-
forms minimum-mean-square-error (MMSE) estimation over
the measurements. The trade-off between the damage to the
network, e.g., the excess distortion term, and the ability to
remain hidden to the network operator, e.g, to keep the
probability of attack detection under a given threshold is
studied in both scenarios. In the former, all attackers are
sufficiently coordinated to be considered as a single entity
and thus, classical tools from matrix theory and optimization
theory are used to determine the optimal attack. The distributed
scenario considers that attackers are fully distributed. That
being the case, tools from game theory are used to determine
optimal individual behaviors and the resulting distributed
attack construction strategies. A novel utility function that
models the features of the dynamic between the attackers
and the operator is proposed. The game resulting from the
implementation of this utility function is studied analytically
and numerically. Specifically, existence results and bounds on
the number of Nash Equilibria (NEs) of the game are provided.

The next section describes the system model, including
the estimation and detection procedures. Centralized attack
construction strategies are discussed in Section III. The de-
centralized case and the properties of the resulting game are
analyzed in Section IV. Section V presents simulations of the
attack strategies in IEEE Test Systems. The paper ends with
concluding remarks in Section VI.

II. SYSTEM MODEL

Let x ∈ RN be a vector containing the system state
variables of a given power system with N buses. Assuming
linearized system dynamics with M measurements corrupted
by additive white Gaussian noise, the measurement vector
yo ∈ RM is given by

yo = Hx + z, (1)

where H ∈ RM×N is the Jacobian of the linearized system dy-
namics around a given operating point and z ∼ N (0, σ2IM ) is
thermal white noise with power spectral density σ2. The data-
injection attack a is an M -dimensional deterministic vector
introduced by an external attacker. The attacker interferes with
the measurements and modifies the observation model to

y = Hx + z + a, (2)

where y ∈ RM are the measurements that have been corrupted
by the data-injection attack.

A. State Estimation and Data-Injection Attacks

The aim of the network operator is to obtain an estimate x̂
of the state vector x using the observations y. In general,
linear estimators are privileged due to their simplicity and
thus, the estimate can be obtained as x̂ = Ly, given a linear
estimator matrix L. In the case in which the operator knows the
underlying random process governing the state of the network,
the estimation can be performed aiming to minimize the mean
square error (MSE). That is, the network operator uses an
estimator M that is the unique solution to the following
optimization problem:

M = arg min
L∈RM×M

E

[
1

N
‖x− Ly‖22

]
, (3)

where the expectation is taken with respect to x and z. Under
the assumption that the network state vector x follows an N -
dimensional real Gaussian distribution with zero mean and
covariance matrix Σxx, the MMSE estimation matrix is

M = ΣxxHT(HΣxxHT + σ2I)−1, (4)

and the MMSE estimate of the state vector x is

x̂MMSE
∆
=My. (5)

The aim of an attacker is to choose a data-injection vector
a ∈ RM to curtail the ability of the network operator to
estimate the state variables without being detected. Note that
the impact of the data-injection vector a on the estimate
x̂MMSE is quantified by the second term on the right-hand side
of the following equality:

x̂MMSE=M(Hx + z) + Ma. (6)

The term Ma is referred to as the excess distortion induced
by the attack vector a and is denoted by

xa
∆
= Ma = ΣxxHT(HΣxxHT + σ2I)−1a. (7)

B. Attack Detection

As a part of the grid management, a network operator
systematically attempts to identify the measurements that have
been corrupted. This operation can be cast as a hypothesis
testing problem with hypotheses

H0 : There is no attack (8)
H1 : Measurements are compromised. (9)

Assuming the operator knows that x ∼ N (0,Σxx), it can
obtain the joint density function of the measurements, y, and
the state variables x. From (2) and the assumptions of the
problem, it follows that the observations y are realizations
of an M -dimensional real Gaussian random variable with
covariance matrix

Σyy = HΣxxHT + σ2I, (10)

and mean a when there is an attack; or zero mean when there
is no attack. Within this setting, the hypothesis testing problem
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described before is adapted to the attack detection problem by
comparing the following hypotheses:

H0 : y ∼ N (0,Σyy) (11)
H1 : y ∼ N (a,Σyy). (12)

A worst case scenario approach is assumed for the attackers,
namely, the operator knows the attack vector, a, used in the
attack. However, the operator does not know a priori whether
the grid is under attack or not, which accounts for the need of
an attack detection strategy. That being the case, the optimal
detection strategy for the operator is to perform a likelihood
ratio test L(y,a) with respect to the observations y. Under the
assumption that state variables follow a multivariate Gaussian
distribution, the likelihood ratio can be calculated as

L(y,a) =
fN (0,Σyy)(y)

fN (a,Σyy)(y)
= exp

(
1

2
aTΣ−1

yya− aTΣ−1
yyy

)
,

(13)
where fN(µ,Σ) is the probability density function of a
multivariate Gaussian random vector with mean µ and co-
variance matrix Σ. Therefore, either hypothesis is accepted
by evaluating the inequalities

L(y,a)
H0

≷
H1

τ, (14)

where τ ∈ [0,∞) is tuned to set the trade-off between the
probability of detection and the probability of false alarm.

III. CENTRALIZED ATTACKS

This section describes the construction of data-injection
attacks in the special case in which there exists a unique
attacker. This scenario is referred to as centralized attacks in
order to highlight that there exists a unique entity deciding the
data-injection vector a ∈ RM in (2). The difference between
the scenario in which there exists a unique attacker or several
(competing or cooperating) attackers is subtle and it is treated
in Section IV.

Let M = {1, . . . ,M} denote the set of all M sensors
available to the network operator. A sensor is said to be
compromised if an attacker is able to arbitrarily modify its
output. Given a total energy budget E > 0 at the attacker, the
set of all possible attacks that can be injected to the network
can be explicitly described:

A =
{
a ∈ RM : aTa 6 E

}
. (15)

A. Attacks with Minimum Detection Probability

An attacker chooses a vector a ∈ A taking into account the
trade-off between the probability of being detected and the
distortion (7) that it induces into the measurements. However,
the choice of a particular data-injection vector is a task that is
far from trivial as an attacker does not possess any information
about the exact realization of the vector of state variables x
and the noise z. A reasonable assumption on the knowledge
of the attacker is to consider that it knows the topology of the
network and thus, it knows the matrix H. It is also reasonable
to consider that it knows the first and second moments of the
state variables x and noise z.

Under these knowledge assumptions, the average probability
that the network operator is unable to detect the attack vector
a is

PND(a) = E
[
1{L(y,a)>τ}

]
, (16)

where the expectation is taken over the joint probability dis-
tribution of state variables x and the noise z, and 1{·} denotes
the indicator function. Note that under these assumptions, y
is a random variable with Gaussian distribution with mean a
and covariance matrix Σyy. Thus, the probability PND(a) of
a vector a being a successful attack, i.e., a non-detected attack
is given by [20]

PND(a) =
1

2
erfc

 1
2aTΣ−1yya + log τ√

2aTΣ−1yya

 . (17)

Often, the knowledge of the threshold τ in (14) is not
available to the attacker and thus, it cannot determine the
exact average probability of not being detected of a given
attack vector a. However, the knowledge of whether τ > 1
or τ 6 1 induces different behaviors on the attacker. The
following propositions follow immediately from (17) and the
properties of the complementary error function.

Proposition 1 (Case τ 6 1) Let τ 6 1. Then, for all a ∈
A, PND(a) < PND ((0, . . . , 0)) and the probability PND(a) is
monotonically decreasing with aTΣ−1

yya.

Proposition 2 (Case τ > 1) Let τ > 1 and let also Σyy =
UyyΛyyUT

yy be an SVD decomposition of Σyy, with UT
yy =

(uyy,1, . . . ,uyy,M ) and Λyy = diag (λyy,1, . . . , λyy,M ) and
λyy,1 > λyy,2 > . . . ,> λyy,M . Then, any vector of the form

a = ±
√
λyy,k2 log τuyy,k, (18)

with k ∈ {1, . . . ,M}, is a data-injection attack that satisfies
for all a′ ∈ RM , PND(a

′) 6 PND(a).

