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Nonlinear Control of Aerial Vehicles Subjected to Aerodynamic Forces

Daniele Puccia Tarek Hamela Pascal Morinc Claude Samsona,b

Abstract— The paper contributes towards the development of
a unified control approach for longitudinal aircraft dynami cs.
It states conditions that allow to adapt the control strategies
developed for orientation-independent external forces tothe
orientation-dependent case. The control strategy presented here
is a step to the automatic monitoring of the flight transitions
between hovering and cruising for convertible aerial vehicles.

Index Terms— Aerodynamic Forces, Nonlinear Control, Lon-
gitudinal Aircraft Dynamics, Transition Maneuvers.

I. I NTRODUCTION

The research area on aerial vehicles has been extremely
active within the last decade. This led to the development
of sophisticated autopilots for fully autonomous flights and
navigation systems for military and civil applications. How-
ever, almost all existing work is primarily directed towards
two different classes of aerial vehicles: fixed-wing aircraft [1]
and Vertical Take-Off and Landing vehicles [2] (VTOL). The
complexity of aerodynamic effects and the diversity of flying
vehicles partly account for the independent development
of control strategies for these two classes of aircraft. For
instance, lift forces are preponderant for fixed-wing aircraft
in high-velocity cruising, whereas they are negligible for
VTOLs in hovering. Control design techniques for fixed-
wing and VTOL vehicles have then been developed in
different directions and suffer from specific limitations.

Classically, feedback control of fixed-wing aircraft explic-
itly takes into account aerodynamic forces via linearized
models. Then, stabilization is usually achieved by applying
linear control techniques [1]. A main preoccupation when
investigating nonlinear aircraft phenomena is to determine
the conditions that may trigger an aircraftloss-of-control
(LOC), which remains among the most important contrib-
utors to fatal accidents [3]. To understand the qualitativeand
global behavior of nonlinear aircraft dynamics, the control
problem is usually formulated in the form of a set of
ordinary differential equations depending on parameters [4].
This approach – referred to asbifurcation analysis and
catastrophe theory methodology[4] – yields deep insights
into nonlinear aircraft phenomena, but is usually inapplicable
whenunsteadyeffects are no longer negligible, as in the case
of strong wind gusts and non constant reference velocities.

Linear control techniques are used for hovering VTOL
vehicles too [5] [6], but several nonlinear feedback methods
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have also been proposed in the last decade to enlarge the
provable domain of stability [7] [8] [9]. These methods, how-
ever, are based on simplified dynamic models that neglect
aerodynamic forces, so they are not best suited to the control
of aircraft moving fast or subjected to strong wind variations.

A drawback of the independent development of control
methods for fixed-wing and VTOL aircraft is the lack of
tools for flying vehicles that belong to both classes. One
can mention the example ofconvertible aircraft, which can
perform stationary flight and also benefit from lift properties
at high airspeed via optimized aerodynamic profiles. The
renewed interest in convertible vehicles and their controlis
reflected in the growing number of studies devoted to them
in recent years [10] [11] [12], even though the literature
in this domain is not extensive. One of the motivations
for elaborating more versatile control solutions is that the
automatic monitoring of the transitions between stationary
flight and cruising modes remains a challenge to this day.

In light of the above, we believe that there is a strong
potential benefit in bringing control techniques for airplanes
and VTOLs closer. A major difficulty for the control of
aircraft is the dependence of aerodynamic forces upon the
vehicle’s orientation. In [13], we showed that for certain
models of aerodynamic forces the control problem can
be transformed into that of controlling a body subjected
to an aerodynamic force whose direction is orientation-
independent. This transformation is calledspherical equiv-
alencyand, once applied, allows us to adapt control design
methods developed previously.

The present paper focuses on longitudinal aircraft dy-
namics (the so called PVTOL case of a vehicle flying in
a vertical plane) and extends the control solution proposed
in [13] to a larger set of generic aerodynamic models. More
precisely, the contribution of this paper is twofold. First,
the family of aerodynamic models for which the spherical
equivalency holds is enlarged. Elements of this family are
representative of the experimental data taken for several
wing profiles on eithersmall or large angles of attack. By
combining these elements, we build up modeling functions
that catch the main variations of the aerodynamic coefficients
of NACA profiles, including stall phenomena. Then, we
address the case when the spherical equivalency cannot be
applied, as for the proposed combined aerodynamic model.
In this respect, we show that the spherical equivalency holds
independently of the aerodynamic force in a neighborhood
of the equilibrium configuration. This property allows one
to adapt control design methods developed for systems
subjected to an orientation-independent external force tothe
orientation-dependent case.



