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Abstract

As they grow in size, OWL ontologies tend to

comprise intuitively incompatible statements,

even when they remain logically consistent.

This is true in particular of lightweight on-

tologies, especially the ones which aggregate

knowledge from different sources. The article

investigates how distributional semantics can

help detect and repair violation of common

sense in consistent ontologies, based on the

identification of consequences which are un-

likely to hold if the rest of the ontology does.

A score evaluating the plausibility for a con-

sequence to hold with regard to distributional

evidence is defined, as well as several methods

in order to decide which statements should be

preferably amended or discarded. A conclu-

sive evaluation is also provided, which con-

sists in extending an input ontology with ran-

domly generated statements, before trying to

discard them automatically.

1 Introduction

Ontology learning from texts deals with the auto-

mated extraction of knowledge from linguistic ev-

idence. This article investigates a slightly differ-

ent problem, which is how Natural Language Pro-

cessing may provide hints for the identification of

statements of an input ontology which are unlikely

to hold if the rest of it does. As a minimal exam-

ple, consider the following set ∆ of statements, from

DBpedia (Mendes et al., 2012), and assume that ∆ is

∗ The research reported here was supported by a Marie

Curie FP7 Career Integration Grant, Grant Agreement Number

PCIG13-GA-2013-618550.

a subset of a larger set of statements K (for instance

DBpedia itself, or some subset of it) :

Ex 1.

∆ = { (1) keyPerson(Caixa Bank, CEO),

(2) keyPerson(BrookField Office Properties,

Peter Munk)

(3) occupation(Peter Munk, CEO) }

There is a clear violation of common sense in ∆ :

the individual CEO must be both a key person of

Caixa Bank, and the occupation of another individ-

ual (Peter Munk), who is himself a key person of

some company. Detecting such cases within (larger)

sets of logical statements is of particular interest in

OWL, which facilitates the aggregation of knowl-

edge from multiple sources with overlapping signa-

tures, yielding datasets in which several incompati-

ble understandings of a same individual or predicate

may coexist. This easily leads to undesired infer-

ences, even when the dataset is logically consistent.1

But as the example illustrates, the problem may also

occur within a single knowledge base, especially if

it has been built semi-automatically, and/or is issued

from a collaborative effort.

Another problem of interest consists in deciding

which statement(s) should be preferably discarded

or amended in order to get rid of the nonsense. In

example 1, without further information, it would be

intuitively relevant to discard or modify either (1) or

(2). Unfortunately though, ∆ alone does not give

any indication of which of the two should be prefer-

ably discarded. But the whole input ontology K ⊃

1and coherent in the Description Logics sense, i.e. whose

signature contains unsatisfiable DL atomic concepts/OWL

named classes



∆ may. To keep the example simple, let us assume

that Peter Munk, CEO and occupation do not ap-

pear in K \∆. Then a reasonable assumption is that

the overall understanding of keyPerson within K
should be the decisive factor. If it generally ranges

over person functions (i.e. if in most instances of the

relation according to K, the second argument is a

person function), then it is to be understood as “has

as a key person someone whose function is”, and

(2) should be preferably discarded. Alternatively, if

keyPerson generally ranges over human beings,

then (1) should be preferably discarded.

The article investigates the use of linguistic evi-

dence to solve both of these problems : identifying

violations of common sense, and selecting the state-

ment(s) to be preferably amended or discarded. This

may be viewed as a small paradigm shift, in that

it questions an assumption commonly made in the

knowledge extraction literature, namely that manu-

ally crafted knowledge strictly prevails over the one

obtained from linguistic sources. By default, the

case of a consistent2 input ontology K will be stud-

ied, but section 6 discusses the application of the ap-

proach to an inconsistent K as well.

As a concrete contribution, section 5 evaluates

the adaptation of relatively simple techniques issued

from named entity classification/ontology popula-

tion, and based on distributional semantics. To il-

lustrate how this works, let us assume that the only

other appearance of keyPerson within K is the

following OWL statement :

(4) hasRange(keyPerson, Person)

i.e. in FOL :

(4) ∀xy(keyPerson(x, y) → Person(y))

Then K |= ψ1 = Person(CEO), and K |=
ψ2 = Person(Peter Munk). Assume also that

there are other instances of Person according to

K, and that most of them are actually human be-

ings (like Peter Munk). Then ψ1 is an undesirable

consequence of K, whereas ψ2 on the other hand

reinforces it.