The proof of Proposition 1 and Proposition 2 is as follows.
Proof: Let x = aTΣ−1

yya and note that x > 0 due to the
positive definiteness of Σyy. Let also the function g : R→ R
be

g(x) =
1
2x+ log τ
√
2x

. (19)

The first derivative of g(x) is

g′(x) =
1

2
√
2x

(
1

2
− log τ

x

)
. (20)

Note that in the case in which log τ 6 0 (or τ 6 1),
then ∀x ∈ R+, g′(x) > 0 and thus, g is monotonically
increasing with x. Since the complementary error function erfc
is monotonically decreasing with its argument, the statement
of Proposition 1 follows and completes its proof. In the case
in which log τ > 0 (or τ > 1), the solution to g′(x) = 0 is
x = 2 log τ and it corresponds to a minimum of the function g.
The maximum of 1

2erfc(g(x)) occurs at the minimum of g(x)
given that erfc is monotonically decreasing with its argument.
Hence, the maximum of PND(a) occurs at any a satisfying the
condition:

aTΣ−1
yya = 2 log τ. (21)
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Solving for a in (21) yields (18) and this completes the proof
of Proposition 2.

The relevance of Proposition 1 is that it states that when
τ 6 1, any non-zero data-injection attack vector possesses a
non zero probability of being detected. Indeed, the highest
probability PND(a) of not being detected is guaranteed by
the null vector a = (0, . . . , 0), i.e., there is no attack.
Alternatively, when τ > 1 it follows from Proposition 2 that
there always exists a non-zero vector that possesses maximum
probability of not being detected. However, in both cases, it
is clear that the corresponding data-injection vectors which
induce the highest probability of not being detected are not
necessarily the same that inflige the largest damage to the
network, i.e., maximize the excess distortion.

From this point of view, an attacker faces the trade-off
between maximizing the excess distortion and minimizing the
probability of being detected. Thus, the attack construction
can be formulated as an optimization problem in which
the solution a is a data-injection vector that maximizes the
probability PND(a) of not being detected at the same time that
it induces a given distortion ‖xa‖22 > D0 into the estimate.
In the case in which τ 6 1, it follows from Proposition 1
and (7) that this problem can be formulated as the following
optimization problem:

min
a∈A

aTΣ−1
yya s.t. aTΣ−1

yyHΣ2
xxHTΣ−1

yya ≥ D0. (22)

The solution to the optimization problem in (22) is given by
the following theorem.

Theorem 1 Let G = Σ
− 1

2
yy HΣ2

xxHTΣ
− 1

2
yy have a sin-

gular value decomposition G = UGΣGUT
G, with

U = (uG,i, . . . ,uG,M ) a unitary matrix and ΣG =
diag (λG,1, . . . , λG,M ) a diagonal matrix with λG,1 > . . . >
λG,M . Then, if τ 6 1, the attack vector a that maximizes the
probability of not being detected PND(a) while inducing an
excess distortion not less than D0 is

a = ±

√
D0

λG,1
Σ

1
2
yyuG,1. (23)

Moreover, PND(a) =
1
2erfc

 D0
2λG,1

+log τ√
2D0
λG,1

.

Proof: Consider the Lagrangian

L(a) = aTΣ−1
yya− γ

(
aTΣ−1

yyHΣ2
xxHTΣ−1

yya− D0

)
, (24)

with γ > 0 a Lagrangian multiplier. Then, the necessary
conditions for a to be a solution to the optimization problem
(22) are:

∇aL(a)=2
(
Σ−1

yy − γΣ−1
yyHΣ2

xxHTΣ−1
yy

)
a = 0 (25)

d

dγ
L(a)=aTΣ−1

yyHΣ2
xxHTΣ−1

yya− D0 = 0. (26)

Note that any

ai=±

√
D0

λG,i
Σ

1
2
yyuG,i and (27)

