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Abstract

The goal of this paper is to present an algorithm that builds a hierarchy of image seg-
mentations from a class of dissimilarity criterions, the main example being the crite-
rion proposed by Felzenszwalb and Huttenlocher which provides an observation scale.
Specifically, we propose to select, for each observation scale, the largest not-too-coarse
segmentation available in the hierarchy of quasi-flat zones. The resulting hierarchy is
experimentally proved to be on par with the segmentation algorithm of Felzenszwalb
and Huttenlocher, with the added property that it is now much easier to choose (tune)
the scale of observation.

Keywords: Scale set theory, Quasi-flat zone hierarchy, Minimum spanning tree,
hierarchical image segmentation, graph-based method

1. Introduction and state-of-the-art

Image segmentation is the process of grouping perceptually similar pixels into re-
gions. A hierarchical image segmentation is a set of image segmentations at different
detail levels in which the segmentations at coarser detail levels can be produced from
simple merges of regions from segmentations at finer detail levels. Therefore, the seg-
mentations at finer levels are nested with respect to those at coarser levels. The level
of a segmentation in the hierarchy is also called a scale of observation. As noted by
Guigues et al. [14], a hierarchy satisfies two important principles of multi-scale image
analysis.

• First, the causality principle states that a contour presents at a scale k1 should be
present at any scale k2 < k1.

∗Corresponding author
Email addresses: sjamil@pucminas.br (Silvio Guimarães), yukiko.kenmochi@esiee.fr (Yukiko

Kenmochi), jean.cousty@esiee.fr (Jean Cousty), zenilton@pucminas.fr (Zenilton Patrocinio Jr.),
laurent.najman@esiee.fr (Laurent Najman)

Preprint submitted to July 7, 2016



• Second, the location principle states that contours should be stable, in the sense
that they do neither move nor deform from one scale to another.

Some popular image segmentation methods (such as [12, 25] rely on a so-called
“scale of observation” to group the pixels into meaningful regions. The main example
that will be studied in the sequel of this paper is the one proposed by Felzenszwalb
and Huttenlocher [12]. The method, while being very effective in its own right, does
not produce a hierarchy, and users face some major issues while tuning the method
parameters.

• First, the number of regions may increase when the scale parameter increases.
This should not be possible if this parameter was a true scale of observation: in-
deed, it violates the causality principle of multi-scale analysis. Such unexpected
behaviour is demonstrated in Fig. 1.

• Second, even when the number of regions decreases, contours are not stable:
they can move when the scale parameter varies, violating the location principle.
Such situations are also illustrated in Fig. 1.

In [11], we study hierarchical segmentation as a generalization of hierarchical clas-
sification, the main difference being the connectivity property of a segmentation. In
particular, we clarify the links and differences between several different ways of se-
lecting a partition from a hierarchy. Such a formal study provides us with some tools
to deal with partitions, segmentations and hierarchies, in a unified framework. Lever-
aging from this study, we develop in the present paper an efficient methodology1 for
hierarchizing some image segmentation methods that rely on a dissimilarity criterion.
Specifically, using the terminology from [12] recalled in the sequel of the paper, we
try to select, at each level of the novel hierarchy, the largest not-too-coarse segmen-
tation of the corresponding observation scale amongst all the segmentations available
in the quasi-flat zones hierarchy. However, for speed reasons, our algorithm is greedy,
and we can not guarantee that the obtained hierarchy is not-too-coarse. Our algorithm
has a computational cost similar to the one of [12], but provides the set of segmenta-
tions at all observation scales instead of only one segmentation at a given scale. As it
is a hierarchy, the result of our algorithm satisfies both the locality principle and the
causality principle. Specifically, and in contrast with [12], the number of regions is
decreasing when the scale parameter increases, and the contours do not move from one
scale to another. This greatly facilitates the selection of a given partition adapted to the
application under scrutiny.

The litterature on image segmentation is quite large, and a complete review is be-
yond the scope of the present paper. Although finding a single partition of an image is
still an active topic, it is now recognized that a more robust approach is working in a
multi-scale approach that can be given in the form of a hierarchy (amongst many other
ones, see for example [3], [31] or [35]).

Any hierarchy can be represented with a tree, specifically with a minimum spanning
tree (MST). The first appearance of this tree in pattern recognition dates back to the

1This paper is an extension of [15], that proposes a framework to hierarchize GB.
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(a) Original

(b) 4 regions (k = 10000) (c) 7 regions (k = 8000) (d) 8 regions (k = 9000)

(e) 4 regions (f) 7 regions (g) 8 regions

Figure 1: Examples illustrating the results of the method proposed by [12] (p-GB) and our method (p-hGB),
obtained from the original image (a): three image segmentations, shown in (b), (c) and (d), are obtained by
the method proposed in [12] (p-GB) when the observation scale k is set such that k = 10000, 8000, 9000
that lead to 4, 7 and 8 regions, respectively. The area parameter is set to 0.5%, and there is no smoothing. In
Figures (b), (c) and (d), the number of regions is not monotonic, when k increases, and the contours between
two different k are clearly not stable; they illustrates the violation of the causality and location principles. In
contrast, three image segmentations, shown in (e), (f) and (g), are extracted from the hierarchy computed by
our method (p-hGB) by removing the edges with highest weight values until we obtain the desired number
of regions: both causality and location principles are respected.

seminal work of Zahn [38]. Lately, its use for image segmentation was introduced by
Morris et al. [23] in 1986. In 2004, both Felzenszwalb and Huttenlocher [12] and Nock
and Nielsen [25] proposed a statistical image-segmentation method in which the pixel-
merging order is similar to the creation of a MST. In [12], the merging sequence relies
on both an internal (to the region) constrast measure and an external one. However
those region-merging methods [12, 25] do not produce a hierarchy. Several authors
[13, 17, 18] proposed to build a hierarchy based on both internal and external contrast
measures.

Rather than trying to directly build the optimal hierarchy, a current trend in com-
puter vision is to modify a first hierarchy into a second one, putting forward in the pro-
cess the most salient regions. A seminal work in that direction is the one of Guigues et
al. [14], which find optimal cuts in the first hierarchy. This work has been extended in
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several directions, see for example [5] and [19]. It is shown in [24] that mathematical
morphology provides tools and operators to modify hierarchies, in a spirit similar to
what is achieved in [14]. In fact, hierarchies can be seen as a graph on which we can
apply any graph-based operator [37], and the well-known watershed operator is itself
related to a MST [8]. However, such approaches can not deal with criterion such as the
one proposed in [12] for the merging of regions.

In order to go beyond, we explored in [11, 10] the links between mathematical
morphology and hierarchical classification. One of the main results of this study is
a toolbox allowing us to manipulate a hierarchy. In the present paper, we apply this
toolbox to deal with more complex region-merging criteria, the main example being
the one of [12].

