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After an introduction to the general topic of models for a given locus of a diploid population whose quadratic dynamics is determined by a fitness landscape, we consider more specifically the models that can be treated using genetic (or train) algebras. In this case, any quadratic offspring interaction can produce any type of offspring and after the use of specific changes of basis, we study the evolution and possible stability of some examples. We also consider some examples that cannot be treated using the framework of genetic algebras. Among these are bistochastic matrices.

Introduction

In Section 2, we will first briefly revisit the basics of the deterministic dynamics arising in discrete-time asexual multiallelic evolutionary genetics driven only by fitness and we will mainly consider the diploid case with K alleles. In the diploid case, there is a deterministic updating dynamics of the full array of the genotype frequencies that involves the fitness matrix attached to the genotypes. When mating is random so that the Hardy-Weinberg law applies, one may look at the induced marginal allelic frequencies dynamics. The updating dynamics on the simplex involves the mean fitness as a quadratic form in the current frequencies whereas marginal fitnesses are affine functions in these frequencies. The induced dynamics is gradient-like. We will also consider an alternative updating mechanism of allelic frequencies on the simplex, namely the Mendelian segregating mechanism: here the fitness matrix is based on skew-symmetric matrices and the fitness landscape will be said flat. The induced relative frequencies dynamics is divergence-free like. In the latter flat fitness model, the offspring can only repeat the genotype of any one of its parents as is the case in a (fair or unfair) Mendelian inheritance framework.

In Section 3, we will consider general quadratic interaction models for which any pair-wise interaction can produce any type of offspring, thereby generalizing the latter flat fitness model. Here, recombination is allowed. Under some stochasticity condition on the interactions, the framework of such models is the one of genetic algebras formalism that we introduce and develop in some details, [START_REF] Wörz-Busekros | Algebras in Genetics[END_REF]. In some ("Gonshor-linearizable") cases, such dynamics are amenable to linear ones but in higher dimension. We give 5 examples for which detailed computations of the linearization procedure and the precise corresponding equilibria sets are supplied: the hypergeometric polyploidy model, the binomial Fisher-Wright model, the Hilbert matrix model, the shift model and the unbalanced Mendelian model with crossover.

The equilibria sets are shown, depending on the examples, to be either a point, or a curve or a surface. This concerns Subsection 3.1.

While using negatively the algebraic criteria that ensures the Gonshor-linearizability, we give, in Subsection 3.2, some important examples where linearizability fails: this includes permutation and more generally bistochastic models, together with the unbalanced Mendelian inheritance model (without crossover). The simple K = 2 dimensional case will be given a full detailed analysis in this respect.

Single locus: diploid population with K alleles driven by fitness

For the approach on fitness in this Section, we refer to the general treatises [START_REF] Ewens | Mathematical population genetics. I. Theoretical introduction[END_REF] and [START_REF] Kingman | Mathematics of genetic diversity[END_REF].

2.1. Joint and marginal allelic dynamics (fitness). Consider K alleles A k , k ∈ {1, ..., K} attached to a single locus. Let W = (W k,l ≥ 0 : k, l ∈ {1, ..., K} 2 ) be some nonnegative fitness matrix. The coefficient W k,l stands for the absolute fitness of the genotypes A k A l attached to a single locus. Since W k,l is proportional to the probability of an A k A l surviving to maturity, it is natural to assume that W is symmetric. Let X = (x k,l : k, l ∈ {1, ..., K} 2 ) be the current frequency distribution at (integral) time t of the genotypes A k A l , so x k,l ≥ 0 and k,l x k,l = 1. The joint evolutionary fitness dynamics in the diploid case is given by X (t + 1) = X (t) P(X), the Hadamard product of X (t) with the updating matrix P(X) with entries [START_REF] Abraham | Linearizing quadratic transformations in genetic algebras[END_REF] P(X) k,l = W k,l ω(X) and ω(X) = k,l

x k,l W k,l .

The relative fitness of A k A l is W k,l /ω(X) and ω(X) is the mean fitness. The genotypic variance in absolute fitness is σ 2 (X) = K k,l=1 x k,l (W k,l -ω(X)) 2 and the diploid variance in relative fitness is σ 2 (X) = σ 2 (X)/ω(X) 2 . Note that

(2) ∆ω(X) = k,l ∆x k,l W k,l = k,l x k,l W 2 k,l ω(X) -W k,l = ω(X)σ 2 (X) > 0
with a relative rate of increase: ∆ω(X)/ω(X) = σ 2 (X). This is the full diploid version of the Fisher theorem.

Assuming a Hardy-Weinberg equilibrium, the frequency distribution at time t of the genotypes A k A l is given by: x k,l = x k x l where x k = l x k,l is the marginal frequency of allele A k in the whole genotypic population. The whole frequency information is now enclosed within x = X1 1 , where 1 = (1, ..., 1) is the 1-row vector of dimension K. Note that x := (x k : k ∈ {1, ..., K}) belongs to the K-simplex

S K = {x := (x k : k = 1, ..., K) ∈ R K : x 0, |x| = 1}.
Here |x| := K k=1

x k and x 0 means that all components of x are nonnegative, and the elements of S K are called states. Thus, the mean fitness is now given 1 Throughout, a boldface variable, say x, will represent a column-vector and its transpose, say x , will be a row-vector. And B will denote the transpose of some square matrix B.

by the quadratic form:

ω(x) := k,l x k x l W k,l = x W x. We now have σ 2 (x) = K k,l=1 x k x l (W k,l -ω(x))
2 and σ 2 (x) = σ 2 (x)/ω(x) 2 .

We will consider the update of the allelic marginal frequencies x themselves. Define the frequency-dependent marginal fitness of

A k by w k (x) = (W x) k := l W k,l x l .
For the vector x note by D x =diag(x k : k ∈ {1, ..., K}) the associated diagonal matrix. The marginal mapping p : S K → S K of the dynamics is given by:

(3)

x(t + 1) = p(x(t)), where p(x) = 1 ω(x) D x W x = 1 ω(x) D W x x .
This dynamics involves a multiplicative interaction between x k and (W x) k , the kth entry of the image W x of x by W and a normalization by the quadratic form ω(x) = x W x. Iterating, the time-t frequency distribution is:

x(t) = p t (x(0))
where x(0) ∈ S K is some initial condition and p t = p • ... • p, t-times.

For an alternative representation of the dynamics (3) take ∆x = p(x) -x and define the symmetric positive-definite matrix G(x) = D x (I -1x ) with entries:

G(x) k,l = x k (δ k,l -x l ) . Let V W (x) = 1 2 log ω(x).
Then, (3) may be recast as the gradient-like dynamics:

(4) ∆x = 1 ω(x) G(x)W x = G(x)∇V W (x), with |∆x| = 1 ∆x = 0 as a result of 1 G(x) = 0 . Note ∇V W (x) ∆x = ∇V W (x) G(x)∇V W (x) ≥ 0.
One can easily check that (3) can be recast under the (non-linear) more conventional Fokker-Planck-like form x (t + 1) = x (t)P (x(t)), where P (x) is the x-dependent matrix with (k, l)-entry P (x) k,l = W k,l x l /x W x ∈ (0, 1). This matrix is not stricto sensu stochastic, but we note however that x P (x)1 = 1 when x ∈ S K .

The mean fitness ω(x), as a Lyapunov function, increases as time passes by. We indeed have 3 (see [START_REF] Kingman | A matrix inequality[END_REF]). Its partial rate of increase due to frequency shifts only is δω(x)

∆ω(x) = ω(p(x)) -ω(x) = 1 ω(x) 2 k,l x k w k (x)W k,l x l w l (x) - k,l x k W k,l x l > 0, because k,l x k w k (x)W k,l x l w l (x) ≥ ω(x)
:= k ∆x k w k (x). It satisfies (5) δω(x) ω(x) = k x k w k (x) ω(x) -1 2 = k (∆x k ) 2 x k = σ 2 A (x) 2 , σ 2 
A (x) being the allelic variance in relative fitness.

Remarks.

(i) When fitnesses are multiplicative, that is W k,l = w k w l is satisfied, then the dynamics (3) boils down to

x(t + 1) = p(x(t)), where p(x) = 1 w(x) D w x = 1 w(x) D x w.
Here w = (w 1 , ..., w K ) and w(x) = l w l x l is linear. The updating mechanism p is a fractional transformation with numerator and denominator both homogeneous of degree one.