Distributional semantics characterizes a word (or

possibly a multi word unit) by some algebraic rep-

resentation of the linguistic contexts with which it is

observed. These representations have already been

2and coherent (see footnote 1)

used for ontology population, for instance by (Tanev

and Magnini, 2008), the main intuition being that

individuals denoted by linguistic terms with similar

contexts tend to instantiate the same classes. The

underlying linguistic phenomenon is known as se-

lectional preference, i.e. the fact that some contexts

tend to select or rule out certain categories of in-

dividuals : e.g. the context “X was born in” tends

to select a human being, whereas “X was launched”

tends to rule it out. Back to the example, one can

expect the similarity between the distributional rep-

resentation of the term “C.E.O” and other terms de-

noting instances of Person according to K to be

relatively low, hindering the plausibility of ψ1 with

regard to K. In other words, ψ1 should stand as an

outlier among consequences of K, and therefore is

probably undesirable. Conversely, the similarity be-

tween “Peter Munk” and terms denoting other in-

stances of Person should be relatively high. For

simplicity, suppose that (1), (2), (3) and (4) are the

only 4 statements of K which are candidate for re-

moval. Then in order to give up the belief in ψ1

while preserving ψ2, it is necessary to discard (1),

and retain (2) and (4). It is also sufficient to discard

(1), i.e. discarding (3) as well would result in an un-

necessary information loss. So in this case, the ev-

idence provided by distributional semantics should

suggest the removal of (1), or at least its modifica-

tion, which is also intuitively the correct solution.

Section 4 formalizes this approach, by defining a

score which estimates the plausibility of some con-

sequences a subbases Γ of K, given distributional

evidence. Section 5 then provides an original eval-

uation of this strategy, based on the prior exten-

sion of a small OWL ontology with randomly gener-

ated statements. The approach is evaluated for both

problems, i.e. the identification of undesired con-

sequences and statements. Performances of several

forms of distributional representations are also com-

pared. Section 6 discusses immediate applications,

in particular for (consistent and inconsistent) ontol-

ogy debugging. Finally, section 7 considers possi-

ble extensions of this framework, as well as their

limitations. Section 2 is a brief overview of related

works in the fields of ontology learning and debug-

ging, whereas section 3 introduces notational con-

ventions, and lists some preliminary requirements to

be met by the input K.



2 State of the art

Ontology learning from texts (Cimiano, 2006;

Buitelaar et al., 2005) aims to automatically build or

enriching a set of logical statements out of linguistic

evidence, and is closely related to the field of infor-

mation extraction. The work presented here borrows

from a subtask called ontology population (which it-

self borrows from named entity classification), but

only when the individuals and concepts of inter-

est are already known (Cimiano and Völker, 2005;

Tanev and Magnini, 2008; Giuliano and Gliozzo,

2008), which is not standard. A comparison may

also be drawn with the use of linguistic evidence by

(Suchanek et al., 2009) for information extraction in

the presence of conflicting data.

But the objective of the present work is different,

pertaining to ontology debugging, which covers a

wide range of techniques, from syntactic verifica-

tions (Poveda-Villalón et al., 2012) to anti-patterns

detection (Roussey and Zamazal, 2013), both based

on common modeling mistakes, or the submission

of models (Ferré and Rudolph, 2012; Benevides

et al., 2010) or consequences (Pammer, 2010) of

the input ontology to the user. As discussed in

section 6, the framework depicted here presents an

interesting complementarity with debugging tech-

niques developed in the Description Logics com-

munity, prototypically based on diagnosis (Friedrich

and Shchekotykhin, 2005; Kalyanpur et al., 2006;

Qi et al., 2008; Ribeiro and Wassermann, 2009), be-

cause they require the prior identification of some

undesired consequence of K (be it ⊥). But distribu-

tional evidence may also provide a principled way

of selecting most relevant diagnoses among a poten-

tially large number of candidates, as well as an al-

ternative to their exhaustive computation, which has

been shown costly by (Schlobach, 2005).

3 Conventions and presuppositions

The prototypical input is a set of statements in OWL

DL or OWL 2, although the approach may be gener-

alized to other representation languages. OWL DL

and OWL 2 are based on Description Logics (DL),

which are themselves decidable fragments of first-

order logic (FOL). The OWL notation is preferred

to the DL one for readability, and FOL translations

are given when not obvious.

An ontology is just understood here as a (finite)

set of logical statements. A class will designate a

named class in OWL, i.e. a FOL unary predicate,

like Person, whereas a named individual, or just

individual, designates a constant, like Peter Munk.

