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DOES EULERIAN PERCOLATION ON Z
2 PERCOLATE ?

OLIVIER GARET, RÉGINE MARCHAND, AND IRÈNE MARCOVICI

Abstract. Eulerian percolation on Z2 with parameter p is the classical Bernoulli
bond percolation with parameter p conditioned on the fact that every site has
an even degree. We first explain why Eulerian percolation with parameter
p coincides with the contours of the Ising model for a well-chosen parameter
β(p). Then we study the percolation properties of Eulerian percolation.

1. Introduction

In this paper, we aim to study the percolation properties of the Eulerian (or
even) percolation on the edges of Z

2. Eulerian percolation with parameter p on
the edges of Z2 is heuristically the classical independent Bernoulli percolation with
parameter p on the egdes of Z2, but conditioned to be even, i.e. conditioned to the
fact that each vertex of Z

2 has an even number of open edges touching it. This
paper has two parts.

1. The event by which we want to condition has probability 0. The first step is
thus to define properly the Eulerian percolation measures, by the mean of specifi-
cations in finite boxes and of Gibbs measures. Doing so, the Eulerian percolation
measure with parameter p will be given by the contours of the Ising model on the
sites of the dual Z2

∗ ∼ Z
2 for a well-chosen parameter β = β(p):

Theorem 1.1. For every p ∈ [0, 1], there exists a unique even percolation measure
µp with opening parameter p. It is the image by the contour application of any
Gibbs measure for the Ising model on the dual graph Z

2
∗ of Z2, with parameter

β =
1

2
log

1− p

p
⇔ p =

1

1 + exp(2β)
.

Also, µp is invariant and ergodic under the natural action of Zd.

In the case of the Z
2 lattice, this generalizes Theorem 5.2 of Grimmett and

Janson [9], that studies random even subgraphs on finite planar graphs. In the
same paper, they mention the existence of a thermodynamic limit, but the question
of uniqueness is not asked.

2. We are interested in the probability, under the even percolation measure µp,
of the percolation event

C = “there exists an infinite open cluster”.

Our first result consists in proving the almost-sure uniqueness of the infinite cluster
when it exists:
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Theorem 1.2. For every p ∈ [0, 1], we denote by µp the even percolation measure
with opening parameter p. There exists µp-almost surely exactly one infinite cluster
or µp-almost surely no infinite cluster.

Note that the “even degree” condition induces correlations between states of
edges, that break the classical finite energy property. However, we can adapt the
classical proof by using the interpretation in terms of contours of the Ising model.
To study the percolation itself, we have at our disposal the results proved for
the Ising model on Z

2, especially in the ferromagnetic range. Remember that
βc = 1

2 log(1 +
√

2) is the critical value of the Ising model in Z
2; we introduce the

corresponding percolation parameter

pc,even =
1

1 + exp(2βc)
= 1− 1√

2
<

1

2
.

We prove the following:

Theorem 1.3. In terms of even percolation with parameter p ∈ [0, 1], there exists
p1 and p2 with 1

2 < p1 < p2 ≤ 3
4 such that

• for p < pc,even, µp(C) = 0,
• for pc,even < p ≤ p1, µp(C) = 1,
• for p > p2, µp(C) = 1.

In terms of the Ising model with parameter β, these results correspond to:

• for β > βc, for every Gibbs measure with parameter β, contours a.s. do
not percolate,
• for 0 ≤ β < βc, for every Gibbs measure with parameter β, contours a.s.

percolate,
• for β < −(log 3)/2, for every Gibbs measure with parameter β, contours

a.s. percolate.

These results are summarized in the following table:

p 0 pc,even
1
2 p1 p2 1

β(p) +∞ βc 0 −∞
µp no perco. | perco. | perco. | ? | perco.

We naturally conjecture that pc,even is indeed the unique percolation threshold for
the Eulerian percolation on Z

2:

Conjecture 1.4.

• In terms of even percolation: for every p ≤ pc,even, µp(C) = 0, while for every
p > pc,even, µp(C) = 1.
• In terms of the Ising model: for every β ≥ βc, for every Gibbs measure with

parameter β, contours a.s. do not percolate, while for every β ∈ (−∞, βc), for every
Gibbs measure with parameter β, contours a.s. percolate.

But despite our efforts, we did not manage to fill the gap p ∈ [p1, p2]. In inde-
pendent Bernoulli bond percolation, p 7→ Pp(C) is non-decreasing, and this follows
from a natural coupling of percolation for all parameters p ∈ [0, 1]. The same mono-
tonicity occurs for FK percolation with parameter q ≥ 1. This is strongly related
to the fact that FK percolation satisfies the FKG inequality. Here, conditioning
by the Eulerian condition breaks the association, even if the underlying graph is
Eulerian. See the appendix for an example of the strange things that may happen.
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The percolation results for p ≤ 1/2 essentially follow from the results about
percolation of colors in the Ising model in the ferromagnetic case β > 0. The Ising
model in the antiferromagnetic case has been much less studied, so other kinds
of arguments are needed for p > 1/2. The case for large p follows from the link
between the Ising model and FK percolation. A stochastic comparison between
even percolation with a large parameter and independent percolation with a large
parameter gives the result for p ≥ 3/4. This bound may be improved by some
argument derived from Beffara and Duminil-Copin [2], but it is not sufficient to fill
the gap.

2. Eulerian percolation probability measures

On Z
2, we consider the set of edges E2 between vertices at distance 1 for ‖.‖1.