Fig. 1. Thrust-propelled vehicle subjected to aerodynamicreaction forces.

The paper is organized as follows. In the background
Section II, after specifying the notation used in the paper,
general modelling equations are recalled and motivations for
the present study are discussed in relation to the limitations
of existing results. Original results concerning the modeling
of aerodynamic forces acting on NACA profiles and the
characterization of two families of models that allow one to
apply the spherical equivalency are reported in Section III.
The extension of the spherical equivalency to a generic
aerodynamic model, together with a local stabilizer for time
varying reference velocity, are presented in Section IV.
Simulation results for the airfoil NACA 0021 are reported
in Section V. Remarks and perspectives conclude the paper.

II. BACKGROUND

A. Notation

• The ith component of a vectorx is denoted asxi.
• For the sake of brevity,(x1~ı+ x2~) is written as(~ı,~)x.
• {e1, e2} is the canonical basis inR2, andI is the(2× 2)
identity matrix.
• The scalar product of two vectors~x, ~y is denoted as~x · ~y.
• Given a functionf : R→R, its first derivative is denoted
as f ′. Given a functionf of several variables, its partial
derivative w.r.t. one of them, sayx, is denoted as∂xf=

∂f
∂x

.
• G is the body’s center of mass andm is the (constant)
mass of the vehicle.
• I = {O;~ı0, ~0} is a fixed inertial frame with respect to
(w.r.t.) which the vehicle’s absolute pose is measured.
• B = {G;~ı,~} is a frame attached to the body. The vector~ı
is parallel to the thrust force~T . This leaves two possible
and opposite directions for this vector. The direction chosen
here, i.e.~T = −T~ı, is consistent with the convention used
for VTOL vehicles.
• The body’s position is denoted by~p := ~OG = (~ı0, ~0)x.
The body’s linear velocity is denoted by~v = d

dt
~p =

(~ı0, ~0)ẋ = (~ı,~)v, and the linear acceleration by~a = d
dt
~v.

• The vehicle’s orientation is given by the angleθ between~ı0
and~ı. The rotation matrix of the angleθ isR(θ). The column
vectors ofR are the vectors of coordinates of~ı,~ expressed
in I. The matrixS = R(π/2) is a unitary skew-symmetric
matrix. The body’s angular velocity isω := θ̇.

• The wind’s velocity is denoted by~vw and its components
are defined by~vw = (~ı0, ~0)ẋw = (~ı,~)vw. The air velocity
~va = (~ı,~)va = (~ı0, ~0)ẋa is defined as the difference
between the velocity ofG and~vw. Then,~va = ~v − ~vw.

B. System modeling

The equations of motion are derived by considering two
control inputs. The first one is athrust force T along the
body fixed direction~ı (~T = −T~ı) whose main role is to
produce longitudinal motions. The second control input is a
torque actuation, typically created via secondary propellers,
rudders or flaps, control moment gyros, etc. For the sake
of simplicity, we assume that any desired torque can be
produced so that the vehicle’s angular velocityω is modified
at will and used as a control variable. In the language of
Automatic Control, this is a typicalbacksteppingassumption,
so the way of producing the determined angular velocity can
be achieved via classical nonlinear techniques [14, p. 589].

The external forces acting on the body are assumed to be
composed of the gravitymg~ı0 and the aerodynamic forces
~Fa. Applying the fundamental theorem of mechanics yields:

m~a = mg~ı0 + ~Fa − T~ı, (1a)

θ̇ = ω, (1b)

with g the gravitational acceleration. For the sake of com-
pleteness, the model (1a) should be completed by a modeling
of the so-calledbody forces– a coupling term between the
torque control input and the external forces on the body –
that may induce unstable zero dynamics [15] [16]. However,
in the case of VTOLs, several studies show that the effects of
these forces can bemitigatedby stabilizing a specific control
point other than the vehicle’s center of mass [17] [18].
Furthermore, in the case of fixed-wing aircraft, the body-
force is usually neglected [1]. For these reasons, in this paper
the body force is neglected so that we can work out general
principles independently of the specific issues related to the
vehicle’s means of actuation.

C. Aerodynamic forces

Steadyaerodynamic forces at constant Reynolds and Mach
numbers – denoted byRe and M – can be written as
follows [19, p. 34]

~Fa = ka|~va|
[
cL(α)~v

⊥
a − cD(α)~va

]
, (2)

whereka := ρΣ
2 , ρ is the free streamair density,Σ is the

characteristic surface of the vehicle’s body,cL(·) is the lift
coefficient, cD(·) > 0 is the drag coefficient(cL and cD
are calledaerodynamic characteristics), ~v⊥a is obtained by
rotating the vector~va by 90◦ anticlockwise, i.e.