The input ontologyK must provide English terms

denoting some of its named individuals (e.g. the

term “Peter Munk”). These terms are prototypically

named entities, but may also occasionally be com-

mon nouns (or common noun phrases), as shown

in example 1 with “C.E.O”. There may be multiple

terms for a same individual. The approach cannot

handle polysemy though, in particular the fact that

some individuals of K may have homonyms (within

K or not), for instance that the term “JFK” can stand

for a politician, airport or movie. Ideally, no dis-

tributional representation should be built for indi-

viduals of K with potential homonyms. Some of

them may be identified with simple strategies, like

checking the existence of a Wikipedia disambigua-

tion page. On the opposite, labels for classes of

K (prototypically common nouns or common noun

phrases, which are arguably more ambiguous) are

never used during the process.

4 Proposition

Given a subbase Γ of the input ontology K (possi-

bly K itself), the ontology verification strategy pre-

sented in introduction relies on the evaluation of a

set ΨΓ of consequences of Γ. This section first de-

fines a score scΓ(ψ) for each ψ ∈ ΨΓ, which intu-

itively evaluates the plausibility of ψ wrt Γ, provided

some distributional representation for each named

individual appearing in ΨΓ. Then it discusses how

this score can be used to select statements of the in-

put ontology K which, according to distributional

evidence, should be preferably discarded, or at least

amended.

4.1 Plausibility of a consequence ψ ∈ ΨΓ

For the experiments described in section 5, ΨΓ is

the set of consequences of Γ of the form A(e) or

¬A(e), with e a constant (like CEO) and A a unary

predicate (like Person), and for which linguistic

occurrences of a term denoting e could be retrieved.

Possible extension of ΨΓ with other types of formu-

las is discussed in section 7.



Let ψ be a formula of ΨΓ, of the form

A(e), e.g. ψ = Person(CEO) or ψ =
Person(Peter Munk). Then instΓ(A) will des-

ignate all instances of A according to Γ for

which linguistic occurrences could be retrieved, i.e.

instΓ(A) = {e′ | A(e′) ∈ ΨΓ}, and instΓ(A) \ {e}
will be called the support set for A(e). Similarly,

instΓ(⊤) will designate all named individuals ap-

pearing in ΨΓ.

Let sim(e1, e2) be a measure of similarity be-

tween the distributional representations of individ-

uals e1 and e2 (prototypically the cosine similar-

ity between some vector representations of the lin-

guistic contexts of e1 and e2). Then for each e′ ∈
instΓ(A) \ {e}, if sim(e, e′) is lower than what

could be expected if e′ was a random individual of

instΓ(⊤) \ {e} (i.e. not necessarily an instance of

A), the hypothesis that A(e) is an outlier within ΨΓ

will be reinforced.

For instance, in example 1, let ψ =
Person(CEO) and Γ = K. Then the sup-

port set instΓ(A) \ {e} is composed of all other

instances of Person according to Γ. For each indi-

vidual e′ of this support set, if sim(CEO, e′) is lower

than what can be expected for a random individual

of K with linguistic occurrences (and different

from CEO), then the confidence in Person(CEO)
should decline. Conversely, if sim(e, e′) is higher

that expected, the hypothesis that ψ is in line with

ΨΓ will be reinforced.

Here is a cost-efficient and relatively simple

method to compute a plausibility score scΓ(A(e)).
Let S = instΓ(A)\{e} designate the support set for

Γ and e, and |S| the cardinality of S, i.e. the number

of other instances of A according to Γ. And let us

assume a set W of |S| randomly chosen elements

of instΓ(T ) \ {e}, i.e. of |S| individuals which are

different from e, but not necessarily instances of A.

Finally, let the random variable XΓ
e,|S| model the

expected value of
∑

e′∈W

sim(e,e′)
|S| , i.e. the mean of the

similarities between e and each individual of W .

In other words, if |S| individuals were randomly

chosen instead of those of the support set, XΓ
e,|S|

models what the average similarity between e and

these individuals can be expected to be. Then the

plausibility scΓ(A(e)) of A(e) can be defined by :

Definition 4.1. If S = instΓ(A) \ {e}, then

scΓ(A(e)) = p(XΓ
e,|S| ≤

∑

e′∈S

sim(e,e′)
|S| )

scΓ(A(e)) estimates of how surprisingly high the

similarity between e and the individuals of the sup-

port set S is, considering the overall similarity be-

tween e and the individuals of Γ.

For the evaluation described in section 5, the

random variable XΓ
e,|S| was assumed to follow a

beta distribution Beta(α, β), which intuitively al-

lows taking the size |S| of the support set into ac-

count. For instance, if S = {e′}, i.e. |S| = 1,

then ceteris paribus a high similarity between e
and e′ will be less informative than an equally high

average similarity between e and all elements of

a large S. Stated another way, the lower |S| is,

the more uniform the distribution of XΓ
e,|S| should

be. This can be obtained by setting XΓ
e,|S| ∼

Beta(m|S| + 1, (1 −m)|S| + 1), where m is the

average similarity between e and all other individu-

als of the signature of Γ, i.e. m =
∑

e′∈Γ\{e}

sim(e,e′)
|Γ|−1 .