An edge configuration is an element ω ∈ {0, 1}E2 : if ω(e) = 1, the edge e is present
(or open) in the configuration ω, and if ω(e) = 0, the edge is absent (or closed).
For x ∈ Z

2, we define the degree dω(x) of x in the configuration ω by setting

dx(ω) =
∑

e∋x

ω(e).

An Eulerian edge configuration is then an element of

ΩEP = {ω ∈ {0, 1}E2 : ∀x ∈ Z
d , dx(ω) = 0 [2]}.

If ω, η ∈ ΩEP and Λ ⊂ E2, we denote by ηΛωΛc the concatenation of the configura-
tion η restricted to Λ and of the configuration ω restricted to Λc.

Gibbs measures for Eulerian percolation. For each finite subset Λ of E2 and
each function f on ΩEP, we can define

∀ω ∈ ΩEP (Mp
Λf)(ω) =

∑

ηΛ∈{0,1}Λ

11ΩEP
(ηΛωΛc )f(ηΛωΛc)

(

p

1− p

)

∑

e∈Λ
ηe

,

(µp
Λf)(ω) =

(Mp
Λf)(ω)

(Mp
Λ1)(ω)

.(1)

Note that µp
Λ is Feller, in the following sense: µp

Λf is continuous (for the product
topology) as soon as f is continuous. A standard calculation gives

µp
∆ ◦ µp

Λ = µp
∆ for Λ ⊂ ∆.(2)

We denote by µp
Λ,ω the probability measure on {0, 1}E2 that is such that, for each

bounded measurable function f ,

∫

ΩEP

f dµp
Λ,ω = (µp

Λf)(ω) =

∑

ηΛ∈{0,1}Λ
11ΩEP

(ηΛωΛc)f(ηΛωΛc )
(

p
1−p

)

∑

e∈Λ
ηe

∑

ηΛ∈{0,1}Λ
11ΩEP

(ηΛωΛc)
(

p
1−p

)

∑

e∈Λ
ηe

.

A measure probability µ on ({0, 1}E2,B({0, 1}E2)) is said to be a Gibbs measure for
Eulerian percolation (or a Eulerian percolation probability measure) if one has

• µ(ΩEP) = 1
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• For each continuous fonction on {0, 1}E2, for each finite subset Λ of E2,

∫

ΩEP

f dµ =

∫

ΩEP

(µp
Λf)dµ.(3)

We denote by GEP(p) the set of Gibbs measures for Eulerian percolation with open-
ing parameter p.

Colorings with two colors and Eulerian percolation. A natural way to obtain
an Eulerian configuration of the edges of a planar graph is to take the contours of
a coloring in two colours of the sites of its dual, and this is what we decribe now in
the Z

2 case.
Let Z

2
∗ = (1/2, 1/2) + Z

2 be the dual graph of Z2. The set E
2
∗ of edges of Z2

∗ is
the image of E2 by the translation with respect to the vector (1/2, 1/2). If e ∈ E

2,
we denote by e⊥ its dual edge, i.e. the only edge in E

2
∗ that intersects e. We can

map any coloring of the sites of Z2
∗ with the two colors −1 and 1 to its contour in

the following way:

Γ : {−1, 1}Z2
∗ −→ ΩEP

σ = (σi∗
)i∗∈Z2

∗
7−→ (ηe)e∈E2 , with ηe = 11{σi∗ 6=σj∗ } if e⊥ = {i∗, j∗}

.

Let us see that Γ(σ) ∈ ΩEP. Indeed, set η = Γ(σ), and fix x ∈ Z
2. Let a∗, b∗, c∗, d∗

be the four corners of the square with length side 1 in Z
2
∗ whose center is x: then

the four edges issued from x are the dual edges of {a∗, b∗}, {b∗, c∗}, {c∗, d∗} and
{d∗, a∗}. Thus

(−1)dx(η) = (−σa∗
σb∗

)(−σb∗
σc∗

)(−σc∗
σd∗

)(−σd∗
σa∗

) = 1.

So Γ(σ) ∈ ΩEP.
Reciprocally, the dual of a planar Eulerian graph is bipartite (see for instance

Wilson and Van Lint [18], th 34.4 p 481), and there are exactly two ways of coloring
the sites of a connected bipartite graph with two colors in such a way that the
extremities of every edge are in different colors. In our Z

2 case, fix an Eulerian
edge configuration η. By setting cη(0∗) = +1, and for any x∗ ∈ Z

2
∗, cη(x∗) equals

(-1) power the number of edges in η crossed by any path (in the dual) between 0∗
and x∗, we properly define a coloring cη of Z

2
∗, and Γ−1(η) = {cη,−cη}. Finally,

the contour application Γ is surjective and two to one.
As we will see now, the Gibbs measures for Eulerian percolation can be obtained

as the images by the contour application Γ of the Gibbs measures for the Ising
model in Z

∗
2.

Gibbs measures for the Ising model on Z
2
∗. It is of course the same model as

the Ising model on Z
2, but to avoid confusion between the initial graph Z

2 and its
dual Z2

∗ in the sequel, we present it directly in the dual Z2
∗. Fix a parameter β ∈ R.