γi=λG,i, with 1 6 i 6 rank (G) , (28)

satisfy γi > 0 and conditions (25) and (26). Hence, the set of
vectors that satisfy the necessary conditions to be a solution
of (22) is{

ai = ±

√
D0

λG,i
Σ

1
2
yyuG,i : 1 6 i 6 rank (G)

}
. (29)

More importantly, any vector a 6= ai, with 1 6 i 6 rank (G),
does not satisfy the necessary conditions. Moreover,

aT
i Σ−1

yyai =
D0

λG,i
>

D0

λG,1
. (30)

Therefore, a = ±
√

D0

λG,1
Σ

1
2
yyuG,1 are the unique solutions to

(22). This completes the proof.
Note that the construction of the data-injection attack a

in (23) does not require the exact knowledge of τ . That is,
only knowing that τ 6 1 is enough to build the data-injection
attack that has the highest probability of not being detected
and induces a distortion of at least D0.

In the case in which τ > 1, it is also possible to find the
data-injection attack vector that induces a distortion not less
than D0 and the maximum probability of not being detected.
Such a vector is the solution to the following optimization
problem.

min
a∈A

1
2aTΣ−1

yya + log τ√
2aTΣ−1

yya
s.t. aTΣ−1

yyHΣ2
xxHTΣ−1

yya ≥ D0.

(31)
The solution to the optimization problem in (31) is given by
the following theorem.

Theorem 2 Let G = Σ
− 1

2
yy HΣ2

xxHTΣ
− 1

2
yy have a sin-

gular value decomposition G = UGΣGUT
G, with

UG = (uG,i, . . . ,uG,M ) a unitary matrix and ΣG =
diag (λG,1, . . . , λG,M ) a diagonal matrix with λG,1 > . . . >
λG,M . Then, when τ > 1, the attack vector a that maximizes
the probability of not being detected PND(a) while producing
an excess distortion not less than D0 is

a=

 ±
√

D0

λG,k∗
Σ

1
2
yyuG,k∗ if D0

2 log τλG,rankG
> 1,

±
√
2 log τΣ

1
2
yyuG,1 if D0

2 log τλG,rankG
< 1

with
k∗ = arg min

k∈{1,...,rankG}: D0
λG,k

>2 log(τ)

D0

λG,k
. (32)

Proof: The structure of the proof of Theorem 2 is similar
to the proof of Theorem 1 and is omitted in this paper. A
complete proof can be found in [21].

B. Attacks with Maximum Distortion

In the previous subsection, the attacker constructs its data-
injection vector a aiming to maximize the probability of non-
detection PND(a) while guaranteeing a minimum distortion.
However, this problem has a dual in which the objective
is to maximize the distortion aTΣ−1

yyHΣ2
xxHTΣ−1

yya while
guaranteeing that the probability of not being detected remains
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always larger than a given threshold L′0 ∈ [0, 1
2 ]. This problem

can be formulated as the following optimization problem:

max
a∈A

aTΣ−1
yyHΣ2

xxHTΣ−1
yya s.t.

1
2aTΣ−1

yya + log τ√
2aTΣ−1

yya
≤ L0,

(33)
with L0 = erfc−1 (2L′0) ∈ [0,∞).

The solution to the optimization problem in (33) is given
by the following theorem.

Theorem 3 Let the matrix G = Σ
− 1

2
yy HΣ2

xxHTΣ
− 1

2
yy

have a singular value decomposition UGΣGUT
G, with

U = (uG,i, . . . ,uG,M ) a unitary matrix and ΣG =
diag (λG,1, . . . , λG,M ) a diagonal matrix with λG,1 > . . . >
λG,M . Then, the attack vector a that maximizes the excess
distortion aTΣ

− 1
2

yy GΣ
− 1

2
yy a with a probability of not being

detected that does not go below L0 ∈ [0, 1
2 ] is

a=±
(√

2L0 +
√
2L2

0 − 2 log τ

)
Σ

1
2
yyuG,1, (34)

when a solution to (33) exists.

Proof: The structure of the proof of Theorem 3 is similar
to the proof of Theorem 1 and is omitted in this paper. A
complete proof can be found in [21].