A possible interrogation here is the choice of

instΓ(A) \ {e} as the support set for A(e). For in-

stances, if ψ = Person(Peter Munk), a case could

be made for using instΓ(¬A) as well, i.e. for ex-

ploiting the (dis)similarity between Peter Munk and

individuals which, according to K, are instances of

¬Person.3 This is quite unrealistic though from

a linguistic point of view, which can be intuitively

seen in this example by replacing Peter Munk with

CEO. Assume for instance that Thelonious Monk

and Beijing are (reliable) instances of Person

and ¬Person respectively according to Γ. There

is no reason to expect that sim(CEO,Beijing) >
sim(CEO, Thelonious Monk). In other words, it is

implausible to assume that elements of instΓ(¬A)
should a priori share similar contexts.

Interestingly enough, and for the same reason,

the support set for a consequence of Γ of the

form ¬A(e) is not instΓ(¬A), but instΓ(A), which

yields :

Definition 4.2. If S = instΓ(A), then

scΓ(¬A(e)) = p(XΓ
e,|S| ≥

∑

e′∈S

sim(e,e′)
|S| )

3i.e. Γ |= ¬Person(e′) not only Γ 6|= Person(e′)



4.2 Linguistic compliance of Γ

This does not directly address the second problem

mentioned in introduction though. For practical on-

tology verification, it is also desirable to identify the

cause of this nonsense, i.e. statements (axioms in the

DL terminology) which are intuitively problematic.

For instance, in example 1, computing scΓ(ψ) for

each ψ ∈ ΨK may signal that the consequence ψ1

is unlikely to hold wrt the larger ontology K. And

discarding either (1) or (4) is sufficient to get rid of

the belief in ψ. But given the additional assump-

tions made about K, discarding the former is prefer-

able, in that discarding the latter would also result in

the loss of ψ2. In other words, some subbases of K
(likeK\(1) here) are more relevant than others (e.g.

K \ (4)), which can be simply captured as follows.

Let comp(Γ) be an estimation of the compliance of

a subbase Γ of K with the gathered linguistic evi-

dence. A straightforward option consists in setting

comp(Γ) to be the mean of the scores of evaluated

consequences for Γ, i.e. :

Definition 4.3. comp(Γ) =
∑

ψ∈ΨΓ

scΓ(ψ)
|ΨΓ|

Then a strict partial order ≺ over 2K can sim-

ply be defined by Γ1 ≺ Γ2 iff either comp(Γ1) <
comp(Γ2), or (comp(Γ1) = comp(Γ2) and Γ1 ⊂
Γ2),

4 and a subbase Γ of K can be viewed as opti-

mal if it is maximal wrt ≺.5

In practice though, identifying optimal subbases

is a non trivial task. To see this, note that the func-

tion to be maximized is not directly a function of

the statements in Γ, but of ΨΓ, i.e. some of the

consequences of Γ. So even if one could identify

a subset Ψ′ of ΨK which maximizes this function,

there may not exist a subbase Γ of K such that

ΨΓ = Ψ′. Another difficulty comes from the fact

that for two subbases Γ1 and Γ2 of K, and a con-

sequence ψ ∈ ΨΓ1
∩ ΨΓ2

, it doesn’t hold in gen-

eral that scΓ1
(ψ) = scΓ2

(ψ), because the support

set for ψ in Γ1 may differ from its support set in

4The assumption is made that a minimum of syntactic in-

formation should be lost whenever possible, i.e. Γ1 and Γ2

are primarily viewed as bases, not as theories. In particular,

if Cn(Γ1) = Cn(Γ2), but Γ1 6⊆ Γ2 and Γ2 6⊆ Γ1, then Γ1 and

Γ2 are not comparable wrt ≺. Redundancies in this view should

also be preserved when possible, i.e. if Cn(Γ1) = Cn(Γ2) and

Γ1 ⊂ Γ2, then Γ1 ≺ Γ2 still holds.
5There may be several several optimal subbases.

Γ2. In particular, it may be the case that Γ1 ⊆ Γ2

but scΓ1
(ψ) > scΓ2

(ψ), which greatly reduces the

possible uses of monotonicity (if Γ1 ⊆ Γ2, then

Cn(Γ1) ⊆ Cn(Γ2)) to optimize the exploration of

2K . More generally, if the optimal subbases of K
are small (say twice smaller that K), it can be right-

fully argued that dropping so many statements for

the sake of linguistic evidence is not a viable debug-

ging strategy.

