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Abstract

It is shown that Bogoliubov quasi-averages select the pure or ergodic states in the
ergodic decomposition of the thermal (Gibbs) state. Our examples include quantum
spin systems and many-body boson systems. As a consequence, we elucidate the
problem of equivalence between Bose-Einstein condensation and the quasi-average
spontaneous symmetry breaking (SSB) discussed in [SY07], [SY05] for continuous
boson systems. The multi-mode extended van den Berg-Lewis-Pulé condensation
of type III [vdBLP], [BZ] demonstrates that the only physically reliable quantities
are those that defined by Bogoliubov quasi-averages.
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1 Introduction and summary

The concept of Spontaneous Symmetry Breaking (SSB) is a central one in quantum
physics, both in statistical mechanics and quantum field theory and particle physics.
In this paper we restrict ourselves to continuous SSB since the breaking of discrete sym-
metries has been extensively studied and it has quite different properties, in particular
regarding the Goldstone-Mermin-Wagner theorem for both zero T = 0 and non-zero T > 0
temperatures, see e.g. [Sim93] and references given there.

The definition of SSB is also well-known since the middle sixties and is well expounded
in Ruelle’s book [Rue69], Ch.6.5.2., and references given there, as well as [BR87], Ch.4.3.4,
and, from the point of view of local quantum theory in [Haa96], Ch.III.3.2. Roughly
speaking, one starts from a state (ground or thermal), assumed to be invariant under a
symmetry group G, but which has a nontrivial decomposition into extremal states, which
may be physically interpreted as pure thermodynamic phases. The latter, however, do
not exhibit invariance under G, but only under a proper subgroup H of G.

There are basically two ways of constructing extremal states: (1) by a choice of
boundary conditions (b.c) for Hamiltonians HΛ in finite regions; (2) by replacing HΛ →
HΛ + λBΛ, where BΛ is a suitable extensive operator and λ a real parameter, taking
first Λ ր Zd or Λ ր Rd, and then λ → +0 (or λ → −0). Here one assumes that the
states considered are locally normal or locally finite, see e.g. [Sew86] and references there.
Method (2) is known as Bogoliubov’s quasi-averages method [Bog07]-[Bog70].

Note that the method (1) is not of general applicability to, e.g., continuous many-body
systems or quantum field theory. It is thus of particular interest to show that the Bo-
goliubov quasi-average ”trick” may be shown to constitute a method, whose applicability
is universal, explaining, at the same time, its physical meaning. This is one of the main
purpose of our paper.

An important element of discussion is a general connection between SSB and Off-
Diagonal Long-Range Order (ODLRO), that was studying in papers by Fannes, Pulè and
Verbeure [PV82] (see also [VZ05]), by Lieb, Seiringer and Yngvason ([SY07], [SY05]),
and by Sütö [S0̈5]. The central role played by ODLRO in the theory of phase transitions
in quantum spin systems was scrutinised by Dyson, Lieb and Simon [DLS], see also the
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review by Nachtergaele [Ntg]. For its importance in the theories of superconductivity and
superfluidity, we refer to the books by Sewell [Sew02] and Verbeure [Ver11], as well as to
review [SW09], Sec.3.

As a consequence of our results, a general question posed by Lieb, Seiringer and Yngva-
son [SY07] concerning the equivalence between Bose-Einstein condensation (BEC)qa and
Gauge Symmetry Breaking (GSB)qa both defined via the one-mode Bogoliubov quasi-
average is elucidated for any type of generalised BEC à la van den Berg-Lewis-Pulè
[vdBLP] and [BZ].

2 Setup: continuous SSB, ODLRO and examples

To warm up we start by some indispensable basic notations and definitions, see e.g.,
[BR87], [BR97], [Sew86] and [Wre87]

Let A be a unital (i.e. 1 ∈ A) quasi-local C∗-algebra of observables. Recall that
positive linear functionals ω over A are called states if they are normalised: ‖ω‖ = 1.
Note that these functionals are automatically continuous and bounded: ‖ω‖ = ω(1). The
state ω is called faithful if ω(A∗A) = 0 implies A = 0.