This paper is organized as follows. In Section 2, based on the theoretical framework
proposed in [11], we introduce some formalism for dealing with graphs and hierarchies.
We use this formalism in Section 3, to describe our hierarchizing strategy for graph-
based segmentations. Many dissimilarity criterions can be used in our proposal, but, in
order to clarify and exemplify our algorithm, we use the region dissimilarity proposed
in [12]. Using this criterion allows us to perform an experimental study, that is de-
scribed in Section 4. The main conclusion that can be drawn from this study is that the
proposed approach performs similarly to the one of [12], with the significant advantage
of being much easier to tune. We finally propose some further research direction in the
conclusion (Section 5).

2. Basic notions

In this section, necessary notions for such hierarchical graph-based segmentations
are presented, together with properties, on which our algorithm is based. For this
purpose, we follow the presentation given in [11].

2.1. Hierarchy of partitions

Given a finite set V , a partition of V is defined as a set P of non-empty disjoint
subsets of V whose union is V . Any element of a partition P is called a region of P.
If x ∈ V , there is a unique region of P that contains x, denoted by Px. Given two
partitions P and P′ of V , we say that P′ is a refinement of P, denoted by P′ � P, if any
region of P′ is included in a region of P. A hierarchy on V is a sequence of indexed
partitions of V ,H = (P0, . . . ,P`), such that Pi−1 � Pi for any i ∈ {1, . . . , `}. A hierarchy
H is called complete if P` = {V} and P0 = {{x} | x ∈ V}. Unless otherwise stated, all
hierarchies considered in this article are complete.

2.2. Graph and connected hierarchy

A graph is a pair G = (V, E) where V is a finite set and E is a subset of {{x, y} ⊆ V | x , y}.
Each element of V is called a vertex of G, and each element of E is called an edge of
G. A subgraph of G is a graph (V ′, E′) such that V ′ ⊆ V , and E′ ⊆ E. If X is a graph,
its vertex and edge sets are denoted by V(X) and E(X) respectively.

Let x and y be two vertices of a graph G. A path from x to y in G is a sequence
(x0, x1, . . . , x`) of vertices of G such that x0 = x, x` = y and {xi−1, xi} is an edge of G
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for any i in {1, . . . , `}. The graph G is connected if, for any two vertices x and y of G,
there exists a path from x to y. Let A be a subset of V(G). The graph induced by A in G
is the graph whose vertex set is A and whose edge set contains any edge of G which
is made of two elements in A. If the graph induced by A is connected, we also say,
for simplicity, that A is connected. The subset A is a connected component of G if it is
connected for G and maximal for this property, i.e., for any subset B of V(G), if B is a
connected superset of A, then we have B = A. In the following, we denote by C(G) the
set of all connected components of G. It is well known that C(G) is a partition of V(G).
This partition is called the connected-components partition induced by G. Thus, the
set [C(G)]x is the unique connected component of G that contains x.

Given a graph G = (V, E), a partition P of V is connected for G if every region of
P is connected, and a hierarchy H on V is connected for G if every partition of H is
connected.

2.3. Edge-weighted graph and quasi-flat zone hierarchy

In this article, we handle connected hierarchies by using edge-weighted graphs. For
this purpose, we first see that the level sets of such an edge-weighted graph induce a
hierarchy of partitions called a quasi-flat zones hierarchy.

Let G be a graph, and w be a map from the edge set of G into the set R+ of non-
negative real numbers. Then, for any edge u of G, the value w(u) is called the weight
of u (for w), and the pair (G,w) is called an edge-weighted graph.

We assume that G is connected. Without loss of generality, we also assume that the
range of w is the set E of all integers from 0 to |E| − 1 (otherwise, one could always
consider an increasing mapping from the set {w(u) | u ∈ E} ⊂ R+ into E). We also
denote by E• the set E ∪ {|E|}.

Let X be a subgraph of G and λ be a non-negative integer in E•. The λ-level edge
set of X (for w), denoted by wλ(X), is defined by

wλ(X) = {u ∈ E(X) | w(u) < λ}, (1)

and the λ-level graph of X (for w) is defined as the subgraph wV
λ (X) of X such that

wV
λ (X) = (V(X),wλ(X)). (2)

Then, the connected-components partition C(wV
λ (X)) induced by the λ-graph of X is

called the λ-level partition of X (for w).
For λ1, λ2 ∈ E• such that λ1 ≤ λ2, any edge of wV

λ1
(X) is also an edge of wV

λ2
(X).

Thus, any connected component of wV
λ1

(X) is included in a connected component of
wV
λ2

(X). In other words, C(wV
λ1

(X)) � C(wV
λ2

(X)) for λ1 ≤ λ2. Hence, the sequence of
all λ-level partitions of X ordered by increasing value of λ such that

QFZ(X,w) = (C(wV
λ (X)) | λ ∈ E•)

is a hierarchy, called the quasi-flat zones hierarchy of X for w. Observe that this hi-
erarchy is complete if X is connected. It is thus seen that a quasi-flat zones hierarchy
QFZ(X,w) is induced by an edge-weighted graph (X,w). Conversely, it is also shown
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in [11] that any connected hierarchyH can be represented by an edge-weighted graph
whose associated quasi-flat zones hierarchy is precisely H , by using the notion of a
saliency map. As shown in [11], the saliency map of a hierarchy H is precisely the
minimal map whose quasi-flat zones hierarchy is exactlyH .

Let us now consider a minimum spanning tree of G with respect to w, denoted
by T , which is a subgraph of G, connecting all the vertices of G, with weight less than
or equal to the weight of every other subgraph in the same manner. More formally, the
subgraph T is a minimum spanning tree (MST) of G if:

1. T is connected; and
2. V(T ) = V; and
3. the weight of T is less than or equal to the weight of any graph X satisfying (1)

and (2) (i.e., X is a connected subgraph of G whose vertex set is V),

where the weight of X for w, denoted by w(X), is defined as w(X) =
∑

u∈E(X) w(u). It
is then shown in [11] that the quasi-flat zones hierarchy QFZ(T,w) is the same as
QFZ(G,w). It is also proved in [11] (Theorem 4) that T is minimal for this property
as well, i.e., for any subgraph X of T , if the quasi-flat zones hierarchy of X for w is the
one induced by G for w, then we have X = T . Conversely, any minimal graph for this
property is a MST of G.

Those results indicate that any connected hierarchy H for G can be handled by
means of a weighted spanning tree which is a subgraph of G. This is indeed the theo-
retical basis of our algorithm for hierarchical segmentation.

