
HAL Id: hal-01342921
https://hal.science/hal-01342921v1

Submitted on 7 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Opportunistic Composition of Human-Computer
Interactions in Ambient Spaces

Augustin Degas, Jean-Paul Arcangeli, Gaëlle Calvary, Joëlle Coutaz, Stéphane
Lavirotte, Jean-Yves Tigli, Sylvie Trouilhet

To cite this version:
Augustin Degas, Jean-Paul Arcangeli, Gaëlle Calvary, Joëlle Coutaz, Stéphane Lavirotte, et al.. Op-
portunistic Composition of Human-Computer Interactions in Ambient Spaces. Workshop on Smart
and Sustainable City, The Smart World Congress, Jul 2016, Toulouse, France. �hal-01342921�

https://hal.science/hal-01342921v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Opportunistic Composition of Human-Computer Interactions in Ambient Spaces

Augustin Degas, Jean-Paul Arcangeli,
Sylvie Trouilhet

IRIT, University of Toulouse, UPS,
France

 Firstname.Lastname@irit.fr

Gaëlle Calvary, Joëlle Coutaz
Univ. Grenoble Alpes, LIG, F-38000

Grenoble, France
CNRS, LIG, F-38000 Grenoble, France

Firstname.Lastname@imag.fr

Stéphane Lavirotte, Jean-Yves Tigli
University Nice Sophia Antipolis
CNRS (UMR 7271), I3S, Sophia

Antipolis, France
 Firstname.Lastname@unice.fr

Abstract—We propose an approach based on Adaptive
Multi-Agent Systems, using the principles of Meta-User
Interfaces and Opportunism in order to solve Human-
Computer Interaction Composition in Ambient interactive
spaces. The idea of this approach is to see every component as
an agent able to interact with other components to compose
autonomously in order to opportunistically suggest to users
smart compositions of his interactive ambient environment. We
present the notions of component, composition, and human-
computer interaction composition. We chose mainly two
aspects of the composition of human-computer interaction
which are the controllability and finality of the composition.
Finally, we illustrate our approach with use cases taken from
the neoCampus project.

Keywords—ubiquitous computing; ambient interactive
spaces; human-computer interaction; opportunistic component
composition; meta-user interface; adaptive multi-agent system
theory

I. INTRODUCTION

Ambient intelligence aims at offering an “intelligent”
space in everyday life to access numeric information and
services by giving each user suitable, natural and user-
friendly way to interact with their own interactive
environment. By “interactive environment”, we mean all
devices, every way of interacting with them, but also every
application (i.e. software) available to the user. The origin of
the concept of “Ambient intelligence” is from Mark Weiser's
idea called “Ubiquitous Computing” [22]. In a few words, it
is the simple idea of computer technology so profoundly
integrated into our daily life that we don't pay attention to it
anymore. To picture this, he used the example of literature
which is everywhere in our daily life (from street signs to
newspapers, books and more) and which we use every day.
An important point in this example shows that the limit
between the two worlds, that of literature and the human
world, is blurred, which means literature is naturally part of
our life. The other point is the important number of
occurrences of objects that belong to the world of literature,
(i.e. written words) in our daily life.

Ambient intelligence can be directly applied to Smart
Cities in which Cities around the world are becoming
connected cities and the use of Information and

Communication Technologies is growing every day.
Nowadays, interactive systems are everywhere, new sort of
devices and more devices are meant to be available in the
interactive environment of every user. Devices are meant to
appear and disappear in the interactive environment, because
the user is moving or is acting on this interactive
environment, because other users are moving or are acting
on this interactive environment, or because the interactive
environment is changing on his own (for example because
the batteries of the device are low).

In this constantly changing environment, human must be
maintained in the loop, be able to interact with the ambient
and interactive environment. This means that Human-
Computer Interaction (HCI) must evolve dynamically with
this changing environment (the ability of HCI to evolve with
the environment is called plasticity [18]). In other words,
HCI must be a smart assembly of what is currently available
in the interactive and ambient environment, which means we
need to be able to compose HCI from what is available, from
any available component, but this also means that this
composition must evolve with new availabilities and the
disappearances of old ones.

In this particular domain of HCI, we believe that the
users are not able to compose their interactive environment
every minute to deal with each change, and that the system
could assist them by suggesting a part or an entire
composition from what is available in the environment.

This paper introduces the HCI problem in the context of
ambient environment and presents a work in progress
approach to tackle this problem by assisting the user.