To construct states and dynamics of quantum (boson) systems the C∗-setting is too
restrictive and one has to use the W ∗-setting ([BR87], [BR97]). One defines an abstract
W ∗-algebra M as a unital C∗-algebra that possesses (as a Banach space) a predual M∗,
i.e., M = (M∗)

∗. Every abstract W ∗-algebra is ∗-isomorphic to a concrete W ∗-algebra
B(H) of bounded operators on a Hilbert space H. Now we can introduce normal states
on W ∗-algebra as those that any ω on the corresponding concrete W ∗-algebra is defined
by a positive trace-class operator ρ ∈ C1(H) with trace-norm ‖ρ‖1 = 1 such that

ω(A) = TrH(ρ A) , for all A ∈ B(H) .

For a finite system in the Hilbert space HΛ, the Gibbs (thermal) state is normal

ωβ,µ,Λ(A) = TrHΛ
(ρΛA) , for all A ∈ B(HΛ) . (2.1)

and defined by the trace-class density matrix

ρΛ =
exp(−β(HΛ − µNΛ))

ΞΛ(µ, β)
. (2.2)

Here Λ is a finite domain in Zd for quantum spin systems, or in Rd for continuous many-
body systems and ΞΛ is the grand-canonical partition function

ΞΛ(µ, β) := TrHΛ
exp(−β(HΛ − µNΛ)) , (2.3)

with β = 1/kBT the inverse temperature, µ the chemical potential for continuous quantum
system. For a boson continuous quantum system the Hilbert space HΛ coincides with the
symmetric Fock space Fsymm(L

2(Λ)), and C2
Λ = ⊗N

i=1C2
i for quantum spin systems, with

N = V = |Λ|, the number of points in Λ. The thermodynamic limit in both cases will be
denoted by V → ∞. Operator A in (2.1) is an element of a local algebra MΛ = B(HΛ)
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of bounded operators on HΛ. By HΛ we denote the Hamiltonian of the system in a finite
domain Λ, and by NΛ the corresponding number operator. If ΩΛ ∈ HΛ is the ground-state
vector of operator HΛ − µNΛ, then the ground state (T = 0) is defined by

ω∞,µ,Λ(A) := (ΩΛ, AΩΛ) for A ∈ AΛ . (2.4)

By ωβ,µ and ω∞,µ we denote thermal and ground states for the infinite-volume (ther-
modynamic) limit of the finite-volume states (2.1) and (2.3), in the sense that

ωβ,µ(A) = lim
V→∞

ωβ,µ,Λ(A) and ω∞,µ(A) = lim
V→∞

ω∞,µ,Λ(A) , A ∈
⋃

Λ⊂(Rd orZd)

AΛ . (2.5)

Now we recall that a C∗-dynamics on a C∗-algebra A is a strongly continuous one-
parameter group of ∗-automorphisms: R ∋ t 7→ τt of C

∗. Then a C∗-dynamical system
is a corresponding pair (A, τt). Note that the strong continuity of {τt}t∈R on A means
that the map t 7→ τt(A) is norm-continuous for any A ∈ A. Therefore, C∗-dynamical
systems are completely characterised by the corresponding densely defined and closed in
A infinitesimal generators.

It is also well-known that the C∗-dynamical systems are too restrictive for boson sys-
tems, that forces to use the W ∗-setting. Let M be a von Neumann algebra (W ∗-algebra)
and let R ∋ t 7→ τt be a one-parameter group of weak*-continuous ∗-automorphisms
(W ∗-dynamics) of M. Then the pair (M, τt) is called a W ∗-dynamical system. The con-
tinuity condition on the group {τt}t∈R means that the weak*-densely defined and closed
in M infinitesimal generator corresponding to the W ∗-dynamics can be defined in the
weak*-topology similar to the C∗-setting.

We comment that it is this W ∗-setting, which is appropriate for representations of the
Canonical Commutation Relations (CCR) and description of boson systems by the Weyl
algebra [BR97], [PiMe]

Definition 2.1. Consider a W ∗-dynamical system (M, τt). A state on M is called τ -
invariant if ω ◦ τt = ω for all t ∈ R. If in addition this state is normal, we refer to the
triplet (M, τt, ω) as to a Quantum Dynamical System (QDS) generated by (M, τt).

