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Abstract—Virtualized IaaS generally rely on a server con-
solidation system to pack virtual machines (VMs) on as few
servers as possible, for energy saving. However, two situations
are not taken into account, and could enhance consolidation.
First, since the managed VMs can be of various sizes (small,
medium, large, etc.), VMs packing can be obstructed when sizes
don’t fit available spaces on servers. Therefore, we would need
to ”split” such VMs. Second, two VMs which host replicas of the
same application server (for scalability) could be ”fusionned”
when they are located on the same physical server, in order
to reduce virtualization overhead and VMs memory footprint.
Split and fusion operations lead to the management of elastic
VMs and requires cooperation between the application level and
the provider level, as they impact management at both levels.
In this paper, we propose a IaaS resource management system
which implements elastic VMs based on split/fusion operations
and cooperative management. We show its benefit with a set of
experiments.

I. INTRODUCTION

Nowadays, many organizations tend to outsource the man-

agement of their physical infrastructure to hosting centers

called cloud. A majority of cloud platforms implement the

Infrastructure as a Service (IaaS) model where customers buy

(to providers) virtual machines (VM) with a set of reserved

resources. This set of resource corresponds to a Service Level

Agreement (SLA) that providers are expected to guarantee.

Both providers and customers aim at saving resources. They

generally implement a resource manager which is responsible

for dynamically reducing the amount of used resource. At the

level of the customer, such a resource manager allocates and

deallocates VMs according to applications’ needs at runtime

to deal with different load situations and to minimize resource

cost [1]. At the provider level, the resource manager relies on

VM migration to gather VMs on a reduced set of machines

(according to VMs’ loads) in order to switch unused machines

off, thus implementing a consolidation [8], [13] strategy.

However, two situations are generally not taken into ac-

count, and could enhance consolidation. First, since the man-

aged VMs can be of various sizes (small, medium, large,

etc.), VMs packing can be obstructed when sizes don’t fit

available spaces on servers. Therefore, we would need to

”split” such VMs. Second, two VMs which host replicas of the

same application server (for scalability) could be ”fusionned”

when they are located on the same physical server, in order

to reduce virtualization overhead (which impacts applications

performance) and VMs memory footprint. Split and fusion

operations lead to the management of what we call elastic

VMs, i.e., VMs which size can be modified dynamically.

Such an approach requires cooperation between the applica-

tion (customer) level and the provider level, as they impact

management at both levels (a VM split or fusion initiated by

the provider modifies the architecture of the application and

should therefore be taken into account at the application level).

In this paper, we propose such an elastic VM cooperative

scheme between the provider and the customer levels. In this

novel scheme, we consider master-slave applications where

a load is distributed by a master between a set of slaves.

The provider is aware of the set of VMs which host slave

applications. Thanks to this knowledge, the provider can

propose to the customer to split a slave VM when it could

improve consolidation (better fit available spaces) and it can

propose to the customer to fusion slave VMs when they are

gathered on the same physical machine. This paper makes the

following contributions:

1) a new resource allocation model in the cloud.

2) a novel resource management vision which involves the

contribution of cloud customers.

3) a prototype which considers (1) and (2).

4) an empirical demonstration of the benefit of (1) and

(2) in terms of energy consumption and virtualization

impacts on customers applications.

The rest of the article is organized as follows. Section II de-

scribes the context of our work. Section III motivates our work.

Sections IV-VI present our cooperative resource management

model between the two layers. We evaluate and compare the

effectiveness of this model in Section VII. After highlighting

various related works in Section VIII, we conclude and present

future works in Section IX.