For a finite subset Λ of Z2
∗, the Hamiltonian on Λ is defined by

∀ω ∈ {−1, +1}Z2
∗ HΛ(ω) = −

∑

e={x,y}∈E
2
∗

e∩Λ6=∅

ωxωy.
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Then, we can define, for each bounded measurable function f ,

∀ω ∈ {−1, +1}Z2
∗ Zβ

Λ(ω) =
∑

η∈{−1,+1}Λ

exp(−βHΛ(ηΛωΛc)),

Πβ
Λf(ω) =

1

Zβ
Λ(ω)

∑

η∈{−1,+1}Λ
exp(−βHΛ(ηΛωΛc))f(ηΛωΛc ).

For each ω, we denote by Πβ
Λ,ω the probability measure on {−1, +1}Z2

∗ which is

associated to the map f 7→ Πβ
Λf(ω). When β = 0, colors of sites inside Λ are i.i.d.

and follow the uniform law in {−1, +1}. When β > 0, neighbour sites prefer to be
in the same color (ferromagnetic case), while when β < 0, neighbour sites prefer to
be in different colors (anti-ferromagnetic case).

A Gibbs measure for the Ising model on Z
2
∗ with parameter β is any probability

measure γ on {−1, +1}Z2
∗ such that for each continuous function, for each finite

subset Λ of Z2
∗,

∫

{−1,+1}Z2
∗

f dγ =

∫

{−1,1}Z2
∗

(Πβ
Λf)dγ.

We denote by G(β) the set of Gibbs measures for the Ising model with parame-
ter β. The Ising model presents a phase transition: set βc = 1

2 log(1 +
√

2) (see
Onsager [14]), then

• if 0 ≤ β ≤ βc, then there is a unique Gibbs measure;
• if β > βc then there are infinitely many Gibbs measures. The set G(β)

is the convex hull of the two extremal measures γ+
β and γ−

β , that can be
deduced one from the other by exchanging the two colors. This result has
been obtained independently by Aizenmann [1] and Higuchi [10]. See also
Georgii–Higuchi [7].

For β < 0, the Gibbs measures are obtained from G(−β) by changing the colors on
the subset of even sites. In other words, if

S((ω)ω∈Z2
∗
) = ((−1)i+jω(i,j))(i,j)∈Z2

∗
,

then µS = (A 7→ µ(S−1(A)) belongs to G(−β) if and only if µ ∈ G(β). For the
details, see chapter 6 in Georgii [6].

Proof of Theorem 1.1. We first prove the existence of Gibbs measure for Eulerian
percolation. Let us define Λn = (1/2, 1/2) + {−n, . . . , n}2 ⊂ Z

2
∗ and denote by

E(Λn) the set of edges e such that e⊥ has at least one end in Λn. Since ΩEP is

a closed subset of the compact set {0, 1}E2

, the sequence (µp
E(Λn),0)n has a limit

point µ with µ(ΩEP) = 1. Using Equation (1) and the fact that µp
Λ is Feller, it is

easy to see that µ ∈ GEP(p), which is therefore not empty.
This proof is not surprising for people who are familiar to the general theory of

Gibbs measures, as described in Georgii [6]. Nevertheless, it must be noticed that

µp
Λf is not defined on the whole set {0, 1}E2

(it is not a specification in the realm
of Georgii [6]), which leads us to mimic a standard proof.

Now, let’s prove the uniqueness of the Eulerian percolation probability measure
and characterize it. Fix p ∈ (0, 1) and set β = β(p) = 1

2 log 1−p
p . We first need to

prove the following lemma:
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Figure 1. The mapping β ←→ −β

Lemma 2.1. Let c ∈ {−1, 1}Z2
∗ and η ∈ ΩEP with η = Γ(c). Suppose that Λ∗ is a

simply connected subset of Z2
∗, and denote by E(Λ∗) the set of edges e such that e⊥

has at least one end in Λ∗.

Then, the probability µp
E(Λ∗),η is the image of Π

β(p)
Λ∗,c under the contour application

ω 7→ Γ(ω).

Proof. By construction, the image of Πβ
Λ∗,c under the map ω 7→ Γ(ω) is concentrated

on configurations that coincide with η outside E(Λ∗). Obviously it is the same for
µp

E(Λ∗),η, so we must focus on the behaviour of the edges in E(Λ∗).

Let η′ ∈ ΩEP be such that η and η′ coincide outside E(Λ∗). There are exactly
two colorings c′,−c′ such that Γ(c′) = Γ(−c′) = η′. If x and y are two neighbours
in (Λ∗)c, then

cxcy = 1− 2η(x,y)⊥ = 1− 2η′
(x,y)⊥ = c′

xc′
y,

so cxc′
x = cyc′

y. Since Λc
∗ is connected, it follows that one of two colorings, say c′,

coincides with c on (Λ∗)c (and −c′ with −c). Thus Πβ
Λ∗,c(−c′) = 0 and Πβ

Λ∗,c(c′) >
0, and:

Πβ
Λ∗,c(Γ(.) = η′) = Πβ

Λ∗,c(c′)

=
1

Zβ
Λ∗

(c)
exp









β
∑

e={x,y}∈E
2
∗

e∩Λ∗ 6=∅

c′
xc′

y









=
1

Zβ
Λ∗

(c)
exp









β
∑

e={x,y}∈E
2
∗

e∩Λ∗ 6=∅

(1− 2η′
(x,y)⊥)









=
1

Zβ
Λ∗

(c)
exp



β
∑

e∈E(Λ∗)

(1− 2η′
e)



 =
exp(β|E(Λ∗)|)
Zβ

Λ∗
(c)

(

p

1− p

)

∑

e∈E(Λ∗)
η′

e

= αΛ∗,ηµp
E(Λ∗),η(η′).