Recall that GNS representation πω of the QDS, which is induced by the invariant
state ω, is denoted by the triplet (Hω, πω,Ωω). Here, Ωω is a cyclic vector for πω(M) in
the Hilbert space Hω. The unicity of the GNS representation implies that there exists a
unique one-parameter group t 7→ Uω(t) of unitary operators on Hω such that

πω(τt(A)) = Uω(t)πω(A)U
∗
ω(t) , Uω(t)Ωω = Ωω , (2.6)

for any t ∈ R and A ∈ M.
Since we assumed ω to be normal, the group {Uω(t)}t∈R is strongly continuous and

there exists (by the Stone theorem) a unique self-adjoint generator Hω of this unitary
group such that

πω(τt(A)) = eitHωπω(A)e
−itHω , HωΩω = 0 . (2.7)

We note that GNS construction applied directly to a C∗-dynamical system with in-
variant state ω defines a normal extension of this state to an enveloping von Neumann
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algebra. Therefore, it maps the C∗-dynamical system into a W ∗-dynamical system with
a normal invariant state. Hence, instead of QDS one can start with GNS representation
of the C∗-algebra A.

In the context of infinite boson system we suppose also that the time-invariant ω is
such that restriction to AΛ (or MΛ) is given by ωβ,µ,Λ (2.1),(2.2), (2.3)

Now let G be a group and {τg}g∈G be the associated group of ∗-automorphisms in A.
Suppose that τg leaves ω invariant:

ω(τg(A)) = ω(A), ∀A ∈ A, ∀g ∈ G . (2.8)

Then one can find on the GNS Hilbert space Hω a unique group of unitary operators
{Ug}g∈G such that

πω(τg(A)) = UgπωU
∗
g with UgΩω = Ωω . (2.9)

It is easy to show (see, e.g., [Wre87]) that the natural candidate for Ug, given by

Ugπω(A)Ωω = πω(τg(A))Ωω , (2.10)

indeed fulfills these requirements. The G-invariant states forms a convex and compact in
the weak*-topology set, that we denote by EG

A .
The same properties are evidently shared by the set EA of all states on A. An ex-

tremal invariant or ergodic state is a state ω ∈ EG
A , which cannot be written as a

proper convex combination of two distinct states ω1, ω2 ∈ EG
A :

ω 6= λω1 + (1− λ)ω2 with 0 < λ < 1 unless ω1 = ω2 = ω . (2.11)

There exists an alternative characterization: we say that a state ω1 majorizes another
state ω2 if ω1 − ω2 is a positive linear functional on A, i.e., (ω1 − ω2)(A

∗A) ≥ 0 ∀A ∈ A.
Clearly, if a state is a convex combination of two others, it majorizes both, and a state ω
is said to be pure if the only positive linear functionals majorized by ω are of the form
λω, with 0 ≤ λ ≤ 1. By [BR87], Theorem 2.3.15, we are allowed to use the terms pure
and extremal interchangeably. When (2.11) does not hold, it is natural to consider ω as
a mixture of two pure phases ω1 and ω2, with proportions λ and (1− λ), respectively.

Thermal states ωβ,µ satisfy the equilibrium (KMS) condition ([BR97],[Hug72]) and
will be called KMS or thermal equilibrium states, or, for short, thermal states. The
commutant πω(A)

′

of πω(A) is defined as πω(A)
′

= {B ∈ B(Hω) : [A,B] = 0 ∀A ∈
πω(A)}. the strong closure of πω(A), called the von neumann algebra generated by πω(A),
which also equals πω(A)

′′

by von Neumann’s theorem [BR87], is called a factor if its
center

Zω = πω(A)
′ ∩ πω(A)

′′

, (2.12)

is a multiple of the identity operator

Zω = {C 1} . (2.13)

The corresponding representation is called factor or primary, and the extension of ω to
πω(A)

′′

is called a factor or primary state. Consider the central decomposition of a KMS
state ωβ [BR87] (we omit the µ for brevity):

ωβ(A) =

∫

EG
A

dµ(ω
′

β)ω
′

β(A) , (2.14)
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which, for a KMS state is identical to the extremal or ergodic decomposition, see Theorem
4.2.10 of [BR87]. The states ω