Section II introduces what a component, a composition,
and a HCI composition are. Section III is oriented around
two aspects of the Composition of HCI that we chose
because they are particularly related to composition of HCI
in ambient environment. Each of the two aspects is firstly
introduced, then we look how the different approaches have
dealt with them. The first aspect is the Controllability of the
Composition, i.e. the degree of control a user has on it. The
second aspect is the Finality of the composition, the goal
aimed at when using the composition. Section IV introduces
our response proposition (which is the start of our work in
progress) to the two aspects presented in section III. This

proposition is based on Meta-User Interface, Opportunistic
Composition and Adaptive Multi-Agent Systems. The last
section presents some Use Cases to illustrate the problem,
our work in progress approach and some points that need to
be taken into account in the future.

II. COMPONENT, COMPOSITION AND HUMAN COMPUTER INTERACTION

In this section we present the notion of component and
composition in the general context of computer science,
then in the context of HCI.

A. Component, Composition

To explain the notion of component, we can start by
looking at the etymology of the noun: Component means
“put together” (componere, from com- 'together' and
ponere- 'put'), and with this we basically have an idea of
what a component is in computer science and in HCI: an
entity that we can assemble, put together, to create other
entities.

Component and composition in computer science are a
software conception approach that wants to be modular,
reliable, reusable, and wants to decrease interdependences
between modules. This approach was mostly used in order
to decrease development cost and time to market. A widely
quoted definition of a software component is that of
Szyperski [17]:

«A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third
parties.»

In a way, the software component concept is the
evolution of the object concept in which the required
interface (i.e. the set of required services – dependencies on
other components) is exposed at the same level as the
provided interface. Components are black boxes, software
bricks, we can assemble through these interfaces (a required
interface can match with an appropriate provided interface),
and thus create new components (which means final
applications that result from this kind of assemblage are also
components). This assemblage is called “composition”.
Fig.1. shows an example of composition (match of required
and provided interfaces) [19]. This example is constituted of
a set of component embedded on a computer, and three other
components each embedded on their own device (in a way,
they are drivers) all present in a lab. A component
“Experiment leader” (embedded on the computer) provides
its controls to the component “Robot Arm” (a driver). This
experiment leader is an interface running on the computer,
allowing a user to perform a set of experiments. The Robot
Arm provides some electrical signals which are used by an
oscilloscope (“Oscillo 3.0”), and the results of the analyze of
the current signals by the oscilloscope are stocked in a
component “Stock” (embedded on the computer). The set of
analyzed signals are finally analyzed as a whole by the
“Analysis” component (embedded on the computer) which
use all the data in the component “Stock”.

Fig. 1. An example of composition [19]

B. Composition of HCI

Even if the notion of component has been introduced
almost fifty years ago by Douglas McIllroy during the first
International Conference on Software Engineering [15],
most research has been done in the last twenty years [21],
and this research “remains general, and has still not been
applied to HCI” [2].

In the particular case of HCI, we will from now on
separate components into two categories, functional
components and user interaction components, based on the
functional decomposition Functional Core (FC) – User
Interface (UI). As we will see later, this distinction makes
sense. For now, lets just give some examples:

 UI components can be numeric UI components, like
widgets (button, slider, track-bar …), a part of a
numeric UI (a set of sliders and a picture box), or an
entire numeric UI (i.e. the interface of an
application). In the same order of ideas, UI
components can be physical, like a physical button, a
part of a physical UI (like the numeric pad of a
keyboard), or an entire physical UI (like a keyboard).
In Fig.1. “Exp leader” is a UI component.

 FC components are the functions manipulating the
data model. It can be an action triggered by a user's
action on the UI (like pushing a button) or simply a
function not shown by any mean to the user (like an
eye-tracker stocking the movements of the point of
gaze in a hidden database). In Fig.1. “Stock” is a FC
component.

The following section presents both aspects of
Composition of HCI in ambient environment that we want to
discuss because it seems particular to this problem: the
Controllability and the Finality of the Composition.

III. CONTROLLABILITY AND FINALITY OF THE COMPOSITION

A. Controllability of the Composition

By the controllability of the composition, we mean that
the composition can be done with various degrees of control

from the user, or the designer. In the different approaches of
Composition of HCI we saw different degrees of control
balancing varying between total automation to total control
from the user/designer. As stated, the system can lead the
composition, such as Compose [10] for which the initiative
of the composition comes from the user that expresses a
need, but the composition is entirely done by the system.
However the composing system can manage slightly less
things, e.g. Task Tree Merge [14] and Alias [12] in which the
user/designer decides what will be used for the composition
(in these particular cases, the system processes fusion of
applications), so he has the initiative of the composition, but
the system performs the composition, and only lets the user
deal with conflicts s/he doesn't manage. On the other hand,
the composition can be entirely managed by the designer as
in ComposiXML [13], or by the user as in On-the-fly-
services [23], from the beginning to the end. But the
composition system can be between these two extremes and
instead of composing almost entirely automatically, or letting
the user assume entirely the composition, the composition
system can be present at each step of the composition, by
extending each user action (i.e. to get the idea in another
context consider the auto-completion that helps the user to
finish typing). An example of such hybridization is
ONTOCOMPO [1], which helps the designer who chooses a
component to keep or suppress from an application by
managing the dependencies of the said component, assisting
the designer in their task.