Therefore a more plausible application scenario

is one in which the search space has been previously

circumscribed, either by setting a maximal (small)

number of statements to discard, or by identifying a

set of potentially erroneous statements, through ax-

iom pinpointing, as explained in section 6. This is

also why the evaluation presented in section 5 fo-

cuses on the simplest possible case, i.e. the removal

from K of one statement only, whereas the integra-

tion of distributional evidence to more complex de-

bugging strategies is discussed in section 6.

As an alternative to the function comp, and in or-

der to avoid the fact that a same consequence may

have different plausibility scores wrt two subbases

of K, one may choose to discard unlikely conse-

quences based on their respective scores in K, i.e.

to use the score compK(Γ),6 defined by :

Definition 4.4. compK(Γ) =
∑

ψ∈ΨΓ

scK(ψ)
|ΨΓ|

This solution is arguably less satisfying, but more

amenable to optimizations. A trivial example is that

of a subbase Γ1 with max
ψ∈ΨΓ1

scK(ψ) < compK(Γ2)

for some already evaluated subbase Γ2, in which

case no subbase of Γ1 can be optimal wrt ≺.

Additionally, instead of taking the mean of the

scores of evaluated consequences of Γ, one may

want to penalize the subbases of K with the most

unlikely consequences, which gives a standard (to-

tal) lexicographic ordering �lex on 2K , defined as

follows. Let ωΓ = ω1
Γ, .., ω

|ΨΓ|
Γ be the vector of

formulas of ΨΓ order by increasing score scΓ, and

let scΓ(ωΓ) = scΓ(ω1
Γ), .., scΓ(ω

|ΨΓ|
Γ ). Then �lex

is defined by Γ1 �lex Γ2 iff either scΓ1
(ωΓ1

) =
scΓ2

(ωΓ2
), or (there is a 1 ≤ i ≤ |ΨΓ2

| such that

scΓ1
(ωjΓ1

) = scΓ2
(ωjΓ2

) for all 1 ≤ j < i, and either

scΓ1
(ωiΓ1

) < scΓ2
(ωiΓ2

) or |ΨΓ1
| = i − 1). Then

6or more generally comp
Γ′(Γ), for some Γ′ ⊇ Γ



as previously, a strict partial order ≺ over 2K can

be defined by Γ1 ≺ Γ2 iff either Γ1 ≺lex Γ2, or

(Γ1 =lex Γ2 and Γ1 ⊂ Γ2).

Again, scK(ψ) may be used instead of scΓ(ψ),
yielding the lexical ordering �lexK

. This last possi-

bility corresponds to a relatively intuitive operation,

which consists in giving up in priority the most im-

plausible consequences of K. All four possibilities

are evaluated in what follows.

5 Evaluation

The dataset used for this evaluation is a fragment

of the fisheries ontology from the NEON project.7

It has been automatically built out of 10 randomly

selected named individuals, applying a module ex-

traction procedure, followed by a trimming algo-

rithm. The fragment contains 1038 (logical) state-

ments, and involves 71 named individuals (mostly

geographical or administrative entities), the least ex-

pressive underlying DL being SI.

The linguistic input is a small corpus of approxi-

mately 6300 web pages, retrieved with a search en-

gine, using the labels of named individuals of F as

queries. The HTML documents were cleaned with

the BootCat library (Baroni and Bernardini, 2004).

The construction of the distributional representa-

tions of the named individuals of F was basic, the

use of more elaborate methods (SVD,. . . ) being left

for future work. The approach presented in this ar-

ticle remains generic enough to be applied to most

existing distributional frameworks, the only require-

ment being a real-valued similarity measure.

Two different forms of linguistic contexts were

alternatively tested. The first option considers as a

context any n-gram (2 ≤ n ≤ 5) without punc-

tuation mark which immediately precedes or fol-

lows a term t denoting an individual of F . The

other option is a more customized one, extracting se-

quences of lemmatized words (lemmaPOS in what

follows) surrounding t, in a shifting window of 3

to 5 tokens + the size of t, ignoring certain cat-

egories of word. Part-of-speech tagging was per-

formed thanks to the Stanford Parser (Toutanova

et al., 2003), with a pre-trained model for English.