′

β in (2.14) are extremal or factor states, and the decompo-
sition is along the center Zωβ

which is of the form (2.13). In the examples we shall treat,
Zωβ

coincides with the so-called algebra at infinity ([BR87], Example 4.2.11). Let ω be
a spatially (Zd - or Rd) - translation invariant state (we shall no longer distinguish these
two possibilities explicitly):

ω(τx(A)) = ω(A) ∀A ∈ A, ∀x , (2.15)

where τx denotes the group of automorphisms of A corresponding to translations. Let us
define

η(A) := s− lim
V→∞

ηΛ(A) , (2.16)

where

ηΛ(A) =
1

V

∫

Λ

dxπω(τx(A)) , (2.17)

again not distinguishing the lattice from the continuous case, in the former one has a
sum instead of the integral in (2.17). The existence of (2.16) is well-known, see [BR97],
or Proposition 6.7 in [MW13]. Then by construction η(A) ∈ Zω. If ω is an extremal
(=factor=primary), which is also ergodic for space translations, then (2.13) holds and
therefore

η(A) = ω(A) 1 . (2.18)

Hence, the states occurring in the extremal or ergodic decomposition of a KMS state
correspond to ”freezing” the observables at infinity to their expectation values. In corre-
spondence with (2.16), we extend (2.5) to space averages by

ωβ,µ(

m∏

i=1

η(Ai)B) = lim
V→∞

ωβ,µ,Λ(

m∏

i=1

ηΛ(Ai)B) = lim
V→∞

ωβ,µ(

m∏

i=1

ηΛ)(Ai)B) . (2.19)

Here we assumed that ωβ,µ,Λ is space translation-invariant, which may be achieved by
imposing the periodic b.c. on Λ.

Let, now, G be a group, {τg} denote the corresponding group of ∗-automorphisms of
A, and assume that τg ◦ τx = τx ◦ τg for all g ∈ G and x, i.e., G commutes with space
translations. We assume henceforth that all states are space translation-invariant, (2.15),
and thus all states in decomposition (2.14) are also invariant under space translations.

Definition 2.2. We say that the state ω undergoes a (conventional) Spontaneous Sym-
metry Breaking (SSB) of the group G if:
(i) ω is G-invariant, i.e., (2.8)-(2.10) hold;
(ii) ω has a nontrivial decomposition (2.14) into ergodic states ω

′

β, which means that at
least two such distinct states occur in representation (2.14), and , for some η(A) of the
form (2.16), (2.17),

ω
′

β(τg(η(A)) 6= ω
′

β(η(A)) , (2.20)

for some g ∈ G, and for some A ∈ A.

6



Note that if there is no nontrivial decomposition, then there exists only one equilibrium
state, which is then automatically G-invariant.

The physical interpretation of condition (ii) in Definition 2.2 is well-known (see [Sew86],
or [Rue69]). By (2.18), for an ergodic state ω

′

in (2.14),

lim
V→∞

1

V

∫

Λ

dx ω
′

(τx(A)B) = ω
′

(A)ω
′

(B) ∀A,B ∈ A . (2.21)

By (2.13) and (2.21), the spatial averages do not fluctuate in an ergodic state ω
′

:

lim
V→∞

ω
′

{(
1

V

∫

Λ

dx τx(A)

)2

−
(
1

V

∫

Λ

dx ω
′

(τx(A))

)2
}

= 0 . (2.22)

This is a characteristic property of a pure thermodynamic phase, in which average values,
such as the density, do not fluctuate (in contrast to a mixture).

How does this relate to SSB ? The part (ii) of Definition 2.2 implies that τg cannot
be implemented by a group of unitary operators in Hω in the form (2.10), in particular
suitable generators of the unitary group do not exist. A natural alternative to (2.21) is
to replace it (see [Swi70], [Wre87]) by

lim
R→∞,δ→0

ω
′

β([QR,δ, A]) 6= 0 for some A ∈ AL . (2.23)

Here AL is the dense subalgebra of local observables, and QR,δ is a smooth approximation
to the charge in space and time, i.e.,

