Machine Learning under the light of Phraseology expertise: use case of presidential speeches, De Gaulle -Hollande (1958-2016) - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Machine Learning under the light of Phraseology expertise: use case of presidential speeches, De Gaulle -Hollande (1958-2016)

Résumé

Author identification and text genesis have always been a hot topic for the statistical analysis of textual data community. Recent advances in machine learning have seen the emergence of machines competing state-of-the-art computational linguistic methods on specific natural language processing tasks (part-of-speech tagging, chunking and parsing, etc). In particular, Deep Linguistic Architectures are based on the knowledge of language speci-ficities such as grammar or semantic structure. These models are considered as the most competitive thanks to their assumed ability to capture syntax. However if those methods have proven their efficiency, their underlying mechanisms, both from a theoretical and an empirical analysis point of view, remains hard both to explicit and to maintain stable, which restricts their area of applications. Our work is enlightening mechanisms involved in deep architectures when applied to Natural Language Processing (NLP) tasks. The Query-By-Dropout-Committee (QBDC) algorithm is an active learning technique we have designed for deep architectures: it selects iteratively the most relevant samples to be added to the training set so that the model is improved the most when built from the new training set. However in this article, we do not go into details of the QBDC algorithm-as it has already been studied in the original QBDC article-but we rather confront the relevance of the sentences chosen by our active strategy to state of the art phraseology techniques. We have thus conducted experiments on the presidential discourses from presidents C. De Gaulle, N. Sarkozy and F. Hollande in order to exhibit the interest of our active deep learning method in terms of discourse author identification and to analyze the extracted linguistic patterns by our artificial approach compared to standard phraseology techniques.
L'identification de l'auteur et la gen ese d'un texte ont toujours eté une question de tr es grand intérêt pour la com-munauté de l'analyse statistique des données textuelles. Les récentes avancées dans le domaine de l'apprentissage machine ont permis l'´ emergence d'algorithmes concurrençant les méthodes de linguistique computationnelles de l'´ etat de l'art pour des tâches spécifiques en traitement automatique du langage (´ etiquetage des parties du dis-cours, segmentation et l'analyse du texte, etc). En particulier, les architectures profondes pour la linguistique sont fondées sur la connaissance des spécificités linguistiques telles que la grammaire ou la structure sémantique. Ces mod eles sont considérés comme les plus compétitifs grâcè a leur capacité supposée de capturer la syntaxe. Toute-fois, si ces méthodes ont prouvé leur efficacité, leurs mécanismes sous-jacents, tant du point de vue théorique que du point de vue de l'analyse empirique, restent difficilè a la fois a expliciter et a maintenir stables, ce qui limite leur domaine d'application. Notre article visè a mettre enlumì ere certains des mécanismes impliqués dans l'apprentissage profond lorsqu'il est appliqué a des tâches de traitement automatique du langage (TAL). L'algorithme Query-By-Dropout-Committee (QBDC) est une technique d'apprentissage actif, nous avons conçu pour les architectures profondes : il sélectionne itérativement les echantillons les plus pertinents pour etre ajoutés a l'ensemble d'entrainement afin que le mod ele soit amélioré de façon optimale lorsqu'on il est mis a jour a partir du nouvel ensemble d'entrainement. Cependant, dans cet article, nous ne détaillons pas l'algorithme QBDC-qui a déj a ´ eté etudié dans l'article original sur QBDC-mais nous confrontons plutôt la pertinence des phrases choisies par notre stratégie active aux techniques de l'´ etat de l'art en phraséologie. Nous avons donc mené des expériences sur les discours présidentiels des présidents C. De Gaulle , N. Sarkozy et F. Hollande afin de présenter l' intérêt de notre méthode d'apprentissage profond actif en termes de d'identification de l'auteur d'un discours et pour analyser les motifs linguistiques extraits par notre approche artificielle par rapport aux techniques de phraséologie standard.

Domaines

Linguistique
Fichier principal
Vignette du fichier
JADT2016_Ducoffe_et_al.pdf (302.98 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-01343209 , version 1 (07-07-2016)
hal-01343209 , version 2 (07-09-2016)

Identifiants

  • HAL Id : hal-01343209 , version 2

Citer

Mélanie Ducoffe, Damon Mayaffre, Frédéric Precioso, Frédéric Lavigne, Laurent Vanni, et al.. Machine Learning under the light of Phraseology expertise: use case of presidential speeches, De Gaulle -Hollande (1958-2016). JADT 2016 - Statistical Analysis of Textual Data, Damon Mayaffre; Céline Poudat; Laurent Vanni; Véronique Magri; Peter Follette; Caroline Daire, Jun 2016, Nice, France. pp.157-168. ⟨hal-01343209v2⟩
491 Consultations
244 Téléchargements

Partager

More