
HAL Id: hal-01343049
https://hal.science/hal-01343049

Submitted on 7 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Broken Triangles Revisited
Martin Cooper, Aymeric Duchein, Guillaume Escamocher

To cite this version:
Martin Cooper, Aymeric Duchein, Guillaume Escamocher. Broken Triangles Revisited. 21st Interna-
tional Conference on Principles and Practice of Constraint Programming (CP 2015), Aug 2015, Cork,
Ireland. pp. 58-73. �hal-01343049�

https://hal.science/hal-01343049
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15357

The contribution was presented at CP 2015 :
http://booleconferences.ucc.ie/cp2015

To cite this version : Cooper, Martin and Duchein, Aymeric and Escamocher,
Guillaume Broken Triangles Revisited. (2015) In: 21st International Conference
on Principles and Practice of Constraint Programming (CP 2015), 31 August
2015 - 4 September 2015 (Cork, Ireland).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Broken Triangles Revisited

Martin C. Cooper1(B), Aymeric Duchein1, and Guillaume Escamocher2

1 IRIT, University of Toulouse III, 31062 Toulouse, France
{cooper,Aymeric.Duchein}@irit.fr

2 INSIGHT Centre for Data Analytics, University College Cork, Cork, Ireland
guillaume.escamocher@insight-centre.org

Abstract. A broken triangle is a pattern of (in)compatibilities between
assignments in a binary CSP (constraint satisfaction problem). In
the absence of certain broken triangles, satisfiability-preserving domain
reductions are possible via merging of domain values. We investigate the
possibility of maximising the number of domain reduction operations by
the choice of the order in which they are applied, as well as their inter-
action with arc consistency operations. It turns out that it is NP-hard
to choose the best order.

1 Introduction

The notion of broken triangle has generated a certain amount of interest in the
constraints community: it has led to the definition of novel tractable classes [3,7],
variable elimination rules [1] and domain reduction rules [4,5]. The merging of
pairs of values in the same variable domain which do not belong to a broken
triangle has been shown to lead to considerable reduction of search space size
for certain benchmark instances of binary CSP [4]. The corresponding reduction
operation, known as BTP-merging, is satisfiability-preserving and is therefore
worthy of a deeper theoretical analysis as a potentially useful preprocessing
operation. An obvious question is whether the order in which BTP-merging
operations, and other domain-reduction operations such as arc consistency, are
performed has an effect on the number of possible merges.

Definition 1. A binary CSP instance I consists of

– a set X of n variables,
– a domain D(x) of possible values for each variable x ∈ X, with d the maxi-

mum domain size,
– a relation Rxy ⊆ D(x) × D(y), for each pair of distinct variables x, y ∈ X,

which consists of the set of compatible pairs of values (a, b) for variables
(x, y).

A partial solution to I on Y = {y1, . . . , yr} ⊆ X is a set {〈y1, a1〉, . . . , 〈yr, ar〉}
such that ∀i, j ∈ [1, r], (ai, aj) ∈ Ryiyj

. A solution to I is a partial solution on
X.

M.C. Cooper—supported by ANR Project ANR-10-BLAN-0210 and EPSRC grant
EP/L021226/1.

For simplicity of presentation, Definition 1 assumes that there is exactly one
constraint relation for each pair of variables. An instance I is arc consistent if
for each pair of distinct variables x, y ∈ X, for each value a ∈ D(x), there is a
value b ∈ D(y) such that (a, b) ∈ Rxy.

✎

✍

☞

✌
•

✎

✍

☞

✌
•

✎

✍

☞

✌•

•
❤❤❤❤❤❤❆
❆
❆
❆

x

a

b
y

d

z

e ✜
✜

✜
✜

✜

Fig. 1. A broken triangle on two values a, b ∈ D(x).

We now formally define the value-merging operation based on absence of
certain broken triangles. A broken triangle on values a, b is shown in Figure 1.
In all figures in this paper, the pairs of values joined by a solid line are exactly
those belonging to the corresponding constraint relation.

Definition 2. A broken triangle on the pair of variable-value assignments a, b ∈
D(x) consists of a pair of assignments d ∈ D(y), e ∈ D(z) to distinct variables
y, z ∈ X \ {x} such that (a, d) /∈ Rxy, (b, d) ∈ Rxy, (a, e) ∈ Rxz, (b, e) /∈ Rxz

and (d, e) ∈ Ryz. The pair of values a, b ∈ D(x) is BT-free if there is no broken
triangle on a, b.

BTP-merging values a, b ∈ D(x) in a binary CSP consists in replacing a, b
in D(x) by a new value c which is compatible with all variable-value assignments
compatible with at least one of the assignments 〈x, a〉 or 〈x, b〉 (i.e. ∀y ∈ X \{x},
∀d ∈ D(y), (c, d) ∈ Rxy iff (a, d) ∈ Rxy or (b, d) ∈ Rxy)

When a, b ∈ D(x) are BT-free in a binary CSP instance I, the instance I ′

obtained from I by merging a, b ∈ D(x) is satisfiable if and only if I is satisfiable.
Furthermore, given a solution to the instance resulting from the merging of two
values, we can find a solution to the original instance in linear time [4].