~v⊥a = va1
~− va2

~ı, (3)

and α is the angle of attack. This latter variable is here
defined as the angle between the body-fixedzero-lift di-
rection ~zL, along which the airspeed does not produce lift
forces, and the airspeed vector~va, i.e. α := angle(~va, ~zL).
By denoting the (constant) angle between the zero-lift direc-
tion and the thrust~T as δ, i.e. δ := angle(~zL, ~T ), and also



the angle between the gravity direction~ı0 and~va asγ, i.e.
γ := angle(~ı0, ~va), one has (see Figure 1):

α = θ − γ + (π − δ), (4)

{
va1

= − |~va| cos(α+ δ)

va2
= |~va| sin(α+ δ).

(5)

D. Tracking errors dynamics and related control issues

Let ~vr(t) denote a differentiable reference velocity, and
~ar(t) its first time-derivative, i.e.~ar(t) := d~vr

dt
. Define the

velocity error as

~ev := ~v − ~vr. (6)

Using System (1) one obtains the following error model

m~̇ev = ~F − T~ı, (7a)

θ̇ = ω, (7b)

with ~F the apparent external forcegiven by

~F := mg~ı0 + ka|~va|
[
cL(α)~v

⊥
a − cD(α)~va

]
−m~ar(t). (8)

Observe that~F depends upon the vehicle’s orientationθ via
the angle of attack given by (4).

In view of the error dynamics (7), the equilibrium condi-
tion ~ev ≡ 0 requires that the thrust vectorT~ı must be equal
to the force~F , i.e.

T~ı(θ) = ~F (~vr, θ, t), ∀t, (9)

which in turn implies

T = ~F (~vr, θ, t) ·~ı(θ), (10a)

0 ≡ ~F (~vr, θ, t) · ~(θ), ∀t. (10b)

In light of Eq. (10b), we can define anequilibrium-thrust
direction as follows.

Definition 1 An equilibrium-thrust directionθe(t) is a time-
valued function such that(10b) is satisfied withθ = θe(t).

The existence of (at least) one equilibrium-thrust direction
is a necessary condition for the asymptotic stabilization of a
reference velocity. In prior work [20] [21], we showed that
shape symmetries imply the existence of two equilibrium-
thrust directions for any reference velocity. A particular
symmetric body is the sphere, which is subjected to an aero-
dynamic force reduced to its drag component, i.e.cL(α) ≡ 0,
cD(α) = c0 ∈ R

+. In this case, the apparent external
force ~F does not depend on the vehicle’s orientation and only
two (opposite) equilibrium-thrust directions exist provided
that ~F (~vr, t) is different from zero [2]. The control strategy
for spherical shapes then basically consists in:a) aligning the
thrust direction~ı with the direction of~F (~vr(t), t) (orientation
control viaω); b) setting the thrust magnitude equal to the
intensity of ~F (~vr(t), t) (thrust control viaT ). The almost-
globally stabilizing controllers proposed in [22] illustrate this
strategy. However, the production of lift and drag forces
that depend on the vehicle’s orientation may significantly
complexify this strategy. In particular, since the resultant

force ~F is typically orientation-dependent, the existence and
uniqueness of the equilibrium-thrust direction is no longer
systematic, and the stabilization of such an equilibrium, when
it is locally unique, can be very sensitive to thrust orientation
variations [20].

III. A ERODYNAMIC MODELS YIELDING

SPHERICAL EQUIVALENCY

In a previous paper [13], we showed that a generic set of
aerodynamic models allow the control problem to be recasted
into the simpler case of controlling a spherical body for
which strong stability results can be demonstrated. A revised
and extended version of this result is stated next.

Define

cL(α, λ) := cL(α)− λ sin(α+ δ), (11a)

cD(α, λ) := cD(α) + λ cos(α+ δ), (11b)

with λ ∈ R, not necessarily constant. Then, in view of (3)
and (5), one verifies that~Fa given by (2) can be decomposed
as follows

~Fa = ka|~va|
[
cL~v

⊥
a − cD~va

]
− λka|~va|

2~ı. (12)

Consequently, the dynamics of the velocity errors (7) become

m~̇ev = ~Fp − Tp~ı, (13a)

θ̇ = ω, (13b)

with

~Fp:=mg~ı0+ka|~va|
[
cL(α, λ)~v

⊥
a −cD(α, λ)~va

]
−m~ar, (14a)

Tp:=T + kaλ|~va|
2. (14b)

In light of the above, we can state the following lemma.