In these different approaches, the first point to note is that
the composition system tends to exclude the user from the
composition process, or on the contrary it tends to leave
them do the entire process. The second point, is that the
applications are created from what is available on the
workstation and not from what is available in the interactive
ambient environment. This is contradictory to the idea of
ambient environment: all devices must be able to interact
with each other, thus a composition cannot composed of
known entities all the time, nor restraint to a single
workstation. Furthermore, the system must take into account
the dynamic of the ambient environment, but we will talk
more about it in the following subsection.

B. Finality of the Composition

Concerning our findings on HCI composition, there are
two different goals when using composition of HCI. The first
is based more on the reuse of component in order to facilitate
and accelerate the conception of applications. The objective
in this case is to fuse existing applications or parts of
applications (i.e. to make from two different applications a
single one containing both characteristics), or it is to
compose static applications (i.e. applications not meant to
change with the context of use i.e. the triplet user, platform,
environment [3]) from components. It is the case of
ComposiXML, Task Tree Merge, ONTOCOMPO and Alias.
This kind of composition is related to the first use of
component discussed in section II, which is to decrease
development cost and time to market.

The second goal is to use composition to make adaptable
applications, more precisely application that can adapt
dynamically to the context of use and user task. It can be a
fission, in other words a distribution of an interface across
different available devices, or the development of
applications by the end-user (On-the-fly service composition,
SOAUI [20]), or the automatic development of applications
to fulfill the task of a user (Compose).

Our aim is to make interfaces capable of evolving with
the environment, called plastic interfaces. In an ambient
environment, it is necessary to use whatever is available, but
also to adapt to the evolution of the availability. In the
context of ambient intelligence, component are meant to
appear and disappear. It is better to use what is available in
the environment than being unable to function because what
we need is not available.

Another point concerning the finality of the composition
is that in the different approaches, there is a known need
when composing: in on case the designer or the user is
controlling the composition entirely (ComposiXML,
ONTOCOMPO, On-the-fly service composition, SOAUI),
thus they are following a need. In another case a system is
composing automatically (Task Tree Merge, Alias) from what
a user has decided to fuse, which also means he is following
a need (in this case it is to stop redundancy of action or
information). In the last case a system is composing from a
need expressed by a user (Compose). Our position regarding
this point is that contrary to designers that may be able to
collect the requirements, users may have trouble formulating
their needs, or to do it sufficiently precisely to be used in the
construction on an HCI, thus we want to help them in the
process.

C. Synthesis

From the two aspects of the composition of HCI we
described in this section, we have shown three needs,
requirements that the composition system must fulfill when
composing HCI in ambient environment. The first need
emerges from the aspect of controllability of the
composition: it is required to keep the users in the loop and
enable them to both observe and control their interactive
ambient environment. The second need comes from the
aspects of controllability and finality of the composition: we
equally want a system aware of the context of use (as a
reminder, the triplet user, platform and environment), but
also a system able to evolve with this context of use. Last
need emerges from aspect of finality of the composition: we
want to help the user with the composition of their
environment.

The need to maintain the user in the loop and the need to
help them in the process may seem contradictory at first, but
we need to keep in mind that exactly as in the case of
controllability, one does not exclude the other, in other words
we want a middle ground between these two needs.

In the following section, we will address answers to all
these needs, which we want to use in our work in progress

approach. As we will describe in the following section, these
answers are Meta-User Interface, Opportunism and
Adaptative Multi-Agent System.

IV. A PROPOSITION OF COMPOSITION OF HCI IN AMBIENT

ENVIRONMENT

In this section, we begin to describe in the following sub
section general principles of our work in progress approach,
Meta-User Interface and Opportunism. Then in another
subsection, we discuss briefly of an Adaptive Multi-Agent
System with which we want to deal with these principles.