(ii) (recombination). Genetic recombination is the production of offspring with combinations of traits that can differ from those found in either parent. The model ( 3) is a particular case of the following more general one displaying recombination effects, [START_REF] Bürger | The mathematical theory of selection, recombination, and mutation[END_REF]: let Γ k , k = 1, ..., K be K nonnegative matrices with entries Γ k (i, j) representing the propensities for an interacting pair of alleles of type-(i, j) to produce a type-k allele. Let Γ = K k=1 Γ k . Consider the dynamics p on S K :

(6) x k (t + 1) = p k (x(t)), where p k (x) = x Γ k x x Γx , k = 1, ..., K.
In such generalized models, it requires a pair of alleles to produce offsprings and any pair can in principle produce any type of offspring. The updating mechanism p is a fractional transformation with numerator and denominator both homogeneous of degree two as in [START_REF] Andrade | The identity x 2 2 = (x) x 3 in baric algebras[END_REF]. Clearly, the mapping x → p(x) is k-Lipschitzian for 0 < k < ∞, so uniformly continuous on S K , so if x(t) → t→∞ x eq , x eq has to be a fixed point of p. This fixed point is unique if k < 1 but its stability condition is then open. For some very particular choices of Γ k , things turn out to be simpler. Let for instance γ k = Γ k 1 and substitute [START_REF] Etherington | Genetic algebras[END_REF], namely consider the normalized dynamics on S K : [START_REF] Etherington | Special train algebras[END_REF] x k (t + 1) = p k (x(t)), where p k (x) = x P k x x P x , k = 1, ..., K.

P k := D -1 γ k Γ k to Γ k in
Then P k 1 = 1, k = 1, ..., K, so all P k are stochastic matrices, not symmetric. Then the barycenter x eq = K -1 1 is an equiprobable equilibrium state of [START_REF] Etherington | Special train algebras[END_REF]. Similarly, if Γ k 1 : = i,j Γ k (i, j) =Cte, for all k = 1, ..., K (all Γ k share the same matrix 1-norm), then x eq = K -1 1 is an equilibrium state as well.

Let us now see under what conditions the generalized model ( 6) boils down to (3). Let I k be the matrix whose entries are all zero except for the entry in position (k, k), which is 1. Suppose Γ k = I k W where W is the symmetric fitness matrix in (3). Then

K k=1 Γ k = Γ = W is symmetric, Γ k x = (W x) k e
k where e k is the k-th unit vector of S K and (6) fits with [START_REF] Andrade | The identity x 2 2 = (x) x 3 in baric algebras[END_REF]. Note that if Γ k = I k W , the propensities for a pair of individuals of type-(i, j) to produce a type k-individual is zero unless i = k. This is a model of Mendelian inheritance. A stochastic version of a similar model, coined the Fisher-Wright-Haldane model, was studied in [START_REF] Kesten | Some nonlinear stochastic growth models[END_REF].

Here is another special Γ

k : suppose Γ k = 0 except for Γ k (k + 1, k + 1) = λ k+1 , k = 1, ..., K -1 and Γ K = 0 except for Γ K (1, 1) = λ 1 , so with Γ = D λ =diag(λ 1 , ..., λ K ).
Here only a (k + 1, k + 1) interaction is able to produce a type k-individual (modulo

K). With S := K 1 λ k x 2
k , the fixed point is given by x k = λ k+1 x 2 k+1 /S, k = 1, ..., K -1 and

x K = λ 1 x 2 1 /S. 2 
2.2. The flat fitness model. We now address the flat fitness model. Let A be a real skew-symmetric matrix, so obeying A = -A.

Let J := 11 be the all-ones matrix and let σ > 0. We wish here to consider evolutionary dynamics of the form (3) but now when W is of the form W = J + σA 0 when A = -A and such that |A k,l | ≤ 1/σ. The mean fitness function ω(x) appearing in (3) is a constant ω(x) = x W x = 1, and in this sense the fitness matrix W is called flat. Because W k,l + W l,k = 2, these models correspond to constantsum games in which each pair of two players has opposed interest or to evolution under the effect of segregation in population genetics; See [START_REF] Weissing | Selection and segregation distortion in a sex-differentiated population[END_REF], [START_REF] Karlin | Mathematical models, problems, and controversies of evolutionary theory[END_REF] and [START_REF] Hofbauer | Evolutionary games and population dynamics[END_REF]. An interesting sub-family of such models is when σ ∈ (0, 1] and A k,l ∈ {-1, 0, 1}.

The dynamics (3) for this particular form of W boils down to [START_REF] Etherington | Non-associative algebra and the symbolism of genetics[END_REF] x(t + 1) = p(x(t)), where p

(x) = 1 ω(x) D x W x = x+σD x Ax.
Let Γ k , k = 1, ..., K be K nonnegative symmetric matrices with [0, 1]-valued entries Γ k (i, j) representing the probabilities for a pair of alleles of type-(i, j) to produce a type-k allele. Let Γ = K k=1 Γ k and suppose Γ = J. Consider the dynamics on S K generalizing (8): [START_REF] Ewens | Mathematical population genetics. I. Theoretical introduction[END_REF] x k (t + 1) = p k (x(t)), where

p k (x) = x Γ k x x Γx , k = 1, ..., K.
Then x Γx = 1 and the fitness landscape is flat as in [START_REF] Etherington | Non-associative algebra and the symbolism of genetics[END_REF]. Note that, if in addition Γ k 1 = 1, k = 1, ..., K (all Γ k are symmetric bistochastic matrices 2 ), or if i,j Γ k (i, j) =Cte for all k = 1, ..., K, then x eq = K -1 • 1 is an unstable polymorphic equilibrium state of (9), the barycenter of S K .

If Γ k (i, j) = 0 unless i = k or j = k (the offspring can only repeat the genotype of any one of its parents as in a Mendelian model), then (9) is of the form [START_REF] Etherington | Non-associative algebra and the symbolism of genetics[END_REF] with

A (k, l) = 2Γ k (k, l) -1 for k = l and A (l, k) = -A (k, l), |A (k, l)| ≤ 1, (resulting from Γ k (k, l) + Γ l (l, k) = 1)
, corresponding to a fitness matrix W = J + σA 0 with σ = 1. Therefore (8) is a very particular case of (9).

Genetic algebras

In this Section, we will consider the general model [START_REF] Ewens | Mathematical population genetics. I. Theoretical introduction[END_REF] under the flat fitness condition x Γx = 1 which can be dealt with through genetic algebras ideas, [START_REF] Wörz-Busekros | Algebras in Genetics[END_REF].

Let (e 1 , ..., e K ) be the natural basis of A = R K representing the extremal states of the simplex S K . With x (t) ∈ S K , we have [START_REF] Fran | The condition for a genetic algebra to be a special train algebra[END_REF] x

(t) = K k=1 x k (t) e k ,
2 Symmetric bistochastic matrices is the convex hull of extremal matrices of the form (P + P ) /2 where P is any permutation matrix.

the species frequency vector in the simplex. Suppose a K-dimensional algebra A over the field R with natural multiplication table [START_REF] Ganikhodzhaev | Quadratic stochastic operators and processes: results and open problems[END_REF] e i e j = K k=1

γ ijk e k ,
where γ ijk ∈ [0, 1] constitute the structure constants, obeying the property K k=1 γ ijk = 1 for all i, j = 1, ..., K. For algebras A over a field, the bilinear multiplication from A × A to A is completely determined by the multiplication of basis elements of A. A can be equipped with a weight homomorphism : A → R obeying (xy) = (x) (y) and for which ∀i, (e i ) = 1. And then S K = -1 (1) ∩ {x 0}. Consider the dynamics x (t + 1) = x (t)

2 (the second-order principal power of x (t) in the algebra). Identifying γ ijk = Γ k (i, j) and observing x Γx = 1 as a result of Γ = J, we have

x k (t + 1) = p k (x(t)), where p k (x) = x Γ k x, k = 1, ..., K,
which is model ( 9) evolving in S K . Note that, without loss of generality for the dynamics above, γ ijk = γ jik , a commutativity property (e i e j = e j e i ). And because in general (e i e j ) e k = e i (e j e k ), A is commutative but not associative; such an algebra is called algebra with genetic realization in [START_REF] Wörz-Busekros | Algebras in Genetics[END_REF], [START_REF] Reed | Algebraic structure of genetic inheritance[END_REF], or stochastic algebra in [START_REF] Ganikhodzhaev | Quadratic stochastic operators and processes: results and open problems[END_REF]. Note also

x (t + m) =: x (t) [m+1] = x (t) 2 m with x [m] = x [m-1] x [m-1] ,
x [1] = x, defining the plenary powers of x in A, not to be confused with the principal powers of x in A, namely

x m = xx m-1 , x 1 = x.
Defining e i to be the multiplication of x ∈ A by e i : x ei → e i x, we get that its corresponding linear K × K transformation matrix acting to the left on column vectors is the matrix E i with entries E i (k, j) = γ ijk . The matrices E i are all column stochastic (∀i, j, k E i (k, j) = 1) and they do not commute in general as a result of the non-associativity of A.