Lemma 1 System(7) can be transformed into the form(13)
with ~Fp independent ofθ if and only if cD(·) and cL(·)
are independent ofα. The functionλ must then satisfy the
following relation

λ(α) = c′L cos(α+ δ) + c′D sin(α+ δ). (15)

The proof is given in Appendix A. A necessary and sufficient
condition on the aerodynamic coefficients to determine when
System (7) can be transformed into the form (13), with~Fp

independent ofθ, is given in our prior paper [13], i.e.

(c′′D − 2c′L) sin(α+ δ)+(c′′L + 2c′D) cos(α+ δ) = 0. (16)

When the above condition is satisfied, the independence
of ~Fp upon θ implies that there exist only two (opposite)
equilibrium-thrust directions provided that~Fp(~vr, t) is dif-
ferent from zero, as in the spherical shape case. Also, in this
case the control design can be addressed by adapting solu-
tions, alike those proposed in [22], developed for the classof
systems subjected to orientation-independent external forces.
An application of this control solution is detailed in [13].

The possibility of obtaining an orientation-independent~Fp

is compatible with an infinite number of functionscD(α)
andcL(α). Let us point out two modeling functions that are



representative of the experimental aerodynamic coefficients
of several NACA profiles.

Proposition 1
1) The modeling functions defined by

{
cL(α) = c1 sin(2α)

cD(α) = c0 + 2c1 sin
2(α),

(17)

yield
{
cL = − c1 sin(2δ)

cD = c0 + 2c1 cos
2(δ),

with

λ(α) = 2c1 cos(α− δ).

In this case

Tp = T + 2c1ka|~va|
2 cos(α− δ). (18)

2) If the thrust force~T is parallel to the zero-lift direction
~zL, i.e. if δ = 0, then the modeling functions defined by




cL(α) =
0.5c22

(c2 − c3) cos2(α) + c3
sin(2α)

cD(α) = c0 +
c2c3

(c2 − c3) cos2(α) + c3
sin2(α),

(19)

yield
{
cL = 0

cD = c0 + c2,

with

λ(α) =
c22 cos(α)

(c2 − c3) cos2(α) + c3
.

In this case

Tp = T +
c22ka|~va|

2 cos(α)

(c2 − c3) cos2(α) + c3
. (20)

The process of approximating experimental aerodynamic
data with the functions (17) is illustrated by the Figure 2
where we have used experimental data borrowed from [23]
for a flat wing of airfoil NACA 0021 with Mach and
Reynolds numbers equal to(Re,M) ≈ (160 · 103, 0.3).
The approximation result, although not perfect, should be
sufficient for control design purposes at small Reynolds
numbers – e.g. small-chord-length airfoils – for which stall
phenomena are less pronounced [24]. In this respect, small
vehicles are advantaged over large ones. As a matter of fact,
the model (17) is reminiscent of the aerodynamic coefficients
of a flat platewhen settingc0 = 0 [25].

Observe on Figure 2 that the aerodynamic coefficients are
essentially independent of the Reynolds number when the
angle of attack increases beyond thestall region [26] [27].
Consequently, increasing the Reynolds number degrades
the quality of the approximations only at small angles
of attack. In contrast, Figure 3 shows that the modeling
functions (19) yield better approximations forsmall angles
of attack independently of the Reynolds number. This was
to be expected since the second order Taylor expansions of

the functions (19) atα = 0 yield cL(α) = c2α, cD(α) =
c0+c3α

2, which are the classical modeling functions used to
approximate steady aerodynamic characteristics at low angles
of attack [1]. However, the quality of the approximations
provided by (19) worsens when the angle of attack gets
close to thestall region. These observations suggest to use
a combination of the models (19) and (17) to approximate
aerodynamic experimental data taken for large domains
of (Re, α). Consider, for instance, the smooth-rectangular
functionσ(·) defined by

σ(α, k, α) =
1 + tanh(kα2 − kα2)

1 + tanh(kα2)
, α ∈ [−π, π), (21)

with k, α ∈ R. This function is chosen so as to haveσ
almost equal to one for small angles of attack, andσ almost
equal to zero for large angles of attack. Let(cLL

, cDL
) and

(cLS
, cDS

) denote the modeling functions given by Eqs. (17)
and (19), respectively. A combined model is then given by
{
cL(α)=cLS

