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Nonlinear Control of Aerial Vehicles Subjected to Aerodynamic Forces

Daniele Pucéi Tarek Hamel Pascal Morifi  Claude Samsdr?

Abstract— The paper contributes towards the development of have also been proposed in the last decade to enlarge the
a unified control approach for longitudinal aircraft dynami cs.  provable domain of stability [7] [8] [9]. These methods, how
It states conditions that allow to adapt the control stratedges ever, are based on simplified dynamic models that neglect
developed for orientation-independent external forces tothe ’ . )
aerodynamic forces, so they are not best suited to the dontro

orientation-dependent case. The control strategy preseat! here ; ) . . -
is a step to the automatic monitoring of the flight transitions ~ Of aircraft moving fast or subjected to strong wind variatio

between hovering and cruising for convertible aerial vehites. A drawback of the independent development of control
_Index Terms— Aerodynamic Forces, Nonlinear Control, Lon-  methods for fixed-wing and VTOL aircraft is the lack of
gitudinal Aircraft Dynamics, Transition Maneuvers. tools for flying vehicles that belong to both classes. One

can mention the example @bnvertible aircraft which can
perform stationary flight and also benefit from lift propesti
The research area on aerial vehicles has been extremglyhigh airspeed via optimized aerodynamic profiles. The
active within the last decade. This led to the developmemgnewed interest in convertible vehicles and their corigol
of sophisticated autopilots for fully autonomous flightslan reflected in the growing number of studies devoted to them
navigation systems for military and civil applications.wto in recent years [10] [11] [12], even though the literature
ever, almost all existing work is primarily directed toward in this domain is not extensive. One of the motivations
two different classes of aerial vehicles: fixed-wing aiftf]  for elaborating more versatile control solutions is that th
and Vertical Take-Off and Landing vehicles [2] (VTOL). Theautomatic monitoring of the transitions between statignar
complexity of aerodynamic effects and the diversity of fyin flight and cruising modes remains a challenge to this day.
vehicles partly account for the independent development|n jight of the above, we believe that there is a strong
of control strategies for these two classes of aircraft. Fqjotential benefit in bringing control techniques for airga
instance, lift forces are preponderant for fixed-wing @ftr and VTOLs closer. A major difficulty for the control of
in high-velocity cruising, whereas they are negligible forjrcraft is the dependence of aerodynamic forces upon the
VTOLs in hovering. Control design techniques for fixed~ehicle’'s orientation. In [13], we showed that for certain
wing and VTOL vehicles have then been developed ifodels of aerodynamic forces the control problem can
different directions and suffer from specific limitations. be transformed into that of controlling a body subjected
Classically, feedback control of fixed-wing aircraft expli to an aerodynamic force whose direction is orientation-
itly takes into account aerodynamic forces via linearizethdependent. This transformation is callspherical equiv-
models. Then, stabilization is usually achieved by apjyinalencyand, once applied, allows us to adapt control design
linear control techniques [1]. A main preoccupation whefnethods developed previously.
investigating nonlinear aircraft phenomena is to deteemin The present paper focuses on longitudinal aircraft dy-
the conditions that may trigger an aircrdétss-of-control namics (the so called PVTOL case of a vehicle flying in
(LOC), which remains among the most important contriba vertical plane) and extends the control solution proposed
utors to fatal accidents [3]. To understand the qualitzdive in [13] to a larger set of generic aerodynamic models. More
global behavior of nonlinear aircraft dynamics, the cohtroprecisely, the contribution of this paper is twofold. First
problem is usually formulated in the form of a set ofthe family of aerodynamic models for which the spherical
ordinary differential equations depending on paramet}s [ equivalency holds is enlarged. Elements of this family are
This approach — referred to adifurcation analysis and representative of the experimental data taken for several
catastrophe theory methodolog¥] — yields deep insights wing profiles on eithesmall or large angles of attack. By
into nonlinear aircraft phenomena, but is usually inagille  combining these elements, we build up modeling functions
whenunsteadyeffects are no longer negligible, as in the casgnat catch the main variations of the aerodynamic coeffisien
of strong wind gusts and non constant reference velocitiesf NACA profiles, including stall phenomenaThen, we
Linear control techniques are used for hovering VTOladdress the case when the spherical equivalency cannot be
vehicles too [5] [6], but several nonlinear feedback methodapplied, as for the proposed combined aerodynamic model.
%I3S-CNRS,  Universitt de Nice Sophia-Antipolis, France.In this respect, we show that the .Spherica.l eqUiva.IenCyd']Old
pucci @ 3s. uni ce. fr, t hamel @ 3s. uni ce. fr, independently of the aerodynamic force in a neighborhood
csanson@ 3s. uni ce. fr of the equilibrium configuration. This property allows one
’INRIA Sophia Antipolis Méditerranée, Sophia Antipolis, afce g adapt control design methods developed for systems
Clﬁ;g‘igﬁgﬁggg nFrr;na}:éTfDrri n@sir.upnmc. fr. This author SUbjected to an orientation-independent external fordaeo
has been supported by the “Chaire d’excellence en RoboRgE2UPMC”.  orientation-dependent case.
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e The wind’s velocity is denoted by, and its components
are defined byo,, = (%, 70)Zw = (7, 7)vw. Theair velocity
Ua = (@ ))ve = (10,)0)%, 1S defined as the difference
between the velocity o6 andv,,. Then,v, = ¢ — 9.