The paper is structured as follows. In Section 2 we investigate the interaction
between arc consistency and BTP-merging. In Section 3 we show that finding the
best order in which to apply BTP-mergings is NP-hard, even for arc-consistent
instances. In Section 4 we prove that this remains true even if we only perform
merges at a single variable. In Section 5 we take this line of work one step further
by showing that it is also NP-hard to find the best sequence of merges by a weaker
property combing virtual interchangeability and neighbourhood substitutability.

2 Mixing Arc Consistency and BTP-merging

BTP-merging can be seen as a generalisation of neighbourhood substitutabil-
ity [6], since if a ∈ D(x) is neighbourhood substitutable for b ∈ D(x) then a, b

can be BTP-merged. The possible interactions between arc consistency (AC) and
neighbourhood substitution (NS) are relatively simple and can be summarised
as follows:

1. The fact that a ∈ D(x) is AC-supported or not at variable y remains invariant
after the elimination of any other value b (in D(x) \ {a} or in the domain
D(z) of any variable z �= x) by neighbourhood substitution.

2. An arc-consistent value a ∈ D(x) that is neighbourhood substitutable
remains neighbourhood substitutable after the elimination of any other value
by arc consistency.

3. On the other hand, a value a ∈ D(x) may become neighbourhood substi-
tutable after the elimination of a value c ∈ D(y) (y �= x) by arc consistency.

Indeed, it has been shown that the maximum cumulated number of elimina-
tions by arc consistency and neighbourhood substitution can be achieved by
first establishing arc consistency and then applying any convergent sequence
of NS eliminations (i.e. any valid sequence of eliminations by neighbourhood
substitution until no more NS eliminations are possible) [2].

✎

✍

☞

✌•
•
•

✎
✍

☞
✌• •

✎
✍

☞
✌• •

❅
❅

❅
❅

❅

❧
❧

❧
❧

❧
❧

❧

�
�

�
�

�

�
�

�
�

�
�

�

a

b

(a)

✎

✍

☞

✌•

•

✎
✍

☞
✌• •

✎
✍

☞
✌• •

❅
❅

❅
❅

❅
❅

❅

❅
❅

❅
❅

❅

�
�

�
�

�
�

�

�
�

�
�

�

c

(b)

Fig. 2. (a) An instance in which applying AC leads to the elimination of all values
(starting with the values a and b), but applying BTP merging leads to just one elimi-
nation, namely the merging of a with b (with the resulting instance shown in (b)).

The interaction between arc consistency and BTP-merging is not so simple
and can be summarised as follows:

1. The fact that a ∈ D(x) is AC-supported or not at variable y remains invariant
after the BTP-merging of any other pair of other values b, c (in D(x)\{a} or in
the domain D(z) of any variable z �= x). However, after the BTP-merging of
two arc-inconsistent values the resulting merged value may be arc consistent.
An example is given in Figure 2(a). In this 3-variable instance, the two values
a, b ∈ D(x) can be eliminated by arc consistency (which in turn leads to

the elimination of all values), or alternatively they can be BTP-merged (to
produce the value c) resulting in the instance shown in Figure 2(b) in which
no more eliminations are possible by AC or BTP-merging.

2. A single elimination by AC may prevent a sequence of several BTP-mergings.
An example is given in Figure 3(a). In this 4-variable instance, if the value b
is eliminated by AC, then no other eliminations are possible by AC or BTP-
merging in the resulting instance (shown in Figure 3(b)), whereas if a and b
are BTP-merged into a new value d (as shown in Figure 3(c)) this destroys
a broken triangle thus allowing c to be BTP-merged with d (as shown in
Figure 3(d)).

3. On the other hand, two values in the domain of a variable x may become
BTP-mergeable after an elimination of a value c ∈ D(y) (y �= x) by arc
consistency.

3 The Order of BTP-mergings

It is known that BTP-merging can both create and destroy broken triangles [4].
This implies that the choice of the order in which BTP-mergings are applied
may affect the total number of merges that can be performed. Unfortunately,
maximising the total number of merges in a binary CSP instance turns out to be
NP-hard, even when bounding the maximum size of the domains d by a constant
as small as 3. For simplicity of presentation, we first prove this for the case in
which the instance is not necessarily arc consistent. We will then prove a tighter
version, namely NP-hardness of maximising the total number of merges even in
arc-consistent instances.

Theorem 1. The problem of determining if it is possible to perform k BTP-
mergings in a boolean binary CSP instance is NP-complete.

Proof. For a given sequence of k BTP-mergings, verifying if this sequence is
correct can be performed in O(kn2d2) time because looking for broken triangles
for a given couple of values takes O(n2d2) [4]. As we can verify a solution in
polynomial time, the problem of determining if it is possible to perform k BTP-
mergings in a binary CSP instance is in NP. So to complete the proof of NP-
completeness it suffices to give a polynomial-time reduction from the well-known
3-SAT problem. Let I3SAT be an instance of 3-SAT (SAT in which each clause
contains exactly 3 literals) with variables X1, . . . , XN and clauses C1, . . . , CM .
We will create a boolean binary CSP instance ICSP which has a sequence of
k = 3 × M mergings if and only if I3SAT is satisfiable.