Let (c 1 , ..., c K ) denote some canonical basis in which x (t) = K k=1 y k (t) c k . Sup- pose the multiplication table of the c k s is given by (12) c i c j = K k=1 λ ijk c k ,
where the canonical structure constants λ ijk satisfy the Gonshor conditions [START_REF] Gonshor | Special train algebras arising in genetics[END_REF] (13)

λ 111 = 1 λ 1jk = λ j1k = 0 if j > k λ ijk = 0 if i, j > 1and i ∨ j ≥ k.
If there is a change of basis e → c so that the latter Gonshor conditions holds, then A is called a genetic algebra. For genetic algebras, it holds that (c 1 ) = 1 and (c i ) = 0, i = 2, ..., K so that I := -1 (0) =Ker is an ideal of A (IA ⊆ I) and I =Span({c 2 , .., c K }) =: c 2 , .., c K is nilpotent (I n = 0 for some integer n, the degree of nilpotency). For a genetic algebra to be a special train algebra, the following additional condition is required, [START_REF] Gonshor | Special train algebras arising in genetics[END_REF], [START_REF] Reed | Algebraic structure of genetic inheritance[END_REF]:

All the principal power subalgebras I m of A are ideals of A ⇒ A ⊃ I ⊃ ... ⊃ I r ⊃ I r+1 = 0 and the sequence of ideals terminates after r steps called the rank of the special train algebra. Special train algebras constitute a subclass of train algebras. For train algebras, the weaker nilpotency condition holds: every element of I =Ker is nilpotent of index less or equal r. Consequently, if A is a train algebra, for each x ∈A, r (x) := x (x -λ 1 ) ... (x -λ r-1 ) = 0 and for each x ∈Ker , x r = 0; r (x) is the rank polynomial of A and the λ i are the principal train roots of A. When A is moreover a genetic algebra, the right train roots of A are λ 1ii , i = 1, ..., K , and the principal train roots of A, as a train algebra, is a subset of the right train roots of A (one of which being 1), possibly including multiplicities. Apart from λ 111 = 1, all train roots λ 1ii of a genetic algebra obey

|λ 1ii | ≤ 1/2 ([27], Coroll. 5).
All genetic algebras are train algebras but not necessarily special train algebras, [START_REF] Gonshor | Special train algebras arising in genetics[END_REF], [START_REF] Gonshor | Special train algebras arising in genetics[END_REF], [START_REF] Reed | Algebraic structure of genetic inheritance[END_REF]. For an example of a (Bernstein) genetic algebra which is not special train and a sufficient condition for a genetic algebra to be a special train algebra, see Ex. 12 and Th. 13 of [START_REF] Fran | The condition for a genetic algebra to be a special train algebra[END_REF]. See also the Remark of [START_REF] Andrade | The identity x 2 2 = (x) x 3 in baric algebras[END_REF], page 14.

For genetic algebras, we can define the matrices Λ k (i, j) = λ ijk , with Λ k having zero entries for those (i, j) obeying the above constraints. Some of the λ ijk which are non-zero from the above Gonshor constraints can occasionally be zero in some examples, thereby defining special classes of genetic algebras.

Defining c i to be the left-multiplication of x ∈ A by c i : x ci → c i x, we get for its left linear K × K transformation matrices

C i =                0 . . . 0 λ i1i 0 λ i1(i+1) • • • λ ii(i+1) 0 . . . . . . . . . . . . . . . . . . λ i1K • • • λ iiK • • • • • • λ i(K-1)K 0                if i = 2, ..., K C 1 =           λ 111 λ 112 λ 122 . . . . . . λ 11i • • • • • • λ 1ii . . . . . . . . . λ 11K • • • • • • λ 1iK • • • λ 1KK           if i = 1.
The right train roots λ 1ii of A are read on the diagonal of C 1 (they are the characteristic roots of the operator which is multiplication by c 1 ), whereas the left train roots λ i1i of A are read on the (i, 1) -entry of C i . They are the values which were underlined.

We note that with {ω i,k , i = 2, ..., K, k > i} the column K-vectors with entries ω i,k (j) = λ ijk , j = 1, ..., k -1, = 0 if j = k, ..., K, so that ω i,k e l = 0 for all l = k, ..., K, then

C i = λ i1i e i e 1 + K k=i+1 e k ω i,k , i = 2, ..., K.
This decomposition into projectors together with the property ω i,k e l = 0 is enough to ensure the nilpotency of the latter matrices C i and it gives their orders of nilpotency.

From the shape of the C i s, it also holds that ∀i = 2, ..., K :

C i c K = 0 (all C i , i = 2, .
.., K share c K as a common eigenvector associated to the eigenvalue 0) and, with c k+1 , ...,

c K ⊂ c k , ..., c K , k = 1, ..., K -1, C i c k , ..., c K ⊆ c i+1 , ..., c K , for all i = 2, ..., K and k = 2, ...i C i c k , ..., c K ⊆ c k+1 , ..., c K , for all i = 2, ..., K and k = i, ..., K C 1 c k , ..., c K ⊆ c k , ..., c K if i = 1 and k = 1, ..., K.
If x = j y j c j , where the y j s are the coordinates of x ∈ S K in the canonical basis (with y 1 = 1), the matrix associated to the left multiplication x by x is

C x = j y j C j , which is lower-left triangular with diag(C x ) =diag(λ 1ii ). Therefore, K j=1 y j C j x = K j,k=1 y j y k C j c k are the coordinates of x 2 ∈ S K in the canonical basis.
Suppose c i = K j=1 B (i, j) e j so with (non-singular) matrix B defining the change of basis. Then e i = K j=1 B -1 (i, j) c j = c 1 + K j=2 B -1 (i, j) c j with B -1 (i, 1) = 1 so as to ensure the compatibility of ∀i, (e i ) = 1 and (c i ) = δ i,1 .

In the sequel, we shall use

B 1 =      1 -1 1 . . . 0 . . . -1 0 0 1      and B 2 (i, j) = (-1) j-1 i -1 j -1 ,
with respective inverses

B -1 1 =      1 1 1 . . . 0 . . . 1 0 0 1      and B -1 2 (i, j) = B 2 (i, j) .
In the latter case, we shall also use B 3 = B 2 P where P is the permutation matrix P (i, j) = δ i,K+1-i so with B 3 (i, j) = (-1)

K-j i-1 K-j . Write b ij := B (i, j) .
Then (using Einstein notations while summing over repeated indices):

λ ijk = b ii b jj γ i j k b -1
k k gives the way the natural structure constants are deformed into the canonical ones of Gonshor, with the obvious inverse transformation, would the algebra be genetic.

Note that this also means

C i = B -1 ( i b ii E i ) B where B is the transpose of B, together with (14) E i = B i b -1 ii C i B -1 = B   C 1 + i =1 b -1 ii C i   B -1 .
The latter identity shows that for genetic algebras, the E i s must be mutually similar to triangular matrices (non-commutative in general and simultaneously triangularizable by the same similarity matrix B ). Because ∀i, b -1 i1 = 1, for every i, j,

E i -E j = B   i =1 b -1 ii -b -1 ji C i   B -1 (15) 
with the matrix inside the parenthesis strictly lower-triangular. Thus E i -E j must also be similar to a nilpotent matrix, so nilpotent itself.

Given λ ijk and b ij it is not always satisfied that γ ijk are [0, 1] -valued with the property k γ ijk = 1 for all i, j.