A. Meta-User Interface and Opportunism

1) Meta-User Interface
Meta-User Interface is an answer to the need to enable

the user to both observe and control their interactive ambient
environment. Let us present the concept as it was introduced
in [6]. The starting point of the Meta-UI concept is the same
as the one we used earlier: in ambient environment, “users
are not limited to the system and applications of a single
computer […] [. U]sers, services, and resources discover
other users, services and resources, and integrate them into
an ambient interactive space” [6]. This interactive
environment is meant to evolve dynamically and is not
limited to a single workstation, thus in this ambient
interactive environment, usual solutions to control the
interactive environment are not appropriate anymore (like
shells for a single station), and it is required to keep the user
in the loop, in other words it is required to find a way to
enable them to control their interactive ambient environment.
As defined in [6], “The concept of Meta-User Interface, as
the set of functions (along with their user interfaces) that are
necessary and sufficient to control and evaluate the state of
interactive ambient spaces”. To resume, the concept gathers
which entities can be present in an interactive environment,
how we can manipulate them, and what we can do with
them.

Meta-UI is necessary in this ambient context, as it fulfills
the need to keep users in the loop and enables them to both
observe and control their interactive ambient environment. In
our work in progress approach, we want to include such
concept because it could enable the user to observe the
interactive ambient environment (i.e. every available
component), but in our approach the control (i.e. the control
of the composition) would not be total, as we said earlier, but
a middle ground between automation and total control.

2) Opportunism
In traditional software development, software are usually

developed to respond to explicit and pre-established needs
and stakeholder's requirements. Nevertheless, the evolution
of the context of use is an important and difficult challenge
for developers, because the needs and stakeholder's
requirements are evolving with. The first response to this
challenge is to accelerate the time to market of applications,
and as you may have noticed, it was the major using of
components. The second is to make applications that evolve
with the context of use. To evolve with the context of use,

there are two solutions, the first one is to make applications
able to evolve by themselves with the context of use. The
problem of this approach is that in ambient environment, it is
impossible to predict every possible situation. From this final
assessment, the concept of opportunistic composition has
emerged: if it is impossible to describe every possible
situation and to adapt applications to all these possible
situations, let us make applications from every situation, in
other words let us compose applications from what is
available in the environment, and recompose when this
environment evolves. This idea is reversing the traditional
software development process. While traditional software
development process starts with requirement analysis, the
opportunist approach is triggered with what is available in
the environment (i.e. components) to create application (i.e.
a composition), because there is an opportunity, and then
consider the interest of such application. This bottom-up
approach (by opposition to the traditional top-down
approach) makes application that emerge from the
environment and evolve afterward by dynamic
(re)composition based on new opportunities. This bottom-up
approach has been used in [7]. In this approach the
components are included in a container in a Service
Lightweight Component Architecture (SLCA). A component
is a software component or a proxy to services. An
application is described with a set of rules which may be
dynamically implemented at run-time. These rules are
managed by a weaver of Aspect of Assembly. Their approach
is opportunistic, by selecting the most appropriate set of
aspect of assembly according to the context. In our approach,
we would like to be independent of such rules or models, in
order to be able to react to unpredicted situations for which
no rules have been provided for. Such principle fulfills the
need of a system aware of the context of use and able to
evolve with this context of use.

B. Adaptative Multi-Agent System for Composition

Our approach is based on Adaptative Multi-Agent
Systems (AMAS) [4], that is what we introduce here. In
computer science, Ant Colony Algorithm (ACO) [5], is a
well known algorithm used originally to find the shortest
path on graphs. This ACO is based on what ants are doing in
real life to bring more food to the colony: every worker ant
explores the environment, and when it finds a food source, it
takes what it can carry and leaves pheromones on its return
path to the colony. Every worker ant is also exploring the
environment, and when it finds pheromone trace it may
follow it to find a food source, and on its return path it will
also leave pheromones. Nevertheless every ant will not take
each time the path of the other ant, and so leave pheromones
on another path. Pheromones evaporate with time, and
shortest paths being used more than longer paths on average,
so at the end of multiple ant passages, the shortest path
should emerge: almost every ant that will go to this food
source will use the shortest path.

Fig. 2. Discovery of the new path by ant after an obstacle has been placed
on their previous path.[5]

This example illustrates the paradigm of Adaptative
Multi-Agent Sytem. An agent is an autonomous computer
program. Every worker ant can be seen as an autonomous
entity, that evolves in an environment composed of other
ants and food sources. Every worker ant evolves in its
environment, acts on the environment by leaving
pheromones, and accomplishes its goal by bringing food to
the colony. Every worker ant only sees its surroundings, in
other words every entity has a local view of its environment.
Basically we have here the notion of what an agent is: an
autonomous program that has a local goals, perceives its
environment locally, decides of actions accordingly to its
goals, and acts. A set of agents can be considered as a Multi
Agent System (MAS).