For each variable Xi of I3SAT , we add a new variable zi to ICSP . For each
occurrence of Xi in the clause Cj of I3SAT , we add two more variables xij and
yij to ICSP . Each D(zi) contains only one value ci and each D(xij) (resp. D(yij))
contains only two values ai and bi (resp. a′

i and b′
i). The roles of variables xij

and yij are the following:

Xi = true ⇔ ∀j, ai, bi can be merged in D(xij) (1)

Xi = false ⇔ ∀j, a′
i, b

′
i can be merged in D(yij) (2)

✎

✍

☞

✌•
•
•

✎

✍

☞

✌•

•

✎
✍

☞
✌• •

✎
✍

☞
✌• •

✭✭✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤❤❤
❅

❅
❅

❅
❅

❧
❧

❧
❧

❧
❧

❧

❡
❡

❡
❡

❡
❡❡

❅
❅

❅
❅

❅
❅

❅

�
�

�
�

�
�

�

✪
✪

✪
✪

✪
✪✪

�
�

�
�

�❅
❅

❅
❅

❅
❅

❅

❅
❅

❅
❅

❅

�
�

�
�

�
�

�

�
�

�
�

�

a

b

c

(a)

✎

✍

☞

✌•

•
✎

✍

☞

✌•

•

✎
✍

☞
✌• •

✎
✍

☞
✌• •

✭✭✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤❤❤
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅

�
�

�
�

�
�

�

�
�

�
�

�❅
❅

❅
❅

❅
❅

❅

❅
❅

❅
❅

❅

�
�

�
�

�
�

�

�
�

�
�

�

a

c

(b)

✎

✍

☞

✌•

•
✎

✍

☞

✌•

•

✎
✍

☞
✌• •

✎
✍

☞
✌• •

✭✭✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤❤❤
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅

�
�

�
�

�
�

�

�
�

�
�

�❅
❅

❅
❅

❅
❅

❅

❅
❅

❅
❅

❅

�
�

�
�

�
�

�

�
�

�
�

�

d

c

(c)

✎

✍

☞

✌
•

✎

✍

☞

✌•

•

✎
✍

☞
✌• •

✎
✍

☞
✌• •

❧
❧

❧
❧

❧
❧

❧

❡
❡

❡
❡

❡
❡❡

✪
✪

✪
✪

✪
✪✪

✱
✱

✱
✱

✱
✱

✱❅
❅

❅
❅

❅
❅

❅

❅
❅

❅
❅

❅

�
�

�
�

�
�

�

�
�

�
�

�

(d)

Fig. 3. (a) An instance in which applying AC leads to one elimination (the value b)
(as shown in (b)), but applying BTP merging leads to two eliminations, namely a with
b (shown in (c)) and then d with c (shown in (d)).

In order to prevent the possibility of merging both (ai, bi) and (a′
i, b

′
i), we

define the following constraints for zi, xij and yij : ∀j Rxijzi
= {(bi, ci)} and

Ryijzi
= {(b′

i, ci)}; ∀j ∀ k Rxijyik
= {(ai, a

′
i)}. These constraints are shown

in Figure 4(a) for a single j (where a pair of points not joined by a solid line
are incompatible). By this gadget, we create a broken triangle on each yij when
merging values in the xij and vice versa.

Then for each clause Ci = (Xj , Xk, Xl), we add the following constraints in
order to have at least one of the literals Xj , Xk, Xl true: Ryjiyki

= {(a′
j , b

′
k)},

Rykiyli
= {(a′

k, b′
l)} and Ryliyji

= {(a′
l, b

′
j)}. This construction, shown in

Figure 4(b), is such that it allows two mergings on the variables yji, yki, yli

before a broken triangle is created. For example, merging a′
j , b′

j and then a′
k, b′

k

creates a broken triangle on a′
i, b′

i. So a third merging is not possible.

✎

✍

☞

✌•

•

✎

✍

☞

✌
•

✎

✍

☞

✌•

•

❅
❅

❅
❅�

�
�

�
xij

zi

yij

bi

ai a′

i

b′

i

ci

(a)

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

❙
❙
❙
❙
❙

✑✑✑✑
yji

yli

yki

a′

j

b′

j

b′

k

a′

k

a′

l

b′

l

(b)

Fig. 4. (a) Representation of the variable Xi and its negation (by the possibility of
performing a merge in D(xij) or D(yij), respectively, according to rules (1),(2)). (b)
Representation of the clause (Xj ∨ Xk ∨ Xl). Pairs of points joined by a solid line are
compatible and incompatible otherwise.

If the clause Ci contains a negated literal Xj instead of Xj , it suffices to
replace yji by xji. Indeed, Figure 5 shows the construction for the clause (Xj ∨
Xk ∨ Xl) together with the gadgets for each variable. The maximum number
of mergings that can be performed are one per occurrence of each variable in
a clause, which is exactly 3 × M . Given a sequence of 3 × M mergings in the
CSP instance, there is a corresponding solution to I3SAT given by (1) and (2).
The above reduction allows us to code I3SAT as the problem of testing the
existence of a sequence of k = 3 × M mergings in the corresponding instance
ICSP . This reduction being polynomial, we have proved the NP-completeness
of the problem of determining whether k BTP merges are possible in a boolean
binary CSP instance.

