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ABSTRACT: 

In this paper, we present a method for superimposition (i.e. registration) of eye fundus images from 

persons with diabetes screened over many years for Diabetic Retinopathy. The method is fully 

automatic and robust to camera changes and colour variations across the images both in space and 

time. All the stages of the process are designed for longitudinal analysis of cohort public health 

databases. The method relies on a model correcting two radial distortions and an affine transformation 

between pairs of images which is robustly fitted on salient points. Each stage involves linear estimators 

followed by non-linear optimisation. The model of image warping is also invertible for fast 

computation. The method has been validated 1. on a simulated montage with an average error of 0.81 

pixels for one distortion (respectively 1.08 pixels for two distortions) and a standard deviation of 1.36 

pixels (resp. 3.09) in images of 1568 x 2352 pixels in both directions and 2 on public health databases 

with 69 patients with high quality images (with 271 pairs and 268 pairs) with a success rates of 96 % 

and 97 % and 5 patients (with 20 pairs) with low quality images with a success rate of 100%. 

Keywords: eye fundus images, image registration, radial distortion, invertible model, longitudinal 

analysis, public health databases 

1 Introduction 
Diabetic Retinopathy (DR) is one of the major causes of visual impairment in the world and therefore 

represents a major public health challenge. It is a complication of both types of diabetes mellitus, which 

affects the light perception part of the eye (retina). DR may lead to the development of sight 

threatening lesions and without adequate and timely treatment the patient could lose their sight and 

eventually become blind (International Diabetes Federation and The Fred Hollows Foundation, 2015) 

(Scanlon et al., 2009). DR is often asymptomatic until an advanced stage, thereby screening to detect 

sight threatening DR at an early stage is essential which has resulted in the introduction of DR 

Screening services in many countries such as UK (Harding et al., 2003), USA, the Netherlands, France, 

etc. The commonest screening method involves acquiring eye fundus images on an annual or biennial 

basis. 

As these DR screening programs have been in existence over several years, performing longitudinal 

analysis of the eye fundus images of the same patient is now possible. However, in order to accurately 

compare the evolution of DR over time, the images must be perfectly super-imposed. 

The direct superimposition of two images of the same patient never gives good results (see Fig. 1). 

Indeed, for two separate photographic-eye examinations the patient is never in exactly in same 
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position and also the camera may differ. Therefore, the super-imposition method has to take into 

account the different causes of the deformation such as: 

 The position of the patient: by taking into account rotation, translation and scaling. 

 The change of the camera: by using scaling. 

 The projection of a 3D scene assimilated to a sphere (the retina of the eye) onto the 2D plane of 
the sensor of the camera: by using a radial correction process. 

 The radial deformation due to the optics of the camera: by using a radial correction process. 

 The colour variability between images due to the light intensity and sensor. 

To perform a superimposition - also named registration – two stages are regarded as necessary: a 

model of deformation and a matching criterion to fit the model. There are several models in existence 

to allow super-imposition between pairs of eye fundus images. The earliest methods relied on 

fluorescein images and based on a composition of translation, rotation and scaling - i.e. an affine 

transformation model (Zana and Klein, 1999a, b). The bifurcations of the vessels were used to match 

the points and fit the model. Another matching criterion consists in the minimisation of image intensity 

differences (Adal et al., 2014; Cideciyan, 1995; Matsopoulos et al., 1999; Ritter et al., 1999). 

Other methods are based on similarity (i.e. a rotation and a translation) and an elastic model of 

deformation (Fang and Tang, 2006; You et al., 2005). 

More recently, it has been shown that a quadratic model gives better registration results (Adal et al., 

2014; Can et al., 2002; Chanwimaluang et al., 2006; Stewart et al., 2003). The difficulty inherent in 

these models is to estimate their parameters. To overcome such a limitation, a radial distortion model 

has been introduced by Lee et al. (2007) and compared to previous methods in Lee et al. (2010). It 

consists of adding a radial model to the affine transformation in order to correct the effects of radial 

distortion due to the geometry of the camera and of the eye. However, the superimposition of eye 

fundus images is performed with images acquired by the same camera during the same examination. 

However, superimposing images acquired at different times by different cameras in large databases 

still remains a challenging problem. 

In this paper, our contribution has been to address this challenge by presenting a robust 

superimposition method designed for longitudinal screening of large public health image based 

databases.  

Therefore, after presenting a complete method to superimpose pairs of images, we will present a 

quality check of the registration and finally, validation of our methodology using different patient 

databases. 

 



 

2 Methods 
During a photographic eye examination, eye fundus (retina) two images of both eyes are acquired i.e. 

a 45 degree “nasal” and “macular” field (Fig. 3). The aim of this study was to develop robust algorithms 

for superimposition of images in the same positions while being captured during two different exams 

and often with different cameras and resolutions. Our aim was not to develop large mosaics of eye 

fundus images acquired during the same examination with the same camera (Chanwimaluang et al., 

2006), but to propose a robust method for longitudinal studies involving large databases with images 

acquired in heterogeneous conditions. Therefore, we have paid particular attention to the 

development of robust and fast algorithms for longitudinal screening. 

Our method is based on a pre-processing stage consisting of (1) normalising the colour of the eye 

fundus image (Noyel et al., 2015), (2) the extraction of characteristic points in pairs of images, (3) a 

matching procedure, (4) the use of a model correcting radial distortion of both images and (5) the 

estimation of the parameters of the model by a robust optimisation. The method is validated (6) on a 

simulated montage and the superimpositions of the image of the database are verified (7). 