3. Graph-based hierarchical segmentation

3.1. Transformation of hierarchies

Let us suppose that a connected graph G = (V, E) and an associated weight function
w are given. As w is given with G, we can also say that a quasi-flat zones hierarchy
QFZ(G,w) is given. The main idea of our algorithm for hierarchical segmentation of
V then consists of transforming this initial hierarchyQFZ(G,w) into another hierarchy
by rebuilding the hierarchical structure according to a dissimilarity measure between
regions. In fact, as mentioned in the previous section, the hierarchy QFZ(G,w) is
the same as QFZ(T,w) where T is a MST of G. Therefore, in order to transform the
hierarchy QFZ(G,w) (or QFZ(T,w)), we generate a new weight function f , which
can be restricted on T , so that it leads to a new hierarchy QFZ(T, f ). Thus, the main
part of our segmentation algorithm is the generation of a new weight function f on T .
See Fig. 2 for an example, which illustrates our graph-based hierarchical segmentation.
Given the initial edge-weighted graph (G,w) illustrated in Fig. 2 (a), Fig. 2 (c) provides
the dendrogram representation of the initial quasi-flat zones hierarchyQFZ(T,w) gen-
erated from the MST T of G for w, illustrated in Fig. 2 (b). After changing the weights
on the edges of T , denoted by f , as depicted in Fig. 2 (d), the quasi-flat zones hierarchy
is also changed to QFZ(T, f ) whose dendrogram is given in Fig. 2 (e).

While a new weight function f is generated based on a dissimilarity measure be-
tween regions, the measure itself is independent from the proposed algorithm. We
therefore simply denote it by D in the algorithm, and give its concrete definition for the
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(e) New hierarchy QFZ(T, f )

Figure 2: Example of our graph-based hierarchical segmentation, which consists of transforming an initial
hierarchy into another, by changing weights on the edges.

case of the method proposed by [12] later in Section 3.5. The map D associates a value
in E• to any region pair of a partition P.

3.2. Too-fine/too-coarse partitions

Given a graph G = (V, E), let us consider a partition P of V and a region pair
A, B ∈ P. If there exists an edge {x, y} ∈ E such that x ∈ A and y ∈ B, then A and B
are said to be adjacent. By taking into account some dissimilarity measure D between
adjacent regions, the following notions are considered for partitions. A partition P is
said to be too fine at level λ if there exists an adjacent-region pair A, B of P such that
D(A, B) ≤ λ, and too coarse at level λ if there exists a proper refinement of P, that
is not too fine at level λ. Intuitively, a partition is too fine at level λ if there exist
two adjacent regions A and B that should be merged, instead of being separated, since
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Algorithm 1: Re-weight
Data: A minimum spanning tree T = (V, E) of an edge-weighted graph (G,w), a

dissimilarity measure D
Result: A map f from E to R+

1 for each u ∈ E do f (u) := +∞;
2 for each u = {x, y} ∈ E in non-decreasing order for w do
3 f (u) := min{λ ∈ R+ | D([C( f V

λ (T ))]x, [C( f V
λ (T ))]y) ≤ λ − 1}

D(A, B) ≤ λ. In contrast, a partition is too coarse at level λ if the splitting of one of its
regions leads to a partition which is not too fine, namely, the region should be split. In
[12], Felzenswalb et al. were interested in partitions of V that are neither too fine nor
too coarse for a given λ.

3.3. Too-fine/too-coarse hierarchies

Those notions can be extended to hierarchies of partitions as follows. Let H =

(Pλ | λ ∈ E) be a complete hierarchy that is connected for G. We say thatH is not too
fine (resp. not too coarse) if for any λ ∈ E, the partition Pλ is not too fine (resp. not
too coarse) at level λ. By using them, it is natural to look for a possibility of producing
hierarchies that are neither too fine nor too coarse.

However, the criterion used in [12] does not straightforwardly lead to a dissimilarity
measure for which a hierarchy that is neither too coarse nor too fine always exists.
For instance, we can see such a difficulty in the results of the method proposed by
[12], shown in Fig. 1 (b-d), which illustrate the violation of the causality and location
principles with respect to the observation scales k used in the criterion (more examples
can also be found in [15]).

This difficulty motivated us to focus first on hierarchies that are not too coarse
(not needed to be not too fine) and such hierarchies always exist, whatever the chosen
dissimilarity measure.

The trivial hierarchy, such as the hierarchy whose levels are all the partition of V
into singletons, is not too coarse. However, in general, there exist many hierarchies that
are not too coarse and one needs to choose among them. One of interesting choices
is made by keeping a largest hierarchy among all hierarchies that are not too coarse
(see Section 8.3.1 of [11] for further details). In general, finding such a hierarchy is a
complex task.

3.4. Algorithm description

The algorithm presented in this article is heuristic and does not guarantee to pro-
duce such a not-too-coarse hierarchy whatever the considered dissimilarity measure D.
However, reaching this goal for the dissimilarity measure of the segmentation method
proposed in [12] guides us to propose Algorithm 1.

Let us suppose that a minimum spanning T = (V, E) of a connected graph G for an
associated weight function w is given. The proposed algorithm is based on a merging-
region strategy, in which the new weight f on T is calculated iteratively as a sequence
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Figure 3: Saliency map Φ(H) of the hierarchyH in Fig. 2 (c)

of maps fi for i = 0, . . . , |E| so that f = f|E|. It is initialized such that

f0(u) = +∞

for every u ∈ E, so that QFZ(T, f0) is obviously not too coarse. It is then updated for
each edge u ∈ E one by one in non-decreasing order with respect to the original weight
w. Letting L to be the list of such ordered edges, we write L(i) = u if the i-th ordered
edge is u. Let us suppose that the i-th map fi is already calculated. Then the (i + 1)-th
map fi+1 is obtained from fi such that

fi+1(u) =

{
min{λ ∈ R+ | D([C( fiVλ (T ))]x, [C( fiVλ (T ))]y) ≤ λ − 1} if u = L(i),
fi(u) otherwise,

for all u = {x, y} ∈ E.
Let Hi = QFZ(T, fi). Then, at any λ ∈ R+, the partition of Hi is always coarser

than the one ofHi+1, namely

C( fiVλ (T )) � C( fi+1
V
λ (T ))

for i = 0, 1, . . . , |E| − 1, since fi(u) ≥ fi+1(u) for any u ∈ E. Thus, we can see at the
i-th iteration step that the two regions containing respectively x and y of the i-th edge
u = {x, y} are merged up to the level λ.

We also remark that the algorithm is valid, even though w is not given, if a hierarchy
H is given instead. In fact, it is shown in Section 7 of [11] as well as [9] that any con-
nected hierarchy H can be represented by an edge-weighted graph whose associated
quasi-flat zones hierarchy is precisely H , by using the notion of saliency map Φ(H).
In other words, we can associate to any H the saliency map Φ(H) whose quasi-flat
zones hierarchy is H . See Fig. 3 for the saliency map Φ(H) of the quasi-flat zones
hierarchyH illustrated in Fig. 2(c).