II. CONTEXT

Resource management is one of the most important tasks

in cloud computing. Inefficient resource management has a

direct negative impact on performance and cost. Ensuring

performance and effective use of resources is a challenge for

both the provider and the customer. Resource management

in a IaaS is mostly based on the allocation, relocation and

deallocation of VMs. The provider is responsible for managing

resources effectively to reach his goal: minimizing operational

cost. To do this, the provider manages his physical servers and

allocated VMs at run time, by (1) relocating VMs (using VM

live migration), in order to span as few servers as possible,

then (2) switching off or suspending the unused servers to save
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Fig. 1. Overhead caused by Collocation of VMs serving the same Tier.

energy. On the customer side, allocated resources can also be

managed: the more unused VMs, the more wasting for the

customer. The objective for the customer is also to minimize

operational cost. To achieve this goal, the customer tends to

minimize the number and size of his allocated VMs, thanks

to an on-demand resource allocation policy [5]: it actively

monitors the application load, detects underload and over-

load situations and reconfigures the application accordingly.

In this paper we consider master-slave applications for the

customer. Master-slave refers to a fundamental and commonly

implemented pattern in distributed applications. It consists of

a master component and multiple slave components, where

the master distributes its workload (requests) between the

associated set of slaves. The slaves execute the received

requests and return the results to the master. A typical web

applications in Java Platform Enterprise Edition (JEE) is a

popular example of a master-slave architecture. Each of its tier

(web, application and database) is replicated. Such a replicated

architecture is a means for implementing scalability by cloud

users in order to dynamically add or remove tier instances

according to the load.

III. MOTIVATION

Splitting and merging VMs help optimizing resource usage

for the provider and performance for the customer. The main

purpose of splitting VM is to improve resource utilization

ratio in the provider’s infrastructure: a VM can be split

to fit available resource slots in physical machines. On the

other hand, merging VMs allows the customer to have lower

performance overhead for his application. This overhead is

caused [17] by collocating several VMs on top of the same

physical machine (PM). We design and evaluate a benchmark

in order to confirm this performance overhead when the col-

location concerns VMs belonging to the same application tier.

We generate requests to a typical multi-tier web application

with Apache/MySQL/PHP software. This application can be

instantiated several times, each instance being encapsulated

in a VM. We start the benchmark with one instance in one

VM occupying one PM. We repeat the benchmark with an

increased number of instances, collocated on the same PM. In

each benchmark run, we configure the size of allocated VMs

so that the total amount of resource is fixed (total 6 vCPUs and

2048MB memory). We gradually increase the request rate and
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Fig. 2. The Needs of VM Merging (top) and Splitting (bottom)

measure the application’s response time. Application response

time for each benchmark (with 1, 2, or 3 application instances)

is summarized on Figure 1. From this figure, we can see that

when the generated request rate is higher, a higher number of

VMs for providing the same amount of resources has a higher

response time. These differences are due to the multiple VMs

that can be merged when collocated.

In addition, merging VMs allows the provider to reduce re-

source waste due to VMs footprint. Therefore, a consolidation

process can result in non-optimal resource management. In this

situation, merging VMs can be of great interest. Figure 2 top

shows an example where a VM of application 2 is migrated

from PM2 to PM1 (where another VM of application 2 runs),

so that the provider can shutdown or suspend PM2.

The consolidation process can also result in a situation

where there would be enough available free memory to further

consolidate, but this free memory is fragmented over several

machines, as illustrated on Figure 2 bottom. PM3a denotes a

case where the customer uses a big VM. The provider does

not have the ability to migrate it to PM1 or PM2, because the

free memory on PM1 or PM2 is not enough to host this big

VM. In this situation, although the total free memory (11GB)

is enough for VM4 (10GB), the provider still needs to keep all

3 PMs running. In contrast, if the provided VM can be split

into two VMs (PM3b), the provider has the ability to migrate

these VMs to PM1 and PM2 and therefore to switch PM3 off.

This section described and showed the need for the ability

to split or merge VMs. These operations must be performed

in accordance with cloud users since they imply the recon-

figuration of their applications. The next sections present our

cooperative resource management policy.

IV. GENERAL PRINCIPLE OF A COOPERATIVE RESOURCE

MANAGEMENT

Split and merge operations lead to the management of elas-

tic VMs, as VMs are sized according to available free space

in the IaaS. We show in the following that the implementation

of such a scheme requires a close cooperation between the

customer and the provider levels.