A schematic description of the study is represented in Fig. 2. The different stages have been designed 

to provide efficient solutions to the superimposition of images acquired for practical screening. 

Between two examinations, the camera might have been changed producing differences in colour, 

resolution and radial distortion between images. Moreover, we will show that our method is efficient 

both on high quality images acquired following pupillary dilation and low quality images without 

dilatation of the pupils prior to photography. 

(a) Naive superimposition of images (b) Perfect superimposition of images by 
using a model 



 

 

Fig. 3 Macular and nasal view of an eye fundus acquired without pupil dilation and in harsh conditions 

2.1 Extraction of characteristic points 
The brightness of eye fundus images is non-uniform due to various reasons: disease such as cataract, 

motion of the patient, acquisition conditions and differences in absorptions of the light in the eye 

(Walter, 2003; Walter and Klein, 2005). Some parts of the images appear as bright while others are 

dark. Moreover, the possible change of the eye fundus camera between two separate examinations 

may contribute to a change in the colour between two images of the same eye (Fig. 4). 
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We have used a method (Noyel et al., 2015) to correct the variations of colour contrast between the 

images. Results can be seen in Fig. 4. 

This is then followed by the extraction of several salient points (Fig. 5) using the Scale-Invariant Feature 

Transform - SIFT - algorithm (Lowe, 2004; Vedaldi and Fulkerson, 2008). The SIFT algorithm has been 

designed to be robust to the variation of observation angle and to some variations in lightning. Briefly 

SIFT consists of extracting key points based on a multiscale analysis. Then series of descriptors are 

computed for each salient point. These descriptors are used for point matching 

A similar detector, the SURF (Speeded Up Robust Features) detector, was previously used for eye 

fundus image superimposition (Cattin et al., 2006). 

 

  

(a) Acquisition in year 𝑡 (b) Acquisition in year 𝑡 + 1.5 

(c) Acquisition in year 𝑡 after colour 
correction 

(d) Acquisition in year 𝑡 + 1.5 after colour 
correction 



2.2 Point matching 
As point matching with Lowe’s method (Lowe, 2004) is not robust enough to estimate the rotation on 

our database, we have created a three-step procedure: 

(a) A first matching by Lowe’s method followed by a refined selection of the correspondence 
vectors according to their size and orientation 

(b) An estimate of the homography using the algorithm of section 2.4.1. The position of the key 
points is modified according to the homography. 

(c) Step (a) is applied a second time using the transformed points. 

After this first matching, one image is put on the right while the other on the left after resizing and 

padding to have the same size (Fig. 5). As some points are incorrectly matched, some correspondences 

vectors 𝑣 between matched points are inconsistent. A two-step selection is performed using their 

lengths 𝑙 and orientations 𝜃: 

1) only the vectors 𝑣 whose length 𝑙𝑣 and orientation 𝜃𝑣 is in the interval {|𝑙𝑣 − 𝐸{𝑙𝑣}| ≤

𝜎{𝑙𝑣} 𝑎𝑛𝑑 |𝜃𝑣 − 𝐸{𝜃𝑣}| ≤ 5° }. 𝐸{} is the mean and 𝜎{} the standard deviation of a variable. 

2) Among the selected vectors 𝑣̃, only the vectors whose length 𝑙𝑣̃ and orientation 𝜃𝑣̃ is in the 

interval {|𝑙𝑣̃ − 𝐸{𝑙𝑣̃}| ≤ max(3𝜎{𝑙𝑣̃}, 5% × 𝑦𝑠𝑖𝑧𝑒)  𝑎𝑛𝑑 |𝜃𝑣̃ − 𝐸{𝜃𝑣̃}| ≤ max (5°, 𝜎{𝜃𝑣̃})} 

𝑦𝑠𝑖𝑧𝑒 is the number of lines in the image. 

After matching the points, a model of transformation is estimated. 

(a) Initial matching 

(b) Matching after first simplification (in red and in blue) and after second simplification (in blue) 

  



2.3 Model of deformation 
The model of deformation ensures a correct superimposition between the images. Several 

deformations are taken into account: (i) the difference in terms of positions of the eye between a pair 

of images will be corrected by an affine transformation (i.e. and homography) and (ii) the radial 

deformations due to the projection of the eye into the camera and due to the optics of the camera 

(Hartley and Zisserman, 2004) will be corrected using a radial transformation. 

Lee et al. (2007, 2008) have proposed a model coupling a unique radial transformation for both images 

and a homography. Lee et al. (2010) have made the comparison with two other second order models. 

In this paper, as we were interested in analysing images of patients acquired during exams with an 

approximate one year interval, we extended their approach by defining a model with one homography 

𝐻 and two radial distortions, i.e. one for each image. Indeed, the camera may have changed between 

screening exams on a large number of patients. 

The affine homography 𝐻 is defined as:  

𝐻 = [
𝐴 𝑇

𝑂𝑇 1
] = [

𝑎11 𝑎12 𝑡𝑥

𝑎21 𝑎22 𝑡𝑦

0 0 1

] (1) 

𝐴 = [
𝑎11 𝑎12

𝑎21 𝑎22
] is an affine transformation, ∀𝑖, 𝑗 ∈ [1 … 2], 𝑎𝑖𝑗 ∈ ℝ, and 𝑇 = [

𝑡𝑥

𝑡𝑦
] , 𝑡𝑥 , 𝑡𝑦 ∈ ℝ, is a 

translation. 