3.5. Observation scale dissimilarity

Algorithm 1 requires some dissimilarity measure D. In this article, the observation-
scale dissimilarity D, based on the region merging predicate presented in [12], is pro-
posed. Note that this dissimilarity is not defined explicitly in the original method, but it
is used implicitly in their predicate for merging regions. In this section, we show how
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to extract from their predicate the dissimilarity function, with which we can realize a
hierarchical segmentation by using Algorithm 1.

Let us first recall the region-merging predicate used in [12]. It is based on measur-
ing the dissimilarity between two components (i.e., regions) by comparing two types of
differences: the inter-component difference and the within-component difference. The
first one is defined between two regions C1 and C2 by

Di f (C1,C2) = max{w({x, y})|x ∈ V(C1), y ∈ V(C2), (x, y) ∈ E}

and the later one is defined for each component C by

Int(C) = max{w({x, y})|x, y ∈ V(C), {x, y} ∈ E}.

The predicate is then defined by

P(C1,C2) =

true if Di f (C1,C2) ≤ min
i=1,2

{
Int(Ci) +

k
|Ci|

}
,

false otherwise,
(3)

where |C| is the set cardinality of C, and k is a given constant parameter.
Le us reformulate (3) in order to obtain a dissimilarity measure D. The merging

predicate (3) depends on the value k at which the regions C1 and C2 are observed. More
precisely, the observation scale of C1 relative to C2 is first defined by

S C2 (C1) = (Di f (C1,C2) − Int(C1))|C1|,

and similarly the one of C2 relative to C1 is defined by

S C1 (C2) = (Di f (C1,C2) − Int(C2))|C2|.

Let us define the observation-scale dissimilarity between C1 and C2 such that

D(C1,C2) = max{S C2 (C1), S C1 (C2)}. (4)

The predicate (3) can then be written using this dissimilarity:

P(C1,C2) =

true if D(C1,C2) ≤ k,
false otherwise.

The inequality condition is seen in Algorithm 1, indeed, by replacing λ − 1 by k.

3.6. Illustration of Algorithm 1
An illustration of Algorithm 1 applied to the minimum spanning tree T of the edge-

weighted graph graph (G,w) in Fig. 2 can be found in Fig. 4. After initialization of
edge re-weighting with +∞ for all edges in Fig. 4 (a), the new edge weight f for each
edge is calculated in the non-decreasing order with respect to the original weight w as
shown in in Fig. 4 (b-l). In each step of the iteration, one new edge weight is calculated,
depicted as the value in bold. On this example, the interested reader can verify that the
hierarchy corresponding to the obtained map shown in Fig. 4 (l) (see also Fig. 2 (e) for
its dendrogram representation) is not too coarse.
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Figure 4: Illustration of Algorithm 1 with the example in Fig. 2

4. Experiments

The main aim of this section is to compare our method abbreviated by hGB, with
its original method [12] abbreviated by GB. The abbreviations hGB and GB stand for
"the Hierarchical Graph-Based method" and "the Graph-Based method", respectively.
To this end, we need to understand the behaviour of hGB compared to that of GB.
Even though both methods are based on the similar observation scale, hGB provides
a hierarchical structure while GB does not. Thus, what we would like to observe in
this section is a role of such a hierarchical structure of segmentations in the procedure;
indeed, we will see in this section that the hierarchical structure imposed in hGB pro-
vides as good results as those of GB. In addition, hGB gives the additional advantage
that the hierarchical structure makes easier to choose (tune) the scale of observation
corresponding to a desired partition.

For such experiments, both methods are applied to several databases, and compar-
ison analyses between them are made first qualitatively, and then quantitatively. The
details including the strategies for the quantitative analysis will be explained in Sec-
tions 4.1 and 4.2.
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We should mention that the efficient implementation of our method was made by
using some data structures similar to the ones proposed in [15]; in particular, the man-
agement of the collection of partitions is made using Tarjan’s union-find algorithm [33].
Furthermore, we made some algorithmic optimizations to speed up the computations of
the hierarchical scales. We also employ a KD-tree for identifying K-nearest neighbours
(when it is necessary) in order to create a graph from a given image.

4.1. Compared methods, pre- and post-processing, and underlying graphs

As mentioned above, we compare our method hGB that provides a hierarchical
graph-based segmentation result with its original method GB [12] that provides a non-
hierarchical graph-based segmentation result. Note that results of GB depend on ob-
servation scales, which can be set variously.

The original method GB includes the following pre- and post-processing steps:

• Gaussian smoothing of the image with parameter σ as a pre-processing step,

• area-filtering of the segmentation results with parameter τ, which is the ratio of
the component size to the image size, as a post-processing step.

In order to make fair comparison, we also apply to our method hGB the same pre-
processing and a similar, but hierarchical, post-processing, which is using again the
technique introduced in [11] and based on re-weighting a spanning tree (see Appendix
Appendix A for details). In this article, the two parameter values vary such that σ ∈
[0, 0.5] and τ ∈ [0.001, 0.009].

Before applying GB and hGB methods, it is necessary to transform a given image
into an edge-weighted graph. In this article, we consider the following two techniques
to get such underlying graphs, similarly to those in [12]:

• Pixel adjacency graph. It is induced by the 8-adjacency relation, where each
vertex is a pixel and each edge is a pair of adjacent pixels. Two distinct pixels are
said to be 8-adjacent if they have a common corner when pixels are represented
by squares. Each edge is weighted by a simple color gradient: the Euclidean
distance in the RGB space between the colors of the two adjacent pixels. In order
to identify this graph type in the following, we will add the letter p followed by
the short name of methods (p stands for "pixel" relationship);

• Nearest-neighbour color-pixel graph. In this setting, we further add new edges
to the pixel adjacency graph. The additional edges are given by the K nearest
neighbours of each vertex in a RGBXY space. In this RGBXY space, each pixel
is mapped to a 5-tuple (r, g, b, x, y) where r, g and b are the red, green and blue
components of the pixel and x and y are the x- and y-coordinates. Then, each
edge is weighted by the Euclidean distance in the RGBXY space between the
neighbouring pixels. In order to identify this graph type, we will add the letter
cp followed by the short name of the method (c stands for "color"). We set
K = 10 in this article.
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4.2. Databases
In order to provide a comparative analysis between GB and hGB, we used the fol-

lowing three different databases proposed in [1, 2, 3, 29].