Currently, requests in most traditional IaaS systems are

in one direction only. The customer has his own application



manager (AppManager), while the provider has his infrastruc-

ture manager (IaaSManager), providing and managing fixed-

size VMs. The AppManager can invoke services from the

IaaSManager with various types of API calls, provided by the

provider. The most popular calls include: allocate, deallocate,

start, restart or stop VMs. In current IaaS systems, the provider

usually does not send any notifications (nor share information)

about the infrastructure changes to the customer, e.g. VMs of

the customer have been migrated. Hosts are transparent for the

customer.

Unlike traditional counterparts, we propose a cooperative

IaaS with the insistence on sharing knowledge about applica-

tions and VMs between the two actors, in order to improve

mutual benefit and raise possibilities to improve resource

management. Particularly, the customer provides information

about his application (workload characteristics, tiers, etc) to

the provider. In case of a multi-tier application, the shared

knowledge includes tier information (which VMs are in each

tier, this kind of information is typically not shared in a con-

ventional IaaS). In our cooperative IaaS, once the information

about application tiers is shared, the provider can propose to

split or to merge VMs at runtime, based on the current VM

placement.

In our cooperative IaaS, the resource management policy

shifts the decision to add or remove VMs from the

customer to the provider. It means that instead of requesting

the provider to allocate or deallocate individual VMs as being

done currently in traditional IaaS, the customer only needs to

request the total computing power (amount of CPU capacity,

amount of memory, etc.) that he really needs. According

to these required parameters, the IaaSManager automatically

decides how many VMs will be allocated and how big

each VM will be. When the customer changes his requested

resources, the IaaSManager either scales the application tier

horizontally (adding/removing more VMs), vertically (increas-

ing/decreasing size of the existing VMs), or both. When a

consolidation decision is made, the IaaSManager can split and

merge VMs in order to optimize consolidation, also relying

on horizontal and vertical scaling to implement such split and

merge operations.

We implemented a prototype of our two-level cooperative

resource management system using our autonomic manage-

ment system TUNe, developed in our research team [2]. To

remain within page length, we do not present this implemen-

tation in this paper.

V. COOPERATION PROTOCOL

The cooperation protocol we propose is defined as a se-

quence of cooperative calls at runtime to achieve a particular

goal. A cooperation call is similar to cloud API calls in

conventional IaaS (allowing the customer to issue requests to

the provider), but is extended to be used in both directions

(from the provider to the customer and vice versa). We

identified the following main operations in the design of the

protocol:

• Subscription of an application tier by the AppManager;

• Modification of the amount of resource (also called quota)

for an application tier, triggered by the AppManager;

• Splitting or merging VMs associated with an application

tier, triggered by the IaaSManager.

This section describes the actions performed by each actor in

each operation. We divide the cooperation calls into two main

types: Upcall and Downcall, according to the direction of the

call. A downcall is made from the customer to the provider.

An upcall is in the opposite direction, from the provider to

the customer. An example of cooperation call with the above

operations is illustrated in Figure 3.
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Fig. 3. Actions for subscription and resource addition

A. Tier subscription

The first operation of the cooperation resource management

policy is to share the knowledge of the application tiers. The

customer initiates the cooperation with a tier subscription. By

subscribing all tiers and providing tier name in subsequent

calls, the AppManager provides the notion of application

instance group to the IaaSManager. Based on the provided

group notion, the latter can perform tasks at runtime for tier

and VM placement optimization.

B. Changing tier resource

At runtime, based on the actual application needs, the App-

Manager on the customer side can request to modify resources

allocated to a specific application tier, either adding resources,

or removing resources. Like previously described, our cooper-

ative resource management policy uses elastic VMs at runtime.

As a result, there are several possible solutions to respond to a

single quota modification request. Based on the actual physical

server usage and VM placement, the IaaSManager can: (1)

scale the tier horizontally (add/remove VMs); (2) scale the

tier vertically (add/reduce resources associated with running

VMs); or (3) a combination of both. Regardless the chosen

solution, the IaaSManager always notifies the AppManager

so that it reconfigures the involved balancer (the master)

to take into account the new weights of its instances VMs

or the addition/removal of VMs. Algorithms for managing

application tiers according to a resource modification request

will be detailed in the next section.