IV. DECENTRALIZED ATTACKS

Let K = {1, . . . ,K} be the set of attackers that can
potentially perform a data injection attack on the network.
Let also Ci be the set of sensors that attacker i can control.
Assume that C1, . . . , CK are proper sets and form a partition
of the set M of all sensors. The set Ak of data attack vectors
ak that can be injected into the network by attacker k ∈ K is
of the form

Ak = {ak ∈ RM : (ak)j = 0 for all j /∈ Ck,aTk ak ≤ Ek}.
(35)

The constant Ek <∞ represents the energy budget of attacker
k. Let the set of all possible sums of the elements of Ai and
Aj be denoted by Ai ⊕ Aj . That is, for all a ∈ Ai ⊕ Aj ,
there exists a pair of vectors (ai,aj) ∈ Ai × Aj such that
a = ai + aj . Using this notation, let the set of all possible
data-injection attacks be denoted by

A=A1 ⊕A2 ⊕ . . .⊕AK , (36)

and the set of complementary data-injection attacks with
respect to attacker k be denoted by

A−k=A1 ⊕ . . .⊕Ak−1 ⊕Ak+1 ⊕ . . .⊕AK . (37)

Given the individual data injection vectors ai ∈ Ai, with i ∈
{1, . . . ,K}, the global attack vector a is

a =

K∑
i=1

ak ∈ A. (38)

The aim of attacker k is to corrupt the measurements obtained
by the set of meters Ck by injecting an error vector ak ∈ Ak
that maximizes the damage to the network, e.g., the excess

distortion, while avoiding the detection of the global data-
injection vector a. Clearly, all attackers have the same interest
but they control different sets of measurements, i.e., Ci 6= Ck,
for a any pair (i, k) ∈ K2. For modeling this behavior,
attackers use the utility function φ : RM → R, to determine
whether a data-injection vector ak ∈ Ak is more beneficial
than another a′k ∈ Ak given the complementary attack vector

a−k =
∑

i∈{1,...,K}\{k}

ai ∈ A−k (39)

adopted by all the other attackers. The function φ is chosen
considering the fact that an attack is said to be successful
if it induces a non-zero distortion and it is not detected.
Alternatively, if the attack is detected no damage is induced
into the network as the operator discards the measurements
and no estimation is performed. Hence, given a global at-
tack a, the distortion induced into the measurements is
1{L(Hx+z+a,a)>τ}x

T
axa. However, attackers are not able to

know the exact state of the network x and the realization of
the noise z before launching the attack. Thus, it appears natural
to exploit the knowledge of the first and second moments of
both the state variables x and noise z and consider as a metric
the expected distortion φ(a) that can be induced by the attack
vector a:

φ(a)=E
[(
1{L(Hx+z+a,a)>τ}

)
xT
a xa

]
, (40)

=PND(a) aTΣ−1yyHΣ2
xxHTΣ−1yya, (41)

where the expectation is taken over the distribution of state
variables x and the noise z. Note that under this assumptions
of global knowledge, this model considers the worst case
scenario for the network operator. Indeed, the result presented
in this section corresponds to the case in which the attackers
inflict the most harm.

A. Game Formulation
The benefit φ(a) obtained by attacker k does not only

depend on its own data-injection vector ak, but also on
the data-injection vector a−k induced by the other attackers.
This becomes clear from the construction of the global data-
injection vector a in (38), the excess distortion xa in (7)
and the probability of not being detected PND(a) in (17).
Therefore, the interaction of all attackers in the network can
be described by a game in normal form

G =
(
K, {Ak}k∈K , φ

)
. (42)

Each attacker is a player in the game G and it is identified
by an index from the set K. The actions player k might
adopt are data-injection vectors ak in the set Ak in (35). The
underlying assumption in the following of this section is that,
given a vector of data-injection attacks a−k, player k aims to
adopt a data-injection vector ak such that the expected excess
distortion φ(ak + a−k) is maximized. That is,

ak ∈ BRk (a−k) , (43)

where the correspondence BRk : A−k → 2Ak is the best
response correspondence, i.e.,

BRk (a−k) = arg max
ak∈Ak

φ (ak + a−k) . (44)
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The notation 2Ak represents the set of all possible subsets of
Ak. Note that BRk (a−k) ⊆ Ak is the set of data-injection
attack vectors that are optimal given that the other attackers
have adopted the data-injection vector a−k. In this setting,
each attacker tampers with a subset Ck of all sensors C, as
opposed to the centralized case in which there exists a single
attacker able to tampers with all sensors in C.