BSDS500 The Berkeley Segmentation Dataset [21], called BSDS500, is divided in
three folds for training, validation and testing, which contain 200, 100 and 200
images, respectively. The training and validation folds are used to set the pre-
and post-processing parameters, σ and τ, such that those values lead to the best
measure value (see Section 4.5.2 for the detail) on those folds. Each image has
a set of 5 to 8 human-marked ground-truth segmentations, which has a high
degree of consistency between different human subjects with a certain variance
in the level of details. This database is a standard for evaluating hierarchical
segmentations [3, 27].

GRABCUT The database proposed in [29], called GRABCUT, is originally used for
detecting the contour of one object. In fact, some images in this database are also
found in BSDS500. The images in this dataset are of high quality and contain
big objects. All 50 images are used for the parameter setting, and every image
has only one ground-truth contour of the one object.

WI1OBJ, WI2OBJ The database proposed in [1, 2] consists of images, each of which
contains obviously one or two objects; each object differs from their surround-
ings by either intensity, texture, or other low level cues. The database is therefore
divided into two groups, single and two objects, each of which contains 100 im-
ages, called WI1OBJ and WI2OBJ respectively. As there is no fold in this
database, concerning the pre- and post-processing parameter setting, we used all
the images. Each image has 1 to 3 human-marked ground-truth regions of the
objects of interest. Unlike GRABCUT, the images have lower quality and the
objects are very small, which can make segmentation results more complicated.

4.3. Qualitative analysis
We first show Fig. 5 to illustrate some results obtained by our method when ap-

plied to some images in BSDS500 using a pixel-based graph. In order to visualize
the hierarchical structuresH of our segmentation results, we use saliency maps Φ(H)
[9] as shown in the middle row of the figure: pixel edges (i.e. graph edges used in
our method) that have higher observation scale dissimilarities are depicted in stronger
black. From such a saliency map, the segmentation at a given observation scale can be
easily obtained by simple thresholding. The segmentation results of given scales are
illustrated in the last row of the figure.

Concerning the comparison between p-hGB and p-GB, Fig. 1 illustrates some re-
sults of p-hGB and p-GB obtained from the original image (a); (b-d) present the results
from p-GB containing 4, 7 and 8 regions, while (e-g) present the results from p-hGB
containing the same numbers of regions. While obtaining the partition from an ex-
pected number of regions is easy with our method p-hGB, it is quite difficult when
using p-GB. It should be also noticed that the causality and location principles are
missing for the results of p-GB in Fig. 1 (b-d) while they are preserved for those of
p-hGB in Fig. 1 (e-g) thanks to the hierarchical structures.
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(a) (b) (c) (d)

Figure 5: Top row: some images from the Berkeley database [3]. Middle row: saliency maps of these images
according to our hierarchical method. The number of different segmentations obtained from observation
scales of these hierarchies are (a) 240, (b) 443, (c) 405 and (d) 429. Bottom row: examples of segmentations
extracted from the hierarchies. The numbers of segmented regions are (a) 3, (b) 18, (c) 6 and (d) 16.

Note that we set σ = 0 and τ = 0.005 for the pre- and post-processing in both of
the experiments.

Let us also observe the role of the area-filtering post-processing. Figure 6 illustrates
the saliency maps of the hierarchical segmentation results of the proposed method p-
hGB, obtained from the original image in Fig. 1 (a) with various values of area filtering
parameter. It can be observed that larger regions are eliminated when larger values of
the parameter τ are considered.

4.4. Running time issues
Our algorithm was implemented in C++ and runs on a standard single CPU com-

puter (Intel Xeon(R) CPU 2.50GHz, 32GB) under CentOS. The computation times
for the results illustrated in Fig. 1 (the image size is 321 × 481) are 0.990 seconds
for the hierarchical segmentation result obtained by p-hGB and 0.05 seconds for each
segmentation result obtained by p-GB with a given observation scale. Thus, if we cal-
culate 50 segmentation results with 50 different observation scales for p-GB, then the
total computation time requires 2.5 seconds. Note that there are typically 500 distinct
observation scales computed by the p-hGB method.

4.5. Quantitative analysis
We now present some quantitative results that illustrate the efficiency of our hier-

archical graph-based method hGB, compared to the non-hierarchical original method,
GB. For this purpose, we need to compare hierarchical (or non-hierarchical) segmenta-
tion results with the ground-truth segmentations offered in the databases mentioned in
Section 4.2.
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(a) τ = 0 (b) τ = 0.0005 (c) τ = 0.001

(d) τ = 0.002 (e) τ = 0.005 (f) τ = 0.01

Figure 6: Saliency maps of the hierarchical segmentation results of the proposed method p-hGB, obtained
from the original image in Fig. 1 (a) with various values of area filtering parameter: τ = 0 (a), 0.0005 (b),
0.001 (c), 0.002 (d), 0.005 (e) and 0.01 (f).

Such an evaluation faces the following two difficulties:

• as the observation scale varies for each method, GB and hGB, we obtain a series
of segmentation results for each image of the database, so that we need to choose
one result among them in order to make an evaluation;

• in practice, we need to reduce the set of observation scale values, from each of
which we obtain a segmentation, as there are too many conceivable values for an
exhaustive evaluation.

In the following, we first explain (1) how to select a reasonable set of observation scale
values for each method, and then (2) how to choose the segmentation result among a
series of results obtained due to the varied settings of observation scale value. For the
purpose (2), we make an optimization with respect to segmentation quality measures,
which will be also described below.

4.5.1. Selection of observation scale values
In the original method GB, we need to tune the observation scale K in order to

obtain a segmentation result. Here, we varied K from the initial value 100 with the
interval of 300 until 50 different segmentations were obtained.

Concerning our method hGB, once a hierarchy represented by an edge-weighted
graph is obtained, i.e. a saliency map, all segmentations can easily be inferred using
only a thresholding operation on the edge weight values, or just removing the edges
with highest weight values. Indeed, each calculated edge weight corresponds to the
observation scale dissimilarity between the two adjacent regions shared by the edge.
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Therefore, if we remove 50 edges iteratively, we obtain a set of 50 segmentations thanks
to the hierarchical structure.

4.5.2. Segmentation quality measures
In order to compare each segmentation result obtained by either GB or hGB with a

ground-truth, we use three different precision-recall frameworks, which are for bound-
aries [21], for regions [20], and for objects and parts [27]. The first two precision-recall
frameworks were used for evaluating hierarchical image segmentations in [3], and it
was pointed out that measures of region quality should be also considered in addition
to those of boundary quality. However, the precision-recall for regions is still limited
in cases of over- or under-segmentations. Pont-Tuset and Marques then has proposed
the new region-based measure by classifying regions into object and part candidates in
order to adapt the case that an object consists of several parts [27].

We thus use the F-measures defined from the precision-recall for boundaries, re-
gions, and objects and parts, denoted by Fb, Fr and Fop, respectively, in this article2.
Note that the segmentation is perfect when F∗ = 1 and quite different from the ground-
truth when F∗ = 0. In addition to those F-measures, the corresponding precision-recall
curves are also used in order to capture their natures with varying observation scale
values.