The radial distortion due the background of the sphere surface of the eye and of the radial distortion 

of the camera was modelled by a division model (Fitzgibbon, 2001) in the following way: 

𝑃̅𝑑 = (1 + 𝑘(𝑟𝑑)2). 𝑃̅𝑢 (2) 

with: 

 𝑃𝑑 ∈ ℝ2

 𝑃𝑢 ∈ ℝ2

 𝑃̅𝑑 ∈ ℝ2 𝑐 𝑃̅𝑑 = 𝑃𝑑 − 𝑐

 𝑃̅𝑢 ∈ ℝ2 𝑐 𝑃̅𝑢 = 𝑃𝑢 − 𝑐

 𝑟𝑑 = ‖𝑃𝑑 − 𝑐‖ = ‖𝑃̅𝑑‖  ∈ ℝ 𝑃𝑑

𝑐

 𝑘 [−0.2 ; 0.2] (1 + ‖𝑐‖)2

The model was named division model because the distorted coordinates were divided by the radial 

distortion 𝑃̅𝑑 (1 + 𝑘(𝑟𝑑)2)⁄ = 𝑃̅𝑢 . 

The distorted image corresponds to the original image and the undistorted image is the image after 

the correction of radial distortion.  

Given 𝑃1
𝑑 and 𝑃2

𝑑 the coordinates of the points in the original (i.e. deformed) images 1 and 2, 𝑘1 and 

𝑘2 the distortion parameters, 𝑐1and 𝑐2 the image centres, the model mapping image 1 into image 2 is 

defined as follows: 

𝑃̅2
𝑑

(1 + 𝑘1(𝑟2
𝑑)2)

+ 𝑐2 = 𝐻 [
𝑃̅1

𝑑

(1 + 𝑘2(𝑟1
𝑑)2)

+ 𝑐1] (3)



If the camera used to acquire both images is the same, the distortion parameters are equal 𝑘1 = 𝑘2, 

and the model corresponds to the model of Lee et al. (2007). 

The model is estimated after having extracted and matched the points in the pair of original images 

(target and reference). Therefore, the radial distortion correction is performed after the detection of 

the feature correspondence points in the original (i.e. distorted) image. It has been programmed in the 

subsequent way. 

2.4 Estimation of the model parameters 
The parameters of the model are estimated by a different method of Lee et al. (2007). Indeed, the 

radial distortion is estimated after the homography without needing any estimation by a preliminary 

calibration of the camera (Hartley and Zisserman, 2004). Moreover, we have conceived linear 

initialisers at each step of the optimisation of the model (Fig. 6). 

 

 

2.4.1 Estimation of the homography 

An affine homography can be decomposed according to the following scheme (Hartley and Zisserman, 

2004): 

𝐴 = 𝑅(𝜃)𝑅(−𝜙)𝐷𝑅(𝜙) (4)

𝑅(𝜃) and 𝑅(ϕ) are rotation matrices of angle 𝜃 and 𝜙 respectively and 𝐷 is a diagonal matrix: 

𝐷 = (
𝜆1 0
0 𝜆2

) 
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𝜆1 and 𝜆2 are two scaling values. The matrix 𝐴 is a composition of a rotation by 𝜙, a scaling by 

𝜆1(respectively 𝜆2) in 𝑥 (respectively 𝑦) direction, a rotation by – 𝜙 and then another rotation by 𝜃. 

The decomposition is obtained using the Singular Value Decomposition (SVD) method. 

The estimation of an homography is basically performed using the “gold standard” algorithm of Hartley 

and Zisserman (2004). However, as there is also a radial distortion in the image, the deformation is not 

entirely modelled by a homography. Therefore, some homographies must be discarded. In particular, 

those with a scaling factor on the 𝑥 and 𝑦 axis with a relative difference greater than 1%. For this 

purpose, several estimates (until 50) using the gold standard algorithm are performed if the relative 

difference between the scaling factors is greater than 1%. If the value of 1% is never reached, then the 

homography with the smallest relative difference between the scaling factors is kept. 

2.4.2 Estimation of the model with one radial distortion 

When the camera is the same for both images, only one radial distortion needs to be estimated.  

In the flowchart of Fig. 6, the convergence criteria becomes 

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = [𝑙𝑒𝑟𝑟(𝑛) < 𝜀] 𝑎𝑛𝑑 [
𝑙𝑒𝑟𝑟(𝑛) − 𝑙𝑒𝑟𝑟(𝑛 − 1)

𝑙𝑒𝑟𝑟(𝑛 − 1)
< 𝑡𝑜𝑙]  𝑎𝑛𝑑 [𝑛 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟]  

𝑙𝑒𝑟𝑟  is the list of errors at each iteration 𝑛, 𝜀 = 0.01 is the tolerance on the error, 𝑡𝑜𝑙 = 0.01 is a 

tolerance on the relative error between iterations and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 100 is the maximum number of 

iterations. 

Linear estimators are used at each step of the parameter estimation. The final optimisation is 

performed with a linear estimator followed by a non-linear optimiser such as Levenberg-Marquardt 

(Bonnans et al., 2006; More, 1977). 

We will now present the linear estimators. 

2.4.2.1 Linear estimator of the radial distortion parameter k 

Using equations (1) and (3), the following equation is obtained: 

𝑃̅2
𝑑

(1 + 𝑘(𝑟2
𝑑)2)

+ 𝑐2 = 𝐴 [
𝑃̅1

𝑑

(1 + 𝑘(𝑟1
𝑑)2)

+ 𝑐1] + 𝑇 (5)

𝐴 is the matrix of the affine transformation and 𝑇 is the vector of translation. 