Since we compare probability measures with the same support, αΛ∗,η = 1. �
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Let us now see that all Gibbs measures for the Ising model with parameter β
have the same image by the application Γ. Let γ ∈ G(β): there exists α ∈ [0, 1]
such that γ = αγ+

β + (1 − α)γ−
β . Remember that γ−

β is the image of γ+
β by the

exchange of colors, that leaves the contours unchanged. So, if A ∈ B({0, 1}E2

),

γ(Γ ∈ A) = αγ+
β (Γ ∈ A) + (1 − α)γ−

β (Γ ∈ A)

= αγ+
β (Γ ∈ A) + (1 − α)γ+

β (Γ ∈ A) = γ+
β (Γ ∈ A)

Let µ ∈ GEP (p) and set as before Λn = (1/2, 1/2) + {−n, . . . , n}2. Let f be a

bounded continuous function on {−1, 1}E2

, and let us prove that for each η ∈ ΩEP,

(µp
E(Λn)f)(η)→

∫

f ◦ Γ dγ+
β .

With Equation (3), it will imply by dominated convergence that
∫

ΩEP

fdµ =

∫

f ◦ Γ dγ+
β ,

and thus that µ is the image by the application Γ of γ+
β , or of any Gibbs measures

for the Ising model with parameter β.

Let η ∈ ΩEP be an Eulerian edge configuration, and let c ∈ {−1, +1}Z2
∗ be such

that Γ(c) = η. Let x be a limiting value of ((µp
E(Λn)f)(η))n≥1. By extracting a

subsequence if necessary, we can assume that (ΠΛn,c)n≥1 converges to γ – which is
then in G(β) – and that x = lim

n→+∞
(µp

E(Λn)f)(η). By Lemma 2.1,

(µp
E(Λn)f)(η) = Πβ

Λn,cη
(f ◦ Γ),

so x =

∫

{−1,1}Z2
∗

(f ◦ Γ) dγ =

∫

{−1,1}Z2
∗

(f ◦ Γ)dγ+
β .

To conclude, note that γ+
β is stationary and ergodic, and so does µp.

3. Unicity of the infinite cluster in Eulerian percolation

Proof of Theorem 1.2. Since µp is ergodic and C is a translation-invariant event,
it is obvious that µp(C) ∈ {0, 1}. To prove the unicity of the infinite cluster,
we now follow the famous proof by Burton and Keane [3]. The main point is
that the Eulerian percolation measure does not satisfy the finite energy property:
once a configuration is fixed outside a box, the even degree condition forbids some
configurations inside the box. But the Ising model has the finite energy property,
and we will thus use the representation of even percolation in terms of contours of
the Ising model.

The number N of infinite clusters is translation-invariant, so the ergodicity of
µp implies that it is µp almost surely constant: there exists k ∈ N∪ {∞} such that
µp(N = k) = 1. The first step consists in proving that k ∈ {0, 1,∞}. So assume
for contradiction that k is an integer larger than 2. Consider a finite box Λ, large
enough to ensure that with positive probability (under µp), the box Λ intersects
at least two infinite clusters. Using Theorem 1.1, this implies that with positive
probability (under γ+

β for the parameter β corresponding to p), the contours of

the Ising model present two infinite connected components that intersect Λ. But
the Ising model has the finite energy property: by forcing the colors inside Λ to
be a chessboard, we keep an event with positive probability, and we decrease the
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Figure 2. Construction of a trifurcation in BL1 . Dotted squares
are, from inside to outside, B1, BL−1 and BL. Red edges are, on
the left, in three distinct infinite clusters of open edges.

number of infinite clusters in the contours by at least one. Coming back to Eulerian
percolation, this gives µp(N ≤ k− 1) > 0, which is a contradiction. See [13, 12] for
the first version of such an argument.

In the final step, we prove that k = ∞ is impossible. Assume by contradiction
that µp(N = +∞) = 1. We work now with the colorings of the sites of Z2

∗, under
γβ(p).

By taking L ∈ N large enough, we can assume that the event EL “the box
BL = [−L, L]2 intersects at least 30 infinite clusters” has positive probability. Let
∂η0 be a coloring of the sites in ∂intBL = BL\BL−1 such that

γβ(p)(η ∈ EL, η|∂intBL
= ∂η0) > 0.

Take ω in this event. Each infinite cluster intersecting BL crosses ∂intBL via an
open edge, and this edge sits between a +1 site and a −1 site.

Thus the 30 distinct infinite clusters intersecting BL imply the existence of at
least 15 +1-clusters in ∂intBL. To avoid geometric intricate details, we do not want
to consider +1-clusters in ∂intBL that are in the corners: we thus remove from our
15 clusters at most 12 = 3× 4 clusters (the one containing the corner if it is a +1,
and the nearest +1 cluster on each side). We are now left with at least 3 disjoint
+1-clusters in ∂intBL, sitting near edges of distinct infinite clusters: they are far
away enough so that we can draw, inside BL, 3 paths of sites linking these three
clusters to three of the four centers of the sides of ∂intB2, in such a way that two
distinct paths are not ∗-connected. See Figure 2.

Consider now the following coloring of BL−1: all sites in the three paths are
+1, all the other sites are −1. With this coloring, BL−1 intersects exactly three
infinite clusters of open edges. If we change the coloring of B1 in a chessboard,
BL−1 intersects exactly one infinite cluster of open edges. In this case, we say that
0 is a trifurcation. As γβ(p) has finite energy, we see that the probability that 0 is a
trifurcation has positive probability, and the end of the proof is as in Burton-Keane.
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Figure 3. Construction of an ∗-chain of spins +1 (dotted arrow)
from a infinite path γ (full arrow)

4. Percolation properties of Eulerian percolation

The proof of Theorem 1.3 is split into three steps: Lemmas 4.1, 4.2 and 4.3.