4.5.3. Optimal F-measures
For each pair made of an image segmentation and the associated ground-truth, one

F-measure value is obtained. Thus, for one image, a series of F-measures can be
obtained while the observation scale varies. In order to synthesize the whole series of
F-measures, several choices can be made according to [3]. We can:

1. keep the best F-measure obtained for each image of the database; or
2. keep the F-measure for a constant scale over the database, the constant scale

being chosen to maximize the average F-measure of the overall database.

They are called Optimal Image Scale (OIS) and Optimal Database Scale (ODS), re-
spectively. Let F(I,K) be the F-measure calculated from the segmentation result ob-
tained from a given observation scale K for an image I in the dataset. Then the F-
measure for the dataset with the ODS (resp. OIS) setting is obtained by FODS =

maxK avgI F(I,K) (resp. FOIS = avgI maxK F(I,K)). Naturally from these defini-
tions, FOIS is always larger than FODS as the observation scale K is better chosen for
each image for OIS.

4.5.4. Optimal parameter setting for pre- and post-processings
As seen in Section 4.1, both of the methods GB and hGB are accompanied with the

pre-processing - Gaussian smoothing - and the post-processing - area filtering, which
contain the parameters σ and τ, respectively.

2Other well-known measures of regions quality, such as segmentation covering [3], probabilistic Rand
index [34], and variation of information [22], were also used for comparisons, whose results are shown in
Appendix.
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Figure 7: Fr-measure comparisons between the four segmentation results of p-hGB, p-GB, cp-hGB and cp-
GB on each of the databases, BSDS500, GRABCUT, WI1OBJ and WI2OBJ, under the ODS setting with
the variation of the smoothing parameter σ from 0.0 to 0.5.

The smoothing parameter σ ranges from 0 to 0.5. Concerning the area-filtering, the
component size ratio with respect to the image size τ ranges from 0.001 to 0.009. In
order to identify those parameter values, 9× 6 runs were made for the best F-measure,
FOIS and FODS . In other words, we maximize the best F-measures for 9×6 value pairs
(σ, τ) ∈ [0, 0.5] × [0.001, 0.009].

4.5.5. Robustness under smoothing parameter variations
Changing the pre-processing smoothing parameter σ from 0 to 0.5, we observed

the variations of F-measures for regions, Fr, of the hGB and GB segmentation results.
Figures 7 and 8 present the optimal Fr-measures for each database under the ODS and
OIS settings, respectively. They show that the results of our methods, p-hGB and cp-
hGB, are robust to σ value variations for any dataset while those of p-GB and cp-GB
are influenced by σ values. In general, the method cp-hGB provides either the best
results or the ones close to the best ones. Similar results by using other region-quality
measures are also given in Appendix Appendix B.

To better understand the above comparison results, we also present the distribution
of the best Fr-measures with the OIS setting, illustrated in Fig. 9. Differently from
Figure 8, which simply presents the average of all the best Fr-measures, each of which
is computed from every segmentation result, Fig. 9 represents the distribution of the
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Figure 8: Fr-measure comparisons between the four segmentation results of p-hGB, p-GB, cp-hGB and cp-
GB on each of the databases, BSDS500, GRABCUT, WI1OBJ and WI2OBJ, under the OIS setting with
the variation of the smoothing parameter σ from 0.0 to 0.5.

best Fr-measures for individual images with the box-and-whisker plot, in which the
five different values are illustrated: the median; the upper quartile; the lower quartile;
the upper whisker; and the lower whisker. In other words, we can compare two dis-
tributions by using this plot, for example, between GB and hGB, or with and without
smoothing. From such comparisons, we can observe that, in absence of the smoothing
pre-processing, the Fr-measures of hGB are better than or equal to those of GB, as hGB
provides higher medians than those of GB, except for p-hGB on WI1OBJ; even in this
case, the quartile box of p-hGB is smaller than that of p-GB indeed. In presence of the
smoothing pre-processing, however, it is not the case. Note that the best σ value from
the parameter variations in Fig. 8 was used here.

4.5.6. Region quality evaluations
By using the F-measures for regions Fr and for objects and parts Fop, we made

pairwise region-quality comparisons of segmentation results, as illustrated in Figs. 10
and 11, following the same presentation as in [3], in which each red point has the
F-measures (with OIS) of the results of hGB and GB as its x- and y-coordinates, re-
spectively, for each image. When no smoothing is considered, hGB provides either
better results than or equivalent to GB (see Figs. 10 (a, b) and 11 (a, b)) as there are
more red dots below the line y = x than those above the line. Every figure also gives the
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Figure 9: Box-and-whisker plots of the distribution of the best Fr-measures under the OIS setting, for the four
segmentation results of p-hGB, p-GB, cp-hGB and cp-GB on each of the databases, BSDS500, GRABCUT,
WI1OBJ and WI2OBJ, with and without the smoothing pre-processing.

number of red points in both sides; for example, in Fig. 10 (a-rightmost) there are 113
images of the database BSDS500 whose Fr-measures obtained from p-hGB is better
than those obtained from p-GB. When smoothing is considered, hGB provides almost
equivalent results to GB (see Figs. 10 (c, d) and 11 (c, d)).

This observation is also confirmed by Table 1, in which the best method was chosen
between hGB and GB, with 5% of confidence interval, from each pairwise region-
quality comparison for every database in Figs. 10 and 11. The interpretation is made as
follows; if the confidence interval contains zero, then both methods are chosen as they
are considered to be equivalent; otherwise, the confidence interval allows us to choose
the best method: if the interval is completely included in the positive (resp. negative)
side, then hGB (resp. GB) is chosen to be the best. As seen from Table 1, cp-hGB (or
both) is always better than or equivalent to cp-GB when no smoothing is applied, and
when smoothing is applied, both are equivalent. Comparing between p-hGB and p-GB,
when there is no smoothing, p-hGB is either better or equivalent, and vice-versa when
there is smoothing.