QR,δ :=

∫
dxdtfR(x)fd(t)j

0(x, t) , (2.24)

with lim|x|→∞ fR(x) = 1, fδ tends to delta-function as δ → 0, and j0(x, t) is the ”charge
density”. In statistical mechanics one may ignore time-smoothing, and choose fR as
characteristic function of a region Λ. The limit (2.23) exists as a consequence of locality
[Swi70]. For quantum statistical mechanics one uses the the property of ”causality”
[AΛ,AΛ′ ] = 0 if Λ ∩ Λ

′

= ∅.
To illustrate the ideas presented above we recall a standard example of quantum spin

systems corresponding to the simplest Heisenberg ferromagnet

HΛ = −
∑

x,y∈Λ;‖x−y‖=1

σx · σy , (2.25)

where σi
x, i = 1, 2, 3 are the Pauli matrices at x, on the Hilbert space HΛ = ⊗x∈ΛC2

x.
Assuming that HΛ in (2.25) is defined with periodic b.c., so that the momentum is also
well-defined, the Gibbs state ωβ,Λ in (2.1) (with µ = 0) is invariant under the rotation
group G = SO(3). Hence, ωβ satisfies (2.8) with G = SO(3), and, moreover, (2.15) also
holds by translation invariance of ωβ,Λ.

The ”charge” (2.24) coincides with magnetisation

QΛ = MΛ =
∑

x∈Λ

σx . (2.26)
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In an ergodic state the spatial average (2.16), (2.17) of the observable σ,

η(σ) = s− lim
V→∞

1

V

∑

x∈Λ

σx , (2.27)

is equal by (2.18) to
η(σ) = λn , (2.28)

where n is a fixed unit vector and coefficient λ = λ(β, µ). Note that a rotation g = R ∈ G
acts on n, by (2.27),(2.28), in the form

τg(η(σ)) = λRn . (2.29)

Since (2.14) is a central decomposition, for the Gibbs state we may write it in the form

ωβ(A) =

∫
dµnωβ,n(A) , (2.30)

where µ is the normalized measure on the sphere S2 and each ωβ,n is ergodic. Further,

ωβ,n(τg(A)) = ωβ,n(τg(η(A))) = ωβ,Rn(η(A)) . (2.31)

Now we recall the concept of Off-Diagonal Long Range Order (ODLRO), which is
relevant to our discussion of SSB.

Definition 2.3. For a given β the state ωβ is said to exhibit ODLRO if

lim
V→∞

ωβ(ηΛ(σ)
2) > 0 . (2.32)

Since ηΛ is given by (2.17), the both σ and ηΛ(σ) are three-component vectors, and
(ηΛ(σ))

2 = ‖ηΛ(σ)‖2. Hence, the space-averaged magnetization: η (2.27), fluctuates in
the state ωβ. The following well-known proposition relates ODLRO and SSB [DLS]:

Proposition 2.1. If ωβ exhibits conventional ODLRO iff it undergoes the SSB defined
by (2.20).

Remark 2.4. The ergodic states are not invariant under G = SO(3) but rather under
the isotropy (stationary) subgroup Hn0

of G, and Sd−1 may be identified as the harmonic
space G/H .

Remark 2.5. The connection between ODLRO and the existence of several equilibrium
states for quantum spin systems was first pointed out by Dyson, Lieb and Simon in
their seminal paper [DLS], see also the review by Nachtergaele [Ntg] and references given
there. By [DLS], both the spin one-half XY model for β ≥ β1

c , and the Heisenberg
antiferromagnet for suitable spin and β ≥ β2

c , with β1
c , β

2
c explicitly given in [DLS], display

SSB of the rotation group according to Definition 2.2, by Proposition 2.1.

Remark 2.6. By (2.28) we have different values for the ”charge density” η(σ) labelled by
n ∈ S2. By a well-known result (see, e.g., [MW13], Corollary 6.3), the GNS representations
πωn

associated to the corresponding states ωn in the (central) decomposition (2.30) are
not unitary equivalent (they are, more precisely, disjoint, see Definition 6.6 in [MW13]),
and the GNS Hilbert space splits into a direct integral of disjoint ”sectors” Hn (see e.g.
[BR87]).
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We note that in this respect the case of boson systems is more complicated than spin
lattice systems. It becomes clear even on the level of the perfect Bose-gas.