If Cont designates the set of contexts observed with

at least 2 individuals, then an individual was rep-

7http://www.neon-project.org/nw/Ontologies

resented by the vector of its respective frequencies

with each context c ∈ Cont. Different possibilities

were compared to weight these frequencies. The

pointwise mutual information (PMI) was used in a

standard way for n-grams and lemmaPOS contexts

(with possible negative resulting frequencies set to

0). Following (Giuliano and Gliozzo, 2008), the

self-information self(c) was also used for n-grams,

defined by self(c) = − log p(c), the probability

p(c) being estimated thanks to the Microsoft Web

N-gram Services. A combined weighting by PMI

and self-information was also tested for n-grams.

These alternative settings are represented by capi-

tal letters in tables 1 and 2 : LP for lemmaPOS with

PMI, and NP, NS and NPS for n-grams with PMI,

self-information and both respectively.

The ontology F has been extended for the sake

of the evaluation, with statements randomly gener-

ated out of its signature. The underlying assumption

is that adding such statements to F is very likely

to generate violations of common sense (although

nothing prevents in theory the generation of plausi-

ble statements too). The goal for the evaluation was

then to automatically retrieve proper consequences

of each extension of F on the one hand, and the ran-

dom statements themselves on the other hand.

To prevent any misunderstanding, it should be

emphasized that this is not a realistic application

case. The input ontology was selected for its quality,

and degraded through random statement generation,

allowing an arguably artificial, but also very objec-

tive evaluation procedure (the only bias may come

from randomly generated statements which are ac-

tually plausible). By contrast, using a non modified

input dataset, and evaluating whether or not the ax-

ioms/consequences spotted by the algorithm are ac-

tually erroneous is a complex and subjective task,

with a possibly low inter-annotator agreement.

The generation procedure randomly selects a

statement φ ∈ F , and yields a statement φ′ with the

same syntactic structure as φ, but in which individ-

uals and predicates have been replaced by random

individuals and predicates appearing in F . For in-

stance, if φ = ∀xy(A(x) ∧ r(x, y) → ¬B(y)), then

φ′ = ∀xy(C(x) ∧ s(x, y) → ¬D(y)), with C and

D (resp. s) randomly chosen among classes (resp.

binary predicates) of the signature of F .

100 randomly generated statements φ1, . . . , φ100



rank p-val

LP 4.15 / 216.1 <0.001

NP 9.73 / 216.1 <0.001

NS 7.33 / 216.1 <0.001

NPS 5.59 / 216.1 <0.001

Table 1: Average ranking among ΨKi
of the lowest-

ranked formula of Ψrand
Ki

, and p-value for the rankings of

all formulas of all Ψrand
Ki

were added independently to F , yielding 100 in-

put ontologies K1, . . . ,K100, such that each Ki was

consistent, and that there was at least one conse-

quence of the form A(e) or ¬A(e) entailed by Ki

but not by F , with e sharing at least one linguistic

context with some other individual of F . All 100

input ontologies are available online.8

The first part of the evaluation was performed

as follows. For each Ki and each ψ ∈ ΨKi
, the

plausibility scKi
(ψ) was computed as in definitions

4.1/4.2, and ΨKi
was ordered by increasing plausi-

bility.9 Within ΨKi
are consequences which were

not initially entailed by F , but have been obtained

after the extension of F with the random statement

φi. So in a sense, these consequences are ran-

domly generated too, and therefore one may expect

many of them to convey absurd information (for in-

stance Architect(Belgium)), or at least to be out-

liers (like Person(CEO) in ex 1) within ΨKi
. Let

Ψrand
Ki

designate these additional consequences, i.e.

Ψrand
Ki

= ΨKi
\ ΨF . If ψ ∈ Ψrand

Ki
, and if scKi

(ψ) is

actually lower than for most other formulas of ΨKi
,

this would indicate that the plausibility score, as for-

mulated in definitions 4.1/4.2, is actually a good es-

timator.

In order to evaluate this, column “rank” in table

1 gives the average ranking (for all 100 ontologies)

within ΨKi
of the formula ψi ∈ Ψrand

Ki
with low-

est score. The lower this ranking, the more efficient

the plausibility score is at detecting outlier conse-

quences. Column “pVal” gives the probability (t-

test) for the cumulated rankings of all formulas in all

Ψrand
Ki

to be as low as the observed ones, if all conse-

quences in all ΨKi
had been randomly ordered.

8http://www.irit.fr/~Julien.Corman/index en.php
9 The ranking was a strict ordering : if two consequences

had the same score, one of them was randomly designated as

strictly lower ranked.