✎

✍

☞

✌•

•
✎

✍

☞

✌•

•

✎

✍

☞

✌
•

�
�

�❅
❅

❅

✎

✍

☞

✌•

•
✎

✍

☞

✌•

•

✎

✍

☞

✌
•

❡
❡
❡
❡✪

✪
✪
✪

✎

✍

☞

✌•

•
✎

✍

☞

✌•

•

✎

✍

☞

✌
•

�
�

�❅
❅

❅

✏✏✏✏✏✏✏

✔
✔

✔
✔

✔
✔

❚
❚
❚
❚
❚
❚

yji

b′

j

a′

j

xji

bj

aj

cj

zj

yki

b′

k

a′

k

xki

bk

ak

ck

zk

yli

b′

l

a′

l

xli

bl

al

cl

zl

Fig. 5. Gadget representing the clause (Xj ∨ Xk ∨ Xl).

The reduction given in the proof of Theorem 1 supposes that no arc consis-
tency operations are used. We will now show that it is possible to modify the
reduction so as to prevent the elimination of any values in the instance ICSP

by arc consistency, even when the maximum size of the domains d is bounded
by a constant as small as 3. Recall that an arc-consistent instance remains arc-
consistent after any number of BTP-mergings.

Theorem 2. The problem of determining if it is possible to perform k BTP-
mergings in an arc-consistent binary CSP instance is NP-complete, even when
only considering binary CSP instances where the size of the domains is bounded
by 3.

Proof. In order to ensure arc consistency of the instance ICSP , we add a new
value di to the domain of each of the variables xij , yij , zi. However, we can-
not simply make di compatible with all values in all other domains, because
this would allow all values to be merged with di, destroying in the process the
semantics of the reduction.

In the three binary constraints concerning the triple of variables xij , yij , zi,
we make di compatible with all values in the other two domains except di. In
other words, we add the following tuples to constraint relations, as illustrated in
Figure 6:

– ∀i∀j, (ai, di), (bi, di), (di, ci) ∈ Rxijzi

– ∀i∀j, (a′
i, di), (b′

i, di), (di, ci) ∈ Ryijzi

– ∀i∀j, (ai, di), (bi, di), (di, a
′
i), (di, b

′
i) ∈ Rxijyij

This ensures arc consistency, without creating new broken triangles on ai, bi or
a′

i, b
′
i, while at the same time preventing BTP-merging with the new value di.

It is important to note that even after BTP-merging of one of the pairs ai, bi or
a′

i, b
′
i, no BTP-merging is possible with di in D(xij), D(yij) or D(zi) due to the

presence of broken triangles on this triple of variables. For example, the pair of
values ai, di ∈ D(xij) belongs to a broken triangle on ci ∈ D(zi) and di ∈ D(yij),
and this broken triangle still exists if the values a′

i, b
′
i ∈ D(yij) are merged.

We can then simply make di compatible with all values in the domain of all
variables outside this triple of variables. This ensures arc consistency, and does

✎

✍

☞

✌•
•
•

✎

✍

☞

✌•

•

✎

✍

☞

✌•
•
•✓

✓
✓
✓
✓

❙
❙

❙
❙

❙

✑✑✑✑
◗◗◗◗

�
�

�
�

❅
❅

❅
❅

✁
✁
✁
✁
✁
✁
✁

❆
❆

❆
❆

❆
❆

❆

✭✭✭✭✭✭✭
❤❤❤❤❤❤❤

✏✏✏✏✏✏✏

�������
ai

bi

di

xij

a′

i

b′

i

di

yij

ci

di

zi

Fig. 6. Ensuring arc consistency between the variables zi, yij , xij by addition of new
values di.

not introduce any broken triangles on ai, bi or a′
i, b

′
i. With these constraints we

ensure arc consistency without changing any of the properties of ICSP used in
the reduction from 3-SAT described in the proof of Theorem 1. For each pair of
values ai, bi ∈ D(xij) and a′

i, b
′
i ∈ D(yij), no new broken triangle is created since

these two values always have the same compatibility with all the new values dk.
As we have seen, the constraints shown in Figure 6 prevent any merging of the
new values dk.

Corollary 1. The problem of determining if it is possible to perform k value
eliminations by arc consistency and BTP-merging in a binary CSP instance is
NP-complete, even when only considering binary CSP instances where the size
of the domains is bounded by 3.

From a practical point of view, an obvious question concerns the existence of
a non-optimal but nevertheless useful heuristic for choosing the order of BTP-
merges. Imagine that a heuristic concerning the order in which to apply BTP-
merges involves first finding all possible merges before choosing between them.
If this is the case, then once a merge has been chosen and performed, the list of
possible merges has to be recalculated. This process is thus already an order of
magnitude slower than the simple technique (applied in the experiments in [4])
consisting of performing a merge as soon as it is detected.

4 Optimal Sequence of BTP-mergings at a Single

Variable

We now show that even when only considering a single domain, finding the
optimal order of BTP-mergings is NP-Complete. For simplicity of presentation,
we first prove this for the case in which the instance is not necessarily arc-
consistent. We then prove a tighter version for arc-consistent instances.