With Γ : = (Γ k , k = 1, ..., K), Λ : = (Λ k , k = 1, ..., K)
and B, we shall say that the triple (Γ, Λ, B) is Gonshor-compatible if the Γ k are [0, 1]-valued matrices with k Γ k = J. In this case, the model Γ is linearizable in a higher dimensional state-space whose rapidly growing dimension is given in Proposition 2 of Abraham [START_REF] Abraham | Linearizing quadratic transformations in genetic algebras[END_REF] (would there be no other zero λ ijk but the ones given from the Gonshor constraints, the dimension of the embedding linear space grows like √ 2

K 2
).

3.1.

Examples of models akin to a genetic algebra. Let us give some examples of genetic algebras.

• Pascal change of basis: Suppose the hypergeometric model Γ with ( 16)

γ ijk = 2 (K -1) K -1 -1 i + j -2 k -1 2K -(i + j) K -k , i, j, k = 1, ..., K.
γ ijk (as the probability that an i, j interaction produces k) is the probability that k -1 successes occur in a K -1 draw without replacement from a population of size 2 (K -1) containing i + j -2 successes and 2K -

(i + j) failures, 2 ≤ i + j ≤ 2K.
Clearly, γ ijk are [0, 1] -valued as probabilities with k γ ijk = 1 as a result of the Vandermonde convolution identity. Then using the change of basis B 3 (i, j) = (-1) K-j i-1 K-j , we get the Gonshor-like structure constants [START_REF] Holgate | Some infinite-dimensional genetics algebras[END_REF] λ ijk = 2(K-1) i+j-2

-1 K-1 i+j-2 , if k = i + j -1, = 0 if not and using B 2 (i, j) = (-1) j-1 i-1 j-1 , with S ijk := i+j-2 l=0 (-1) l i+j-2 l l k-1 λ ijk = 2 (K -1) K -1 -1 2K -k -1 K -k (-1) k-1 S ijk , i + j ≤ k + 1.
which are Gonshor-like structure constants. More precisely, because here

S ijk = (-1) k-1 if i + j = k + 1, = 0 if i + j = k + 1 λ ijk = 2 (K -1) K -1 -1 2K -(i + j) K -(i + j -1) , if i + j = k + 1 = 0, if i + j = k + 1.
For the hypergeometric model Γ, (Γ, Λ, B) is Gonshor-compatible for B = B 2 and B = B 3 . The latter models are models of polyploidy of degree 1. In the polyploidy of degree 1 examples, the Λ k s are zero except on the anti-diagonals i

+ j = k + 1.
The genetic polyploidy algebra is a special train algebra 3 with train roots λ 1ii = [START_REF] Gonshor | Special train algebras arising in genetics[END_REF]. Because λ 122 = 1/2 is a train root with multiplicity 1, we expect an equilibrium curve, [START_REF] Gonshor | Special train algebras arising in genetics[END_REF].

2(K-1) K-1 -1 2(K-1)-(i-1) K-i verifying λ 111 = 1, λ 122 = 1/2, λ 1(i+1)(i+1) < λ 1ii ,
Building from this example the column stochastic matrices E i with entries E i (k, j) = γ ijk , they can be seen to be simultaneously triangularizable and the matrices E i -E j are all nilpotent.

Example: Let K = 4 and consider the Gonshor multiplication table in this lowdimensional case (λ 111 = 1) using B 3 . We have

c 2 1 = λ 111 c 1 = c 1 c 1 c 2 = λ 122 c 2 , c 1 c 3 = λ 133 c 3 c 1 c 4 = λ 144 c 4 , c 2 2 = λ 223 c 3 , c 2 c 3 = λ 234 c 4 c 2 c 4 = c 2 3 = c 3 c 4 = c 2 4 = 0 where λ ij(i+j-1) = 6 i+j-2 -1 3 
i+j-2 and so λ 122 = 1/2, λ 133 = 1/5, λ 144 = 1/20, λ 223 = 1/5 and λ 234 = 1/20. Considering the time evolution x (t + 1) = x (t)

2 in the Gonshor basis where x (t) =: c 1 + y 2 (t) c 2 + y 3 (t) c 3 + y 4 (t) c 4 , we get

x (t + 1) = c 2 1 + y 2 2 (t) c 2 2 + 2y 2 (t) c 1 c 2 + 2y 3 (t) c 1 c 3 + 2y 4 (t) c 1 c 4 + 2y 2 (t) y 3 (t) c 2 c 3 = c 1 + 2y 2 (t) λ 122 c 2 + y 2 2 (t) λ 223 + 2y 3 (t) λ 133 c 3 + 2 (y 4 (t) λ 144 + y 2 (t) y 3 (t) λ 234 ) c 4 = : y 1 (t + 1) c 1 + y 2 (t + 1) c 2 + y 3 (t + 1) c 3 + y 4 (t + 1) c 4 .
To get a finite recursion, we need to generate the evolution of the additional states y 2 2 (t), y 2 (t) y 3 (t) and y 3 2 (t) one of which is cubic. We get 

y 2 2 (t + 1) = 4y
          =           1 0 2λ 122 0 0 4λ 2 122 0 0 0 8λ 3 122 0 0 0 2λ 122 λ 223 4λ 122 λ 133 0 0 λ 223 0 0 2λ 133 0 0 0 0 2λ 234 0 2λ 144                     y 1 (t) y 2 (t) y 2 2 (t) y 3 2 (t) y 2 y 3 (t) y 3 (t) y 4 (t)           .
The transition matrix of this dynamics has 1 as a dominant eigenvalue with multiplicity 4 (because λ 122 = 1/2), the corresponding eigenvector being, up to an indeterminate constant y 2 1, y 2 , y 2 2 , y 3 2 , y 3 2 /3, y 2 2 /3, y 3 2 /27. Recalling the correspondence between the xs and the ys, namely

x k = 4 j=1 y j B 3 (j, k) = (-1) k 4 j=5-k y j j-1 4-k , in view of y * = 1, y 2 , y 2 2 /3, y 3 2 /27
, leads to equilibrium states x eq of the xs dynamics in the simplex given by x eq = -y 3 2 /27; y 2 2 /3 + y 3 2 /9; -y 2 + 2y 2 2 /3 + y 3 2 /9 ; 1 + y 2 + y 2 2 /3 + y 3 2 /27 , with normalizing constant 1 and for those values of -3 ≤ y 2 ≤ 0 for which x eq belongs to the simplex. This equilibrium curve, parameterized by y 2 , is cubic and skew; it is stable and the rate at which the dynamics moves to {x eq } is geometric with parameter 2 (λ 133 ∨ λ 144 ) = 2/5 < 1. Note x eq = (1; 0; 0; 0) if y 2 = -3 and x eq = (0; 0; 0; 1) if y 2 = 0; they are the extreme points of the cubics on the simplex.

Polyploidy of degree d: let d ≥ 2 be some integer, with 2d measuring the degree of polyploidy (the case d = 1 being the previous case). Suppose the extended hypergeometric model Γ with [START_REF] Karlin | Mathematical models, problems, and controversies of evolutionary theory[END_REF] 

γ ijk = 2d (K -1) K -1 -1 d (i + j -2) k -1 d (2K -(i + j)) K -k , i, j, k = 1, ..., K.
γ ijk is the probability that k -1 successes occur in a K -1 draw without replacement from a population of size 2d (K -1) containing d (i + j -2) successes and 

d (2K -(i + j)) failures, 2 ≤ i + j ≤ 2K.
λ ijk = 2d(K-1) i+j-2 -1 d(K-1) i+j-2 (-1) k-1 S ijk (d) , if k ≥ i + j -1, = 0 if not
and using the change of basis B 2

λ ijk = 2d (K -1) K -1 -1 2d (K -1) -(k -1) K -k (-1) k-1 S ijk (d) , i + j ≤ k + 1. In both cases, S ijk (d) is such that S ijk (d) = 0 if i + j ≤ k + 1, = 0 if i + j > k + 1.
Although more complex, this is also a Gonshor-like set of structure constants. In particular, in the latter B 2 case, when i + j -1 varies from 1 to K, in view of

(k = i + j -1) S ijk (d) = (-d) i+j-2 λ ij(i+j-1) = 2d (K -1) K -1 -1 2d (K -1) -(i + j -2) K -(i + j -1) d i+j-2 ,
defining the train roots (right and left train roots being respectively

λ 1jj = 2d (K -1) K -1 -1 2d (K -1) -(j -1) K -j d j-1 and λ i1i = λ 1ii , with λ 111 = 1, λ 122 = 1/2, λ 1(i+1)(i+1) < λ 1ii ).
In the polyploidy of degree d > 1 examples, the Λ k are upper-left triangular (a special class of genetic algebras known as special train genetic algebra with train roots λ ij(i+j-1) ). Like in the polyploidy model of degree d = 1, in both B 3 and B 2 cases, the equilibrium set is a curve because λ 122 = 1/2 is a train root with multiplicity 1, [START_REF] Gonshor | Special train algebras arising in genetics[END_REF].