(α)σ(α, kL, α)+cLL
(α)[1−σ(α, kL, α)]

cD(α)=cDS
(α)σ(α, kD, α)+cDL

(α)[1−σ(α, kD, α)].
(22)

Figure 4 depicts typical approximation results provided
by the modeling functions (22). The estimated parameters at
Re = 160 · 103 are

{
(c0, c1, c2, c3) = (14 · 10−3, 0.95, 5.5, 0.3)

(α, kL, kD) = (11◦, 28, 167),
(23)

while at Re = 5 · 106 they arec0 = 0.0078, c1 = 0.9430,
c2 = 6.3025, c3 = 0.1378, α = 18◦, kL = 12, and
kD = 86. It appears from this figure that the models (22) are
capable of catching the main variations of the aerodynamic
coefficients includingstall phenomena1.

By construction of the model (22), the force~Fp given
by (14a)-(15) isalmost independent of the vehicle’s ori-
entation when the angle of attack is away from the stall
region. Then, the problem of stabilizing~ev = 0 remains
when the reference velocity requires crossing this region
and, more generally, when the condition (16) is not satisfied.
Nevertheless, the next section shows that the transformed dy-
namics (13) withλ given by (15) is instrumental for control
control design purposesindependentlyof the aerodynamic
forces.

IV. L OCAL SPHERICAL EQUIVALENCY

Working out control principles cannot be done without
minimal assumptions upon the aerodynamic forces acting on
the vehicle, such as their compatibility with the existenceof
motion equilibria. For the sake of simplicity, we assume from
now on that

1The modeling of stall phenomena remains an open issue even inthe
aerodynamic literature. As a matter of fact, stall phenomena depend also
on the direction of change of the angle of attack[28] – referred to as
aerodynamic hysteresis– and this poses a certain number of modeling issues
related to therate of change ofα. Addressing these issues is beyond the
scope of the present paper.
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Assumption 1 there exists an equilibrium-thrust direc-
tion θe(t) for the reference velocity~vr(t).

The reader is referred to [21] for additional results on
the existence of an equilibrium-thrust direction. Under this
assumption, we can state the following theorem.

Theorem 1 Assume that Assumption 1 is satisfied, and that
the aerodynamic coefficients are twice differentiable. Con-
sider System(13) with λ given by(15).
If the vector ~Fp given by(14a) is different from zero at the
equilibrium point, i.e.

|~Fp(~vr(t), θe(t), t)| > 0, (24)

then
(i) the direction of~Fp is constant w.r.t. the vehicle’s orien-

tation at the equilibrium point, i.e.

∂θ

[
~Fp

|~Fp|

] ∣∣∣∣∣
(~ev ,θ)=(0,θe(t))

= 0; (25)

(ii) the linearization of System(13) at (~ev, θ) = (0, θe(t))
is controllable with(Tp, ω) taken as control inputs.

The proof is given in Appendix B.
Result(i) asserts that in a neighborhood of the equilibrium

configuration, varying the thrust direction~ı does not perturb
the direction of the vector~Fp. Then, any (time-varying)
reference velocity can (locally) be asymptotically stabilized
– even if this reference requires entering the stall region –
provided that|~Fp| 6= 0 at the equilibrium configuration.
As a matter of fact, this latter condition implies that the
linearization of System (13) at(~ev, θ) = (0, θe(t)) is control-
lable (see Result(ii)). Let us remark that the condition (24)
is not very restrictive. For instance, assuming a constant
reference velocity, no wind,δ = 0, and the model (22) for the
aerodynamic coefficients, the satisfaction of (24) basically
requires that

mg~ı0 − ka|~vr|cD~vr 6= 0,

with either cD = c0 + c2 or cD = c0 + 2c1, depending
on the (equilibrium) angle of attack being eithersmall
or large. In this case, the (unique) reference velocity for
which (24) is not satisfied corresponds to a vertical fall with
intensity

√
mg/(kacD), which is seldom used in practice as

a reference velocity.