4.5.7. Evaluations based on SESIM framework
In this section, we consider the precision-recall curves for boundaries, regions and

objects and parts, whose F-measures correspond to Fb, Fr and Fop, respectively, for
comparing our segmentation results of hGB with those of GB in order to capture their
dynamics with varying observation scale values. We made use of the software pack-

19



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (58)

hGB (42)

WI1OBJ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (48)

hGB (52)

WI2OBJ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (26)

hGB (23)

GRABCUT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (87)

hGB (113)

BSDS500

(a) type graph (p) and smoothing (no)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (39)

hGB (61)

WI1OBJ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (44)

hGB (55)

WI2OBJ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (13)

hGB (33)

GRABCUT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (75)

hGB (128)

BSDS500

(b) type graph (cp) and smoothing (no)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (48)

hGB (52)

WI1OBJ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (57)

hGB (43)

WI2OBJ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (21)

hGB (29)

GRABCUT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (113)

hGB (96)

BSDS500

(c) type graph (p) and smoothing (yes)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (59)

hGB (41)

WI1OBJ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (47)

hGB (52)

WI2OBJ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (28)

hGB (22)

GRABCUT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

GB (97)

hGB (103)

BSDS500

(d) type graph (cp) and smoothing (yes)

Figure 10: Pairwise region-quality comparison of segmentation results, in which each red point has the Fr-
measures (with OIS) of the results of hGB and GB as its x- and y-coordinates for each image. Two different
graph types, p and cp, are considered with and without smoothing pre-processing.

age SEISM [27], with which we can compare our results with those of not only p-GB
but also the following state-of-the-art methods on the database BSDS500: Ultrametric
Contour Maps (UCM) [3], Normalized Cuts (NCuts) [30], Mean Shift (MShift) [6],
NWMC Binary Partition Tree (NWMC) [36], and IID-KL Binary Partition Tree (IID-
KL) [4]. In fact, we added our segmentation results of p-hGB and cp-hGB to the others
that were already pre-computed [27], as shown in Figure 12. Obviously, it is partic-
ularly interesting to compare our method p-hGB (and cp-hGB) against p-GB which
considers the same dissimilarity measure in the figures.

Figure 12 shows that, depending on chosen F-measures, the curves drawn from the
same segmentation results are different. In addition, the curves for objects and parts
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Figure 11: Pairwise region-quality comparison of segmentation results, in which each red point has the Fop-
measures (with OIS) of the results of hGB and GB as its x- and y-coordinates for each image. Two different
graph types, p and cp, are considered with and without smoothing pre-processing.

indicate that cp-hGB provides better results than p-GB, while those for boundaries and
regions indicate that p-GB provides better results than cp-hGB.

Some examples of segmentation results are illustrated in Figs. 13 and 14; given
the original image and the ground truth (the average among 5 human segmentations)
illustrated in (a) and (b), the best segmentation results obtained by p-GB, p-hGB and
cp-hGB with respect to Fop in Fig. 12 are shown in (c), (d) and (e), respectively. The
results in Figs. 13 (c) and 14 (c) consist of thin long regions that are located around
the object boundaries, but do not enclose the objects. Thus they are visually poorer
results than those in Figs. 13 (d, e) and 14 (d, e), while the Fb and Fr values are similar
between (c) and (d, e) in Figs. 13 and 14 (or (c) have even higher values than (d, e)). A
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F-measure for regions F-measure for object and parts
Database Methods Smoothing Confidence interval (5%) The best method Confidence interval (5%) The best method

BSDS500
p-hGB and p-GB no [0.006,0.031] p-hGB [0.017,0.042] p-hGB

yes [-0.033,-0.013] p-GB [-0.023,0.004] Equivalent

cp-hGB and cp-GB no [0.033,0.057] cp-hGB [0.024,0.048] cp-hGB
yes [-0.012,0.002] Equivalent [-0.008,0.014] Equivalent

GRABCUT
p-hGB and p-GB no [-0.026,0.028] Equivalent [-0.147,0.017] Equivalent

yes [-0.032,0.002] Equivalent [-0.139,0.004] Equivalent

cp-hGB and cp-GB no [0.011,0.070] cp-hGB [-0.064,0.092] Equivalent
yes [-0.014,0.013] Equivalent [-0.025,0.094] Equivalent

WEIZMANN 1 OBJ
p-hGB and p-GB no [-0.045,0.009] Equivalent [-0.132,-0.021] p-GB

yes [-0.055,-0.015] p-GB [-0.096,0.024] Equivalent

cp-hGB and cp-GB no [0.061,0.130] cp-hGB [0.045,0.150] cp-hGB
yes [-0.013,0.022] Equivalent [-0.038,0.049] Equivalent

WEIZMANN 2 OBJ
p-hGB and p-GB no [-0.006,0.031] Equivalent [-0.033,0.090] Equivalent

yes [-0.019,0.019] Equivalent [-0.085,0.035] Equivalent

cp-hGB and cp-GB no [0.029,0.079] cp-hGB [0.019,0.139] cp-hGB
yes [-0.006,0.030] Equivalent [0.005,0.115] cp-hGB

Table 1: Best method choice with confidence interval for each pairwise comparison in Figs. 10 (with Fr-
measures) and 11 (with Fop-measures).
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Figure 12: Precision-recall curves for boundaries (a), for regions (b) and for objects and parts (c). The curves
were drawn from points plotted by the segmentation results obtained by the six state-of-the-art segmentation
methods (UCM, p-GB NWMC, IID-KL, MShift and NCuts) thanks to the software SEISM [27] and the
proposed methods (p-hGB and cp-hGB). The marker on each curve is placed on the Optimal Dataset Scale
(ODS). The isolated red diamond refer to the human performance assessed.In the legend, the F-measures of
the marked points on each curve is presented in brackets.

similar observation was already made in [27], and this indicates that Fop can evaluate
segmentation results differently from Fb and Fr. It should be also noticed that Fop

gives relatively smaller values than Fb and Fr in general.

5. Conclusions

In this paper, we applied the toolbox proposed in [11] to develop a hierarchical
version of some graph-based image segmentation algorithms relying on region dissim-
ilarity. The main example of such a criterion is the one proposed in [12], and we per-
formed an extensive set of experiments that demonstrates that our algorithm achieves
result on par with the one of [12], with the significant benefit of being much easier to
tune. Indeed, the user can just select the level in the hierarchy, controlling the desired
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(a) original (b) ground truth

(c) result by p-GB: Fr = 0.64,
Fb = 0.62, Fop = 0.05

(d) result by p-hGB: Fr = 0.58,
Fb = 0.57, Fop = 0.28

(e) result by cp-hGB: Fr = 0.49,
Fb = 0.48, Fop = 0.20

Figure 13: Example of segmentation results of the original image (a) obtained by p-GB (c), p-hGB (d) and
cp-hGB (e). The F-measures, illustrated on legends, for regions (Fr), boundaries (Fb) and object and parts
(Fop) were based on the ground truth illustrated in (b) as the saliency map.