Fisher-Wright model. Let α > 0, 1 > β > 0 obeying α < 2 (K -1) (1 -β).
Suppose the Fisher-Wright model Γ for which i, j, k = 1, ..., K and ( 20)

γ ijk = K-1 k-1 (2 (K -1)) (K-1) (α + β (i + j -2)) k-1 (2 (K -1) -α -β (i + j -2)) K-k .
γ ijk is a binomial-like probability system obeying K k=1 γ ijk = 1. Using the change of basis B 2 , whenever i + j ≤ k + 1, we easily get [START_REF] Kingman | A matrix inequality[END_REF] λ ijk = (-1)

k-1 K-1 k-1 (2 (K -1)) (k-1) i+j-2 l=0 (-1) l i + j -2 l (α + βl) k-1 ,
which are Gonshor-like structure constants with λ ij1 = 0 (ij = 1) and λ ijk = 0 if i + j > k + 1, λ ijk depending only on i + j.

The last point can be checked while observing n l=0 (-1)

l n l l k = 0 for all 0 ≤ k ≤ n -1: consider indeed the degree-n polynomial P n (x) = (x -1)

n and with

D k = (x∂ x )
k consider then the degree-n polynomial D k P n (x). We have

D k P n (1) = n l=0 (-1) l n l l k = 0, for all 0 ≤ k ≤ n -1 and D n P n (1) = n l=0 (-1) l n l l n = n!. Note that with i + j ≤ k + 1, λ ijk = K -1 k -1 -α 2 (K -1) k-1 k-1 l=i+j-2 k -1 l (β/α) l D l P i+j-2 (1) .
For the Fisher-Wright model Γ, (Γ, Λ, B 2 ) is Gonshor-compatible and this model defines a special train algebra with right (and left) train roots (when β < 1)

λ 1jj = (-1) j-1 (2 (K -1)) (j-1) K -1 j -1 j-1 l=0 (-1) l j -1 l (α + βl) j-1 = K-1 j-1 (j -1)!β j-1 (2 (K -1)) (j-1) , obeying λ 1(j+1)(j+1) /λ 1jj = β (K -j) / (2 (K -1)) < 1. In particular, λ 122 = β/2 < 1/2, λ 133 = (K -2) (β/2) 2 / (K -1) < (β/2) 2 < 1/4,...
Example: Let K = 3 and consider the Gonshor multiplication table in this lowdimensional case (λ 111 = 1) 

c 2 1 = λ 111 c 1 + λ 112 c 2 + λ 113 c 3 c 1 c 2 = λ 122 c 2 + λ 123 c 3 c 1 c 3 = λ 133 c 3 ; c 2 2 = λ 223 c 3 c 2 c 3 = c 2 3 = 0. Here, λ 112 = -α/2, λ 122 = β/2, λ 113 = α 2 /
    =     1 0 0 0 λ 112 2λ 122 0 0 λ 2 112 4λ 112 λ 122 4λ 2 122 0 λ 113 2λ 123 λ 223 2λ 133         y 1 (t) y 2 (t) y 2 2 (t) y 3 (t)     .
The transition matrix of the y k s dynamics has 1 as a dominant eigenvalue, the corresponding eigenvector being (recalling 2λ 122 = β < 1 and observing λ 133 = β 2 /8 < 1/8), up to a multiplicative constant

y =   1; λ112 1-2λ122 ; 1 1-4λ 2 122 λ 2 112 + 4λ 2 112 λ122 1-2λ122 ; 1 1-2λ133 λ 113 + 2λ112λ123 1-2λ122 + λ223 1-4λ 2 122 λ 2 112 + 4λ 2 112 λ122 1-2λ122   = : 1; y 2 ; y 2 2 ; y 3 .
Recalling the correspondence between the xs and the ys, namely

x k = 3 j=1 y j B 2 (j, k) = (-1) k-1 3 j=k y j j-1
k-1 , gives the equilibrium state x eq of the xs dynamics in the simplex x eq = (1 + y 2 + y 3 ; -y 2 -2y 3 ; y 3 ) , with normalizing constant 1. For each α > 0, 0 < β < 1, this equilibrium point is stable because the eigenvalue 1 is simple and dominant. The rate at which the dynamics moves to x eq is geometric with parameter 2λ 122 < 1.

In the boundary cases for (α, β) for which α = 0 and β = 1, λ 112 = λ 113 = 0, λ 122 = 1/2, λ 123 = -1/16 and λ 133 = λ 223 = 1/8, the transition matrix of the y k s dynamics has 1 as a dominant eigenvalue with multiplicity 4. This leads to an equilibrium quadratic skew curve of equation x eq = (y 1 + y 2 + y 3 ; -y 2 -2y 3 ; y 3 ) , where

y 1 = 1; y 3 = y 2 2 -y 2 /6.
This curve is parameterized by -2 ≤ y 2 ≤ 0; it passes through the extreme points of the simplex (0; 0; 1) and (1; 0; 0) if respectively y 2 = -2 or y 2 = 0 and also through the barycenter (1/3; 1/3; 1/3) if y 2 = -1. The rate at which the dynamics moves to the equilibrium curve {x eq } is geometric with parameter 2λ 133 = 1/4.

• Hilbert matrices model. With i, j, k ≥ 1, suppose ( 22)

γ ijk = 1 i + j -1 , if k = 1, ..., i + j -1; = 0 else.
Note here i, j, k are not bounded above by some K (the model has infinitely many species). If this is so, k≥1 γ ijk = 1 for all i, j ≥ 1.

Using the change of basis B 2 , with b (i, j) = (-1)

j-1 i-1 j-1 = b -1 (i, j
) and m = i + j -2, we easily get that

λ ijk = b ii b jj γ i j k b -1 k k = i,j i ,j =1 (-1) i +j -2 i-1 i -1 j-1 j -1 i + j -1 i +j -1 k =k (-1) k-1 k -1 k -1 = (-1) k-1 i+j-2 m=k-1 (-1) m i+j-2 m m + 1 m l=k-1 l k -1 .
λ ijk depends only on i + j and is 0 if i + j < k + 1 and also if i + j > k + 1. Indeed, using the identity

m l=k-1 l k -1 = m + 1 -(k -1) k m + 1 k -1 , λ ijk = (-1) k-1 k i+j-2 m=k-1 (-1) m i + j -2 m m k -1 = 1 k i + j -2 k -1 i+j-k-1 l=0 (-1) l i + j -k -1 l = 0 except if k = i + j -1.
Thus λ ijk reduces to λ ij(i+j-1) = 1/ (i + j -1) and Λ k is reduced to the antidiagonal i

+ j = k + 1. With x (t) = k≥1 y k (t) c k , we have x (t + 1) = x (t) 2 = k≥1 y 2 k (t) c 2 k + 2 1≤k<l y k (t) y l (t) c k c l = k≥1 y 2 k (t) 2k -1 c 2k-1 + 2 1≤k<l y k (t) y l (t) k + l -1 (t) c k+l-1 = j≥1 c j j k,l≥1:k+l-1=j y k (t) y l (t) =: j≥1 y j (t + 1) c j .
so with y j (t + 1) = 1 j k+l-1=j y k (t) y l (t) . To produce a triangular infinite-dimensional linear system, we need to generate all the additional states y k (t) y l (t), 1 < k < l. For an account on such infinite-dimensional genetic algebras, see [START_REF] Holgate | Some infinite-dimensional genetics algebras[END_REF].