Equation (5) implies that: 

𝑘2[(𝑟1
𝑑𝑟2

𝑑)2. 𝑑] + 𝑘 [(𝑟1
𝑑2

+ 𝑟2
𝑑2

) . 𝑑 + 𝑟1
𝑑2

. 𝑃2 − 𝑟2
𝑑 2

. 𝐴𝑃1] = −[𝑃2 + 𝑑 − 𝐴𝑃1] (6)

with 𝑑 = 𝑐2 − 𝐴𝑐1 − 𝑇. 

Equation (6) is a linear equation in 𝑘 when 𝐻 (i.e. 𝐴 and 𝑇) is known. 𝑘 is determined using least squares 

algorithm. 

2.4.2.2 Linear estimator of the homography H and of the radial distortion parameter k 

Using equation (5) the following equation is determined: 

𝑘2𝑑[(𝑟1
𝑑𝑟2

𝑑)2] +𝑘𝑑 [𝑟1
𝑑 2

+ 𝑟2
𝑑2

] +𝑘 [𝑟1
𝑑 2

. 𝑃2] −𝑘𝐴 [𝑟2
𝑑2

. 𝑃1] −𝐴[𝑃1] +𝑑[1] = −[𝑃2]

𝑘2𝑑[𝑀1] +𝑘𝑑[𝑀2] + 𝑘[𝑀3] −𝑘𝐴[𝑀4] −𝐴[𝑀5] +𝑑[𝑀6] = −[𝑀7]
 (7)

Equation (7) is a linear equation with variables 𝑀𝑖. 𝑘 and 𝐻 (with the intermediate of 𝐴 and 𝑑) are 

determined using least squares estimate. 



2.4.3 Estimation of the model with two radial distortions 

When a different camera is used for the pair of images, two radial distortions must be estimated.  

In the flowchart of Fig. 6, the convergence criteria becomes: 

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = [𝑙𝑒𝑟𝑟(𝑛) < 𝜀] 𝑎𝑛𝑑 [
𝑙𝑒𝑟𝑟(𝑛)−𝑙𝑒𝑟𝑟(𝑛−1)

𝑙𝑒𝑟𝑟(𝑛−1)
< 𝑡𝑜𝑙]  𝑎𝑛𝑑 [𝑘1𝑎𝑛𝑑 𝑘2 ∈ [−0.2 ; 0.2]]  

 𝑎𝑛𝑑 [𝑛 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟] 

The same parameters 𝑙𝑒𝑟𝑟, 𝑛, 𝜀 = 0.01, 𝑡𝑜𝑙 = 0.01, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 100 are used for the estimation of 

both distortions. 

For each estimate, the radial distortion parameters must be in the interval [−0.2 ; 0.2]. If not, the 

algorithms stop and the model estimate with the smallest error is selected. 

As previously, linear estimators are used at each step of the parameter estimation. The final 

optimisation is followed by a non-linear optimiser such as trust region method (Bonnans et al., 2006; 

Moré, 1983) with bounds [−0.2 ; 0.2] for the radial distortion parameters.  

We will now present the linear estimators. 

2.4.3.1 Linear estimator of the radial distortion parameters 𝑘1 and 𝑘2 

Equation (3) gives the following equation: 

𝑃̅2
𝑑

(1 + 𝑘2(𝑟2
𝑑)2)

+ 𝑐2 = 𝐴 [
𝑃̅1

𝑑

(1 + 𝑘1(𝑟1
𝑑)2)

+ 𝑐1] + 𝑇 (8)

Equation (8) implies that: 

𝑘1𝑘2[(𝑟1
𝑑𝑟2

𝑑)2. 𝑑] + 𝑘1 [𝑟1
𝑑 2

. 𝑑 + 𝑟1
𝑑 2

. 𝑃2] + 𝑘2 [𝑟2
𝑑2

. 𝑑 − 𝑟2
𝑑2

. 𝐴𝑃1] = −[𝑃2 + 𝑑 − 𝐴𝑃1] (9)

with 𝑑 = 𝑐2 − 𝐴𝑐1 − 𝑇. 

Equation (9) is a linear equation in 𝑘1 and 𝑘2 when 𝐻 (composed of 𝐴 and 𝑑) is known. 𝑘1 and 𝑘2 are 

determined using least squares method. 

2.4.3.2 Linear estimator of the radial distortion parameters 𝑘1 and 𝑘2 and the homography 

From equation (3), the following one is obtained: 

𝑘1𝑘2𝑑[(𝑟1
𝑑𝑟2

𝑑)2] +𝑘1𝑑 [𝑟1
𝑑2

] +𝑘1 [𝑟1
𝑑 2

. 𝑃2] +𝑘2𝑑 [𝑟2
𝑑 2

] −𝑘2𝐴 [𝑟2
𝑑2

. 𝑃1] −𝐴[𝑃1] +𝑑[1] =  −[𝑃2]

𝑘1𝑘2𝑑[𝑀1] +𝑘1𝑑[𝑀2] +𝑘1[𝑀3] +𝑘2𝑑[𝑀4] −𝑘2𝐴[𝑀5] −𝐴[𝑀6] + 𝑑[𝑀7] = −[𝑀8]
(10)

Equation (10) is a linear equation with variables 𝑀𝑖. 𝑘1, 𝑘2 and 𝐻 (with the intermediate of 𝐴 and 𝑑) 

are determined using least squares algorithm. 