B. System modeling

The equations of motion are derived by considering two
control inputs. The first one is trust force 7' along the
body fixed direction” (f = —T17) whose main role is to
produce longitudinal motions. The second control input is a
torque actuation, typically created via secondary prepgll
L rudders or flaps, control moment gyros, etc. For the sake
7 of simplicity, we assume that any desired torque can be
produced so that the vehicle’'s angular velocitys modified
at will and used as a control variable. In the language of

. . utomatic Control, this is a typicdlacksteppingssumption,
The paper is organized as follows. In the backgroun? : yb . pping: P
Section Il after specifving the notation used in the pape o the way of producing the determined angular velocity can
eneral m’odellin Ioe ufa){tio%s are recalled and motivatigngf e achieved via classical nonlinear techniques [14, p..589]
9 g equat . . .~ The external forces acting on the body are assumed to be
the present study are discussed in relation to the limitatio

e . . . composed of the gravityngiy and the aerodynamic forces
of existing results. Original results concerning the modgl P 9 ygio y

of aerodynamic forces acting on NACA profiles and theFa' Applying the fundamental theorem of mechanics yields:

characterization of two families of models that allow one to ma = mgiy + E, - T7, (1a)
apply the spherical equivalency are reported in Section I 0=w, (1b)

The extension of the spherical equivalency to a generic o _

aerodynamic model, together with a local stabilizer foretim With ¢ the gravitational acceleration. For the sake of com-
varying reference velocity, are presented in Section I\WRleteness, the model (1a) should be completed by a modeling
Simulation results for the airfoil NACA 0021 are reportedof the so-calledbody forces- a coupling term between the

in Section V. Remarks and perspectives conclude the papk¥que control input and the external forces on the body —
that may induce unstable zero dynamics [15] [16]. However,

Il. BACKGROUND in the case of VTOLSs, several studies show that the effects of
A. Notation these forces can baitigatedby stabilizing a specific control
_ point other than the vehicle’s center of mass [17] [18].
e Thei;;, component o_f a vectar is fjeno_ted as;. Furthermore, in the case of fixed-wing aircraft, the body-
e For the sake of brevity,z17+ z2]) is written as(z,J)z.  force is usually neglected [1]. For these reasons, in thiepa
o {e1,e2} is the canonical basis iR?, and is the (2 x 2)  the hody force is neglected so that we can work out general

identity matrix. . principles independently of the specific issues relatedéo t
e The scalar product of two vectois i/ is denoted as’- 4.  vehicle’'s means of actuation.

e Given a functionf : R—R, its first derivative is denoted _
as f’. Given a functionf of several variables, its partial C- Aérodynamic forces

—

Jo

Fig. 1. Thrust-propelled vehicle subjected to aerodynaméction forces.

derivative w.r.t. one of them, say, is denoted a@xf:%. Steadyaerodynamic forces at constant Reynolds and Mach
e (G is the body’s center of mass amd is the (constant) numbers — denoted by:. and M — can be written as
mass of the vehicle. follows [19, p. 34]

e 7 = {0;%,0} is a fixed inertial frame with respect to 2 = o1 S
(W.r.t.) v{vhich the} vehicle’s absolute pose is measured. Fa = kaltla| [cL(e)Ty — ep(a)ii] 2)
e B={G;7,7} is a frame attaghed to the body. The veator wherek, := %, p is the free streamair density,Y is the
is parallel to the thrust forc&. This leaves two possible characteristic surface of the vehicle’s body,(-) is the lift
and opposite directions for this vector. The direction @mos coefficient cp(-) > 0 is the drag coefficient(c;, and cp

here, i.e.T = —T7, is consistent with the convention usedare calledaerodynamic characteristisv.- is obtained by
for VTOL vehicles. rotating the vecto, by 90° anticlockwise, i.e.