• The shift change of basis. We start with an example. Let K = 3 and consider the Gonshor multiplication table in this low-dimensional case (λ 111 = 1)

c 2 1 = λ 111 c 1 + λ 112 c 2 + λ 113 c 3 c 1 c 2 = λ 121 c 2 + λ 123 c 3 c 1 c 3 = λ 133 c 3 c 2 2 = λ 223 c 3 c 2 c 3 = c 2 3 = 0 Assume λ ijk > 0 and let x (t) = 3 k=1 x k (t) e k . Then, with c 1 = e 1 , c 2 = e 2 -e 1 , c 3 = e 3 -e 1 , (c k = j B 1 (k, j) e j ), x (t) = y 1 (t) c 1 + y 2 (t) c 2 + y 3 (t) c 3 where y 1 (t) = 1, y 2 (t) = x 2 (t) and y 3 (t) = x 3 (t)
. This change of basis (of type B 1 ) can be inverted to give

e 1 = c 1 , e 2 = c 2 + c 1 , e 3 = c 3 + c 1 . Hence, x k (t) = j y j (t) B 1 (j, k). Considering the time evolution x (t + 1) = x (t)
2 in the Gonshor canonical basis, we get

x (t + 1) = c 2 1 + y 2 2 (t) c 2 2 + 2y 2 (t) c 1 c 2 + 2y 3 (t) c 1 c 3 = c 1 + (λ 112 + 2y 2 (t) λ 121 ) c 2 + λ 113 + λ 223 y 2 2 (t) + 2y 2 (t) λ 123 + 2y 3 (t) λ 133 c 3 = : y 1 (t + 1) c 1 + y 2 (t + 1) c 2 + y 3 (t + 1) c 3
To get a finite recursion if ever, we need to generate the evolution of the additional state y 

        y 1 (t) y 2 (t) y 2 2 (t) y 3 (t)     .
The corresponding matrices Γ k given by γ ijk = Γ k (i, j) giving the evolution of the xs, are obtained while considering the products e i e j expressed in the Gonshor basis, making use of its multiplication table and then coming back to the natural basis. They are symmetric matrices with

Γ 2 =   λ 112 λ 112 + λ 121 λ 121 λ 112 + 2λ 121 λ 112 + λ 121 λ 112   Γ 3 =   λ 113 λ 113 + λ 123 λ 113 + λ 133 λ 113 + 2λ 123 + λ 223 λ 113 + λ 123 + λ 133 λ 113 + 2λ 133   Γ 1 = J -(Γ 2 + Γ 3 )
The entries of these matrices should be [0, 1] -valued. The compatibility conditions ensuring this (besides λ ijk > 0) are found to be by inspection of the Γ k s max (2λ

121 + λ 123 + λ 223 , λ 121 + λ 123 + λ 133 , 2λ 133 ) ≤ 1 -(λ 112 + λ 113 ) λ 112 + λ 113 ≤ 1.
If these constraints are fulfilled (a sufficient condition being λ 112 + λ 113 + 2λ 121 + 2λ 123 + 2λ 133 + λ 223 ≤ 1), then the quadratic model with the above Γ k s is Haldane linearizable along the dynamics of the y k s. Under the above conditions on the Gonshor structure constants, (Γ, Λ, B 1 ) is Gonshor-compatible.

The transition matrix of the y k s dynamics has 1 as a dominant eigenvalue, the corresponding eigenvector being (observing λ 121 < 1/2 and assuming λ 133 < 1/2), up to a multiplicative constant

y = 1, λ 112 1 -2λ 121 , λ 112 1 -2λ 121 2 , λ 113 (1 -2λ 121 ) 2 + 2λ 112 λ 123 (1 -2λ 121 ) + λ 2 112 λ 223 (1 -2λ 121 ) 2 (1 -2λ 133 )
= : 1; y 2 ; y 2 2 ; y 3 .

Recalling the correspondence between the xs and the ys, namely x k = j y j B 1 (j, k), we get the equilibrium state of the xs dynamics in the simplex

x eq = (1 -y 2 -y 3 ; y 2 ; y 3 ) , with normalizing constant 1. This equilibrium point is stable because the eigenvalue 1 is simple and dominant.

Note that in the extremal case

λ 112 = λ 113 = 0, λ 133 = 1/2, provided max (2λ 121 + λ 123 + λ 223 , λ 121 + λ 123 + λ 133 ) ≤ 1,
1 is a double eigenvalue of the transition matrix for the y k s and the equilibrium point is x eq = (1; 0; 0), at the boundary of the simplex.

• Gametic algebra with recombination ( [START_REF] Wörz-Busekros | Algebras in Genetics[END_REF], Ex.1.3).

Let K = 4 and with θ ∈ (0, 1) and for all i, j = 1, ...,

e i e j = 1 2 (e i + e j ) + (-1) i∨j-1 θ 2 (e 1 + e 4 -e 2 -e 3 ) 1 {i + j = 5} , defining the γ ijk s as a perturbed version of the fair Mendelian inheritance model involving crossovers. θ is the recombination rate, here the probability that zygote (1, 4) undergoes a transition to zygote (2, 3) and conversely. In this example, with θ := 1 -θ

Γ 1 =     1 1/2 1/2 θ/2 1/2 0 θ/2 0 1/2 θ/2 0 0 θ/2 0 0 0     , Γ 2 =     0 1/2 0 θ/2 1/2 1 θ/2 1/2 0 θ/2 0 0 θ/2 1/2 0 0     , Γ 3 =     0 0 1/2 θ/2 0 0 θ/2 0 1/2 θ/2 1 1/2 θ/2 0 1/2 0     , Γ 4 =     0 0 0 θ/2 0 0 θ/2 1/2 0 θ/2 0 1/2 θ/2 1/2 1/2 1     . with Γ 1 + Γ 2 + Γ 3 + Γ 4 = J. And 4 E 1 =     1 1/2 1/2 θ/2 0 1/2 0 θ/2 0 0 1/2 θ/2 0 0 0 θ/2     , E 2 =     1/2 0 θ/2 0 1/2 1 θ/2 1/2 0 0 θ/2 0 0 0 θ/2 1/2     , E 3 =     1/2 θ/2 0 0 0 θ/2 0 0 1/2 θ/2 1 1/2 0 θ/2 0 1/2     , E 4 =     θ/2 0 0 0 θ/2 1/2 0 0 θ/2 0 1/2 0 θ/2 1/2 1/2 1     .
Using,

B 4 :=     1 1 -1 1 0 -1 1 -1 -1 1     , with B -1 4 = B 4 , we get c 2 1 = λ 111 c 1 = c 1 c 1 c 2 = c 2 /2, c 1 c 3 = c 3 /2 c 1 c 4 = (1 -θ) c 4 /2, c 2 2 = 0, c 2 c 3 = θc 4 /2 c 2 c 4 = c 2 3 = c 3 c 4 = c 2 4 = 0 which is Gonshor-like with right train roots λ 111 = 1, λ 122 = λ 133 = 1/2, λ 144 = (1 -θ) /2. Because λ 122 = 1/2 is
a train root with multiplicity 2, we expect an equilibrium surface for this model, [START_REF] Gonshor | Special train algebras arising in genetics[END_REF]. Considering indeed the time evolution

x (t + 1) = x (t)
2 in the Gonshor basis where x (t) =: c 1 + y 2 (t) c 2 + y 3 (t) c 3 + y 4 (t) c 4 , we get

x (t + 1) = c 1 + y 2 (t) c 2 + y 3 (t) c 3 + ((1 -θ) y 4 (t) + θy 2 (t) y 3 (t)) c 4 = : y 1 (t + 1) c 1 + y 2 (t + 1) c 2 + y 3 (t + 1) c 3 + y 4 (t + 1) c 4 .
To get a finite recursion, we need to generate the evolution of one additional state, namely y 2 (t) y 3 (t). We simply get y 2 (t + 1) y 3 (t + 1) = y 2 (t) y 3 (t) .

We obtain the closed finite-dimensional evolution

      y 1 (t + 1) y 2 (t + 1) y 3 (t + 1) y 2 y 3 (t + 1) y 4 (t + 1)       =       1 0 1 0 0 1 0 0 0 1 0 0 0 θ 1 -θ             y 1 (t) y 2 (t) y 3 (t) y 2 y 3 (t) y 4 (t)      
.