To see this, consider the Perfect Bose-gas (PBG) in a three-dimensional anisotropic
parallelepiped Λ := V α1 × V α2 × V α3 , with periodic boundary condition (p.b.c.) and
α1 ≥ α2 ≥ α3, α1 + α2 + α3 = 1, i.e. the volume |Λ| = V . In the boson Fock space
F := Fboson(L2(Λ)) the Hamiltonian of this system for the grand-canonical ensemble with
chemical potential µ < 0 is defined by :

H0
Λ(µ) = TΛ − µNΛ =

∑

k∈Λ∗

(εk − µ) b∗kbk . (2.33)

Here one-particle kinetic-energy operator spectrum {εk = k2}k∈Λ∗ , where the dual to Λ
set is :

Λ∗ = {kj =
2π

V αj
nj : nj ∈ Z}d=3

j=1 then εk =

d∑

j=1

k2
j . (2.34)

We denote by bk := b(φΛ
k ) and b∗k = b∗(φΛ

k ) the boson annihilation and creation operators in
the Fock space F . They are indexed by the ortho-normal basis {φΛ

k (x) = eikx/
√
V }k∈Λ∗ ⊂

L2(Λ) generated by the eigenfunctions of the self-adjoint one-particle kinetic-energy op-
erator (−∆)p.b.c. in L2(Λ). Formally these operators satisfy the Canonical Commutation
Relations (CCR): [bk, b

∗
k′] = δk,k′. Then Nk = b∗kbk is occupation-number operator of the

one-particle state φΛ
k and NΛ =

∑
k∈Λ∗ Nk denotes the total-number operator in Λ.

If we denote by ω0
β,µ,Λ(·) the grand-canonical Gibbs state of the PBG generated by

(2.33), then the problem of existence of conventional Bose-Einstein condensation is related
to solution of the equation

ρ =
1

V

∑

k∈Λ∗

ω0
β,µ,Λ(Nk) =

1

V

∑

k∈Λ∗

1

eβ(εk−µ) − 1
, (2.35)

for a given total particle density ρ in Λ. Note that by (2.34) the thermodynamic limit
Λ ↑ R3 in the right-hand side of (2.35)

I(β, µ) = lim
Λ

1

V

∑

k∈Λ∗

ω0
β,µ,Λ(Nk) =

1

(2π)3

∫

R3

d3k
1

eβ(εk−µ) − 1
, (2.36)

exists for any µ < 0. It reaches its (finite) maximal value I(β, µ = 0) = ρc(β), which is
called the critical particle density for a given temperature.

The existence of finite ρc(β) triggers (via saturation mechanism) a non-zero BEC
ρ0(β) := ρ− ρc(β), when the total particle density ρ > ρc(β).

Note that for α1 < 1/2, the whole condensate is sitting in the one-particle ground
state mode k = 0:

ρ0(β) = ρ− ρc(β) = lim
Λ

1

V
ω0
β,µ,Λ(N0) = lim

Λ

1

V

{
e−β µΛ(β,ρ≥ρc(β)) − 1

}−1

µΛ(β, ρ ≥ ρc(β)) = − 1

V

1

β(ρ− ρc(β))
+ o(1/V ) ,

where µΛ(β, ρ) is a unique solution of equation (2.35).
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This is a well-known conventional (or the type I [vdBLP]) condensation. In particular,
in this case it make sense the ODLRO for the Bose-field

b(x) =
∑

k∈Λ∗

bkφ
Λ
k (x) . (2.37)

Indeed, by Definition 2.3 one gets for the spacial average of (2.37)

lim
Λ

ω0
β,µ,Λ(

1

V

∫

Λ

dxb∗(x)
1

V

∫

Λ

dxb(x)) = lim
Λ

ω0
β,µ,Λ(

b∗0b0
V

) = ρ0(β) , (2.38)

i.e. the ODLRO coincides with the condensate density [Ver11].
For α1 = 1/2 (the Casimir box [ZB01]) one observes the infinitely-many levels macro-

scopic occupation called the type II condensation.
On the other hand, when α1 > 1/2 (van den Berg-Lewis-Pulé boxe [vdBLP]) one

obtains

lim
Λ

ω0
β,µ,Λ(

b∗kbk
V

) = lim
Λ

1

V

{
eβ(εk−µΛ(β,ρ)) − 1

}−1
= 0 , ∀k ∈ Λ∗ , (2.39)

i.e., there is no macroscopic occupation of any mode for any value of particle density ρ.
But a generalised BEC (gBEC of type III) does exist in the following sense:

ρ− ρc(β) = lim
η→+0

lim
Λ

1

V

∑

{k∈Λ∗,‖k‖≤η}

{
eβ(εk−µΛ(β,ρ)) − 1

}−1
, for ρ > ρc(β) . (2.40)

Note that (2.38) and (2.39) imply triviality of the ODLRO, whereas the condensation in
the sense (2.40) is nontrivial.