A. Control

To illustrate the interest of System (13) - (15) with an
example, we adapt below the solution proposed in [22]
– derived for an orientation-independent external force – to
the case where the external force is orientation-dependent.
In particular, assume that the control objective is the asymp-
totic stabilization of a reference velocity~vr = (~ı0, ~0)ẋr.
Then, the application of [22, Sec. III.B] to the transformed
System (13) yields the following control expressions

T = F 1 + k1|Fp|ṽ1, (26a)

ω = k2|Fp|ṽ2 +
k3|Fp|F p2

(|Fp|+ F p1
)2

−
F

T

p SR
T Ḟp

|Fp|2
, (26b)



with ṽ the velocity error vector of coordinates expressed in
the body-fixed frame, i.e.̃v := RT [ẋ− ẋr], andF (resp.Fp)
andF (resp.F p) the vectors of coordinates of~F (resp. ~Fp)
expressed in the inertial and body-fixed frame, respectively.
Using cL andcD given by (11), withλ as (15), one has

F = mge1 + ka|ẋa|[cL(α)S−cD(α)I]ẋa −mẍr(t), (27a)

Fp = mge1 + ka|ẋa|[cL(α)S−cD(α)I]ẋa −mẍr(t). (27b)

When using the control laws (26), a potential problem resides
in the termḞp on the right hand side of (26b) because this
term depends on the angular velocityω whenFp depends on
the vehicle’s orientation2. By direct calculations one verifies
that the angular velocity derived from (26b) is given by3

ω = k

[
k2|Fp|ṽ2 +

k3|Fp|F p2

(|Fp|+ F p1
)2

−
F

T

p SR
TFδ

|Fp|2

]
, (28)

with Fδ := ∂ẋa
Fpẍa −m

...
xr(t), and

k :=

(
1 +

F
T

p SR
T

|Fp|
∂θ

[
Fp

|Fp|

] )−1

. (29)

In view of the result(i) of Theorem 1, a proper choice of
λ renders the direction of~Fp locally independent of the
vehicle’s orientation and the nonlinear gaink is equal to
one at the equilibrium configuration. Then, by continuity,
the control law (28) is well-defined in a neighborhood of
the equilibrium point and the local asymptotic stability of
ṽ = 0 follows from the same arguments in [22, Sec. III.B].
In particular, consider the Lyapunov function candidate used
in [22, Sec. III.B] with the apparent external force replaced
by the transformed forceFp, i.e.

V = m
2 |ṽ|

2 + 1
k2

[
1− cos(θ̃)

]
, (30)

whereθ̃ ∈ (−π, π] denotes the angle between~ı and ~Fp, i.e.
cos(θ̃) = F p1

/|Fp|. Then, differentiating the above function
along the solutions of the controlled System (13)-(15), i.e.

m ˙̃v = −mωSṽ − Tpe1 +RTFp,

Tp = T + ka[c
′
L cos(α+ δ) + c′D sin(α+ δ)]|~va|

2,

yields

V̇ = −k1ṽ
2
1 −

k3
k2

tan2(θ̃/2), (31)

in a neighborhood of the equilibrium point. Assuming that
~vw and ~vr are bounded in norm up to their second time-
derivatives, and that the condition (24) is satisfied, one then
establishes the (local) asymptotic stability of(ṽ, θ̃)=(0, 0).
The reader is referred to [22] for more details on stability and
convergence analyses related to the Lyapunov function (30).

Observe that, when the vectorFp does not depend on the
vehicle’s orientation, the nonlinear gaink given by (29) is

2In view of (27b) andα = α(θ, ẋa) = θ− γ(ẋa) + (π− δ), the vector
of coordinatesFp is a function of the air velocityẋa, of the vehicle’s
orientationθ, and of the timet, i.e. Fp = Fp(ẋa, θ, t).

3The control laws (26a)-(28) in fact coincide with the velocity control
mentioned in our prior paper [20], whose derivation followed from other
more involved arguments.

identically equal to one. In this case, one shows that the
domain of attraction of the equilibrium point(ṽ, θ̃)=(0, 0)
of the controlled system is equal toR2 × (−π, π) provided
that the vectorFp is never zero.

Now, assume that the thrust force is parallel to the zero-lift
direction, i.e.δ = 0, and that the aerodynamic characteristics
are given by the model (22). Then the nonlinear gaink
is approximately equal to one near the reference velocity,
even when attempting to asymptotically stabilize this velocity
implies entering the stall region. The control laws (26a)-(28)
are local asymptotic stabilizers provided that|Fp| 6= 0. An
implementable expression of the nonlinear gaink obtained
from direct calculations is

k =

(
1+ka|ẋa|

2F 2
cos(α+δ)c′D− sin(α+δ)c′L

|Fp|2

)−1

(32)