The transition matrix of this dynamics has 1 as a dominant eigenvalue with multiplicity 4, the corresponding eigenvector being, up to two indeterminate constants y 2 , y 3 Recalling the correspondence between the xs and the ys, namely x k = 4 j=1 y j B 4 (j, k), in view of y * = (1, y 2 , y 3 , y 2 y 3 ), leads to equilibrium states x eq of the xs dynamics in the simplex given by x eq = (1 + y 2 + y 3 + y 2 y 3 ; -y 2 -y 2 y 3 ; -y 3 -y 2 y 3 ; y 2 y 3 ) , with normalizing constant 1 and for those values of -1 ≤ y 2 , y 3 ≤ 0 for which x eq belongs to the simplex. This equilibrium hypervolume, parameterized by y 2 , y 3 , is skew; the equilibrium surface is defined as the intersection of the simplex S 4 with the latter hypervolume which is seen to be of equation x 2 x 3 = x 1 x 4 . It is stable and the rate at which the dynamics moves to the equilibrium surface {x eq } is geometric with parameter 1 -θ < 1. Note that {x eq } contains the faces of the simplex: (0; 1 + y 3 ; 0; -y 3 ) and (0; 0; 1 + y 2 ; -y 2 ) obtained respectively when y 2 = -1 and y 3 = -1, together with the barycenter of the simplex obtained when y 2 = y 3 = -1/2. Coming back to the natural basis, it can be checked in addition that in this example

x (t + 1) -x (t) = θ (x 2 (t) x 3 (t) -x 1 (t) x 4 (t)) u,
where u = (1, -1, -1, 1). So x (t) moves in the direction of u, starting from x (0), before hitting the set {x eq }: the domain of attraction of a point in {x eq } is included in a line pointing to {x eq } from x (0) in the direction of u.

3.2.

Models not in the class of genetic algebras. So far, we gave some examples of symmetric matrices Γ k (obeying ∀i, j, k Γ k (i, j) = 1) leading to genetic algebras which are linearizable in higher dimension. We now give some examples which are not. From the previous arguments, the necessary and sufficient conditions under which a choice of Γ i leads to genetic algebras is that: 1/ The matrices E i with E i (k, j) = Γ k (i, j) = γ ijk should be simultaneously triangularizable (ST) and 2/ ∀i < j, E i -E j should be nilpotent matrices.

A particular stochastic model {Γ} may fail to be Gonshor-compatible if condition 1/ or 2/ or both fail.

Concerning condition 1/: Quasi-commutative matrices are matrices commuting with their commutators (with commuting matrices being quasi-commutative). If ∀i < j, ∀k, [E k , [E i , E j ]] = 0, then the set of matrices E i are said to be quasicommutative and in this case the E i are simultaneously triangularizable (ST) in the extension C of R, [START_REF] Mccoy | On quasi-commutative matrices[END_REF]. Commuting matrices are even simultaneously diagonalizable.

If quasi-commutativity is a ST sufficient condition, it is not necessary. In [START_REF] Mccoy | On the characteristic roots of matric polynomials[END_REF], the necessary and sufficient condition for ST was shown to be: ∀i < j, P (E 1 , ..., E K ) [E i , E j ] are nilpotent matrices for any polynomial P in the possibly non-commutative variables {E 1 , ..., E K }. By Theorem 3 in [START_REF] Mccoy | On the characteristic roots of matric polynomials[END_REF], this condition is equivalent to the solvability of the Lie algebra L := E 1 , ..., E K LA spanned by {E 1 , ..., E K }, closing the linear space generated by the E i with respect to the commutator operation (the solvability of L means that its derived series terminates in the zero subalgebra 5 ). L has d (K ≤dim(L) = d ≤ K 2 ) linearly independent basis matrices {E 1 , ..., E d }, with {E 1 , ..., E K } ⊆ {E 1 , ..., E d }, and [E i , E j ] = d k=1 e ijk E k where e ijk are the structure constants of L obeying e ijk = -e jik and the Jacobi identity. The matrix K associated to the Killing form of L is K := [k i,j ], where k i,j = k,l e ilk e jkl . Its non-degeneracy is a signature of the semi-simplicity of L, with semi-simplicity⇒non-solvability (the reciprocal being false in general).

A constructive (although prohibitive even for small K) test for pair-wise ST of {E 1 , ..., E K } is that of Theorem 6 of [START_REF] Al'pin Yu | On the Simultaneous Triangulability of Matrices[END_REF]:

for every k ∈ 1, K 2 -1 , ∀i < j, with U l ∈ {E i , E j }, l = 1, ..., k, each matrix of the form U 1 • • • U k [E i , E j ] has zero trace. ST of {E 1 , ..., E K } condition is: for every k ∈ 1, K K -1 , ∀i < j, with U l ∈ {E 1 , ..., E K }, l = 1, ..., k, each matrix of the form U 1 • • • U k [E i , E j ] has zero trace.
The conditions 1/ and 2/ can be used to show that special important families of Γ k do not lead to genetic algebras.

• Permutations.

(i) Suppose Γ 1 = 0 1 1 0 , Γ 2 = 1 0 0 1 .
Then E 1 = Γ 1 and E 2 = Γ 2 are commuting matrices so simultaneously triangularizable (in fact diagonalizable). However

E 1 -E 2 = -1 1 1 -1 with trace -2 is not nilpotent. (ii) Suppose Γ 1 =   0 1 0 1 0 0 0 0 1   , Γ 2 =   0 0 1 0 1 0 1 0 0   , Γ 3 =   1 0 0 0 0 1 0 1 0   . Then E 1 =   0 1 0 0 0 1 1 0 0   , E 2 =   1 0 0 0 1 0 0 0 1   , E 3 =   0 0 1 1 0 0 0 1 0  
which are commuting permutation matrices so simultaneously triangularizable (in fact diagonalizable with a unitary matrix). However

E 1 -E 2 =   -1 1 0 0 -1 1 1 0 -1   with trace -3 is not nilpotent. (iii) Suppose Γ 1 =     0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0     , Γ 2 =     0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1     , Γ 3 =     1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0     , Γ 4 =     0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0     . with Γ 1 + Γ 2 + Γ 3 + Γ 4 = J. Then E 1 =     0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1     , E 2 =     1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0     , E 3 =     0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0     , E 4 =     0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0    
are also permutation (non-symmetric) matrices which are not even quasi-commuting.

Note

E 1 + E 2 + E 3 + E 4 = J.
We have for instance

E 2 E 3 [E 1 , E 2 ] =     -1 0 1 0 0 0 0 0 0 0 -1 1 1 0 0 -1    
with trace -3, so not nilpotent. Moreover,

E 1 -E 2 =     -1 1 0 0 0 -1 1 0 1 0 0 -1 0 0 -1 1     ,
with trace -1, is not nilpotent. The (non-solvable) Lie algebra L generated by the E i , i = 1, ..., 4, has dimension d = 10, with basis

{E 1 ; E 2 ; E 3 ; E 4 ; E 5 = [E 1 , E 2 ] ; E 6 = [E 1 , E 3 ] ; E 7 = [E 1 , E 5 ] ; E 8 = [E 1 , E 6 ] ; E 9 = [E 1 , E 8 ] ; E 10 = [E 2 , E 5 ]}.
The associated structure constants can be computed, together with the associated Killing matrix K which is found to be of rank 8, so degenerate. The Lie algebra L is neither solvable nor semisimple.

(iii ) Suppose

Γ 1 = I, Γ 2 =     0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0     , Γ 3 =     0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0     , Γ 4 =     0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0     .
with Γ 1 + Γ 2 + Γ 3 + Γ 4 = J. Then E i = Γ i , i = 1, ..., 4 are also permutation (symmetric) matrices which are commuting (the Lie algebra L generated by the E i is solvable of order 1). However,

E 1 -E 2 =     1 -1 0 0 -1 1 1 0 1 0 1 -1 0 0 -1 1     ,
with trace 4, is not nilpotent.