C. Splitting or merging tier instances

At runtime, if the IaaSManager finds an opportunity to op-

timize its physical resource usage or application performance

with VM live migration, it can propose to split a big VM

of an application tier into two smaller ones (in order to fill

resource holes), or propose to merge small VMs into a bigger

one (in order to reduce virtualization and balancer overheads).

Note that, these elastic splits or fusions can be rejected by the

AppManager depending on the customer’s goal. For example,

application A may need two application instances of the same

tier to implement fault tolerance, thus merging these two

instances is not acceptable.

Implementation

Splitting a VM is not implemented by really ”cutting” a VM.

It is implemented with the following sequence:

• allocation of a new VM

• vertical down scaling of the original VM

In contrast, an elastic merge of two VMs is implemented with

the following sequence:

• A deallocation of the first VM

• A vertical up scaling of the second VM

In summary, split and fusion operations are implemented

using two well known operations: replication and vertical

scaling. The latter are suitable for master-slave applications

and are widely adopted by cloud users. This makes our

contribution suitable to applications which follow the master-

slave pattern, on which many applications are based (e.g. web

application tiers). Notice that, in such patterns, applications

are not necessarily stateless. The only capability which is

mandatory for stateful applications is a way to reconciliate

statefull replicas. For instance, applications such as Tomcat

(with shared sessions), Joram JMS or MySQL servers are

stateful and replicate-able. This capability is not proper to our

contribution since it is already required by all auto scaling

services (Amazon Web Services).

VI. RESOURCE QUOTA MODIFICATION ALGORITHMS

The task of managing the group of VMs which hosts a

whole application tier is shifted from the customer to the

provider. While describing our cooperative IaaS approach

in previous sections, we mentioned that the AppManager

monitors the tier loads and sends requests to change the quota

(the size) of the whole tier. On the other side, the IaaSManager

is responsible for the organization of the VMs in the group

to fit the required computing power, including the placement

and size of each VM. When receiving a downcall from

the AppManager to change a quota, according to the actual

VM allocations status on servers, the IaaSManager can have

multiple choices to serve this request. This section introduces

the algorithm being used in the IaaSManager in order to

handle such requests. We don’t claim that our algorithm is

optimal since resource management is a NP-hard problem.

For the sake of brevity, we use a single resource dimension

to the description our algorithm (it can be applied to all

dimensions: CPU, memory, disk and network). We use the

following definitions:

• m: number of machines in the server pool

• ψ = {Mj , 0 ≤ j < m}: the set of running servers

• ϕj : remaining resources on Mj

• n: number of allocated VMs for a tier

• χ = {Vk, 0 ≤ k < n}: set of running VMs for the

current tier

• αk: amount of allocated resources for Vk.

For a quota modification request in a given tier, ∆q is the

amount of resources being modified. ∆q can be negative

(reduction) or positive (increase). We identify four possible

solutions to deal with a quota increase request (∆q > 0).

We prioritize vertical scaling of one or several VMs to avoid

adding VMs because VM allocations are costly both in terms

of time and performance

(1) Vertical scaling of an existing VM: the IaaSManager

can add a specific amount of resource ∆q to an existing VM

Vk: αk = αk + ∆q , such that its hosting server Mj includes

enough free resources for this vertical scaling:

∃k | 0 ≤ k < n, 0 < ∆q ≤ ϕj , Vk ∈Mj (1)

The IaaSManager can parse the group of VMs of the tier to

find a possible VM for this action. If not found, it tries the

next action (see below).