Almost, but non-global, stability when~Fp does not depend
on the vehicle’s orientation comes from the well-known topo-
logical obstruction associated with the generic problem of
stabilizing asymptotically an element ofSO(3) with a con-
tinuous feedback law. At the control level, and in the present
case, this obstruction reflects in the fact that the control (28)
is not defined everywhere because of denominators that can
be equal to zero even when|Fp| 6= 0. An approximation of
the control law (28) that is defined everywhere (at the price
of a slightly reduced stability domain) is obtained by setting
k ≡ 1 and by multiplying the terms1/(|Fp| + F p1

)2 and
1/|Fp|

2 by the following function

µτ (s) =

{
sin

(
πs2

2τ2

)
, if s ≤ τ

1, otherwise
(33)

with τ > 0. This yields the well-defined control expression

T = F 1 + k1|Fp|ṽ1, (34a)

ω = k2|Fp|ṽ2+
µτ (|Fp|+Fp1

)k3|Fp|Fp2

(|Fp|+Fp1
)2

−
µτ (|Fp|)F

T
p SFδ

|Fp|2
. (34b)

V. SIMULATIONS

In this section, we illustrate through a simulation the
performance of the proposed approach for the airfoil NACA
0021 with the thrust force parallel to the zero-lift-line, e.g.
δ = 0. The equations of motion are defined by Eqs. (1)-
(2) and the aerodynamic coefficients are given by (22)-(23).
The other physical parameters are:m = 10 [Kg], ρ =
1.292

[
Kg/m3

]
, Σ = 1 [m2], ka = ρΣ

2 = 0.6460 [Kg/m] .

We assume here that the control objective is the asymptotic
stabilization of a reference velocity and we apply the control
laws given by (34). Other values are used for the calculation
of the control laws in order to test the robustness w.r.t.
parametric errors. They are chosen as follows:m̂ = 9 [Kg],
k̂a = 0.51 [Kg/m], (c0, c1, c2, c3) = (20 · 10−3, 0.9, 5, 0.5),
α = 10◦. The feedforward termFδ in (34b) is kept equal to
zero, thus providing another element to test the robustness
of the controller. The parameters of the control laws are
k1 = 0.1529, k2 = 0.0234, k3 = 6, τ = 80.
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Fig. 5. Simulation of a NACA 0021 profile.

A. From hovering to cruising flight

The chosen reference velocity represents a transition ma-
neuver from hovering to cruising flight. It is composed
of: i) an horizontal velocity ramp on the time interval
[0, 10) [sec]; ii) cruising with constant horizontal velocity of
20 [m/sec] for t ≥ 10 [sec]. More precisely, the reference
velocity is given by:

ẋr(t) =

{
(0, 2t)T 0 ≤t < 10,

(0, 20)T t ≥ 10.
(35)

Let us remark that perfect tracking of this reference velocity
is not possible because this would involve discontinuous vari-
ations of the vehicle’s orientation [20]. Using this reference
velocity constitutes another test for the robustness of the
proposed control strategy. The vehicle’s initial velocityand
attitude areẋ(0) = [0, 0] and θ(0) = 0 respectively. No
wind is assumed.

From top to bottom, Figure 5 depicts the evolution of
the desired reference velocity, the velocity errors, the angle
of attack, the (desired) angular velocity, the thrust-to-weight
ratio, and the vehicle’s orientation.

At t = 0, the vehicle’s attitude is zero (vertical config-
uration), and the thrust tends to oppose the body’s weight.
However, because of modeling errors and a nonzero refer-
ence acceleration, the thrust-to-weight ratio is different from

one. In the interval(0, 10) [sec], the horizontal velocity
of the vehicle increases, the angle of attack decreases, and
the vehicle’s orientation converges towards−90◦ (horizontal
configuration). Att = 8, the equilibrium orientation asso-
ciated with the reference velocity (35)jumps, and perfect
tracking of this reference is not feasible [20]. At this time
instant, the norm of the vector~Fp crosses zero [21]. This
generates abrupt variations of the thrust intensity and of
the (desired) angular velocity. Note that the control value
just after the jump depends sensitively upon the constant
τ . The jump of the equilibrium orientation forbids perfect
tracking of the reference velocity. In fact, the velocity errors
significantly increase right after the discontinuity occurrence.

VI. CONCLUSION AND PERSPECTIVES

The paper addresses the feedback control of aircraft lon-
gitudinal dynamics in large flight envelopes. The proposed
approach aims at adapting the control strategies developed
for an orientation-independent aerodynamic force to the
orientation-dependent case. Hence, it unifies control strate-
gies developed for the planar motions of VTOLs, for which
aerodynamic forces are usually either neglected or assumed
independent of the vehicle’s orientation, with those devel-
oped for fixed-wing aircraft, for which lift and drag forces
cannot be neglected and strongly depend on the vehicle’s
orientation.