For the adaptive element, we need to go back to the
pheromone part: every ant has a cooperative attitude, it
leaves pheromones on its return path in order to help other
ants to find food sources. It may help itself, not necessary,
but it will surely help other ants. In some cases, an agent
may be non-cooperative, which means it may bother other
agents in their task, or it cannot fulfill its goal and thus
cannot help the group at all. The AMAS theory identifies
seven generic non cooperative situations [4]. In such
situations, the agent will change its nominal behavior, in
other words its usual behavior, and behave differently to
reach a cooperative situation. If we go back to the example
of the ant colony, the entrance of the colony may be blocked,
and thus ants that want to enter are unable to do so: they are
unable to accomplish their goal, and other ants passing by
may help them to unblock the entrance even if they don't
want to enter themselves.

Components are independent units that can be assembled
through their required and provided interfaces, in other
words components can be organized in order to obtain new
components. Each component can be seen as an autonomous
program, in other words as an agent. This idea may seem
odd, nevertheless we can already justify the autonomous part
by reconsidering ambient environment: every entity may be
on its own, and so must be autonomous. Components are
naturally decentralized entities, thus using AMAS to
represent them and to make them organize (compose)
autonomously is appropriate. These agents may interact with
each other, they may communicate with their surrounding to
require and to provide what they require and provide with
their interfaces in order to assemble and compose
autonomously. Such approach has been made in the area of

functional programing [11], and we want to have such
approach in ambient interactive environment. It may have
been noticed that with this AMAS approach we are dealing
with the opportunism principle: components are composing
one with another autonomously and applications may emerge
from these compositions.
We want to enable the user to observe his interactive ambient
environment (i.e. every available component), but the control
(i.e. the control of the composition) would not be total, but a
middle ground between automation and total control. Such
position is based on the idea that the main default of most
automatic approaches is to let the user out of the loop [6], but
that we also believe that every user is not able to compose
his interactive environment every minute to deal with every
changes. In our work in progress approach, we want to help
the user in the composition, and to provide such help we
want to suggest composition to the user. These suggestions
can be small steps, i.e. part of a final composition, coupling
two components for example, or it can be suggestions of
final applications. Applications may emerge from
autonomous behavior of components, such suggestions
would result from the composition of numerous components.
We want to enable the user to choose trough an interface (a
Meta-UI) what he wants to have, to choose among different
smart suggestions. Such suggestions might be numerous in
order to suggest a lot of different possibilities, or can be
restraint but more appropriate in the context because the
system is also learning. We are dealing here with the second
need (section III.C), the need to help the user to compose in
the interactive ambient environment. Ideally, explanations
about the compositions would be given to explain what are
these compositions and why this compositions have been
chosen among others. In this approach, user goals are not
directly taken into account: the context of the system take
into account previous behavior of the user and his/her habits,
but the user could also require compositions based around a
component (in the following use case for example he may
have solicit a composition with the camera driver).

In the following subsection we show some examples of
how would look like this kind of approach. The use case
represents some components that may be able to compose in
a pedagogic context in university with students.

V. USE CASE

In this section we will show a use case relating HCI
Composition in an ambient interactive environment. The
context of this use case is a class taking place in a classroom,
but also retransmitted in another class and possibly in other
places (like in some students' home). We will first show
possible compositions, showing a bit our work in progress
approach, and then from these possible compositions we will
illustrate some earlier points, and discuss of some new
points.

In this example, numerous interactive components may
be present. For example the professor may have multiple
cameras pointed at him or at the board, a smart board, a
tablet, a personal computer and a microphone. Students on

Fig. 3. A class taking place in a classroom, retransmitted in two other
locations down right a student's room with a student.

their side may also have microphones, personal computer
and smart phones, but also speakers and screens. Fig.3
represents three locations, distant (three rectangles), but
interconnected (arrows symbolizes this interconnection): on
the left a classroom with the professor and some students, up
right another classroom only with students, and in this
ambient environment, a lot of examples could have been
taken to explain what we see in our opportunistic
composition of HCI, but as you may imagine the number of
possible compositions is quite large, so to simplify we only
use a tiny example with a camera and a tablet. The choice of
these two elements may also be seen as suggestions of final
composition pre-selected by the system among other
possibilities. Scalability is not an objective in this paper, the
goal here is to make the best with what is available in the
environment around the user (or what is considered close).
The problem of scalability stays open for now.

In our example, the driver of the camera is a component
that requires the management of three controls: its angles of
rotations (ɵ for the yaw angle, ȹ for the pitch angle-see
camera driver draw of Fig.4) which are floats, and its zoom
which is also a float. This same driver provides a video
stream (what the camera is filming currently). This
component will autonomously ask in its environment if other
components provides some means to manage its controls
and/or requires a video stream.