e The body’s position is denoted hy:= OG = (i, jo)z. NI . 3
The body’s linear velocity is denoted by = %ﬁ = Ya = Var] = Yazts (3)
(1, 70)& = (%, 7)v, and the linear acceleration b= L. and « is the angle of attack. This latter variable is here

e The vehicle’s orientation is given by the anglbetween defined as the angle between the body-fixaslo-lift di-
and?. The rotation matrix of the angleis R(6). The column rection Z7,, along which the airspeed does not produce lift
vectors of R are the vectors of coordinates Off expressed forces, and the airspeed vecty, i.e. a := angldv,, z1.).

in Z. The matrixS = R(w/2) is a unitary skew-symmetric By denoting the (constant) angle between the zero-liftadire
matrix. The body’s angular velocity is := 6. tion and the thrust’ asd, i.e. § := angle(ZL,f), and also



the angle between the gravity directignand v, as~, i.e. force F is typically orientation-dependent, the existence and
~ := angle(2p, U, ), ONe has (see Figure 1): unigueness of the equilibrium-thrust direction is no lange
systematic, and the stabilization of such an equilibriutmem

a=0-7+(r—9) ) it is locally unique, can be very sensitive to thrust ori¢iota
. variations [20].

Vay = — [Ta] cos(a + 6) - [20]

Vay, = |Uq|sin(a + 9). I1l. A ERODYNAMIC MODELS YIELDING

D. Tracking errors dynamics and related control issues SPHERICAL EQUIVALENCY

Let ¥,.(t) denote a differentiable reference velocity, and Ina previous papl)er I[Ilg]’ x\’e show<|ad thf?t a generic set of
d,(t) its first time-derivative, i.ed,(t) := ddig. Define the gerodynamlc models allow the coqtro prob em.to be recasted
velocity error as into the simpler case of controlling a spherical body for

which strong stability results can be demonstrated. A egl/is

€y 1= U — Ty (6) and extended version of this result is stated next.
Using System (1) one obtains the following error model Define
mé, = F_T7 (7a) cr(a,N) = cp(a) — Asin(a + 9), (11a)
0= w (7b) ¢p(a, ) := cp(a) + Aeos(a + §), (11b)

with A € R, not necessarily constant. Then, in view of (3)
~ and (5), one verifies thdf, given by (2) can be decomposed
F :=mgio + ka|Ua) [cL(a)ﬁj — cp(@),] —ma,(t). (8) as follows

with F' the apparent external forcgiven by

Observe thaf" depends upon the vehicle’s orientatiéwia F, = ko |Ual [ELﬁj - EDUa] — Mo |Ua |7, (12)
the angle of attack given by (4).

In view of the error dynamics (7), the equilibrium condi-Consequently, the dynamics of the velocity errors (7) bezom

tione, =0 rgquires that the thrust vect@iz must be equal me, = ﬁp —T,7, (13a)
to the forceF), i.e. 0= w (13b)
TH0) = F(v,,0,t), Vt, 9) with
which in turn implies -
p ; Foi=mgiy+ka|U,| [EL(a,)\)ﬁj—‘D(a,A)Ua] —md,, (14a)
T = ]'7‘(1_)’7.7 9, t) . 7(09), (10&) Tp::T + ka>\|17a|2- (14b)
0= F(v,,0,t)-7(0), Vt. (10b)

In light of the above, we can state the following lemma.
In light of Eqg. (10b), we can define amquilibrium-thrust
direction as follows. Lemma 1 Systen(7) can be transformed into the for(d3)
with ﬁp independent of) if and only if ¢p(-) and ¢.(+)
Definition 1 An equilibrium-thrust directio..(¢) is a time-  are independent of.. The function\ must then satisfy the
valued function such thdtlOb)is satisfied withh = 0.(¢).  following relation