2.5 Image warping 
In order to analyse a large database, a fast algorithm of image warping is needed. Forward warping is 

time consuming and so we therefore use inverse warping. However, the registration model needs to 

be invertible (Wolberg, 1990). 

The radial distortion is modelled in equation (3) by a division model (Fitzgibbon, 2001). Wonpil (2003) 

and Park et al. (2009) have computed an approximate transformation for a standard distortion 

method. Here, we compute the inversion of the division model. 



Given 𝑟𝑢 = ‖𝑃𝑢 − 𝑐‖ = ‖𝑃̅𝑢‖  ∈ ℝ, the distance of the undistorted coordinates 𝑃𝑐 from the optic 

centre 𝑐, using equation (3), we have: 

𝑟𝑑 = (1 + 𝑘(𝑟𝑑)2). 𝑟𝑢
(11)

Equations (3) and (11), implies that: 

𝑃̅𝑢 =
𝑟𝑢

𝑟𝑑 𝑃̅𝑑 = 𝑊−1(𝑃̅𝑑) (12)

In order to use invert warping, it is necessary to determine 𝑊−1the undistorted points 𝑃𝑢  knowing 

𝑃𝑑. From equation (12), it is equivalent to determine 𝑟𝑢  knowing 𝑟𝑑 . 

Equation (11) is equivalent to: 𝑘𝑟𝑢𝑟𝑑 2
− 𝑟𝑑 + 𝑟𝑢 = 0, which is a second order equation in 𝑟𝑑.  

Its discriminant is equal to: 𝛥 = 1 − 4𝑘𝑟𝑢 2
 with 𝛥 > 0. Its roots are 𝑟𝑑 =

1±√1−4𝑘𝑟𝑢2

2𝑘𝑟𝑢 . 

The inverse transformation 𝑊−1 corresponds to the root: 

rd = W−1(ru) =
1 + √1 − 4kru 2

2kru
(13)

Therefore, the transformation used is invertible. An invertible image warping method compared to a 

non-invertible method reduces the time from about 10 minutes to a few seconds on a standard 

computer using Matlab (16Go RAM, processor Intel i7-4702HQ, 2.20GHz). 

In Fig. 2 and in Fig. 7, the results of superimposition with the radial distortion model are shown. One 

can notice the good quality of the superimposition. In the next section we will evaluate the quality of 

superimposition. 

 

Fig. 7 Superimposition of a pair of eye fundus images with correction of two radial distortions 

3 Experimental 
The quality of image superimposition was evaluated through a simulated montage and using a 

database of patients. This latest validation is important as our method has been designed to analyse 

large public health image databases. 



3.1 Validation by a simulated montage 
We have created a montage by superimposing two eye fundus images and deforming them according 

to the methods presented by Lee et al. (2010). We have taken real images registered with an overlap 

percentage of 80% corresponding to the case that we have in a longitudinal database. No modification 

of colour was done to the images. After adding equally spaced landmarks, we have cut and deformed 

the images according to the model of Lee et al. (2010).  

An affine transformation has been used, with rotation scaling and shearing. Then the image has been 

modified by a projective distortion. The radius of the eye ball has been approximated by the ratio 

between the radius of the disk of the image divided by the observation angle of the camera (45 

degrees). 

Then we have registered the images and measured the error between the landmarks after registration 

and their true position. With a single distortion, we have obtained a mean registration error of 0.81 

pixels (standard deviation 1.36 pixels) in images of size 1568 x 2352 pixels (Fig. 8) with vessels of 

maximum diameter greater than of 30 pixels. The relative error respective to the image is 0.05%, and 

respective to the vessels is 2.7 %. With two distortions, the mean registration error is of 1.08 pixels 

(standard deviation 3.09 pixels) and the relative error is 0.07 % respective to the image and 3.6 % 

respective to the vessels. The error is mainly located on the external part of the superimposed image. 

Such results demonstrate that the method gives a superimposition without noticeable difference. 

Therefore, this approach is suitable to perform an analysis in a large database. 

 

Fig. 8 Validation of the superimposition model by registering a pair of images previously deformed. 

The green points corresponds to the points of the reference image and the blue points to the points 

of the current image. The arrows represent the registration errors between the two images. 

  



3.2 Validation with a public health database 
In order to assess the evolution of Diabetic Retinopathy several screening programs in the world are 

in existence. Among them, in the United Kingdom, in Wales, the Diabetic Eye Screening Wales (DESW) 

has developed a program to screen the whole population with diabetes over the age of 12 years old. 

The programme has been in existence for just over 10 years at a national level and several thousands 

of patients have been screened annually for five or more years (Thomas et al., 2012). 

We have performed trials of a database of 69 patients coming from the DESW. For each patient we 

have kept two series of two examinations with an approximate screening interval of one year between 

the examination events. For each event exam, four images are available, two positions (nasal and 

macular) for each eye. There were two series of images, with the first series are made up of 271 pairs 

of sufficient image quality and the second series included of 268 pairs. For each position, we have 

performed the superimposition of the images between the two different examinations. For all pairs of 

images the superimposition has been visually checked.  

In first series of 271 pairs, 2 pairs have small differences in the external part of the superimposition. 

These differences are of the size of the diameter of a vessel. When the percentage of overlapping 

surface is low (around 30 %) compared to the surface of the superimposed image, we have noticed 

differences of the size of 1 vessel on 8 pairs of images. Therefore, the superimposition was successful 

for 96 % of the pairs and 99% if we consider the pairs in the same position.  