(2) Distribute the required quota change among existing

VMs. The IaaSManager tries to split the required quota

change (∆q) into p ≤ n smaller sub-quota changes δi:

∆q =

p−1∑

i=0

δi (2)

such that these sub-quota changes can be applied to a set S
consisting of p VMs of the involved tier:

S = {Vs0 , Vs2 ..., Vsp−1
}, S ⊂ χ, 0 ≤ si < n, ∀i ∈ [0, p− 1]

(3)

If it is possible to find such VM set in the tier, the IaaSMan-

ager then scales them vertically:

αsi = αsi + δi, ∀i ∈ [0, p− 1] (4)

thus avoiding the need of a VM allocation. However, similarly

to the previous solution, the free-resource constraints must be

satisfied:

δi ≤ ϕj , Vsi ∈Mj , ∀i ∈ [0, p− 1] (5)

(3) Allocation of a new VM: if the two previous solutions

cannot be applied because of the free-resource constraints (1,

5), the IaaSManager creates a VM Vn with αn = ∆q and

asks the AppManager to deploy an application instance on it.

(4) Combination of the previous solutions is the last

solution in case each single one cannot work.

In contrast, a quota reduction request (∆q < 0) is easier to

handle:

(1) Deallocations of running VMs: this action has the

highest priority because it is less expensive than a down



scaling. The IaaSManager first tries to find a VM Vk with

αk ≤ ∆q , and if found, proposes a VM removal to the

AppManager. It repeats this action until there isn’t any VM

which is small enough to be removed.

(2) Vertical scaling of an existing VM: The IaaSManager

then reduces resources from one VM allocated to the tier. It

can be selected to leave the biggest space on the hosting server.

VII. EVALUATIONS

This section demonstrates the effectiveness of our approach:

1) Validation of the ability to split and merge elastic VMs;

2) Evaluation of performance overhead reductions;

3) Evaluation of resource usage improvement.

These experiments were performed using real machines in a

private cluster.

A. Experimental Setup

Hardware. The private IaaS is composed of two clus-

ters. The first cluster (SlowCluster, virtualized) consists of

5 identical nodes Dell Optiplex 755, each node equipped

with an Intel Core 2 Duo 2.66GHz and 4GB RAM. They

are used as the resource pool. They are all installed with

Debian Squeeze on top of Xen 4.1.5 and connected with

1Gbps switch. We configure each dom0 (the host operating

system) in SlowCluster to have 1/3 of a PM. The second cluster

(FastCluster, unvirtualized) consists of two HP Compaq Elite

8300, each equipped with an Intel Core i7-3770 3.4GHz

and 8GB RAM. Management systems (IaaSManager, NFS

server and additional networking services (DNS, DHCP)) are

installed on this cluster.

Software. Our target application is a multi-tier application

named RUBiS [3], an implementation of eBay-like auction

system.

Metrics. We define several metrics for our evaluations to

measure the effectiveness of cooperative resource manage-

ment:

(1) Response time is the average response time of the

RUBiS application. The customer bases on it to scale his

application.

(2) Physical machine utilization (ψ) is the accumulated

number of powered-on physical servers for every second.

(3) VM occupation: Given a cap (the capacity of CPU

resource) value 0 < ck,i ≤ 2 (our SlowCluster has 2 cores

on each machine) during a time period tk,i (with 0 ≤ k < n)

allocated to a VM Vk, we define the VM occupation ωk in our

experiments as follows:

ωk =

tmax∑

i=1

ck,i × tk,i (6)

From this, we define the occupation Ωj of an application Appj
as:

Ωj =

m∑

k=1

ωk (7)

Workload Profile. We generate a synthetic workload in

which three different customers share the same IaaS. The
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Fig. 4. Generated workload

workload for each application is generated by a RUBiS bench-

mark tool. As a result, we have three different workloads for

three RUBiS applications like illustrated in Figure 4.

Scenarios. We define a total of four configurations for our

experiments.

Static configuration (Static). In this situation, one big VM of

each RUBiS application occupies a whole physical server. For

each VM, the amount of allocated resource is sufficient to deal

with our experiment’s workload profile. This configuration is

expected to have the lowest response time for the customer’s

application and can be considered as an ”ideal” for maximizing

application’s performance. However, this configuration clearly

wastes resources as VMs are statically oversized.