4.1. The ferromagnetic zone of the Ising model: p ≤ 1/2.

Lemma 4.1. For p ∈ (0, pc,even), µp(C) = 0.

Proof. Let ω be a spin configuration of {+1,−1}Z2
∗, and let η = Γ(ω) be the even

subgraph of Z2 made of the contours of ω.
We need here the notion of ∗-neighbours: two sites x∗, y∗ ∈ Z

2
∗ are ∗-neighbours

if and only if ‖x∗− y∗‖∞ = 1. A ∗-chain is then a sequence of sites in Z
2
∗ such that

two consecutive sites are ∗-neighbours.
Let us assume that η contains an infinite path γ. For each edge along γ, there

is a spin +1 in the configuration ω on one side of that edge, and a spin −1 on
the other side. The set of spins +1 (resp. −1) in ω along γ constitutes an infinite
∗-chain of spins +1 (resp. −1), as illustrated in Figure 3, which shows the evolution
of the ∗-chain of spins +1 for the different possible steps taken by γ. Set

C+
∗ = {ω ∈ {+1,−1}Z2

∗ : there is an infinite ∗-chain of spins +1 in ω}.

It follows from Theorem 1.1 that for any p ∈ (0, 1), µp(C) ≤ γ−
β (C+

∗ ), where p and

β are related through the relation β = 1
2 log 1−p

p . By Proposition 1 in Russo [15],

we know that if β > βc, γ−
β (C+

∗ ) = 0. It follows that for p < pc,even, µp(C) = 0. �

Lemma 4.2. For p ∈ (pc,even, 1/2], µp(C) = 1.

Proof. Let us set

C+ = {ω ∈ {+1,−1}Z2
∗ : there is an infinite chain of spins +1 in ω}.

Let ω ∈ C+
∗ ∩ (C+)c, and let δ be an infinite ∗-chain of spins +1 in ω. For each

spin +1 along δ, let us consider the cluster of spins +1 to which it belongs. Since
ω 6∈ C+, these clusters are finite. The union of the contours of these clusters is an
infinite connected subgraph of Z

2. Indeed, let x1, x2 ∈ Z
2
∗ be the coordinates of
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two consecutive spins +1 of the ∗-chain δ. If ω(x1) and ω(x2) are not in the same
cluster of spins +1, it means that the step from x1 to x2 in δ is diagonal (with
spins −1 in the opposite diagonal), and that the contours of the clusters of ω(x1)
and ω(x2) meet at point (x1 + x2)/2. Thus, any two consecutive points of δ are
such that the contours of their clusters are connected (or possibly the same). By
induction, one can then prove that the union of the contours of all the clusters of
spins +1 of δ is a connected subgraph of Z2.

It follows from Theorem 1.1 that for any p ∈ (0, 1), µp(C) ≥ γ+
β (C+

∗ ∩ (C+)c).

For β ∈ [0, βc), we have γ+
β = γ−

β = γβ , and

• γ+
β (C+) = 0, by Proposition 1 in [5],

• γ+
β (C+

∗ ) = 1, by Theorem 1 in [11].

Thus, γ+
β (C+

∗ ∩ (C+)c) = 1. It follows that for p ∈ (pc, 1/2], µp(C) = 1. �

4.2. The antiferromagnetic zone of the Ising model: p ≥ 1/2. This is the
most complex case, because the geometry of the antiferromagnetic Ising model is
not well known, so we only obtain partial results.

4.2.1. Percolation for p > p2 for some p2 ≤ 3/4. In the following, we give a full
proof of the fact that percolation occurs for p ≥ 3/4, and give some hints about the
way to prove that there is percolation for p ≥ 1 − 1

2+
√

2
, which is a bit better, but

also much too far to fill the gap.
The proof is based on a coupling between the Ising model and the random cluster

(or FK-percolation) model. We just recall a few results on the random cluster
model, and refer to Grimmett’s book [8] for a complete survey on this model.

The random cluster measure with parameters p and q on a finite graph G =
(V, E) is the probability measure on {0, 1}E defined by:

ϕG
p,q(η) =

1

Z
po(η)(1− p)1−o(η)qk(η),

where o(η) and k(η) are respectively the number of open edges and the number of
connected components in the subgraph of G given by η, and Z is a normalizing
constant.

On Z
2, it is known that at least for p 6=

√
q

1+
√

q , there exists a unique infinite

volume random cluster measure, that we denote by ϕp,q. It is a probability measure

on {0, 1}E2

. We denote by ϕ∗
p,q the random cluster measure, but considered on the

dual (Z2
∗,E2

∗) of (Z2,E2).
The Ising model for β > 0 is closely related to the random cluster model. For

β > 0, β 6= βc, let us set f(β) = 1 − exp(−2β). From a spin configuration

ω ∈ {+1,−1}Z2
∗ whose distribution is any Gibbs measure γβ with parameter β, one

obtains a subgraph η ∈ {0, 1}E2
∗ with distribution ϕf(β),2 by keeping independently

each edge between identical spins with probability p, and erasing all the edges
between different spins.