A game solution that is particularly relevant for this analysis
is the NE [22].

Definition 1 (Nash Equilibrium) The data-injection vector
a is an NE of the game G if and only if it is a solution of
the fix point equation

a = BR(a) , (45)

with BR : A → 2A being the global best-response correspon-
dence, i.e.,

BR (a) = BR1 (a−1)⊕ . . .⊕ BRK (a−K) . (46)

Essentially, at an NE, attackers obtain the maximum benefit
given the data-injection vector adopted by all the other attack-
ers. This implies that an NE is an operating point at which
attackers achieve the highest expected distortion induced over
the measurements. More importantly, any unilateral deviation
from an equilibrium data-injection vector a does not lead to an
improvement of the average excess distortion. Note that this
formulation does not say anything about the exact distortion
induced by an attack but the average distortion. This is mainly
because the attack is chosen under the uncertainty of the state
vector x and the noise term z.

The following proposition highlights an important property
of the game G in (42).

Proposition 3 The game G in (42) is a potential game.

Proof: The proof follows immediately from the observa-
tion that all the players have the same utility function φ [23].
Thus, the function φ is a potential of the game G in (42) and
any maximum of the potential function is an NE of the game
G.

In general, potential games [23] possess numerous proper-
ties that are inherited by the game G in (42). These properties
are detailed by the following propositions

Proposition 4 The game G possesses at least one NE.

Proof: Note that φ is continuous in A and A is a convex
and closed set; therefore, there always exists a maximum of
the potential function φ in A. Finally from Lemma 4.3 in [23],
it follows that such a maximum corresponds to an NE.

B. Achievability of an NE

The attackers are said to play a sequential best response
dynamic (BRD) if the attackers can sequentially decide their
own data-injection vector ak from their sets of best responses
following a round-robin (increasing) order. Denote by a

(t)
k ∈

Ak the choice of attacker k during round t ∈ N and assume

that attackers are able to observe all the other attackers’ data-
injection vectors. Under these assumptions, the BRD can be
defined as follows.

Definition 2 (Best Response Dynamics) The players of the
game G are said to play best response dynamics if there exists
a round-robin order of the elements of K in which at each
round t ∈ N, the following holds:

a
(t)
k ∈ BRk

(
a

(t)
1 + . . .+ a

(t)
k−1 + a

(t−1)
k+1 + . . .+ a

(t−1)
K

)
.

(47)

From the properties of potential games (Lemma 4.2 in [23]),
the following proposition follows.

Lemma 1 (Achievability of NE attacks) Any BRD in the
game G converges to a data-injection attack vector that is
an NE.

The relevance of Lemma 1 is that it establishes that if
attackers can communicate in at least a round-robin fashion,
they are always able to attack the network with a data-injection
vector that maximizes the average excess distortion. Note that
there might exists several NEs (local maxima of φ) and there
is no guarantee that attackers will converge to the best NE,
i.e., a global maximum of φ. It is important to note that
under the assumption that there exists a unique maximum,
which is not the case for the game G (see Theorem 4), all
attackers are able to calculate such a global maximum and no
communications is required among the attackers. Nonetheless,
the game G always possesses at least two NEs, which enforces
the use of a sequential BRD to converge to an NE.

C. Cardinality of the set of NEs

Let ANE be the set of all data-injection attacks that form
NEs. The following theorem bounds the number of NEs in the
game.

Theorem 4 The cardinality of the set ANE of NE of the game
G satisfies

2 6 |ANE| 6 C · rank(H) (48)

where C <∞ is a constant that depends on τ .

Proof: The lower bound follows from the symmetry of
the utility function given in (40), i.e. φ(a) = φ(−a), and the
existence of at least one NE claimed in Proposition 4.