The existence of (at least) one equilibrium-thrust dicti @) = ¢ cos(a+ 6) + ¢ sin(a + 6). (15)

is a necessary condition for the asymptotic stabilizatiba o

reference velocity. In prior work [20] [21], we showed thatThe proofis given in Appendix A. A necessary and sufficient
shape symmetries imply the existence of two equ”ibriumcondition on the aerodynamic coefficients to determingwhen
thrust directions for any reference velocity. A particulaSystem (7) can be transformed into the form (13), with
symmetric body is the sphere, which is subjected to an aertidependent o), is given in our prior paper [13], i.e.
dynamic force reduced to its drag component,d;g«) = 0, "o " / _

cp(a) = c¢o € R*. In this case, the apparfnt> external (cp — 2¢L) sin(a 4 6)+(cf, + 2¢p) cos(a +0) = 0. (16)
force F does not depend on the vehicle’s orientation and onlWhen the above condition is satisfied, the independence
two (opposite) equilibrium-thrust directions exist prded of ﬁp upon # implies that there exist only two (opposite)
that F'(7,, t) is different from zero [2]. The control strategy equilibrium-thrust directions provided tha@(ﬁr, t) is dif-

for spherical shapes then basically consista)raligning the  ferent from zero, as in the spherical shape case. Also, $ thi
thrust directiorv’'with the direction ofﬁ(ﬁ,.(t),t) (orientation case the control design can be addressed by adapting solu-
control viaw); b) setting the thrust magnitude equal to thetions, alike those proposed in [22], developed for the abdss
intensity ofﬁ(ﬁ,.(t),t) (thrust control viaT’). The almost- systems subjected to orientation-independent externeg$o
globally stabilizing controllers proposed in [22] illuate this An application of this control solution is detailed in [13].
strategy. However, the production of lift and drag forces The possibility of obtaining an orientation-independépt

that depend on the vehicle’s orientation may significantlys compatible with an infinite number of functionrs,(«)
complexify this strategy. In particular, since the resuita andc,(«). Let us point out two modeling functions that are



representative of the experimental aerodynamic coeffigierthe functions (19) atx = 0 yield ¢ () = c2a, cp(a) =
of several NACA profiles. co+c3a?, which are the classical modeling functions used to
approximate steady aerodynamic characteristics at loveang

Proposition 1 of attack [1]. However, the quality of the approximations

1) The modeling functions defined by provided by (19) worsens when the angle of attack gets
cr(a) = e sin(2a) close to thestall region These observations suggest to use
{ 9 (17)  a combination of the models (19) and (17) to approximate
ep(@) = ¢o + 2e1sin*(a), aerodynamic experimental data taken for large domains
yield of (R.,«). Consider, for instance, the smooth-rectangular
{EL = — ¢ 5in(20) functiono(-) defined by
oI 2 T2 7.2
| ¢p = co + 2¢1 cos”(6), (@ a) = 1+tanh(ka_:ka ), welmm), @1)
with 1 + tanh(ka?)

Ma) =2 —0). o ) L
(@) c1 cos(a = 9) with k,@ € R. This function is chosen so as to hawe

In this case almost equal to one for small angles of attack, analmost
B Lo equal to zero for large angles of attack. let,,cp, ) and
Tp =T + 2c1ka|Va|" cos(a — 9). (18) (cLs,cpg) denote the modeling functions given by Egs. (17)
2) If the thrust forcel is parallel to the zero-lift direction and (19), respectively. A combined model is then given by
7, i.e. if 6 = 0, then the modeling functions defined by{ .

0.5¢2 .
sin(2a)
(ca — ¢3) cos? (cc;%; cs (19)

(ca — ¢3) cos?(a) + ¢3

L(a):CLs (O‘)U(av EL? a)+CLL (O‘)[l_a(av EL? a)]

cp(a)=cps(a)o(@, kp,a)t+cp, (a)[l—o(@, kp,a)].