Theorem 3. The problem of determining if it is possible to perform k BTP-
mergings within a same domain in a binary CSP instance is NP-Complete.

Proof. For a given sequence of k BTP-mergings within a domain of a binary CSP
instance I, verifying if this sequence is correct can be performed in O(kN2d2)
time, with N being the number of variables in I and d being the size of the largest
domain in I, because looking for broken triangles for a given couple of values
takes O(N2d2). As we can verify a solution in polynomial time, the problem of
determining if it is possible to perform k BTP-mergings within a single domain in
a binary CSP instance is in NP. So to complete the proof of NP-Completeness, it
suffices to give a polynomial-time reduction from the well-known SAT problem.

Let ISAT be a SAT instance with n variables X1, X2, . . . , Xn and m clauses
C1, C2, . . . , Cm. We reduce ISAT to a binary CSP instance ICSP containing a
variable v0 such that ISAT is satisfiable if and only if we can make k = n + m
BTP-mergings within D(v0). ICSP is defined in the following way:

1. ICSP contains 1+n(2+4m+9(n−1)) variables v0, v1, v2, . . . , vn(2+4m+9(n−1)).

2. D(v0) contains 3×n+m values with the following names: x1, x2, . . . , xn, x1T,
x2T, . . . , xnT, x1F, x2F, . . . , xnF, c1, c2, . . . , cm. All other domains in ICSP

only contain one value.
3. ∀i ∈ [1, n], xiT and xiF can never be BTP-merged. The idea here is to allow

exactly one BTP-merging among the three values xi, xiT and xiF : xi and
xiT if Xi is assigned True in the SAT instance ISAT , xi and xiF if Xi is
assigned False instead.

4. ∀(i, j) ∈ [1, n] × [1,m] such that Cj does not contain Xi (respectively Xi),
cj can never be BTP-merged with xiT (respectively xiF).

5. ∀(i, j) ∈ [1, n]×[1,m] such that Cj contains Xi (respectively Xi), cj can only
be BTP-merged with xiT (respectively xiF) if either cj or xiT (respectively
xiF) has been previously BTP-merged with xi.

6. ∀i, j with 1 ≤ i < j ≤ n, the nine following couples can never be BTP-
merged: xi and xj , xi and xjT , xi and xjF , xiT and xj , xiT and xjT , xiT
and xjF , xiF and xj , xiF and xjT , xiF and xjF . The idea here is to prevent
any BTP-merging between two CSP values corresponding to two different
SAT variables.

When we say that two values a and b can never be BTP-merged, it means that
we add two variables va and vb, with only one value a′ in D(va), and only one
value b′ in D(vb), such that a is compatible with a′ and incompatible with b′, b
is compatible with b′ and incompatible with a′, a′ is compatible with b′ and all
other edges containing either a′ or b′ are incompatible. The purpose of making
a′ (respectively b′) incompatible will all values in the instance except a and b′

(respectively b and a′) is twofold. First, it ensures that no future BTP-merging
can establish a compatibility between a′ (respectively b′) and b (respectively a)
and thus destroy the broken triangle. Second, it ensures that the only broken
triangle introduced by a′ and b′ is on a and b, so that the addition of a′ and b′

does not prevent any other BTP-merging than the one between a and b.
When we say that two values a and b can only be BTP-merged if either a

or b has been previously BTP-merged with some third value c, it means that
we add two variables va and vb, with only one value a′ in D(va), and only one
value b′ in D(vb), such that a is compatible with a′ and incompatible with b′,
b is compatible with b′ and incompatible with a′, c is compatible with both a′

and b′, a′ is compatible with b′ and all other edges containing either a′ or b′ are
incompatible. Here again, the purpose of making a′ (respectively b′) incompatible
will all values in the instance except a, b′ and c (respectively b, a′ and c) is
twofold. First, it ensures that no future BTP-merging that does not include c
can establish a compatibility between a′ (respectively b′) and b (respectively a)
and thus destroy the broken triangle. Second, it ensures that the only broken
triangle introduced by a′ and b′ is on a and b, so that the addition of a′ and b′

does not prevent any other BTP-merging than the one between a and b.
For every couple of values that can never be BTP-merged, and for every

couple of values that can only be BTP-merged when one of them has been
previously BTP-merged with some third value, we add two new single-valued
variables to ICSP . Therefore, the third point in the definition of ICSP adds 2n

variables to ICSP , the fourth and fifth points in the definition of ICSP add 4nm
variables to ICSP and the sixth point in the definition of ICSP adds 9n(n − 1)
variables to ICSP . Therefore, the total number of single-valued variables added
to ICSP is n(2+4m+9(n−1)), as expected from the first point in the definition
of ICSP .

– The number of BTP-mergings is limited by n + m:
From the third point in the definition of ICSP , for all i ∈ [1, n], we can BTP-
merge at most once within the triple {xi, xiT, xiF}. From the sixth point
in the definition of ICSP , we cannot BTP-merge two values within D(v0) if
they are associated to two different SAT variables Xi and Xj . Therefore, we
have at most m BTP-mergings remaining, one for each cj for 1 ≤ j ≤ m.