 The components from the tablet being the only ones in
our example, they will also be the only ones to answer to the
driver component. For the example, let us simplify a bit
more and say that the available components of the tablet are
only sliders and a component able to display a video stream.
And to simplify even more we are going to say that the
sliders have the same appearance, except for the orientation
which can be vertical or horizontal. In this very simplified
use case we already have 54 possible compositions (3
required controls with 3 possible states vertical, horizontal or
none, and a provided stream video that maybe be matched or
not), or 8 if we consider that every required interface of the
camera will have a match. We will only consider 4 examples
of resulting composition(see Fig.4), that may be seen as
suggestions proposed to the user on his Meta-UI:

 Two horizontal sliders can manage ȹ and the zoom
and one vertical slider can manage ɵ. (1)

 Three horizontal sliders can manage ɵ, ȹ and the
zoom (2)

 Two horizontal sliders can manage ɵ and the zoom
and one vertical slider can manage ȹ. (3)

 One horizontal slider can manage ɵ and two vertical
sliders can manage ȹ and the zoom. (4)

And in all these suggestions, a component of the tablet
may display the video.

In these different suggestions one is particularly bad for
the user, one is more acceptable but suboptimal and two are
acceptable. By acceptable, we mean here that the suggestion
is ergonomic, helps the user to know how the application
works, does not induce them in error and try to be easy to
use.

The suggestion (1) is particularly bad because it induces
the user in error: while one would expect the “logical”
choice with ȹ managed with a vertical slider because the
angle is in a vertical plan, the vertical slider manages an
angle in the horizontal plan (ɵ). The second one (2) is more
acceptable because instead of inducing the user in error, it
just helps them to determine what each slider does. The two
last suggestions (3)(4) are acceptable because they don't
induce the user in error and they try to help the user to
determine which slider manages what. We may say that the
last example (4) is better because it respects the habits of
users (zoom is usually managed with a vertical UI
component).

What we are showing here is that in HCI, we must add
other criterion than these already defined in [19]:
decentralization, dynamic adaptation, combinatorial
optimization, re-composition, learning and context
awareness, utility of the result, and silence of user needs.
And by this we are implying that in the composition, the
simple matching of interfaces (a required interface with an
appropriate provided interface) is not sufficient, and thus the
user must be an active part of the composition. For example
in our case, from a functional point of view, both sliders have
the same quality, but from a user point of view, use the
vertical slider is more appropriate for ȹ, in this situation, the
vertical slider is more qualified. Contrary to criterion we can
quantify and to which we can associate a value, criterion that
may distinguish two elements, some criterion are dependent
on the appreciation from a user point of view. For example,
we can dissociate two screens of the same size with their
resolution. We may say that choosing a vertical slider for ȹ
is logical because in both we find the idea of verticality, but
the choice of a vertical slider for the zoom is based on users
habit and not on semantics. It is because the user is used to
this representation that we continue to use it.

Lets now say we had the possibility to use sliders, but
also other numeric objects. For example we could associate
the zoom to a pinch/spread gesture, ȹ to vertical slide and ɵ
to horizontal slide. If we allow the designer to use tactical
gestures, they will use them, but why? Is it by habit or

Fig. 4. Illustration of Composition (1): - > are required interfaces and > -
are provided interfaces

because it uses less space on small screens? If it is by habit
why didn't we keep old habits and so sliders from the
computer, and if it was to use less space, why didn't we use
the tablet's gyroscopes? Beside the fact that not every tablet
has efficient enough gyroscopes, there is also a practical
question: forcing the user to lean the tablet will degrade their
vision on the screen. Once again we find criterion user
oriented, designers wanted to save some space on these small
screens and they chose what was most appropriate for both
sides (human and computer). In a way, it is understandable
given the fact that HCI is the interface between humans and
machines.

In the HCI composition, the simple matching of
interfaces is not sufficient, and thus the user must be an
active actor of the composition. Nevertheless, as you may
also have noticed, we simplified a lot the example, and even
with these conditions, a lot of suggestions can be made, and
some criterion may be taken into account by machine
learning: if a user whom we suggest different choices of
HCI, chooses the same option every time, the system can
learn it. These learned preferences may be used to restraint
the number of suggestions, providing a better help to the user
to control their interactive and ambient environment and
contribute to the requirement of combinatorial optimization.