These examples suggest that, would Γ k be symmetric (involutive) permutation matrices, such models should not lead to genetic algebras in general (Recall though that the fixed equilibrium point of such dynamics is always the barycenter x B of the simplex S K ). This suggestion is not reduced to symmetric permutation matrices. Suppose

Γ 1 =   0 1/2 1/2 1/2 0 1/2 1/2 1/2 0   = Γ 2 , Γ 3 = I,
the symmetrized version of the non-symmetric permutation matrices

P 1 =   0 1 0 0 0 1 1 0 0   , P 2 =   0 0 1 1 0 0 0 1 0   , P 3 = I.
Then

E 1 =   0 1/2 1/2 0 1/2 1/2 1 0 0   , E 2 =   1/2 0 1/2 1/2 0 1/2 0 1 0   , E 3 =   1/2 1/2 0 1/2 1/2 0 0 0 1   which are non-quasi-commuting bistochastic matrices, however with E 1 [E 1 , E 2 ], E 3 [E 1 , E 2 ] nilpotent for instance. But E 1 -E 3 =   -1/2 0 1/2 -1/2 0 1/2 1 0 -1   with trace
-3/2 is not nilpotent. The Lie algebra L generated by the E i , i = 1, ..., 3, has dimension d = 3, with basis {E 1 ; E 2 ; E 3 }. The associated structure constants can be computed, together with the associated Killing matrix K which is found to be of rank 1, so degenerate. The Lie algebra L is solvable of order 2 (the brackets [E i , E j ], i < j being proportional to the same matrix E 1 -E 2 ) and not semisimple.

• The general 2-dimensional stochastic case, including the bistochastic matrices case.

(iv) With α, β, γ ∈ (0, 1) and α

= 1 -α, β = 1 -β, γ = 1 -γ, suppose Γ 1 = α β β γ , Γ 2 = α β β γ ,
the general 2-dimensional stochastic problem. Then If α + γ = 2β, the evolutionary dynamics x (t + 1) = x (t) 2 reads

E 1 = α β α β , E 2 = β γ β γ ,
x 1 (t + 1) = (x 1 (t) , 1 -x 1 (t)) Γ 1 (x 1 (t) , 1 -x 1 (t)) = 2 (β -γ) x 1 (t) + γ

x 2 (t + 1) = 2 (β -γ) x 2 (t) + α.

It is indeed linear with fixed point x eq = (γ/ (γ + α) ; α/ (γ + α)) , in the simplex. So, except in this particular case, the general 2-dimensional problem is not amenable to a linear problem and when it is, there is no additional state to generate.

However, because of the very low dimension (K = 2) of the problem, the analysis of the model with {Γ 1 , Γ 2 } defined above is possible. We find that for any α, β, γ ∈ (0, 1), the 2-dimensional dynamics x k (t + 1) = x Γ k x, k = 1, .., 2 always has a fixed point in the simplex. Defining ε = (α + γ) /2 -β, the dynamics is [START_REF] Reed | Algebraic structure of genetic inheritance[END_REF] x 1 (t + 1) = 2εx 1 (t) 2 + (α -γ -2ε) x 1 (t) + γ =: f (x 1 (t)) , with a quadratic f . With ∆ = (2β -1) 2 + 4γα > 0, the fixed point in the simplex therefore is

x 1,eq = γ -α + 2ε + 1 - √ ∆ 4ε
, x 2,eq = 1 -x 1,eq .

With ∆ > 1 ⇔ ββ < γα, we have f (x 1,eq ) = 1 -√ ∆ with |f (x 1,eq )| < 1 if ∆ ≤ 1 or 1 < ∆ ≤ 4. So x 1,eq is asymptotically stable if and only if ∆ ≤ 4. If ∆ > 4, x 1 (t) oscillates between two limiting values in the simplex around x 1,eq , as a center fixed and unstable point: we have two period-two equilibrium points (obeying f (f (x)) = x). If 4 > ∆ > 1, x 1 (t) tends to x 1,eq while oscillating around x 1,eq , as a fixed stable equilibrium point. Else, if ∆ ≤ 1, x 1 (t) tends to x 1,eq from below or from above (depending on the initial condition) without over-crossing its limiting value more than once.

If β = α = γ ⇒ ββ = γα, Γ 1 and Γ 2 are bistochastic and [E 1 , E 2 ] = 0. In this case, E 1 -E 2 = 2α -1 1 -2α 1 -2α 2α -1 with zero trace. This matrix is not nilpotent unless α = β = γ = 1/2, a trivial case. In dimension K = 2, bistochastic models are not Gonshor-linearizable in general either.

• Unbalanced Mendelian inheritance model. This is a model with Mendelian segregation for which only interactions (k, j) or (i, k) can produce type-k offspring. Here x (t + 1) = x (t) 2 where x (t) = i x i (t) e i and multiplication table given by e i e j = Γ i (i, j) e i + Γ j (i, j) e j , where Γ i (i, j) + Γ j (i, j) = 1. As observed previously in Section 2, the dynamics of species frequencies is also x k (t + 1) = x Γ k x, k = 1, .., 3. It can alternatively be written in vector form as [START_REF] Weissing | Selection and segregation distortion in a sex-differentiated population[END_REF] x (t + 1) = x (t) + D x(t) Ax (t) , . This shows that the only case when E i -E j are all nilpotent is the trivial balanced (fair) Mendelian case when a 1 = a 2 = a 3 = b 1 = b 2 = b 3 = 1/2, corresponding to A = 0 with x (t + 1) = x (t), its linear but uninteresting corresponding dynamics. This suggests that unbalanced Mendelian segregation dynamics should not be Gonshor-linearizable in general.

  Then, using the change of basis B 3 , with S ijk (d) :=

(v) With a 1 + a 2 = 1 , b 1 + b 3 = 1 ,

 121131 b 2 + a 3 = 1, suppose (Γ 1 + Γ 2 + Γ 3 = J)

b 3 a 3 1 However E 1 -a 3  with trace a 2 -a 1 + b 3 -a 3 is not nilpotent unless a 1 = a 2 = 1 / 2 , b 3 = a 3 and b 1 = b 2 . 3 -a 3 a 3 - 1  with trace a 1 -b 1 + a 3 -b 2 is not nilpotent unless a 3 = b 2 = 1 / 2 , b 1 = a 1 , and a 2 = b 3 and E 1 -

 11321312123123111332121121 which are non-commuting column stochastic matrices withE 1 [E 1 , E 2 ], E 2 [E 1 , E 2 ], E 1 E 2 [E 1 , E 2 ],..., nilpotent matrices. Similarly, E 2a 2 = b 2 , b 1 = b 3 = 1/2,and a 1 = a 3

  16, λ 123 = -β (2α + β) /16 and λ 133 = λ 223 = β 2 /8. Considering the time evolution x (t + 1) = x (t) 2 in the Gonshor basis where x (t) =: c 1 + y 2 (t) c 2 + y 3 (t) c 3 , we get (t) c 1 c 2 + 2y 3 (t) c 1 c 3 = c 1 + (λ 112 + 2y 2 (t) λ 122 ) c 2 + λ 113 + 2y 2 (t) λ 123 + y 2 2 (t) λ 223 + 2y 3 (t) λ 133 c 3 = : y 1 (t + 1) c 1 + y 2 (t + 1) c 2 + y 3 (t + 1) c 3

	x (t + 1) = c 2 1 + y 2 2 (t) c 2 2 + 2y 2 The additional state y 2 2 (t) should be generated here with y 2 2 (t + 1) = (λ 112 + 2y 2 (t) λ 122 ) λ 2 112 + 4y 2 (t) λ 112 λ 122 + 4y 2 2 (t) λ 2 122 . We obtain the closed 4-dimensional evolution	2 =
		y 1 (t + 1)
	  	y 2 (t + 1) y 2 2 (t + 1)
		y 3 (t + 1)

  1, y 2 , y 3 , y 2 y 3 , y 2 y 3 . Because this model is Gonshor-compatible, the Lie algebra generated by {E 1 , ..., E 4 } is solvable, see below. And all E i -E j are nilpotent.
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  which do not commute in general (unless ββ = γα). The Lie algebra L generated by{E 1 , E 2 } has dimension d = 3 with basis {E 1 , E 2 , E 3 = [E 1 , E 2 ]} if α + γ = 2β and dimension d = 2 if α + γ = 2β. It is solvable in both cases because, by Cartan solvability criterion, the Killing form K satisfies K(E, E ) =Trace(E, E ) = 0 for all E in L and E in [L, L]. However here, E 1 -E 2 = α -β β -γ α -β β -γ , with trace α -β + β -γ. It is not nilpotent unless α + γ = 2β.Although L is solvable, the general 2-dimensional stochastic problem is not Gonshor-linearizable unless α + γ = 2β.

This means that for all examples designed in Section 3.1, the Lie algebras generated by the {E i } which can be built from the {Γ i } we started from, were solvable and that all E i -E j were nilpotent.
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