– If we can BTP-merge n + m times, then we have a solution for ISAT :
Since we have done the maximum number of BTP-mergings, we know that
for all i ∈ [1, n], xi has been BTP-merged with either xiT or xiF , but not
both. So we create the following solution for ISAT : ∀i ∈ [1, n], we assign True
to Xi if xi and xiT have been BTP-merged, and False otherwise. From the
fourth and fifth points in the definition of ICSP , we know that for each j
in [1,m], Cj is satisfied by the literal associated with the value Cj has been
BTP-merged with.

– If we have a solution for ISAT , then we can BTP-merge n + m times:
∀i ∈ [1, n], we BTP-merge xi with xiT if True has been assigned to Xi, with
xiF otherwise. ∀(i, j) ∈ [1, n] × [1,m], we BTP-merge cj and the value that
xi has been BTP-merged with if Xi is satisfied in Cj and cj has not been
BTP-merged yet. From the fifth point in the definition of ICSP , we know we
can BTP-merge each cj once.

Therefore ISAT is satisfiable if and only if we can perform k = n + m BTP-
mergings within D(v0), and we have the result.

We now generalise the result of Theorem 3 to arc-consistent binary CSP
instances.

Theorem 4. The problem of determining if it is possible to perform k BTP-
mergings within a same domain in an arc-consistent binary CSP instance is
NP-Complete.

Proof. We transform the binary CSP instance ICSP from the proof of Theorem 3
into an arc-consistent binary CSP instance I ′

CSP . To do so, we add a new value
di in D(vi) for 1 ≤ i ≤ n(2 + 4m + 9(n − 1)) such that all di are incompatible
with each other and compatible with all other points in I ′

CSP . This ensures arc
consistency. It remains to show that:

1. For any couple of values (a, b) ∈ D(v0), adding the values di does not create
the broken triangle on a and b, even if a or b is the result of a previous
BTP-merging:
Suppose that we have two values a, b ∈ D(v0) such that adding the values di

creates a broken triangle on a and b. Let a′ ∈ D(va) and b′ ∈ D(vb) be the
other two values forming the broken triangle. Since it was the new values di

that created this particular broken triangle, either a′ or b′ is one of the di.
Without loss of generality, we assume that a′ is one of the di. But since the
di are compatible with all values from D(v0), both a and b are compatible
with a′, even if a or b is the result of a previous BTP-merging. Therefore,
there cannot be any broken triangle on a and b caused by the new values di.

2. For all i ∈ [1, n(2 + 4m + 9(n − 1))], it is never possible to BTP-merge the
two values in D(vi):
We assume, for simplicity of presentation and without loss of generality,
that the SAT instance ISAT has more than one variable and that no clause
contains both a variable and its negation. Let i ∈ [1, n(2 + 4m + 9(n − 1))].
Let a and di be the two points in D(vi). From the proof of Theorem 3, we
know that a is compatible with only one value from D(v0). Let b be this
value. If b is associated with one of the SAT variables from ISAT , then from
the sixth point in the definition of ICSP in the proof of Theorem 3 we know
that there is at least one value c ∈ D(v0) that can never be BTP-merged
with b, and therefore will always be incompatible with a. If on the other
hand c is associated with one of the SAT clauses from ISAT , then from the
fourth point in the definition of ICSP in the proof of Theorem 3 we know
that there is at least one value c ∈ D(v0) that can never be BTP-merged
with b, and therefore will always be incompatible with a. Therefore, we have
a value c ∈ D(v0) that is always incompatible with a, even if c is the result
of a previous BTP-merging. Let j ∈ [1, n(2 + 4m + 9(n − 1))], such that
j �= i. Since the di are incompatible with each other, and compatible with
all other values in I ′

CSP , then dj is compatible with both a and c, and di

is compatible with c and incompatible with dj . Therefore we have a broken
triangle on a and di that can never be destroyed. Therefore a and di can
never be BTP-merged and we have the result.

One motivation for studying the single-variable version of the problem was
that if all values in D(x) can be BTP-merged, then the variable x can be elim-
inated since its domain becomes a singleton. Our proof of NP-hardness in the
single-variable case relied on a large domain which was not actually reduced
to a singleton. There remains therefore an interesting open question concerning
the complexity of eliminating the largest number of variables by sequences of
BTP-merging operations.

5 Virtual Interchangeability and Neighbourhood

Substitution

Since testing whether two values a, b ∈ D(x) are BTP-mergeable requires testing
all pairs of assignments to all pairs of distinct variables y, z �= x, it is natural
to investigate weaker versions which are less costly to test. Two such weaker
versions are neighbourhood substitutability [6] and virtual interchangeability [8].

Given two values a, b ∈ D(x), a is neighbourhood substitutable by b (NS), and
so can be merged with b, if for all variables y �= x, ∀c ∈ D(y), (a, c) ∈ Rxy ⇒
(b, c) ∈ Rxy. Two values a, b ∈ D(x) are virtual interchangeable (VI), and so
can be merged, if for all variables y �= x except at most one, ∀c ∈ D(y), (a, c) ∈
Rxy ⇔ (b, c) ∈ Rxy. Applying both VI and neighbourhood substitution (NS)
operations until convergence provides a weaker and less time-costly alternative
to applying BTP-merging operations until convergence. An interesting question
is therefore whether it is possible to find in polynomial time an optimal (i.e.
longest) sequence of VI and NS operations. The following theorem shows that
this problem is in fact also NP-hard.