We comment that this unusual condensation is not exclusively due to the special
geometry α1 > 1/2. In fact the same phenomenon of the gBEC (type III) [BZ] happens
due to interaction in the model with Hamiltonian [ZB01]:

HΛ =
∑

k∈Λ∗

εkb
∗
kbk +

a

2V

∑

k∈Λ∗

b∗kb
∗
kbkbk , a > 0 . (2.41)

These examples show that connection between BEC, ODLRO, and SSB is a subtle
matter. This motivates and bolsters a relevance of the Bogoliubov quasi-average method
[Bog07]-[Bog70], that we discuss in the next two sections.

3 Selection of pure states by the Bogoliubov quasi-

averages: spin systems

Considering further the simple example of spin system (2.25) for the sake of argument, at
least two methods of selecting pure states may be suggested: (1) by taking in (2.1), (2.2)
HΛ with special boundary conditions (b.c.), i.e., upon imposing on the boundary ∂Λ of Λ

|n)x such that σx|n)x = |n)x (3.1)
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The above choice leads, presumably, to the limiting states ωβ,n in (2.30); (2) by replacing
in (2.1), (2.2) HΛ by the quasi-Hamiltonian

HΛ,B := HΛ +HB
Λ , (3.2)

with the symmetry-breaking vector field B n directed along the unit vector n:

HB
Λ = −B n ·

∑

x∈Λ

σx , B > 0 . (3.3)

We take B → +0 after the thermodynamic limit V → ∞. This method, which is known
as the Bogoliubov quasi-averages ([Bog07]-[Bog70], [ZB01] ), is currently employed as
a trick, i.e., without explicit connection to ergodic states. The quantity

∑
x∈Λ σx (the

magnetization) in the symmetry-breaking field is known as the order parameter. As
spelled out in (3.3), it is appropriate to the Heisenberg ferromagnet (2.25) and for the
XY model, but not for the antiferromagnet, in which case the order parameter should be
replaced by the sub-lattice magnetization

∑
x∈Λ∩A σx, where Zd = A ∪ B, A,B denoting

two disjoint sublattices.
If we consider first 0 < β < ∞, G = SO(3) and HΛ the Hamiltonian (2.25) (or its

antiferromagnetic or XY analog), with free or periodic b.c., then HΛ is G-invariant, and
thus ωβ,Λ, defined by (2.1),(2.2), is also G-invariant. Taking, now, HΛ with the b.c. (3.1),
both HΛ and ωβ,Λ are not G-invariant. Consider, now, β = ∞, i.e., theground state,
with HΛ given by (2.25), defined with free or periodic b.c.. Again, HΛ is invariant under
G, and we may regard a ground state

ω∞,Λ = (ΩΛ, ·ΩΛ)) , (3.4)

with
|ΩΛ = ⊗x∈Λ|n)x . (3.5)

Then, clearly, ω∞,Λ as well as its infinite volume counterpart is not G-invariant. Note
that (3.4) leads, however, presumably to the ergodic states ω∞,n in the decomposition
(2.30), when taking the weak* limit as Λ ր Z3.