(22)

ep(a) =

o Figure 4 depicts typical approximation results provided

sin”(a), by the modeling functions (22). The estimated parameters at
R. =160 - 10° are

CD(OL) = Cp +

yield
& =0 {(00,01,02,03) =(14-1073,0.95,5.5,0.3) 23)
{ED — o+ e, (a,kL,kD):(110,28,167),
with while at R, = 5 - 10° they arecy = 0.0078, ¢; = 0.9430,
¢ cos(a) co = 6.3025, ¢c3 = 0.1378, @ = 18°, k;, = 12, and
Ma) = 2 5 . kp = 86. It appears from this figure that the models (22) are
(c2 = ¢5) cos?(a) + ¢ capable of catching the main variations of the aerodynamic
In this case coefficients includingstall phenomenia

By construction of the model (22), the fordép given
by (14a)-(15) isalmost independent of the vehicle’s ori-

L . entation when the angle of attack is away from the stall

The process of approximating experimental aerodynam}%gion_ Then, the problem of stabilizing, — 0 remains

data with the functions (17) is illustrated by the Figure ?gj_l
2

C3ka|Va|? cos(a)
(co — c3) cos?(a) + e3”

T, =T+ (20)

h h q : | data b dqf hen the reference velocity requires crossing this region
where we have use .expenmenta ata orrowed from [ d, more generally, when the condition (16) is not satisfied
for a flat wing of airfoil NACA 0021 with Mach and

R d b | M)~ (1 107 Nevertheless, the next section shows that the transformed d
€ynolds numuers equa 0, M) ~ (160 - 10%0.3). namics (13) with\ given by (15) is instrumental for control
The approximation result, although not perfect, should b@ontrol design purposeisdependentlyof the aerodynamic
sufficient for control design purposes at small Reynold

. . rces.

numbers — e.g. small-chord-length airfoils — for whichstal
phenomena are less pronounced [24]. In this respect, small IV. L OCAL SPHERICAL EQUIVALENCY
vehicles are advantaged over large ones. As a matter of factWOrkin out control princioles cannot be done without
the model (17) is reminiscent of the aerodynamic coeffisient .. 9 . P P . .
of aflat platewhen settingco = 0 [25] minimal assumptions upon the aerodynamic forces acting on

Obserf)/e on Figure 2 thgacg tﬁe aeroaynamic coefficients atrkée vehicle, such as their compatibility with the existente
essentially independent of the Reynolds number when tﬁréotmn equilibria. For the sake of simplicity, we assumerfro
angle of attack increases beyond ttall region [26] [27]. now on that
Consequently, increasing the Reynolds number degrades
the qua“ty of the apprQX|mat|0ns Only at small angl_es 1The modeling of stall phenomena remains an open issue evéimein
of attack. In contrast, Figure 3 shows that the modelingerodynamic literature. As a matter of fact, stall phencanéapend also
functions (19) yield better approximations femall angles on the dire_ction of ch_ange of_ the angle of Qtta¢R8] - referred'to as
of attack independently of the Reynolds number. This w aerodynamic hysteresisand this poses a certain number of modeling issues

) - 2lated to therate of change otx. Addressing these issues is beyond the
to be expected since the second order Taylor expansionssofipe of the present paper.
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Assumption 1 there exists an equilibrium-thrust direc-
tion 6.(t) for the reference velocity, ().

The reader is referred to [21] for additional results on
the existence of an equilibrium-thrust direction. Undes th
assumption, we can state the following theorem.

Theorem 1 Assume that Assumption 1 is satisfied, and that
the aerodynamic coefficients are twice differentiable. Con
sider Systen{13) with \ given by(15).
If the vectorF, given by(14a)is different from zero at the
equilibrium point, i.e.

|ﬁp(UT(t)7 oe(t)v t>| > 07 (24)
then

(i) the direction ofﬁp is constant w.r.t. the vehicle’s orien-
tation at the equilibrium point, i.e.

i = 0; (25)

[Fl (€0,0)=(0,0c(t))

(i) the linearization of Syster(il3) at (€,,6) = (0,6.(t))
is controllable with(7},,w) taken as control inputs.

Op

The proof is given in Appendix B.

Result(i) asserts that in a neighborhood of the equilibrium
configuration, varying the thrust directiardoes not perturb
the direction of the vectonﬁp. Then, any (time-varying)
reference velocity can (locally) be asymptotically stiieitl
— even if this reference requires entering the stall region —
provided that|ﬁp| # 0 at the equilibrium configuration.
As a matter of fact, this latter condition implies that the
linearization of System (13) &g, 6) = (0, 6.(¢)) is control-
lable (see Resultii)). Let us remark that the condition (24)
is not very restrictive. For instance, assuming a constant
reference velocity, no wind, = 0, and the model (22) for the
aerodynamic coefficients, the satisfaction of (24) basical
requires that

mgl—'o - ka|ﬁ7'|EDﬁr 7é 07

with eitherép = ¢o 4+ c2 or ¢p = c¢g + 2¢1, depending
on the (equilibrium) angle of attack being eithemall
or large. In this case, the (unique) reference velocity for
which (24) is not satisfied corresponds to a vertical falhwit
intensity \/mg/(k.¢p), which is seldom used in practice as
a reference velocity.