Results are convincing, with a significant p-value

for all four settings. For most ontologies (75/100),

there was only one formula in Ψrand
Ki

. A closer look

at the data revealed that, for the best setting (LP),

in most of theses cases (57/75), the only formula in

Ψrand
Ki

was also the one with lowest plausibility in

ΨKi
, over 216.1 on average, i.e. the only randomly

generated consequence was also the least plausible

one according to linguistic evidence. This is very

encouraging, especially considering the relatively

small number of named individuals (71) in F , i.e.

the fact that the support to evaluate the plausibility of

a consequence ψ ∈ ΨKi
was limited. On the other

hand, performances were generally poor when the

cardinality of Ψrand
Ki

was important (> 0.25 ∗ |ΨKi
|),

which may be explained by the fact that support sets

for some classes of F were significantly modified

after the extension of F with φi.

As for the settings, unsurprisingly, the two most

beneficial (but unfortunately incompatible) factors

were the use of lemmatized contexts on the one hand

(LP), and the queries over the Web N-gram corpus

on the other hand (NS and NPS)

The second part of the evaluation focused on the

retrieval of the random statements φ1, .., φ100, for

the LP setting only, because it gave the best re-

sults in the previous experiment. For each extended

base Ki, all immediate subbases Γi,1, ..,Γi,|F |+1 of

Ki were generated, i.e. each Γi,j was such that

Ki = Γi,j ∪ {φj} for some statement φj of Ki.

The different Γi,j were ordered by decreasing com-

pliance score comp(Γi,j) (resp. compKi
(Γi,j)),

or by decreasing lexicographic ordering �lex (resp.

�lexKi
).10 Intuitively, this yields a ranking on Ki

where the least reliable statements wrt linguistic ev-

idence should appear first : if φj ∈ Ki, and if the

subbase of Ki obtained by discarding φj (i.e. Γi,j)
has a higher linguistic compliance score than Ki,

then discarding Γi,j can be viewed as an improve-

ment over Ki. And if Γi,j is among the best ranked

subbases of Ki, then φj is among the least reliable

statements of Ki wrt distributional evidence. For in-

stance, in example 1, one may expect the subbase

K \ (1) to have a maximal linguistic compliance

score among immediate subbases of K (or to be

10Again, the ranking was randomly turned into a strict order-

ing (see footnote 9).



rank p-val

comp(Γ) 7.86 / 80.03 < 0.001

compKi
(Γ) 8.05 / 80.03 < 0.001

�lex 6.51 / 80.03 < 0.001

�lexKi
2.47 / 80.03 < 0.001

Table 2: Average ranking of the randomly generated

statement φi for each Ki, and p-value for the rankings

of all φi

maximal wrt the lexicographic ordering), such that

(1) is the best candidate for removal. So back to the

test data, if Ki = F ∪ {φi}, i.e. if φi is, among the

|F+1| statements ofKi, the one which has been ran-

domly generated, and if Γi,i = Ki \ φi is among the

best ranked immediate subbases of Ki, this would

indicate that the linguistic compliance score in def-

initions 4.3 (resp. 4.4), or the corresponding lexi-

cographic ordering �lex (resp. �lexKi
) is actually a

good estimator of faulty statements.

An additional precaution was taken in order to

avoid artificially good results. For most statements

φj ∈ Ki, discarding φj did not have any impact

on the set ΨΓi,j
of consequences to be evaluated,

i.e. ΨΓi,j
= ΨKi

, and therefore comp(Γi,j) =
comp(Ki). Let ∆i ⊆ Ki be the set of statements

whose removal did have an impact instead (on av-

erage, there were 79.3 statements in ∆i). Then the

compliance of a subbase Γi,j of Ki was evaluated

only if φj ∈ ∆i, i.e. only if the removal of φj made a

difference. Ki was also added to this set of evaluated

subbases, yielding a ranking of 79.03 + 1 = 80.03
bases on average.

Results are again positive. Column “rank” in table

2 gives the average ranking of Γi,i, i.e. the base ob-

tained after the removal of the randomly generated

statement φi. Both lexicographic orderings outper-

formed the compliance scores (i.e. the mean of plau-

sibility scores), and the best configuration was the

fourth presented in section 4.2, using scKi
(ψ) as a

plausibility score instead of scΓi,j
(ψ).

6 Applications

This section describes a few concrete use cases of

the propositions made in section 4. A first basic

but useful application is the identification of unde-

sired consequences of a consistent input ontology

K. As illustrated by example 1, violations of com-

mon sense often go unnoticed in publicly available

OWL datasets, even though effective procedures can

detect inconsistency11 in most DLs. This is corre-

lated with the overall sparse usage of negation in

OWL, yielding ontologies which are consistent by

default rather than by design. The identification of

such cases can be very simply performed, by return-

ing to the user the formulas of ΨK with lower plausi-

bility scores, like Person(CEO) in example 1. Ax-

iom pinpointing algorithms (Schlobach and Cornet,

2003; Kalyanpur et al., 2007; Horridge, 2011) may

then be used to compute all justifications for each

returned consequence ψ, i.e. all (set-inclusion) min-

imal subsets of K which have ψ as a consequence.