To prove the upper bound the number of stationary points
of the utility function is evaluated. This is equivalent to the
cardinality of the set

S = {a ∈ RM : ∇aφ(a) = 0}, (49)

which satisfies ANE ⊆ S. Calculating the gradient with
respect to the attack vector yields

∇aφ(a) =
(
α(a)MTM− β(a)Σ−1

yy

)
a, (50)

where

α(a)
∆
= erfc

 1√
2

1
2aTΣ−1

yya + log τ(
aTΣ−1

yya
) 1

2

 (51)
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and

β(a)
∆
=

aTMTMa√
2πaTΣ−1

yya

(
1

2
− log τ

aTΣ−1
yya

)

× exp

−
 1√

2

1
2aTΣ−1

yya + log τ(
aTΣ−1

yya
) 1

2

2
 . (52)

Define δ(a) ∆
= β(a)

α(a) and note that combining (4) with (50)
gives the following condition for the stationary points:(

HΣ2
xxHTΣ−1

yy − δ(a)I
)
a = 0. (53)

Note that the number of linearly independent attack vectors
that are a solution of the linear system in (53) is given by

R
∆
= rank

(
HΣ2

xxHTΣ−1
yy

)
(54)

= rank (H) . (55)

where (55) follows from the fact that Σxx and Σyy are
positive definite. Define the eigenvalue decomposition

Σ
− 1

2
yy HΣ2

xxHTΣ
− 1

2
yy = UΛUT (56)

where Λ is a diagonal matrix containing the ordered eigen-
values {λi}Mi=1 matching the order of the eigenvectors in U.
As a result of (54) there are R eigenvalues, λk, which are
different from zero and M −R diagonal elements of Λ which
are zero. Combining this decomposition with some algebraic
manipulation, the condition for stationary points in (53) can
be recast as

Σ
− 1

2
yy U (Λ− δ(a)I)UTΣ

− 1
2

yy a = 0. (57)

Let w ∈ R be a scaling parameter and observe that the
attack vectors that satisfy a = wΣ

1
2
yyUek and δ(a) = λk

for k = 1, . . . , R are solutions of (57). Note that the critical
points associated to zero eigenvalues are not NE. Indeed, the
eigenvectors associated to zero eigenvalues yield zero utility.
Since the utility function is strictly positive, these critical
points are minima of the utility function and can be discarded
when counting the number of NE. Therefore, the set in (49)
can be rewritten based on the condition in (57) as

S =

R⋃
k=1

Sk, (58)

where

Sk = {a ∈ RM : a = wΣ
1
2
yyUek and δ(a) = λk}. (59)

There are R linearly independent solutions of (57) but for
each linearly independent solution there can be several scaling
parameters, w, which satisfy δ(a) = λk. For that reason, |Sk|
is determined by the number of scaling parameters that satisfy
δ(a) = λk. To that end, define δ′ : R → R as δ′(w)

∆
=

δ(wΣ
1
2
yyUek). It is easy to check that δ′(w) = λk has a finite

number of solutions for k = 1, . . . , R. Hence, for all k there
exists a constant Ck such that |Sk| ≤ Ck which yields the
upper bound

|S| ≤
R∑
i=1

|Sk| ≤
R∑
i=1

Ck ≤ max
k

CkR. (60)

Fig. 1. Utility function for 30 bus IEEE test system as a function of the
attack vector where attacker 1 controls real power injection measurement 1
and attacker 2 controls real power injection measurement 2. The red squares
show the location of the NE points.

Noticing that the there is a finite number of solutions of
δ′(w) = λk and that they depend only on τ yields the upper
bound.

V. NUMERICAL RESULTS

In this section the properties of the game G described in
Section IV are numerically evaluated for the 14 and 30 bus
IEEE test systems. All numerical results are obtained for the
case in which there are two attackers in the system where
attacker one controls measurement sensor one, i.e. C1 = {1},
and attacker two controls measurement sensor two, i.e. C2 =
{2}.