A. Control

To illustrate the interest of System (13) - (15) with an
example, we adapt below the solution proposed in [22]
— derived for an orientation-independent external force — t
the case where the external force is orientation-dependent
In particular, assume that the control objective is the gsym
totic stabilization of a reference velocity, = (7, 7o),
Then, the application of [22, Sec. 111.B] to the transformed
System (13) yields the following control expressions

Tifl +k1|Fp|171, (263)
— —T .

k3|Fp|Fp2 _FPSRTFP

(1Fp| + Fp,)? |l

w = leFp|52 + (26b)



with v the velocity error vector of coordinates expressed iidentically equal to one. In this case, one shows that the
the body-fixed frame, i.ei := R [ —i,], andF (resp.F,)  domain of attraction of the equilibrium poirit, 6)=(0, 0)
and F (resp.F,) the vectors of coordinates @t (resp.F,) of the controlled system is equal ®” x (—, ) provided
expressed in the inertial and body-fixed frame, respegtivelthat the vectorF), is never zero.

Using ¢z, and¢p given by (11), withA as (15), one has Now, assume that the thrust force is parallel to the zeto-lif
direction, i.e.d = 0, and that the aerodynamic characteristics
are given by the model (22). Then the nonlinear gain
Fy =mgey + kqlia|[cL(a)S—Cp(a)l]ia —mir(t). (270) s approximately equal to one near the reference velocity,
When using the control laws (26), a potential problem residé?Ven when attempting to asymptotically stabilize this vitjo

in the term £}, on the right hand side of (26b) because thigmMPlies entering the stall region. The control laws (2628)(
term depends on the angular velocityvhen F,, depends on &ré local asymptotic stabilizers provided thag| # 0. An

the vehicle’s orientatich By direct calculations one verifies ImPlementable expression of the nonlinear gaiobtained
that the angular velocity derived from (26b) is giverfby ~ from direct calculations is

F =mgey + kqol|tq|[cr(a)S—ep(a)I]iq — mi,(t), (27a)

yol Tl opT o= cos(a+8)F,—sin(a+d8)e, \ "
=k kol ol + 3Pl E 532 Bl g k= <1+ka|xa|2F2 Gan) A Can) L) (32)
(1Fp| + Fp,)? |Ep] P
with Fs := 03, Fpi, —m7,.(t), and Almost, but non-global, stability Wheﬁp does not depend
T . on the vehicle’s orientation comes from the well-known topo
b= ( 1 + I, SR X [ﬂ} ) (29) logical obstruction associated with the generic problem of
| Fp |Fpl stabilizing asymptotically an element 6f0(3) with a con-

In view of the result(i) of Theorem 1, a proper choice of tinuous feedback law. At the control level, and in the présen
\ renders the direction oft locally i,ndependent of the C@se, this obstruction reflects in the fact that the con28) (
b is not defined everywhere because of denominators that can

vehicle’s orientation and the nonlinear gainis equal to S
one at the equilibrium configuration. Then, by continuity2® €dual to zero even whe#, | 7 0. An approximation of

the control law (28) is well-defined in a neighborhood ofhe co_ntrol law (28) that i.s. defined.evgrywhe_re (at the price
the equilibrium point and the local asymptotic stability OfOfE1 slightly reduced stability domain) is obtained b2y A
v = 0 follows from the same arguments in [22, Sec. III.B].k = 12and by mulUp_Iymg the_ terms /(|F| + F5,)° and
In particular, consider the Lyapunov function candidatedus 1/|E[* by the following function
in [22, Sec. 11.B] with the apparent external force replhce ) (
S11
pr(s) = {

by the transformed forcé&),, i.e. %) , Ifs<rT (33)