In the second series of 268 pairs of images acquired a few years later, there are 6 images with a small 

difference (i.e. less than 1 vessel diameter). The superimposition was successful for 98 % of the pairs. 

However, in these images the central part was perfectly superimposed. We have developed another 

algorithm using, in addition to the matched points, the distance between the retinal vessels. This 

algorithm similar to those described by Can et al. (2002) and Lee et al. (2010) solves the registration 

problem for the images with a small overlapping area. These findings will be presented in a future 

paper. 

In the pairs with a sufficient overlap, no noticeable difference has been perceived between them. This 

means that our method is suitable to be applied to analyse large databases. 

As a second validation test, we have performed superimposition of images of low/poor quality for 5 

patients. The acquisitions conditions were significantly harsher compared to the high quality images 

and the quality of images was quite heterogeneous in part due to the lack of pupillary dilatation prior 

to photography. The quality of image superimposition has been checked for the 20 pairs of images and 

in each case there was no noticeable difference in the superimposition, even on the border of the 

images. 



 

Fig. 9 Examples of superimposition 

 

4 Discussion 
A robust method for the superimposition of fundus (retinal) images coming from a large database has 

been presented. It corrects the errors coming from the different position of the patient during image 

acquisition, the change in the camera employed (resolution and optical lenses), the projection of a 3D 

scene onto a plane and the variability of colour between images. The novelty of our method is to deal 

with eye fundus images acquired with different cameras (i.e. different resolutions and different lenses) 

and to be robust to strong colour variations between the images (Noyel et al., 2015). Our method has 

been designed to analyse large cohorts of patients’ eye fundus images (i.e. examinations across time). 

Therefore, it goes further than the previous approaches (Adal et al., 2014; Can et al., 2002; Lee et al., 

2010). 

In our method, the registration model takes into account two radial distortions (one for each image) 

and a rotation, a translation and two scalings. The registration model is estimated based on images 

after colour stabilisation (Noyel et al., 2015). SIFT points are extracted and matched. Using these 

 

 



points, the registration model is estimated by an iterative process of numerical optimisation. For each 

step, the parameters are estimated by linear estimators followed by a nonlinear estimation process. 

The image warping is performed using a division model which is invertible and fast. 

The accuracy of the superimposition method has been validated on a simulation montage. The 

superimposition error is in average 0.81 pixels for one distortion (respectively 1.08 for two distortions), 

the standard deviation is 1.36 pixels (resp. 3.09). The relative error respective to the image is 0.05% 

(resp. 0.07%), and respective to the vessels is 2.7 % (resp. 3.6%). 

In order to assess the efficiency of our method for public health purposes, the superimposition method 

has been validated on public health databases with high quality images of 69 patients (two series 

including 271 pairs and 268 different pairs) and 5 patients with low quality images. In each case, there 

is no noticeable difference in the superimposed images if the overlap is sufficient (more than 50 % 

about). The superposition is successful in 96%, 97% and 100 % of the cases respectively. Moreover, the 

interest of the superimposition is to compare the evolutions in a public health database over many 

years. This is only useful when the image overlap is large enough. Therefore, our method is well suited 

for this purpose. 

For images with a smaller overlap (e.g. 30% of the surface of the mosaic image), the superimposition 

may present small differences on the external part. To address this issue, we have developed another 

algorithm using in addition to the matched points, the distance between the vessels. It will be 

presented in a future paper. 

In addition, our method could be useful for automatic detection of referral patients due to Diabetic 

Retinopathy (Abramoff et al., 2013; Decencière et al., 2013; Fleming et al., 2010; Quellec et al., 2016). 

5 Conclusions 
We have therefore successfully achieved a new method to superimpose eye fundus images coming 

from large public health databases. In addition to the previously existing methods, ours has been 

designed to deal with changes in terms of camera, lens, image resolution and colour between two 

exams of the same patient. 

The method presented consists of fitting a registration model composed of a homography and two 

radial distortions on salient points extracted in images after colour stabilisation. The method is easy to 

use and does not require to extract intrinsic characteristics of the image such as the vessels or their 

branch points. 

All the stages of the method have been designed to be robust and fast on heterogeneous databases. 

In particular, the equation of linear estimators of the parameters have been provided and an invertible 

model has been used to warp the images. 

Our method has been validated on a montage and on public health databases of eye fundus exams of 

patients. Some patients had high quality images while other had images of lower quality due to 

differences in the conditions of acquisition. However, the results show that there is no noticeable 

difference between the images from two examinations with the eye in the same position (nasal or 

macular). The superimposition is correct in more than 96% of the cases. 

In the future, we plan to develop an algorithm to perfectly superimpose eye fundus images acquired 

in two different positions with a small overlap and with different cameras. 



6 Vitae 
Guillaume Noyel is a research director at the International Prevention Research Institute where he is 

leading a project in Diabetic Retinopathy. He obtained a MSc from CPE-Lyon, France. He received his 

PhD in Mathematical Morphology from Mines ParisTech, Paris, in 2008 before working as a researcher 

in image processing at the Michelin Research Centre for 6 years. His principal fields of expertise are 

colour and multivariate image analysis, mathematical morphology, 3D image reconstruction for 

biomedical and industrial applications. He has been published in several journals and has obtained 

several international patents (EU, USA, China, and Japan) in these fields.  