Server Consolidation Only (SCO) is a less static configura-

tion, in which the customer does not have on-demand resource

manager (i.e. without the AppManager), but the provider im-

plements his IaaSManager with server consolidation. In other

words, a fixed number of instances for each tier (two in our

experiments) is provisioned and allocated for the application

lifetime, even when it is idle. This configuration is expected to

have the highest application response time. It is also expected

to have best hardware utilization with VM migration based on

CPU load.

Both Level, Independent (BLI) is the two-level, non-

cooperative configuration. In this situation, the IaaSManager

and AppManager work without any coordination: the IaaS-

Manager migrates VMs to implement server consolidation,

while the AppManager minimizes the number of application

instances. In BLI, the allocated VMs’ size is 1/3 of a physical

machine (memory and CPU). This configuration is similar to

resource management in many conventional IaaS.

Both Level, Cooperative (BLC) corresponds to BLI with the

cooperation of the IaaS and the applications users.

B. Scalability and Elasticity

First, we confirm scalability and elasticity of VMs with our

cooperative IaaS, i.e. the ability to scale (both horizontally and

vertically), merge and split VMs in BLC.

The VM and quota allocations of all applications in BLC

are shown in Figure 5. Each RUBiS AppManager uses down

calls to request quota increases during the ramp up phase

of its workload (950th, 1050th, 1450th, 1550th, ... second).

Depending on the VM placement and available resources on

each PM at the time of those down calls, the IaaSManager

either vertically scales an existing tier VM (1050th, 1550th



Fig. 5. BLC: VM placement and quota distribution
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Fig. 6. Response time of App3

and 1750th second) or horizontally scales (allocates a new

VM) the associated tier (950th, 1450th and 1650th second).

Similarly, the possibilities to decrease size for a tier’s VM

or to remove a VM are handled in the ramp down phase of

the workload. The customer’s AppManager asks for a quota

decrease with its down calls. The IaaSManager then decides

to reduce the size (vertically scale) of a tier’s VM (2600th,

2900th and 3150th second) or to remove it (at 2650th and

2950th second).

Notice that at runtime, with the tier knowledge provided by

the AppManagers, the IaaSManager proposes to merge small

VMs into bigger ones, in attempts to reduce overhead. For

example, a cooperative merge happens at the 2650th second:

the IaaSManager merges two VMs for application 2 (in PM1

and PM3) into one big VM (in PM3). Additionally, after a

quota reduction for a VM of application 2 at 2950th second,

the IaaS migrates the VM of application 1 from PM2 to PM3.

It then turns PM2 off, and the provider benefits from energy

saving.

C. Performance Overhead

Performance overhead for each configuration is evaluated

as the difference between the response time of the considered

configuration and the Static configuration (the ”ideal”). We

claimed that (1) performance overhead is generated by the

virtualization layer; and (2) overhead can be lowered by

reducing the number of VMs of the same application tier

(MySQL in our experiments) when they are collocated on the

same physical server.

To evaluate the performance benefit, we compare our coop-

erative IaaS with Static, SCO (upper bound of response time)

and BLI (being used in conventional IaaS). Figure 6 compares

the average response of the mentioned configurations (for the

third RUBiS application instance App3). This figure confirms

the response time’s lower and upper bound with Static and

SCO configurations, respectively. The response time of SCO

during the plateau period is approximately 15%-20% higher

than with Static, because of the overheads.

When compared with a static tier configuration (SCO),

BLC has a more stable response time thanks to elastic VMs:

additional required resources can be added on-demand and

instantly (1750th second in Figure 5). Additionally, BLC does

not suffer from VM migration’s overhead when dealing with

peak loads, unlike SCO which has a VM migration at 1750th

second to deal with the increasing load, and has therefore

an increased response time – SCO curve, 1750th second in

Figure 6.

Compared with a non-cooperative resource management

system in a conventional IaaS (BLI), BLC has a similar

response time in the ramp up and plateau phases. However, the

benefit of cooperation appears in the ramp down phase: two

small VMs of App3 are merged (2650th second in Figure 5).