1, otherwise

V= 2o + & [1- cos(®)] (30)
with 7 > 0. This yields the well-defined control expression
whered € (—m, 7] denotes the angle betwe&mnd F,, i.e. .
cos(0) = F,, /|F,|. Then, differentiating the above function 7" = F1 + k1| Fj|v1, (34a)
along the solutions of the controlled System (13)-(15), i.e , _ kz|Fp|52+uT(Ile\;f‘ilf)ks\)fplfpz _#r<lﬂiliﬁ35Fa .(34b)
mv = —mwST — Tyey + RTF,, o

/ ;o L9 V. SIMULATIONS
T, =T + kqlcf, cos(a + &) + ¢ sin(a + 9)]|7, |,

In this section, we illustrate through a simulation the
. ks ~ performance of the proposed approach for the airfoil NACA
V = —k; — = tan’(6/2), (31) 0021 with the thrust force parallel to the zero-lift-linege
? = 0. The equations of motion are defined by Eqgs. (1)-

|£1 a nelghborhood of the_ equilibrium pomt._ Assuming _thakz) and the aerodynamic coefficients are given by (22)-(23).
U, and v, are bounded in norm up to their second timeThe other physical parameters are: = 10 [Kg), p =

derivatives, and that the condition (24) is satisfied, omath | 5, [Kg/m3], % =1[m?], ka = 22— 0.6460 [Kg/m].
establishes the (local) asymptotic stability @f, 9)=(0,0). ’ 2
The reader is referred to [22] for more details on stability a
convergence analyses related to the Lyapunov function (3
Observe that, when the vecté}, does not depend on the
vehicle’s orientation, the nonlinear gaingiven by (29) is

yields

We assume here that the control objective is the asymptotic
tabilization of a reference velocity and we apply the aantr
ws given by (34). Other values are used for the calculation
of the control laws in order to test the robustness w.r.t.
parametric errors. They are chosen as followis= 9 [K g],
2In view of (27b) anda = (0, ¢a) = 0 — Y(ita) + (x — &), the vector Ko = 0.51 [Kg/m], (co,c1,¢2,¢3) = (20-1072,0.9,5,0.5),
of coordinatesF;, is a function of the air velocityi,, of the vehicle's @ = 10°. The feedforward terni’s in (34b) is kept equal to
orientation, and of the time, i.e. Fp = Fy(&a, 0, ?). _ zero, thus providing another element to test the robustness
The control laws (26a)-(28) in fact coincide with the vetgccontrol f th I Th f th N
mentioned in our prior paper [20], whose derivation follawieom other O the controller. e parameters of the control laws are

more involved arguments. k1 = 0.1529, ko = 0.0234, k3 = 6, 7 = 80.
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Fig. 5. Simulation of a NACA 0021 profile.

A. From hovering to cruising flight

one. In the interval(0,10) [sec|, the horizontal velocity

of the vehicle increases, the angle of attack decreases, and
the vehicle’s orientation converges toward80° (horizontal
configuration). Att = 8, the equilibrium orientation asso-
ciated with the reference velocity (35)mps and perfect
tracking of this reference is not feasible [20]. At this time
instant, the norm of the vectoﬁp crosses zero [21]. This
generates abrupt variations of the thrust intensity and of
the (desired) angular velocity. Note that the control value
just after the jump depends sensitively upon the constant
7. The jump of the equilibrium orientation forbids perfect
tracking of the reference velocity. In fact, the velocityces
significantly increase right after the discontinuity oceurce.

VI. CONCLUSION AND PERSPECTIVES

The paper addresses the feedback control of aircraft lon-
gitudinal dynamics in large flight envelopes. The proposed
approach aims at adapting the control strategies developed
for an orientation-independent aerodynamic force to the
orientation-dependent case. Hence, it unifies controtestra
gies developed for the planar motions of VTOLSs, for which
aerodynamic forces are usually either neglected or assumed
independent of the vehicle’s orientation, with those devel
oped for fixed-wing aircraft, for which lift and drag forces
cannot be neglected and strongly depend on the vehicle’s
orientation.