Rebecca Thomas is a postdoc diabetic retinopathy research officer within the Welsh Government 

funded diabetes research unit, Cymru at Swansea University, medical school. Prior to her PhD she was 

a senior retinal grader at the diabetic retinopathy screening service for Wales. She obtained her PhD 

from Cardiff University in 2015 with the topic being the epidemiology of diabetic retinopathy and an 

assessment of screening intervals.  Her thesis has resulted in several high impact publications and 

further research grants. She has also been involved in the set up and development of screening services 

in Countries such as Mauritius and Trinidad. 

Gavin Bhakta is the IT Systems Manager for Diabetic Eye Screening Wales (DESW), a national screening 

service which is part of Public Health Wales. He holds a BSc (Hons.) Computer Science and is the lead 

on the development of all communication and information systems for the service. Working 

collaboratively with the Diabetes Research Unit Cymru, he has contributed to the research programme 

by providing data which has been used in several significant publications. He has also been both lead 

and co-author on abstracts and poster presentations, focussing on operational planning and modelling. 

Andrew Crowder is the Head of Programme for the Diabetic Eye Screening Wales (DESW). He qualified 

as a Biomedical Scientist in Haematology in Liverpool and moved to the NHS laboratories in Cardiff in 

1985, after gaining a Fellowship of the Institute of Biomedical Science. After adding a Diploma in 

Healthcare Management, he moved into general NHS management in 2000, managing the Laboratory 

Medicine and Genetics Directorates. In 2011 he joined DESW and during his tenure has promoted a 

much higher level of involvement of DESW in research and has been personally involved in a number 

of studies.  

Professor Owens CBE MD FRCP, Emeritus Professor of Diabetes at Cardiff University, and Professor of 

Diabetes Swansea University’s College of Medicine. He has been involved in the research and the 

management of diabetes for more than 35years. He introduced the first community wide National 

Diabetic Retinopathy Screening Service for Wales in 2002. He is involved in introducing Retinopathy 

Screening services in other countries. He has collaborations with iPRI, Lyon. He is a member of the 

Association of Physicians of Great Britain and Ireland and is a Fellow of the Royal College of Physicians. 

He has published about 450 articles. 

Professor Peter Boyle is BSc, PhD and DSc (Med) from the University of Glasgow, Faculty of Medicine. 

He is the president of the International Prevention Research Institute. He is an epidemiologist and an 

internationally cancer prevention advocate (The EU Code against Cancer, the European Tobacco 

Products Directive or the Globalisation of Cancer). He has published widely in the scientific and medical 

literature, including books and cancer atlases. He is a past Director of the WHO International Agency 

for Research on Cancer. He was elected Honorary Member of the Academy of Science of Hungary and 

a Member of the European Cancer Academy.  



7 Acknowledgements 

7.1 Conflict of interest 
No conflict of interest. 

7.2 Funding sources 
This research did not receive any specific grant from funding agencies in the public, commercial, or 

not-for-profit sectors. 

  



References 
Abramoff, M.D., Folk, J.C., Han, D.P., Walker, J.D., Williams, D.F., Russell, S.R., Massin, P., Cochener, B., 
Gain, P., Tang, L., Lamard, M., Moga, D.C., Quellec, G., Niemeijer, M., 2013. Automated analysis of 
retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol 131, 351-357. 
Adal, K.M., Ensing, R.M., Couvert, R., van Etten, P., Martinez, J.P., Vermeer, K.A., van Vliet, L.J., 2014. 
A Hierarchical Coarse-to-Fine Approach for Fundus Image Registration, In: Springer (Ed.), Biomedical 
image registration, London. 
Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizabal, C.A., 2006. Numerical optimization. 
Theoretical and practical aspects, Berlin Heidelberg. 
Can, A., Stewart, C.V., Roysam, B., Tanenbaum, H.L., 2002. A feature-based, robust, hierarchical 
algorithm for registering pairs of images of the curved human retina. IEEE Transactions on Pattern 
Analysis and Machine Intelligence 24, 347-364. 
Cattin, P.C., Bay, H., Van Gool, L., Székely, G., 2006. Retina Mosaicing Using Local Features, In: Larsen, 
R., Nielsen, M., Sporring, J. (Eds.), Medical Image Computing and Computer-Assisted Intervention – 
MICCAI 2006. Springer Berlin Heidelberg, Zurich, Zwitserland, pp. 185-192. 
Chanwimaluang, T., Fan, G., Fransen, S.R., 2006. Hybrid retinal image registration. IEEE Trans Inf 
Technol Biomed 10, 129-142. 
Cideciyan, A.V., 1995. Registration of ocular fundus images: an algorithm using cross-correlation of 
triple invariant image descriptors. IEEE Engineering in Medicine and Biology Magazine 14, 52-58. 
Decencière, E., Cazuguel, G., Zhang, X., Thibault, G., Klein, J.C., Meyer, F., Marcotegui, B., Quellec, G., 
Lamard, M., Danno, R., Elie, D., Massin, P., Viktor, Z., Erginay, A., Laÿ, B., Chabouis, A., 2013. TeleOphta: 
Machine learning and image processing methods for teleophthalmology. Irbm 34, 196-203. 
Fang, B., Tang, Y.Y., 2006. Elastic registration for retinal images based on reconstructed vascular trees. 
IEEE Trans Biomed Eng 53, 1183-1187. 
Fitzgibbon, A.W., 2001. Simultaneous linear estimation of multiple view geometry and lens distortion. 
Computer Vision and Pattern Recognition. Proceedings of the 2001 IEEE Computer Society Conference 
1, I-125-I-132. 
Fleming, A.D., Goatman, K.A., Philip, S., Prescott, G.J., Sharp, P.F., Olson, J.A., 2010. Automated grading 
for diabetic retinopathy: a large-scale audit using arbitration by clinical experts. Br J Ophthalmol 94, 
1606-1610. 
Harding, S., Greenwood, R., Aldington, S., Gibson, J., Owens, D., Taylor, R., Kohner, E., Scanlon, P., 
Leese, G., 2003. Grading and disease management in national screening for diabetic retinopathy in 
England and Wales. Diabet Med 20, 965-971. 
Hartley, R., Zisserman, A., 2004. Multiple view geometry in computor vision. Cambridge University 
Press. 
Lee, S., Abràmoff, M.D., Reinhardt, J.M., 2007. Feature-based pairwise retinal image registration by 
radial distortion correction. Proc of SPIE 6512, 651220-651220-651210. 
Lee, S., Abràmoff, M.D., Reinhardt, J.M., 2008. Retinal image mosaicing using the radial distortion 
correction model. Proc. of SPIE 6914, 691435-691435-691439. 
Lee, S., Reinhardt, J.M., Cattin, P.C., Abramoff, M.D., 2010. Objective and expert-independent 
validation of retinal image registration algorithms by a projective imaging distortion model. Med Image 
Anal 14, 539-549. 
Lowe, D.G., 2004. Distinctive Image Features from Scale-Invariant Keypoints. 
Matsopoulos, G.K., Mouravliansky, N.A., Delibasis, K.K., Nikita, K.S., 1999. Automatic Retinal Image 
Registration Scheme Using Global Optimization Techniques. IEEE Transactions on Information 
Technology in Biomedicine 3, 47-60. 
More, J.J., 1977. Levenberg--Marquardt algorithm: implementation and theory, In: Watson, G.A. (Ed.), 
Numerical Analysis. Springer Verlag, United Kingdom, pp. 105-116. 
Moré, J.J., 1983. Recent Developments in Algorithms and Software for Trust Region Methods, In: 
Bachem, A., Korte, B., Grötsche, M. (Eds.), Mathematical Programming The State of the Art. Springer 
Berlin Heidelberg, pp. 258-287. 