For a subgraph η ∈ {0, 1}E2

, we denote by ηc ∈ {0, 1}E2

the complementary
subgraph of Z

2, meaning that the open edges of ηc are exactly the closed edges

of η. We denote by η∗ ∈ {0, 1}E2
∗ the dual graph of η: in η∗, the edge e∗ is open if

and only if e is closed. Let us point out that (ηc)∗ = (η∗)c: we thus simply denote
this graph by ηc

∗.
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The random cluster model has the following duality property: if η is distributed
according to ϕp,2, then the distribution of η∗ is ϕ∗

p∗,2, where:

p∗

1− p∗ = 2
1− p

p
⇔ p∗ =

2− 2p

2− p
.

Let us define

C0 = {η ∈ {0, 1}E2

: the origin belongs to an infinite cluster in ηc}
= {η ∈ {0, 1}E2

: there is no cycle surrounding the origin in ηc
∗},

and C∗
0 = {η ∈ {0, 1}E2

∗ : there is no cycle surrounding the origin in ηc}
= {η ∈ {0, 1}E2

∗ : the origin belongs to an infinite cluster in ηc
∗}.

Note that the map η 7→ (ηc
∗) is increasing. Since p 7→ ϕp,2 is stochastically increas-

ing, the map p 7→ ϕ∗
p,2(C∗

0 ) is increasing and there exists a critical p∗
c ∈ [0, 1] such

that ϕ∗
p,2(C∗

0 ) = 0 for p < p∗
c and ϕ∗

p,2(C∗
0 ) > 0 for p > p∗

c .

Lemma 4.1. For p < 1/2, ϕp,2(C0) > 0.

Proof. It follows from the fact that ϕp,2 is dominated by a product of Bernoulli
measures with parameter p, and that for p < 1/2, the event C0 has a positive
probability under product of Bernoulli measures with parameter p. �

Lemma 4.2. For p > 2/3, ϕ∗
p,2(C∗

0 ) > 0. In other words, p∗
c ≤ 2/3.

Proof. We have:

ϕ∗
p,2(C∗

0 ) = ϕ∗
p,2({η ∈ {0, 1}E2

∗ : the origin belongs to an infinite cluster in ηc
∗})

= ϕp∗,2({η∗ ∈ {0, 1}E2

: the origin belongs to an infinite cluster in ηc
∗})

= ϕp∗,2(C0).

The result then follows from the previous lemma and the observation that for
p < 1/2 ⇔ p∗ > 2/3. �

Lemma 4.3. For p ∈ ( 1
2−p∗

c
, 1), µp(C) = 1.

Proof. Let p ∈ ( 1
2−p∗

c
, 1), and let β = g(p) = − 1

2 log 1−p
p > 0, so that the measure

µp corresponds to the contours of any antiferromagnetic Ising measure γ−β. We
have (comments on the equalities are given just after):

µp(C) ≥ µp({η ∈ {0, 1}E2

: the origin 0Z2 belongs to the infinite cluster in η})
= µp({η ∈ {0, 1}E2

: there is no cycle surrounding 0Z2 in η∗})
= γ−β({ω ∈ {±1}Z2

∗ : no cycle of identical spins surrounding 0Z2 in ω})(4)

= γ+
β ({ω ∈ {±1}Z2

∗ : no cycle of alternating spins surrounding 0Z2 in ω})(5)

≥ ϕd
f(β),2(C∗

0 ).(6)

Comments: for (4), remember that

e∗ = {x∗, y∗} is open ⇔ e is closed ⇔ ωx∗
ωy∗

= 1.

For (5), we use the following facts about Gibbs measures for the Ising model:

• Any Gibbs measure γβ for the parameter β is a convex combination of the
two extremal Gibbs measures for the parameter β.
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• The two extremal Gibbs measures for the parameter β are the images one of
the other by the spin inversion, and this transformation leaves the contours
unchanged.
• For β > 0, the Gibbs measures for parameter −β are the images of Gibbs

measures for parameter β by the inversion of colors on the subset of even
sites.

For (6), we use the coupling between the Ising model and the random cluster
model. The event “there is a cycle of alternating spins surrounding 0Z2” implies, in
the random cluster model, the event “there is a cycle of closed edges surrounding
0Z2”; this is not an equivalence has there can exist closed edges between identical
spins.

Now, by Lemma 4.2, if f(β) > p∗
c , then ϕ∗

f(β),2(C∗
0 ) > 0 and the condition

f(β) > p∗
c is fulfilled as soon as

β > f−1(p∗
c) ⇐⇒ p = g−1(β) > g−1(f−1(p∗

c)) =
1

2− p∗
c

.

Thus, for p > 1
2−p∗

c
, µp(C) > 0, and by the 0–1 law, µp(C) = 1. �

The inequality p∗
c ≤ 2/3 then imply that µp(C) = 1 for p > 1

2−2/3 = 3
4 . In

fact, using the technique by Duminil-Copin and Beffara, it is possible to prove that

p∗
c =

√
2

1+
√

2
, which gives µp(C) = 1 for p > 1− 1

2+
√

2
∼ 0, 7071.

4.2.2. Percolation for p ∈ [1/2, p1[ for some p1 > 1/2. .

Lemma 4.4. Let us denote by psite
c the critical parameter for Bernoulli site perco-

lation on Z
2
∗ (or Z

2) and define

p1 =
1

1 + ((psite
c )−1 − 1)1/4

.

Then, µp(C) = 1 for p ∈ [1/2, p1[.