Theorem 5. Determining whether there exists a sequence of VI and NS opera-
tions of length k that can be applied to a binary CSP instance is NP-complete.

Proof. Since checking the validity of a sequence of VI and NS operations can be
achieved in polynomial time, the problem is in NP. To complete the proof we
demonstrate a polynomial reduction from 3SAT. Let I3SAT be an instance of
3SAT. We will show how to construct a binary CSP instance ICSP and a value
k so that it is possible to perform k merges by VI and NS if and only if I3SAT

is satisfiable.
For each variable x in I3SAT , we introduce Boolean variables called x and x

in ICSP : variable x in I3SAT is assigned true (respectively, false) if and only if the
two domain values in D(x) (respectively, D(x)) are merged in the corresponding
sequence of merges in ICSP . Figure 7(a) shows the gadget for choosing the truth
value for x. The variables x and x are both connected to another variable, not
shown in this figure: this prevents the values in their domains being merged
before the values in the domains of t or t′ are merged. Initially, the only merges
(by VI and NS) which can occur are in the domain of variable s: we can either
merge values 1 and 2 or values 2 and 3. Once one of these merges is performed,
the other it not possible. Figure 7 shows the propagation of merges which occurs
in the second of these cases. Figure 7(b) shows the result of this merge in D(s).
In Figure 7(b) the only merge that is possible is the merging of values 1 and
3 (by NS) in D(t). The result is shown in Figure 7(c). Now, the two values in
the domain of x can be merged (by VI) since x is constrained by a single other
variable (not shown in the figure). It is important to note that no other merges
are possible. By a similar chain of propagations, if we had chosen to merge 1
and 2 in D(s), then the values 1 and 3 in D(t′) would have been merged, and
finally the two values in D(x). This gadget therefore allows us to choose a truth
value for the corresponding variable x of I3SAT .

In order to code the instance I3SAT , we need to be able to have several
copies of each variable. This is achieved by the gadget shown in Figure 8(a).
The variables x1 and x2 are each assumed to be constrained by a single other
variable not shown in the figure. The variable x is the variable in the gadget of
Figure 7. If the values in D(x) are merged then this allows the merging (by VI)
of the pair of values 0, 1 ∈ D(u) and the merging of the pair of values 2,3. In the
resulting instance, the two values in the domain of xi (i = 1, 2) can be merged.

(a)

✎

✍

☞

✌•

•

•

✎

✍

☞

✌•

•

•

✎

✍

☞

✌•

•

•

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

✏✏✏✏✏✏

�������
�

�
�

�
�

✓
✓

✓
✓

✓
✓

✓
✓

❅
❅

❅
❅

❅
❅

❙
❙

❙
❙

❙
❙

❙
❙✓

✓
✓

✓
✓

✓
✓

✓

������

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

������
◗

◗
◗

◗
◗

◗

✑
✑

✑
✑

✑
✑

�
�

�
�

�
�

◗
◗

◗
◗

◗
◗

✏✏✏✏✏✏

✑
✑

✑
✑

✑
✑

◗
◗

◗
◗

◗
◗

✏✏✏✏✏✏

1

2

3

x

x

s

t

t′

1

2

3

(b)

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

•

✎

✍

☞

✌•

•

•

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

✏✏✏✏✏✏

������

✑
✑

✑
✑

✑
✑

�
�

�
�

�
�

❅
❅

❅
❅

❅
❅

❙
❙

❙
❙

❙
❙

❙
❙✓

✓
✓

✓
✓

✓
✓

✓

������

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

������
◗

◗
◗

◗
◗

◗

✑
✑

✑
✑

✑
✑

�
�

�
�

�
�

◗
◗

◗
◗

◗
◗

✏✏✏✏✏✏

✑
✑

✑
✑

✑
✑

◗
◗

◗
◗

◗
◗

✏✏✏✏✏✏

1

{2, 3}

x

x

s

t

t′

1

2

3

(c)

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

•

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

✏✏✏✏✏✏

������

✑
✑

✑
✑

✑
✑

❅
❅

❅
❅

❅
❅

❙
❙

❙
❙

❙
❙

❙
❙✓

✓
✓

✓
✓

✓
✓

✓

������

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

������
◗

◗
◗

◗
◗

◗

✑
✑

✑
✑

✑
✑

�
�

�
�

�
�

◗
◗

◗
◗

◗
◗

✏✏✏✏✏✏

✑
✑

✑
✑

✑
✑

1

{2, 3}

x

x

s

t

t′

2

{1, 3}

Fig. 7. (a) Gadget for choosing a truth value for x: true if the two values in D(x) are
merged; false if the two values in D(x) are merged. This same gagdet (b) after merging
the values 2 and 3 in D(s), then (c) after merging the values 1 and 3 in D(t) .