Although validation by simulations is encouraging, the
proposed control solution call for a multitude of complemen-
tary extensions and adaptations before it is implemented on
a physical device. One can mention the production of thede-
sired angular motionand the determination of corresponding
low level control loops that take actuators’ limitations into
account. Measurement and estimation of various physical
variables involved in the calculation of the control law such
as the air velocity and the angle of attack, or the thrust
force produced by a propeller, also involves a combination
of issues which are instrumental to implementation.
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APPENDIX

A. Proof of Lemma 1

Assume thatcL andcD in (11) do not depend onθ. Then,
differentiating (11) w.r.t.α yields

0 = c′L(α)− λ′ sin(α+ δ)− λ cos(α + δ), (36a)

0 = c′D(α) + λ′ cos(α+ δ)− λ sin(α+ δ). (36b)

Multiply (36a) by cos(α + δ) and (36b) bysin(α + δ).
Summing up the obtained relationships yields (15).

B. Proof of Theorem 1

1) Proof of(i): To show that the direction of the vector~Fp

is constant w.r.t. the vehicle’s orientation at the equilibrium
configuration, we equivalently show that

∂θξp
∣∣
(~ev ,θ)=(0,θe(t))

= 0, (37)

where ξp := angle(~ı0, ~Fp), and ~Fp = (~ı0, ~0)Fp. From
relations (14a) and (15) one has

Fp = mge1 + fp −mẍr(t), (38a)

fp = ka|ẋa|[cLS − cDI]ẋa, (38b){
cL = cL−[c′L cos(α+δ)+c′D sin(α+δ)] sin(α+δ)

cD = cD+[c′L cos(α+δ)+c′D sin(α+δ)] cos(α+δ),
(38c)

where~ar = (~ı0, ~0)ẍr . By using (38a) and (4), computing
the partial derivative ofξp w.r.t. θ yields

∂θξp = −
FT
p S∂θFp

|Fp|2
= −

FT
p RSRT∂αfp

|Fp|2
, (39a)

∂αfp = ka|ẋa|[c
′
LS − c′DI]ẋa. (39b)

Given (39b), (38c),ẋa = Rva, and (5), one verifies that

eT2 R
T∂αfp ≡ 0. (40)

Then from Eq. (39a) one obtains

∂θξp = −
eT1 R

T∂αfp
|Fp|2

eT2 R
TFp. (41)

Now, the transformed System (13) points out that the equi-
librium condition~ev ≡ 0 implies that ~Fp · ~ ≡ 0 ∀t. This
latter condition writes in terms of vectors of coordinates

eT2 R
T (θe(t))Fp(ẋr(t), θe(t), t) = 0 ∀t, (42)

where ~vr = (~ı0, ~0)ẋr . By combining (42) and (41), one
shows (37) when the condition (24) is satisfied.

2) Proof of (ii): Using ~ev := (~ı0, ~0) ˙̃x and System (13)
yields the following tracking error dynamics

m¨̃x = Fp(ẋ, θ, t)− TpR(θ)e1, (43a)
˙̃
θ = ω − θ̇e(t), (43b)

where θ̃ := θ − θe(t). One can verify that, if the condi-
tion (24) holds, the equilibrium orientationθe(t) is differ-
entiable [21, Th. 7.3 p. 79] so that the Eq. (43b) is well-
conditioned. Now, take(Tp, ω) as control inputs and(m ˙̃x, θ̃)
as state variables. Observe that

∂θFp =
Fp

|Fp|
∂θ|Fp|+ |Fp|∂θ

[
Fp

|Fp|

]
,

and thatFp/|Fp| = ±Re1 andTp = ±|Fp| at the equilibrium
(m ˙̃x, θ̃)=(0, 0). In view of the result(i) of Theorem 1, one
shows that the state and control matrices associated with the
linearization of System (43) are given by

A =

(
∂ẋFp

m
(ẋr , θe, t) a(t)R(θe)e1 + b(t)R(θe)e2
01×2 0

)
,

B =

(
−R(θe)e1 02×1

0 1

)
,

where 0n×m ∈ R
n×m denotes a matrix of zeros,a(t) :=

±∂θ|Fp|(ẋr(t), θe(t), t), and b(t) := ±|Fp(ẋr(t), θe(t), t)|.
When the condition (24) holds, one hasb(t) 6= 0 ∀t and it
is a simple matter to verify that the matrix

(
B AB − Ḃ

)

is of full rank. This implies the controllability of System (13).