In a more automated fashion, the greedy trimming

approach described in (Corman et al., 2015) returns

n statements of K which are candidate for removal,

n being given as a parameter, by incrementally se-

lecting the immediate subbase of Γ with maximal

linguistic compliance score, starting with Γ = K.

But inconsistent12 ontology debugging may also

benefit from distributional evidence. As discussed

in section 2, state-of-the-art approaches to ontology

debugging suffer from the number of candidate out-

puts, i.e. of (set-inclusion) maximal consistent sub-

sets of K, as well as from the cost of their compu-

tation. If the set J of justifications for the inconsis-

tency of K is known though, and if some (discrim-

inant enough) preference relation �a over
⋃

J can

be obtained, then prioritized base revision, as it is

defined in (Nebel, 1992), provides a principled and

computationally attractive solution to these prob-

lems. Even if the whole process cannot be depicted

here, �a may actually be obtained through distri-

butional evidence, by evaluating, for each statement

φ ∈
⋃

J , the plausibility of some consequences of

candidate subbases in which φ does or does not ap-

pear. The support set in this case is reduced to con-

sequences of the “safe” part of K, i.e. K \
⋃

J .

7 Extensions

A first straightforward extension of this framework

consists in taking more complex classes into ac-

11or incoherence (see footnote1)
12or incoherent (see footnote 1), or for which a set of unde-

sired consequences has already been identified



count. OWL (and most Description Logics) fa-

vor the recursive construction of arbitrarily com-

plex classes out of the signature of Γ, and this

mechanism could naturally be used to extend ΨΓ

with more consequences of the form C(e), where

C is one of these complex classes. For instance,

in example 1, if C1 and C2 are respectively de-

fined by ∀x(C1(x) ⇔ ∃y(occupation(y, x))
and ∀x(C2(x) ⇔ ∃y(occupation(x, y)), then

ΨK can be extended “for free” with C1(CEO) and

C2(Peter Munk). Unfortunately, if Ψ+
Γ is the set of

all consequences of Γ which can be built this way,

there is in general no finite subset ΨΓ of Ψ+
Γ such

that ΨΓ |= ψ for all ψ ∈ Ψ+
Γ . Therefore the com-

plex classes to be used must be selected, which is

not trivial. Intuitively, some complex classes are

more relevant than other (e.g. the class of “phys-

ical objects owned by someone” may be linguisti-

cally relevant, but probably not “Moldavian or Mus-

lim lawyers whose father lives in an apartment”).

Another simple variation of the framework pre-

sented here consists in setting ΨΓ to be all con-

sequences of Γ of the form e1 6= e2, i.e. the

fact that that e1 and e2 are not the same individ-

ual according to Γ. The unique name assumption

is not made in OWL, which means that two dis-

tinct named individuals can be interpreted identi-

cally, and therefore these consequences do not hold

by default. They may be explicitly stated in Γ
(owl:differentIndividuals(e1, e2)), but are in most

cases entailed by Γ, provided it contains some form

of negation (e.g. instances of two disjoint classes

cannot be the same individual). If Γ1 and Γ2 are

two subbases of K such that Γ1 |= e1 6= e2, but

Γ2 6|= e1 6= e2, and if the similarity between e1 and

e2 is lower than expected, then ceteris paribus, Γ1

will be preferred to Γ2.

Conclusion

This article is centered on the use of distributional

representations of (labels of) named individuals of

an input ontology K, in order to identify and repair

violations of commonsense within K. For a set of

statements Γ ⊆ K, and ΨΓ a specific set of con-

sequences of Γ, a score scΓ(ψ) is attributed to each

ψ ∈ ΨΓ, which evaluates the plausibility of ψ wrt Γ
according to distributional evidence. Several meth-

ods based on this plausibility score are then pro-

posed in order to compare two subbases Γ1 and Γ2 of

K, leading to the identification of potentially erro-

neous statements. An evaluation is provided, which

consists in extending a test ontology with randomly

generated statements before trying to spot them au-

tomatically, with significant results. A more thor-

ough evaluation is still required though, testing in

particular the impact of a higher number of named

individuals and/or classes. Scalability of the ap-

proach may also be limited by its heavy reliance on a

reasoner. Finally, potential improvements may come

from using more elaborated distributional represen-

tations, like the one described in (Mikolov et al.,

2013).
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