After this merge, the whole PM1 is occupied by only one

big VM for App3. This situation is similar to Static: only one

VM for each RUBiS application instance, each physical server

hosting only one VM, from 2650th to 2950th second. As a

result, response time of App3, after 2650th second, stays very

close to Static (”ideal” performance). BLI does not have this

merge, and therefore, has higher response time, up to 10-15%.

This phase clearly shows the cooperative IaaS benefit in terms

of performance optimization for the customer’s application.

D. VM Occupation

The customer saves cost if the resource management policy

provides low Ω in the experiment. Figure 7 top summarizes the

calculated Ω for the defined configurations. As can be seen,

both Static and SCO have the highest VM occupations: the

customer’s VMs are preallocated and not scaled at runtime.

BLI and BLC have much better occupation rates, because

the allocated VMs are either well used (loaded) or they are

removed by the AppManager to improve utilization rate and

to reduce costs for the customer. In our experiment, BLC has

better utilization rate than BLI, with Ω = 2083 and Ω = 2136,

respectively. Although BLC’s total VM size at runtime is quite

similar to BLI in all phases, BLC’s improvement over BLI in

terms of virtualized resources savings is shown when a new

VM is allocated. BLI allocates VMs which size is 1/3 of a

physical machine. Reducing this size would be costly in terms

of allocation time and performance overhead (too many VMs).

BLC allocates VMs which size is 1/6 of a physical machine,

but the size of such VMs will be increased (by 1/6 of a PM)

as needed. Therefore, BLC implements an intermediate step

(granularity) between no-allocation and full allocation (1/3 of

a PM).
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E. Physical Server Utilization

The higher PM utilization time, the more energy the

provider will consume. The comparison of the defined config-

urations is shown in Figure 7 bottom. Static is the worst con-

figuration for physical server utilization: it occupies all servers

at runtime and there is no migration. In contrast, SCO’s benefit

is confirmed: it minimizes the number of physical machines

being used by the provider (7419s) by packing as many VMs

into as few physical servers as possible. However SCO does

not have dynamic application sizing, which would save costs

for the customer and allow handling peak loads. Our BLC

saved an average of 5% of utilization time for all PMs when

compared with BLI (7611s and 8059s, respectively). Although

we cannot reach the lower bound of server utilization like

SCO (7419s), this 2.5% server usage overhead in BLC allows

reducing application performance by 10%-20% (Figure 6).

F. Discussion

During this research work, we identified interesting ideas,

opened for discussion. When a customer’s VM is split into

two smaller ones, this action poses a disadvantage to the

customer: reduced amount of ”effective resource” allocated

for his application. This can be explained as the number of

customer’s operating system instance is doubled, from 1 to

2. Each operating system consumes VM resources, while the

total amount of resources for two small VMs is unchanged

(matches with the original big VM). As a result, resources for

the customer application (what is really available) is reduced:

the customer may not prefer to accept split proposals at

runtime. On the other hand, a VM fusion reduces the number

of operating system instances and increases the amount of

”effective resource” allocated to the customer application. As

a result, the provider wastes resources.

To increase the chance of split acceptance, we think that an

extra amount of resources should be offered to the customer

when a split is proposed. This extra encourages customers

to allow more splits and helps the provider to optimize his

infrastructure. However, considering this extra in a produc-

tion environment could conflict with current pay-as-you-go

billing model. Therefore, we would need a precise resource

accounting system, which is not in the scope of this paper

and is considered as a perspective of our research contribution.

Regarding resource waste caused by VM fusion, the provider

can reduce the size of the resulting VM by the amount

of resource corresponding to the execution of an operating

system.

Regarding our solution, one can ask the following question:

is there a lot of additional work for cloud users which could

limit the adoption of our cooperative model? The AppManager

is a generic framework which needs to be adapted in order

to implement how new software replicas are integrated in the

user’s application. This generic framework already implements

all the negotiation protocol so that the cloud user only focuses

on his application core business. The user already (without

our system) had to implement elasticity (replica management:

addition, removal) for his application. So additional work is

very limited.