(a) original (b) ground truth

(c) result by p-GB: Fr = 0.77,
Fb = 0.71, Fop = 0.18

(d) result by p-hGB: Fr = 0.60,
Fb = 0.69, Fop = 0.36

(e) result by cp-hGB: Fr = 0.69,
Fb = 0.71, Fop = 0.50

Figure 14: Example of segmentation results of the original image (a) obtained by p-GB (c), p-hGB (d) and
cp-hGB (e). The F-measures, illustrated on legends, for regions (Fr), boundaries (Fb) and object and parts
(Fop) were based on the ground truth illustrated in (b) as the saliency map.

number of regions.
We believe such results are an incentive to continue developing the generic tools
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proposed in [11]. Many other criteria, such as the one proposed in [25], can be included
in our framework [16], despite being significantly more complex. Other applications,
such as dealing with video, are also possible, and our approach can provide state-of-the-
art results [32]. We also envision extending such approaches for classification problems
(i.e. non image data), as proposed in [11]. Last, but not the least considering the
current trend in computer vision, an interesting perspective is obviously, on a specific
application, to use learning techniques and train a criterion to choose the correct region.
First results in that direction are encouraging [7].

For all these research directions, the question of evaluation is a fundamental one.
In this paper, we used the existing ground-truth segmentations available in the litera-
ture. One should note that such segmentations are not hierarchical, and as such, we can
not truly assess the benefit of a hierarchical organisation of hierarchical approaches. A
considerable amount of work is nowadays devoted to the construction of a sound evalu-
ation framework [3, 26, 27, 28]. Although the question of the evaluation of hierarchies
is an even more complex question, we are deeply convinced that the computer-vision
community at large would benefit if hierarchical ground truths were available.

On a more theoretical level, we would like to make a formal study of the various
algorithms that can transform a hierarchy, in order to obtain a better efficiency: on
the one hand, we believe some speed improvements are possible with respect to what
we are doing today. On the other hand, it would be nice to guarantee some structural
properties on the resulting hierarchy of segmentations, such as a “not-too-coarse” one.
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Appendix A. Hierarchical area filtering

As the proposed segmentation method provides a hierarchical graph-based result
represented by a spanning tree (see Section 3), we adapt our area-filtering for such
hierarchical outputs as follows. Area-filtering post-processing eliminates connected
components whose size is smaller than a given value M. This can be realized by re-
weighting the spanning tree that is a segmentation result obtained by Algorithm 1. The
algorithm is shown in Algorithm 2, which simply replaces the edge weight with zero
if the size of one of connected components merged by this edge is smaller than a given
value M.

Algorithm 2: Hierarchical area-filtering
Data: A minimum spanning tree T = (V, E′) of f
Data: A minimum area size M
Result: A map f ′ from E′ to R+

1 for each u = {x, y} ∈ E′ in non-decreasing order for f do
2 if |C( f V

λ (T ))x| ≥ M and |C( f V
λ (T ))y| ≥ M then f ′(u) := f (u);

3 else f ′(u) := 0;

Appendix B. Robustness under smoothing parameter variations with other mea-
sures

Changing the pre-processing smoothing parameter σ from 0 to 0.5, we observed
the variations of the segmentation covering measures of the hGB and GB segmentation
results. Figure B.15 and B.16 present the optimal measure for each database under
ODS and OIS, respectively.

Appendix C. Region quality evaluations with other measures

Table C.2 shows some performance measures related to the segmentation task (seg-
mentation covering, probabilistic Rand index, and variation of information). Here, it is
also possible to observe the robustness with respect to smoothing operation.
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Database Graph Method Smoothing Covering PRI VI
ODS OIS Best ODS OIS ODS OIS

GRABCUT

p hGB no 0.71 0.77 0.81 0.71 0.78 0.69 0.65
yes 0.71 0.77 0.81 0.71 0.79 0.68 0.65

p GB no 0.73 0.78 0.82 0.73 0.77 0.76 0.72
yes 0.74 0.79 0.83 0.74 0.79 0.68 0.62

cp hGB no 0.73 0.79 0.83 0.73 0.80 0.72 0.67
yes 0.74 0.79 0.83 0.75 0.80 0.67 0.64

cp GB no 0.69 0.77 0.81 0.69 0.76 0.99 0.86
yes 0.74 0.80 0.83 0.74 0.80 0.66 0.63

WEIZMANN1OBJ

p hGB no 0.65 0.72 0.76 0.67 0.78 0.81 0.75
yes 0.65 0.72 0.76 0.66 0.78 0.80 0.74

p GB no 0.67 0.75 0.78 0.68 0.77 0.82 0.76
yes 0.67 0.76 0.79 0.69 0.79 0.82 0.71

cp hGB no 0.65 0.74 0.77 0.68 0.78 0.81 0.73
yes 0.65 0.74 0.77 0.68 0.78 0.81 0.73

cp GB no 0.60 0.68 0.71 0.62 0.70 1.34 1.21
yes 0.67 0.74 0.78 0.69 0.78 0.87 0.77

WEIZMANN2OBJ

p hGB no 0.76 0.86 0.88 0.77 0.88 0.74 0.59
yes 0.76 0.86 0.88 0.77 0.88 0.74 0.59

p GB no 0.75 0.84 0.87 0.75 0.85 0.78 0.61
yes 0.79 0.86 0.88 0.79 0.87 0.73 0.56

cp hGB no 0.80 0.88 0.90 0.80 0.89 0.72 0.51
yes 0.80 0.88 0.90 0.80 0.89 0.72 0.51

cp GB no 0.75 0.84 0.86 0.75 0.84 0.84 0.70
yes 0.79 0.87 0.89 0.80 0.88 0.73 0.56

BSDS500

p hGB no 0.45 0.54 0.63 0.76 0.81 2.30 1.83
yes 0.45 0.55 0.63 0.77 0.81 2.28 1.80

p GB no 0.43 0.53 0.68 0.75 0.80 2.33 1.91
yes 0.46 0.58 0.68 0.75 0.82 2.19 1.74

cp hGB no 0.50 0.60 0.68 0.77 0.83 2.08 1.65
yes 0.51 0.59 0.68 0.78 0.83 2.03 1.66

cp GB no 0.45 0.56 0.68 0.75 0.81 2.17 1.80
yes 0.50 0.60 0.69 0.78 0.83 2.06 1.63

Table C.2: Performances of our method and the method GB [12] using three different measures: Ground-
truth Covering (GT Covering) , Variation Information and Probabilistic Rand Index. In both case, the input
images are and are not submitted to smoothing operation. The presented scores are optimal considering a
constant scale parameter for the whole dataset (ODS) and a scale parameter varying for each image (OIS).
See [3] for more details on the evaluation method.
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Figure B.15: Evaluation of segmentation algorithms on four databases using GT region covering for optimal
scale for the entire dataset (ODS) in order to understand the their behaviour when the images are submitted
to smoothing operations (σ varying from 0.0 to 0.5).
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Figure B.16: Evaluation of segmentation algorithms on four databases using GT region covering for optimal
scale for each image (OIS) in order to understand the their behaviour when the images are submitted to
smoothing operations (σ varying from 0.0 to 0.5).
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