The results presented in this paper apply to any positive def-
inite covariance matrix Σxx. However, for the sake of discus-
sion and in order to illustrate the analytical results presented
above, a particular covariance matrix model is chosen for the
simulations. Since covariance matrices of weakly stationary
random processes are Toeplitz [24], an exponentially decaying
Toeplitz model is chosen where the strength of the correlation
is set by the correlation strength parameter ρ ∈ (0, 1], namely,
Σxx =

[
(Σxx)i,j = ρ|i−j|; i, j = 1, 2, . . . , n

]
. Similarly, the

standard deviation of the additive noise term, z, is set to
σ = 0.1 for all simulations which yields a signal to noise
ratio of 10 log10

(
1
σ2

)
= 20 dB.

Figure 1 depicts the utility function described by (40) when
two attackers are present in the IEEE 30 bus test system and
each controls one measurement sensor. The NEs have been
numerically evaluated and are represented by red squares. In
this example, the number of NE coincides with the lower
bound in Theorem 4 and the attack vectors are antisymmetric
as it is expected given the symmetry of the utility function.

The utility function evaluated in an NE as a function of the
likelihood ratio threshold, τ , is shown in Figure 2 for different
types of measurement sensors. For both IEEE test systems
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Fig. 2. Utility at NE as a function of log τ for different sets of measurement
sensors. The solid lines correspond to the 14 bus IEEE test system and the
dashed lines to the 30 bus IEEE test system.

considered, the 14 bus and 30 bus cases, power flow sensors
consistently provide a higher utility to the attackers than the
power injection counterparts. Interestingly, the difference with
power injection measurements decreases when τ increases,
i.e., the operator increases the probability of detection but also
increases the probability of false alarm in the system. It is also
worth noticing that the performance of the attackers is lower
in the larger 30 bus system which suggests that large scale
networks pose a more challenging scenario for decentralized
attack strategies.

A main observation in this paper is that attackers can
exploit the correlation between state variables to improve
the performance of decentralized attack strategies. Figure 3
shows the utility function evaluated in an NE as a function of
the correlation strength parameter ρ, governing the strength
of the correlation between state variables. Remarkably, the
utility in the NE increases monotonically as a function of
the correlation strength parameter ρ, which suggests that
increasing the dependency between state variables facilitates
the coordination of decentralized attack strategies. That being
said, it is assumed that attackers know the underlying statistical
structure of the state variables, i.e. Σxx, which demands a
significant learning effort from the attackers.

VI. CONCLUSION

In this paper, we have considered the design of data injection
vectors in state estimation for electricity grids. In particular,
we have studied the case in which the operator acquires
the state of the grid through MMSE estimation and the
attack detection is based on a likelihood ratio test. Within
this setting, the trade-off between achievable distortion and
probability of detection has been characterised by deriving
optimal centralized attack constructions for a given distortion
and probability of detection pair. It is worth noting that the
optimal attack strategy considers the statistical structure of
the state variables and that correlation can be exploited by the
attacker to construct more efficient attacks.

;
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Fig. 3. Utility at NE as a function of ρ for different sets of measurement
sensors. The solid lines correspond to the 14 bus IEEE test system and the
dashed lines to the 30 bus IEEE test system.

We have then extended the investigation to decentralized
scenarios in which several attackers construct their respective
attack without coordination. In this setting, we have posed the
interaction between the attackers in a game theoretic setting.
Central to this study is the derivation of a new utility function
that captures the most important aspects of decentralized
attack construction in electricity grids. We have shown that
the proposed utility function results in a setting that can be
described as a potential game which allows us to claim the
existence of a NE and the convergence of BRD to a NE. We
have then provided bounds on the number of NE and prove
that there is always a finite number of NE and that there are
always at least two NE. Interestingly, this implies that attackers
cannot guarantee a strategy that will lead to an NE without
coordination. In the numerical results section we evaluate the
analytical results in IEEE Test systems with 14 and 30 buses.
The numerical results corroborate that there is no single NE
and that the statistical structure of the state variables can be
exploited by the attackers to maximize the distortion that they
induce in the state estimate of the network operator.
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