VIII. RELATED WORK

a) Memory footprint improvements: Significant research

has been devoted to improving workload consolidation in data

centers. Some studies have investigated reducing VM memory

footprint to increase the VMs consolidation ratio as do. Among

these, memory compression and memory over commitment

([12], [14]) are very promising. In the same vein, [11] extends

the VM ballooning technique to software to increase the

density of software collocation on the same VM. Xen offers

what it called ”stub domain”1. This is a lightweight VM which

requires very few memory (about 32MB) for its execution.

b) Uncoordinated Policies: Many research works focus

on improving resource management on the customer side [18],

[6], [9]. These works aim at improving the workload prediction

and the allocation of VMs for replication. On the provider

sides, research works mainly focus on (1) size of resource

slices, i.e. provided VM’s size; or (2) virtual machine place-

ment, i.e. allocation and migration of virtual machines among

physical servers to improve infrastructure utilization ratio.

Various algorithms are proposed to solve the VM packing

problem [4], [15], taking into account various factors like real

resource usage, VM loads, etc.

c) Cooperative Policies: [10] describes a model to co-

ordinate different resource management policies from both

cloud actors’ point of views. The proposed approach allows

the customer to specify his resource management constraints,

including computing capacity, load thresholds for each host

and for each subnet before an allocation of a new VM, etc.

The authors also describe a set of affinity rules for constraining

VM’s collocation in the IaaS, which is a form of knowledge

sharing. The authors claimed that this model allows an efficient

1http://wiki.xen.org/wiki/StubDom



allocation of services on virtualized resources. This work is a

first step in the direction of coordinated policies.

[16] is closely-related to ours about knowledge sharing

in two level resource management. The authors proposed

an autonomic resource management system to deal with the

requirements of dynamic provisioning and placement of VMs,

taking both application level SLA and resource cost into

account, and to support various types of applications and

workloads. Globally, the authors clearly separate two levels

of resource management: Local Decision Modules and the

Global Decision Module (similar to our AppManager and

IaaSManager, respectively). These two decision modules work

cooperatively: the LDM makes requests to the GDM to allo-

cate and deallocate VMs, the GDM may request changes to the

LDMs about allocated virtual machines. [7] presents Quasar, a

cluster (not virtualized as we study in this paper) management

solution which adopts a solution which is philosophically

close to our solution. [7] claims that cluster users are not

able to correctly estimate the amount of resource needed

by their applications to run efficiently. It allows users to

express their needs in terms of QoS constraints, instead of low

level resource requirements, and the management system will

allocate the appropriate amount of resources that will ensure

that QoS, while increasing physical machines utilization rate.

Even if this work does not consider IaaS environments, like our

solution it ships knowledge to the system about applications

and their expected QoS, thus enabling a smarter resource

management.

IX. CONCLUSIONS AND PERSPECTIVES

This paper proposed a direction to use the combination of

cooperative resource management with elastic VMs. Informa-

tion about the customer’s application (e.g. tier instances) is

shared with the IaaS provider. Using the shared knowledge, the

provider can propose to split or to merge VMs of the customer.

The evaluations showed that our cooperative IaaS outperforms

traditional two-level non-cooperative resource management

with: (1) lower performance overhead (better response time

for the customer’s application), (2) better VM usage (reducing

costs for the customer with finer grain resource blocks), and

(3) better physical resource usage (reducing energy and costs

for the provider).

During this research work, we identified interesting ideas,

opened for discussion. When a customer’s VM is split into two

smaller ones, this action poses a disadvantage to the customer:

reduced amount of ”effective resource” allocated for his ap-

plication. This can be explained as the number of customer’s

operating system instance is doubled. We can convince users

to adopt this scheme by 2 means: (1) providing a fair/precise

accounting service in order to enforce that whenever a VM V

is split into 2 VMs V1 and V2, application performance(V)

= application performance(V1 + V2), (2) the provider can

propose an attractive/incentive pricing policy.
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