✎

✍

☞

✌•

•

•

•
✎

✍

☞

✌•

•
✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

✏✏✏✏✏✏

������

✏✏✏✏✏✏

������

x

u
x1

x2

0

1

2

3

(a)

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•
✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

✎

✍

☞

✌•

•

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

◗
◗

✑
✑

✑

������

❙
❙

❙
❙

✑
✑

✑

������

❙
❙

❙
❙

v v′

x

y

z

(b)

Fig. 8. (a) Gadget for making copies of a variable x: if the two values in D(x) can be
merged, then the two values in D(x1) and the two values in D(x2) can be merged. (b)
Gadget used in the simulation of a clause: the variable v is true (i.e. the two values in
its domain can be merged) if and only if x, y, z are all true.

This gadget therefore allows us to make multiple copies of the variable x all with
the same truth value.

To complete the proof, we now show how to code each clause c of I3SAT . There
are exactly seven assignments to the variables in c which satisfy this clause. For
each of these assignments, we add a gadget of the form shown in Figure 8(b). The
variables x, y, z are the output of the gadgets introduced above and correspond
to the variables x, y, z occurring in the clause c in I3SAT . In the example shown
in the figure, the satisfying assignment is x = y = z = true. When the two
values in each of the domains of these three variables can be merged (and only
in this case), the values in the domain of v can also be merged. The triangle of
variables to the right of v in Figure 8(b) prevents the merging of the values in
D(v) when only two of the three variables x, y, z are assigned true.

In order to have the same number of copies of x and x in our construction,
we also add a gadget similar to Figure 8(b) for the one non-satisfying assignment
to the three variables of the clause c: in this case, the variable v is constrained
by two other variables (as is the variable v′ in Figure 8(b)) which prevents the
merging of the values in D(v).

Suppose that there are n variables and m clauses in I3SAT . The maximum
total number of merges which can be performed in ICSP is 3 per gadget shown in

Figure 7, 4 per gadget shown in Figure 8(a) and 1 per gadget shown in Figure 8(b)
(provided the gadget corresponds to a truth assignment which satisfies the clause
c). Each clause c requires four copies of each of the three variables x occurring
in c (as well as four copies of x). For each copy of each literal assigned the value
true, there are 4 merges in the gadget of Figure 8(a). For the first occurrence
of each variable, produced by the gadget of Figure 7, there is one less merge (3
instead of 4). Finally, for each satisfied clause there is one merge. This implies
that we can perform a total of k = 48m − n + m = 49m − n merges in ICSP if
and only if I3SAT is satisfiable. Since this reduction is clearly polynomial, this
completes the proof.

6 Conclusion

We have investigated the possibility of maximising the number of domain reduc-
tion operations in binary CSP instances by choosing an optimal order in which
to apply them. Whereas for consistency and neighbourhood-substitution oper-
ations, the number of domain reduction operations can be maximised in poly-
nomial time, the problem becomes NP-hard when we allow merging operations,
such as virtual interchangeability or BTP-merging. We emphasise that this does
not detract from the possible utility of such value-merging operations in practice,
which is an independent question.

Different tractable subproblems of binary CSP have been defined based on
the absence of certain broken triangles [3,5,7]. Instances can be solved by elim-
inating variables one by one and, in each case, the recognition of instances in
the tractable class can be achieved in polynomial time by a greedy algorithm
since the elimination of one variable cannot prevent the elimination of another
variable. BTP-merging, on the other hand, performs reduction operations on a
lower level than the elimination of variables. Given the NP-completeness results
in this paper, recognizing those instances which can be reduced to a trivial prob-
lem with only singleton domains by some sequence of BTP-merges is unlikely to
be tractable, but this remains an open problem.

References

1. Cohen, D.A., Cooper, M.C.: Guillaume Escamocher and Stanislav Živný, Variable
and Value Elimination in Binary Constraint Satisfaction via Forbidden Patterns. J.
Comp. Systems Science (2015). http://dx.doi.org/10.1016/j.jcss.2015.02.001

2. Martin, C.: Cooper, Fundamental Properties of Neighbourhood Substitution in Con-
straint Satisfaction Problems. Artif. Intell. 90(1–2), 1–24 (1997)

3. Cooper, M.C., Jeavons, P.G., Salamon, A.Z.: Generalizing constraint satisfaction on
trees: Hybrid tractability and variable elimination. Artif. Intell. 174(9–10), 570–584
(2010)

4. Cooper, M.C., El Mouelhi, A., Terrioux, C., Zanuttini, B.: On broken triangles.
In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 9–24. Springer, Heidelberg
(2014)

5. Cooper, M.C.: Beyond consistency and substitutability. In: O’Sullivan, B. (ed.) CP
2014. LNCS, vol. 8656, pp. 256–271. Springer, Heidelberg (2014)

6. Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction prob-
lems. In: Proceedings AAAI 1991, pp. 227–233 (1991)

7. Jégou, P., Terrioux, C.: The extendable-triple property: a new CSP tractable class
beyond BTP. In: AAAI (2015)

8. Likitvivatanavong, C., Yap, R.H.C.: Eliminating redundancy in CSPs through merg-
ing and subsumption of domain values. ACM SIGAPP Applied Computing Review
13(2) (2013)