We have also briefly introduced a notion we want to use
in our composition of interfaces, which is the abstraction of
UI component by what they can manage, for example a
slider can manage a float. This idea is not really new, we can
find it in [9] for example, which is more than thirty years
old, nevertheless it is an interesting idea for what we want to
do because it opens a lot of possibilities: a new component
that is able to manage a float or an integer is more easily
included in new composition than a component providing a
“slider” or a “track bar”. It also opens some unexpected
possibilities. For example, we previously used sliders, these
sliders can be abstracted as able to manage a one
dimensional float in a range, but are also able to manage
other dimensional variables, like different boolean (if the
area of the slider is clicked or not, if the mouse is in the area
of the slider…). This abstraction can also be used to

represent non conventional user interfaces, we can for
example say that a door has the ability to manage a one
dimensional float in function to the angle that the door
makes with the wall (the opening angle of the door) but also
boolean (if the door is opened or not …). Rolling shutter can
be represented the same way, for example the state of the
shutter can be seen as a one dimensional float (for example a
half closed shutter corresponds to a 0,5 on a [0;1] range).
And if we allow such abstractions, someone that doesn't have
any other way to interact with the camera, like a student with
no smart-phone nor personal computer, may be able to
manage ɵ with the door, and ȹ with the rolling shutter.

VI. CONCLUSION

From ambient interactive environment emerge different
needs. Such environment by nature dynamic and thus
applications based on this interactive environment must
evolve with it. Nonetheless such evolution cannot exclude
the user from the loop, but to include the user in the process
we must make it accessible and the process should not
require too much time from the user. Based on the natural
independence of every entity in such environment, the use of
component and composition is appropriate. However
classical component based software engineering cannot be
used directly (user's requirements are evolving, the
environment is evolving, and user must be implicated in the
composition process…), and thus composition must be
adapted to the problem.

To the adaptive need we addressed a proposition based
on opportunism: in this approach application emerges from
the composition of what is available in the environment, and
thus will evolve with it dynamically. For the necessity to
implicate the user, we proposed to enable the composition
system to make suggestions to the user. These propositions
could be small steps, part of a final composition when the
user is able to express his requirements, or final
compositions if he is unable to express it.

On an experimental point of view, our work is still in
progress. We want to use in our work AMAS and re-
enforcement learning in order to compose opportunistically.
A first composition engine based on AMAS technology has
already been implemented, we want to make another version

more evolved, and we are currently working with WComp
[8] and UPnP devices. On a AMAS architecture, which will
be the composition system, we have a three level
architecture: service agent level, component agent level and
type agent level. For every required or provided interfaces
there is a service agent associated. Component agents will
coordinate the behavior of its services agents, for example
the camera driver is a component agent and its three controls
(required interfaces) and its video stream (provided
interface) will be managed each by a service agent (so there
is four service agents). Type agents manage component
agents of its type, and will gather information and learn from
it in order to suggest better composition to the user. The
behavior of these different agents is currently being
discussed, for service agents, the life cycle (perception,
decision, action) and its non cooperative situations are
identified. These service agents will be the one using the
abstraction by type (int, float..) (section V). However, such
alignment is not sufficient in real conditions, for example a
slider able to handle the zoom (float) of the camera (Fig.4)
should know the range of the zoom (0 to 80), and the initial
zoom, and the encoding can be different from the camera to
the slider. We find equivalent concerns in WoT (Web of
Things) [16], and their solutions may be adapted to our
problem.

ACKNOWLEDGMENT

This work is supported by the neoCampus project, a
project that gather ten laboratories of the university Paul
Sabatier (Toulouse) and see campuses as small connected
cities. This work is also a collaboration between three
laboratories, I3S (Nice), LIG (Grenoble) and IRIT
(Toulouse).

REFERENCES

[1] Brel, C., Gonin, P. R., Giboin, A., Riveill, M., & Dery, A. M. (2014,
September). Reusing and Combining UI, Task and Software
Component Models to Compose New Applications. In Proceedings of
the 28th International BCS Human Computer Interaction Conference
on HCI 2014-Sand, Sea and Sky-Holiday HCI(pp. 1-10). BCS.

[2] Calvary, G., Dery Pinna, A. M., Occello, A., Renevier, P., &‐
Gabillon, Y. (2013). Composition of User Interfaces. Computer
Science and Ambient Intelligence, 203-224.

[3] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., &
Vanderdonckt, J. (2003). A unifying reference framework for multi-
target user interfaces. Interacting with computers, 15(3), 289-308.

[4] Capera, D., Georgé, J. P., Gleizes, M. P., & Glize, P. (2003, June). The
AMAS theory for complex problem solving based on self-organizing
cooperative agents. In Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003. WET ICE 2003. Proceedings.
Twelfth IEEE International Workshops on (pp. 383-388). IEEE.

[5] Colorni, A., Dorigo, M., & Maniezzo, V. (1991, December).
Distributed optimization by ant colonies. In Proceedings of the first
European conference on artificial life (Vol. 142, pp. 134-142).

[6] Coutaz, J. (2006). Meta-user interfaces for ambient spaces. In Task
Models and Diagrams for Users Interface Design (pp. 1-15). Springer
Berlin Heidelberg.