Although validation by simulations is encouraging, the
proposed control solution call for a multitude of complemen
tary extensions and adaptations before it is implemented on
a physical device. One can mention the production ofdire
sired angular motiorand the determination of corresponding
low level control loops that take actuators’ limitationgan

The chosen reference velocity represents a transition maccount. Measurement and estimation of various physical
neuver from hovering to cruising flight. It is Composedvariables involved in the calculation of the control law suc

of: i) an horizontal velocity ramp on the time interval®S the air velocity and the angle of attack, or the thrust

[0,10) [sec]; i¢) cruising with constant horizontal velocity of

force produced by a propeller, also involves a combination

20 [m/sec] for t > 10 [sec]. More precisely, the reference of issues which are instrumental to implementation.

velocity is given by:
(0,2t)T

{m@mT

Let us remark that perfect tracking of this reference véjoci

0<t < 10,
¢ > 10.

i (1) (35)

is not possible because this would involve discontinuouis va [3]

ations of the vehicle’s orientation [20]. Using this refece

velocity constitutes another test for the robustness of thé'

proposed control strategy. The vehicle’s initial velociyd
attitude arei(0) = [0,0] and 6(0) 0 respectively. No
wind is assumed.

From top to bottom, Figure 5 depicts the evolution of g

the desired reference velocity, the velocity errors, thglen
of attack, the (desired) angular velocity, the thrust-ight
ratio, and the vehicle’s orientation.
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APPENDIX
A. Proof of Lemma 1
Assume that;, andc¢p in (11) do not depend o6. Then,
differentiating (11) w.r.t« yields
0=c}(a) — Nsin(a +§) — Acos(a +6), (36a)
0=cp(a)+ N cos(a+ ) — Asin(a +§).  (36b)
Multiply (36a) by cos(a + 6) and (36b) bysin(a + §).
Summing up the obtained relationships yields (15).
B. Proof of Theorem 1
1) Proofof(i): To show that the direction of the vectﬁ;
is constant w.r.t. the vehicle’s orientation at the equilim
configuration, we equivalently show that

%ol 2, 0)—(0.6.(0y) = O (37)

where ¢, := angldiy, F,), and F, = (i, J0)F,. From
relations (14a) and (15) one has

F, =mge1 + fp, — mi,(t), (38a)

fo = kal®al|[eLS —Cpllia, (38b)

{ ¢r, = cr—|c} cos(a+d)+cp sin(a+4)] sin(a+4) (38¢)
tp = cp+[c], cos(a+d)+cp sin(a+6)] cos(a+d),

whered, = (i, 70)%,. By using (38a) and (4), computing
the partial derivative of, w.r.t. 0 yields
” FI'S0sF,  FIRSRT0.f,
0 = - = - )
3 |[Fp|? |[Fp|?
Oafp = kal|al[er,S — Tpl)iq. (39b)
Given (39b), (38¢)it, = Rv,, and (5), one verifies that

(39a)

ed R0, f, = 0. (40)
Then from Eq. (39a) one obtains
T pPT
ot =~ A Oodv rprpy 41)
| F

Now, the transformed System (13) points out that the equi-
librium conditione, = 0 implies thatf, - 7= 0 V¢. This
latter condition writes in terms of vectors of coordinates

€5 R (0c(t)) Fp (. (1), 0c(t),1) = 0 Vi, (42)

where ¢, = (20, Jo)&,. By combining (42) and (41), one
shows (37) when the condition (24) is_satisfied.

2) Proof of (i7): Usingé, := (w,J0)T and System (13)
yields the following tracking error dynamics

mx = Fy(i,0,t) — T,R(0)e1,
0 =w—0(t),

(43a)
(43b)

where§ = 0 — 0.(t). One can verify that, if the condi-
tion (24) holds, the equilibrium orientatiofy.(¢) is differ-
entiable [21, Th. 7.3 p. 79] so that the Eq. (43b) is well-
conditioned. Now, takéT},, w) as control inputs an¢inz, 6)

as state variables. Observe that

F, F
AR
12 I AT Y
and thatr’, /| F,| = +Re; andT), = £[F,| at the equilibrium
(ma,0)=(0,0). In view of the result(:) of Theorem 1, one

shows that the state and control matrices associated wath th
linearization of System (43) are given by

9:Fp /.
(=@, 00,t)  a(t)R(0e)er + b(t)R(0e)ez
A= ( O1x2 0 ) '

_ [(—R(0c)er 02x1
p= (TFR ),

where0,,x,, € R"*™ denotes a matrix of zerog,t) :=
£0p| Fp| (i (1), 0c(t), 1), @ndb(t) := £[F} (i (t), 0c(t),1)].
When the condition (24) holds, one h&g) # 0 Vvt and it
is a simple matter to verify that the matrix

(B AB-B)

is of full rank. This implies the controllability of SysterbJ).

0o F, =