Proof. Fix β ≤ 0 and consider an Ising model measure γβ at inverse temperature
β and fix i ∈ Z

2
∗. It is easy to see that

γβ(ωi = 1|σ(ωj , j 6= i)) =
exp(−βS)

exp(−βS) + exp(βS)
=

1

1 + exp(2βS)

=
1

1 + (1−p
p )S

,

with S =
∑

j:‖j−i‖=1 ωj . Since −4 ≤ S ≤ 4 and p ≥ 1/2, we have

(1− p)4

p4 + (1− p)4
=

1

1 + (1−p
p )−4

≤ γβ(ωi = 1|σ(ωj , j 6= i)) ≤ 1

1 + (1−p
p )4

=
p4

p4 + (1− p)4
.

Denote e(p) = p4−(1−p)4

p4+(1−p)4 , so that (1−p)4

p4+(1−p)4 = 1+e(p)
2 and p4

p4+(1−p)4 = 1+e(p)
2 .

Then, the Russo lemma (see [16]) gives the stochastic ordering

(
1 + e(p)

2
δ−1 +

1− e(p)

2
δ1)⊗Z

2
∗ � γβ � (

1− e(p)

2
δ−1 +

1 + e(p)

2
δ1)⊗Z

2
∗ .

Suppose now that 1+e(p)
2 < pc(site).

Then, the +1 and the −1 are both in the subcritical phase for site percolation,
so the probability for having a cluster of +1 (resp. −1) with size n decreases
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Figure 4. A simple finite Eulerian graph

exponentially fast with n. Now, with a Peierls argument, the probability that the
box {−n, n}2 is surrounded by some monochrome cluster exponentially decreases
with n. Particularly, it is strictly less than one if n is large enough, which proves
that there is a positive probability to have an infinite path in the model of even
percolation. �

Of course, this bound is usefull because psite
c > 1/2. Using the estimate by van

den Berg and Ermakov [17]: psite
c ≥ 0, 556, we can take p1 = 0, 514.

5. Association and monotonicity versus the Eulerian condition

The study of Bernoulli bond percolation on a graph G = (V, E) intensively uses
the following properties of the product measure Ber(p)⊗E :

• monotonicity: for every increasing event A, the map p 7→ Ber(p)⊗E(A) is
non-decreasing.
• association: for every pair of increasing event A, B,

Ber(p)⊗E(A ∩B) ≥ Ber(p)⊗E(A) Ber(p)⊗E(B),

or, equivalently, for every pair of non-decreasing bounded functions F , G,
we have CovBer(p)⊗E (F, G) ≥ 0.

It is natural to ask if these properties could be preserved for the measure

µp(G) = Ber(p)⊗E(·|the subgraph of open vertices is Eulerian).

In the following, we investigate the case of a particular finite Eulerian graph
G. In this case, we show that the monotonicity property is preserved whereas the
association property is lost.

Consider the undirected graph given by Figure 4. Note that every edge has
even degree. We simply denote by µp the random even subgraph measure with
parameter p for the graph given by Figure 4.

For each i ∈ {0, . . . , 3}, note Xi = 11{(EiFi) is open}. For each (ε1, ε2, ε3) ∈ {0, 1}3,
we have

µp(X1 = ε1, X2 = ε2, X3 = ε3) = Z−1
p (

p

1− p
)N(ε1,ε2,ε3),(7)

with N(ε1, ε2, ε3) = 3(ε1 + ε2 + ε3) + 11{ε1+ε2+ε3 odd}. If we note q = p/(1− p), we
have

Zp = 1 + 3q4 + 3q6 + q10.
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For i ∈ {1, 2, 3}, note Ci = {X0 = Xi = 1}. We have

µp(Ci) = µp(C1) = µp((ε1, ε2, ε3) = (1, 0, 0)) + µp((ε1, ε2, ε3) = (1, 1, 1)),

so µp(Ci) = q4+q10

Zp
The events {X0 = X1 = X2 = X3 = 1}, {X0 = X1 = X2 = 1},

{X0 = X2 = X3 = 1}, {X0 = X1 = X3 = 1} coincide µp-almost-surely, so C1 ∩ C2

and C3 are positively correlated. But

µp(C1 ∩ C2)− µp(C1)µp(C2) =
q10

Zp
−

(

q4 + q10

Zp

)2

=
q10Zp − (q4 + q10)2

Z2
p

=
−q8 + q10 + q14 + 3q16

Z2
p

< 0

for q < 0, 74, so C1 and C2 are negatively correlated for each p < 0, 42.
However, the sequence (µp)p∈[0,1] is non-decreasing for the stochastic order.

Theorem 5.1. Let G = (V, E) be the graph illustrated by Figure 4. Let A ∈
P({0, 1}E), where A is an increasing event. Then, p 7→ µp(A) is non-decreasing.

Equivalently, if F is a monotonic boolean function on {0, 1}|E|, p 7→
∫

F dµp is
non-decreasing.

Proof. As previously, we can reduce to the case when the measure is described
by (X0, X1, X2, X3): µp-almost surely X1 = eE0,E1 = eE1,F1 = eE1,F0 and X2 =
eE0,E2 = eE2,F2 = eE2,F0 and X3 = eE0,E3 = eE3,F3 = eE3,F0 . So, if F is a
non-decreasing fonction on {0, 1}E, we have µp a.s. :

F (eE0,F0 , eE0,E1 , eE1,F1 , eE1,F0 , eE0,E2 , eE2,F2 , eE2,F0 , eE0,E3 , eE3,F3 , eE3,F0 )

=F1(X0, X1, X2, X3), with F1(x, y, z, t) = F (x, y, y, y, z, z, z, t, t, t).