[7] Ferry, N., Hourdin, V., Lavirotte, S., Rey, G., Tigli, J. Y., & Riveill,
M. (2010). Models at runtime: service for device composition and
adaptation.

[8] Ferry, N., Hourdin, V., Lavirotte, S., Rey, G., & Tigli, J. Y. (2013).
Wcomp, middleware for ubiquitous computing and system focused
adaptation.Computer Science and Ambient Intelligence, 89-120.

[9] Foley, J. D., & Wallace, V. L. (1974). The art of natural graphic man
—Machine conversation. Proceedings of the IEEE, 62(4), 462-471.

[10] Gabillon, Y., Petit, M., Calvary, G., & Fiorino, H. (2011, February).
Automated planning for user interface composition. In IUI 2011-
International Conference on Intelligent User Interfaces (p. 5p).

[11] Georgé, J. P., & Gleizes, M. P. (2005). Experiments in emergent
programming using self-organizing multi-agent systems. In Multi-
Agent Systems and Applications IV (pp. 450-459). Springer Berlin
Heidelberg.

[12] Joffroy, C., Caramel, B., Dery-Pinna, A. M., & Riveill, M. (2011,
June). When the functional composition drives the user interfaces
composition: process and formalization. In Proceedings of the 3rd
ACM SIGCHI symposium on Engineering interactive computing
systems (pp. 207-216). ACM.

[13] Lepreux, S., Vanderdonckt, J., & Michotte, B. (2006). Visual design
of user interfaces by (de) composition. In Interactive Systems.
Design, Specification, and Verification (pp. 157-170). Springer Berlin
Heidelberg.

[14] Lewandowski, A., Lepreux, S., & Bourguin, G. (2007). Tasks models
merging for high-level component composition. In Human-Computer
Interaction. Interaction Design and Usability (pp. 1129-1138).
Springer Berlin Heidelberg.

[15] McIlroy, M. D., Buxton, J. M., Naur, P., & Randell, B.(1968,
October). Mass-produced software components. In Proceedings of
the 1st International Conference on Software Engineering, Garmisch
Pattenkirchen, Germany (pp. 88-98). sn.

[16] Rocher, G., Tigli, J. Y., Lavirotte, S., & Daikhi, R. (2015, October).
Run-time knowledge model enrichment in SWoT: A step toward
ambient services selection relevancy. In Internet of Things (IOT),
2015 5th International Conference on the (pp. 62-69). IEEE.

[17] Szyperski, C., Bosch, J., & Weck, W. (1999, June). Component-
oriented programming. In Object-oriented technology ecoop’99
workshop reader (pp. 184-192). Springer Berlin Heidelberg.

[18] Thevenin, D., & Coutaz, J. (1999, August). Plasticity of user
interfaces: Framework and research agenda. In Proceedings of
INTERACT (Vol. 99, pp. 110-117).

[19] Triboulot, C., Trouilhet, S., Arcangeli, J-P., & Robert, F(2015).
Opportunistic software composition: benefits and requirements.
In Int. Conf. on Software Engineering and Applications (ICSOFT-
EA), INSTICC, p. 426-431.

[20] Tsai, W. T., Huang, Q., Elston, J., & Chen, Y. (2008, October).
Service-oriented user interface modeling and composition. In e-
Business Engineering, 2008. ICEBE'08. IEEE International
Conference on (pp. 21-28). IEEE.

[21] Vale, T., Crnkovic, I., de Almeida, E. S., Neto, P. A. D. M. S.,
Cavalcanti, Y. C., & de Lemos Meira, S. R. (2016). Twenty-eight
years of component-based software engineering. Journal of Systems
and Software, 111, 128-148.

[22] Weiser, M. (1991). The computer for the 21st century. Scientific
american,265(3), 94-104.

[23] Zhao, Q., Huang, G., Huang, J., Liu, X., & Mei, H. (2008,
December). A web-based mashup environment for on-the-fly service
composition. In Service-Oriented System Engineering, 2008.
SOSE'08. IEEE International Symposium on (pp. 32-37). IEEE.

	I. Introduction
	II. Component, Composition and Human computer Interaction
	A. Component, Composition
	B. Composition of HCI

	III. Controllability and Finality of the Composition
	A. Controllability of the Composition
	B. Finality of the Composition
	C. Synthesis

	IV. A proposition of Composition of HCI in ambient environment
	A. Meta-User Interface and Opportunism
	1) Meta-User Interface
	2) Opportunism

	B. Adaptative Multi-Agent System for Composition

	V. Use Case
	VI. Conclusion
	Acknowledgment
	References