Noyel, G., Jourlin, M., Thomas, R., Bhakta, G., Crowder, A., Owens, D., Boyle, P., 2015. Contrast 
enhancement of eye fundus images, IDF 2015, Vancouver. 
Park, J., Byun, S.-C., Lee, B.-U., 2009. Lens distortion correction using ideal image coordinates. IEEE 
Transactions on Consumer Electronics 55, 987-991. 
Quellec, G., Lamard, M., Erginay, A., Chabouis, A., Massin, P., Cochener, B., Cazuguel, G., 2016. 
Automatic detection of referral patients due to retinal pathologies through data mining. Med Image 
Anal 29, 47-64. 
Ritter, N., Owens, R., Cooper, J., Eikelboom, R.H., van Saarloos, P.P., 1999. Registration of Stereo and 
Temporal Images of the Retina. IEEE Trans Med Imaging 18, 404-418. 
Scanlon, P.H., Wilkinson, C.P., Aldington, S.J., Matthews, D.R., 2009. A practical manual of diabetic 
retinopathy management. Wiley Online Library. 
Stewart, C.V., Tsai, C.L., Roysam, B., 2003. The dual-bootstrap iterative closest point algorithm with 
application to retinal image registration. IEEE Trans Med Imaging 22, 1379-1394. 
Thomas, R.L., Dunstan, F., Luzio, S.D., Roy Chowdury, S., Hale, S.L., North, R.V., Gibbins, R.L., Owens, 
D.R., 2012. Incidence of diabetic retinopathy in people with type 2 diabetes mellitus attending the 
Diabetic Retinopathy Screening Service for Wales: retrospective analysis. BMJ 344, e874. 
Vedaldi, A., Fulkerson, B., 2008. VLFEat: An open and portable library of computor vision algorithms. 
http://www.vlfeat.org/. 
Walter, T., 2003. Application de la morphologie mathématique au diagnostic de la rétinopathie 
diabétique à partir d'images couleur. Ecole Nationale Supérieure des Mines de Paris, Paris, France. 
Walter, T., Klein, J.-C., 2005. Automatic Analysis of Color Fundus Photographs and Its Application to 
the Diagnosis of Diabetic Retinopathy, In: Suri, J.S., Wilson, D.L., Laxminarayan, S. (Eds.), Handbook of 
Biomedical Image Analysis, pp. 315-368. 
Wolberg, G., 1990. Digital image warping. Wiley-IEEE Computer Society Press. 
Wonpil, Y., 2003. An embedded camera lens distortion correction method for mobile computing 
applications. IEEE Transactions on Consumer Electronics 49, 894-901. 
You, X., Fang, B., He, Z., Tang, Y.Y., 2005. A Global-to-Local Matching Strategy for Registering Retinal 
Fundus Images, In: Marques, J.S., de la Blanca, N.P., Pina, P. (Eds.), Pattern Recognition and Image 
Analysis. Springer Berlin Heidelberg, China, pp. 259-267. 
Zana, F., Klein, J.C., 1999a. A Multimodal Registration Algorithm of Eye Fundus Images Using Vessels 
Detection and Hough Transform. IEEE Trans Med Imaging 18, 419-428. 
Zana, F., Klein, J.C., 1999b. A registration algorithm of eye fundus images using a Bayesian hough 
transform. IEEE Trans Med Imaging 18, 419-428. 

 

 

 