By construction, F1 is a non-decreasing function, so it is sufficient to prove that for
any non-decreasing function F :{0, 1}4 → {0, 1}, the map p 7→

∫

F (X0, X1, X2, X3) dµp

is non-decreasing. The law of (X0, X1, X2, X3) under µp is easy to express: we have

µp(X0 = ε0, X1 = ε1, X2 = ε2, X3 = ε3)

= 11{ε0+ε1+ε2+ε3 even}µp(X1 = ε1, X2 = ε2, X3 = ε3).

With (7), it is easy to see that
∫

G(X0, X1, X2, X3) dµp can be expressed as a ratio-

nal function of q = p
1−p :

∫

F (X0, X1, X2, X3) dµp = PF (p/(1−p))
Z(p/1−p) , so if is sufficient

to check that the polynom RF = P ′
F Z − PF Z ′ as no positive root, which can be

easily performed with a modern computer. In fact, it happens that for each of the
168 monotonic boolean function F ,

RF ∈















































0, 10q9 + 18q5 + 12q3, 12q13 + 22q9 + 18q5 + 4q3,
12q15 + 12q13 + 4q9 + 4q3, 12q15 + 18q13 + 10q9,
12q15 + 6q13 − 2q9 + 8q3, 12q15 − 8q9 + 12q3,
18q13 + 28q9 + 18q5, 4q15 + 12q13 + 16q9 + 12q5 + 4q3,
4q15 + 18q13 + 22q9 + 12q5 4q15 + 4q9 + 12q5 + 12q3,
4q15 + 6q13 + 10q9 + 12q5 + 8q3, 6q13 + 16q9 + 18q5 + 8q3,
8q15 + 12q13 + 10q9 + 6q5 + 4q3, 8q15 + 18q13 + 16q9 + 6q5,
8q15 − 2q9 + 6q5 + 12q3, 8q15 + 6q13 + 4q9 + 6q5 + 8q3















































In most cases, the coefficients of RG are non-negative; in any case, it is easy to
prove that RG has no positive root.
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We obtain the list of the 168 functions by a brute-force algorithm based on the
following remark: if Mn denotes the set of monotonic boolean functions on {0, 1}n,
there is a natural one-to-one correspondance between Mn+1 and {(f, g) ∈M2

n; f ≤
g}: a function G of n + 1 variables (x1, . . . , xn+1) is associated to the pair of
functions ((x1, . . . , xn) 7→ F (x1, . . . , xn, 0), (x1, . . . , xn) 7→ F (x1, . . . , xn, 1)). The
number |Mn| of monotonic boolean functions is known as the Dedekind number.
The sequence (|Mn|)n≥1 increases very fast and is not easy to compute. In fact,
the exact values are only known for n ≤ 8 (see Wiedemann [19]).

�

We conjecture that this result should be more general:

Conjecture 5.2. Let G = (V, E) be a Eulerian graph. Then, the sequence of Euler-
ian percolation measures (µp)p∈[0,1] on {0, 1}E is stochastically non-decreasing.

Note that Cammarota and Russo [4] proved related results supporting this con-
jecture.

Appendix: code of the Julia program

using SymPy

function valeur(a,b,c,d)

q=Sym("q")

if (((a+b+c+d)%2)==0)

n=3*(b+c+d)+a

if (n>0)

return poly(qˆn)

else return 1 end

else return 0

end

end

function zp()

q=Sym("q")

z=poly(q)*0

for a=0:1

for b=0:1

for c=0:1

for d=0:1

z+=valeur(a,b,c,d)

end

end

end

end

return z

end

function evalue(numero,t)

taille=length(t)

if (taille==0) return(Int32(numero))
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else

haute=Int32(numero) & (2ˆ(2ˆ(taille-1))-1)

basse=div((Int32(numero)-haute),2ˆ(2ˆ(taille-1)))

if (t[taille]==1)

return evalue(haute,t[(1:taille-1)’])

else

return evalue(basse,t[(1:taille-1)’])

end

end

end

function integrale_num(numero)

p=Sym("q")

z=poly(p)*0

for a=0:1

for b=0:1

for c=0:1

for d=0:1

z+=evalue(numero,[a b c d])*valeur(a,b,c,d)

end

end

end

end

return z

end

function variation(numero)

Z=zp()

dZ=diff(Z)

N=integrale_num(numero)

dN=diff(N)

nder=dN*Z-dZ*N

return nder

end

function compte(numero)

d=variation(numero)

p=Sym("q")

return count_roots(d,0)-1*(subs(d,p,0)==0)

end

t=[Int64(0);Int64(1)]

nbit=Int32(1)

for i=1:4

s=[]

for a=t

for b=t

if ((a & b)==a)
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s=[s; a*(2ˆnbit)+b]

end

end

end

nbit=nbit*2

print("Pour n=",i,", il y en a ",length(s),".Voilà la liste:")

println(s)

t=s

end

bad=0

for i=t

j=compte(i)

if (j>0)

bad+=1

end

print(" ",integrale_num(i)," ",compte(i),"\n")

end

print("Z(q)=",zp(),"\n")

print("sur les ", length(t), " fonctions croissantes,",bad, " ne marchent pas.")
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Vandoeuvre-lès-Nancy, F-54506, France,

E-mail address: Irene.Marcovici@univ-lorraine.fr