If we take, however, the weak* limit, as β → ∞ along a subsequence, of ωβ, it may be
conjectured that the G-invariant ground state

ω∞ :=

∫
dµnω∞,n ,

is obtained. The limits V → ∞ and β → ∞ are not expected to commute, and we
believe, in consonance with the third principle of thermodynamics [WA09], that it is more
adequate, both physically and mathematically, to regard the states ωβ for 0 < β < ∞
as fundamental, with ground states defined as their (weak*) limit as β → ∞ (along
a subsequence or subnet). In this sense, the assertion found in most textbooks, see also
[SY07] beginning of Section 2, that SSB occurs when the Hamiltonian is invariant, but not
the state, is not correct, or, at least, not precise. Note, however, that, in the textbooks,
”state” is understood as the ground state or the vacuum state, but not as the thermal
state, for which the equivalence between the invariance of the Hamiltonian and the state
is essentially obvious.
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If one uses the method of Bogoliubov quasi-averages, such difficulties do not appear,
because ωβ,n is thereby directly connected to ω∞,n for each n. Moreover, as we motivated
at the end of Section 2 by the example of gBEC, the quasi-average method is even in-
dispensable for quantum continuous Bose-systems. An example of its use appears in the
next Section 4. See also the conclusion.

Note that for quantum continuous many-body systems or relativistic quantum field
theory imposition of boundary conditions is very questionable, or even not feasible.

The proof of (2) for quantum spin systems follows [SY07], but using Bloch coherent
states, instead of Glauber coherent states, in the manner of Lieb’s classic work on the
classical limit of quantum spin systems [Lie73]. It will not be spelled out here, because the
next section will be devoted to a similar proof in the case G = U(1) and Boson systems,
but we note the result:

Proposition 3.1. The ergodic states ωβ,n in the decomposition (2.30) may be obtained
by the Bogoliubov quasi-average method:

ωβ,n = lim
B→+0

lim
V→∞

ωβ,Λ,n (3.6)

where

ωβ,Λ,n(A) ≡
TrHΛ

(exp(−βHΛ,B)A)

TrHΛ
exp(−βHΛ,B)

, (3.7)

with A ∈ B(HΛ), and HΛ,B is defined by (3.2), (3.3) for the ferromagnet (2.25) and the
XY model, and with

∑
x∈Λ σx replaced by the sublattice magnetisation

∑
x∈Λ∩A σx in the

case of the antiferromagnet. The limit (3.6) is taken along a (double) subsequence of the
variables (B, V ).

It is clear that Proposition 3.1 can be extendable to a wider class of quantum spin
systems, including higher spin and finite range, instead of only nearest-neighbors.

4 Continuous boson systems: quasi-averages, con-

densates, and pure states

We now study the states of Boson systems, and, for that matter, assume, together with
Verbeure ([Ver11], Ch.4.3.2) that they are analytic in the sense of [BR97], Ch.5.2.3. We
start, with [SY07], with the Hamiltonian for Bosons in a cubic box Λ of side L and volume
V = L3,

HΛ,µ = H0,Λ,µ + VΛ , (4.1)

where

VΛ =
1

V

∑

k,p,q

ν(p)b∗k+pb
∗
q−pbkbq , (4.2)

with periodic b.c., ~ = 2m = 1, and k, p, q ∈ Λ∗. Here Λ∗ is dual (with respect to Fourier
transformation) set corresponding to Λ. Here ν is the Fourier transform of the two-body
potential v(x), with bound

|ν(k)| ≤ φ < ∞ , (4.3)
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and
H0,Λ,µ =

∑

k

k2b∗kbk − µNΛ , (4.4)

NΛ =
∑

k

b∗kbk , (4.5)

with [bk, b
∗
l ] = δk,l the second quantized annihilation and creation operators. The quasi-

Hamiltonian corresponding to (3.2) is taken to be

HΛ,µ,λ = HΛ,µ +Hλ
Λ , (4.6)

with the symmetry-breaking field analogous to (3.3) given by

Hλ
Λ =

√
V (λ̄φb0 + λφb

∗
0) . (4.7)

Above,
λφ = λ exp(iφ) with λ ≥ 0 , where arg(λ) = φ ∈ [0, 2π) . (4.8)

We take initially λ ≥ 0 and consider first the perfect Bose-gas to define

H0,Λ,µ,λ = H0,Λ,µ +Hλ
Λ . (4.9)

We may write
H0,Λ,µ,λ = H0 +Hk 6=0 ,

where H0 = −µ b∗0b0 +
√
V (λ̄φb0 + λφb

∗
0). The grand partition function ΞΛ splits into a

product over the zero mode and the remaining modes. We introduce the canonical shift
transformation

b̂0 := b0 +
λφ

√
V

µ
, (4.10)

without altering the nonzero modes, and assume henceforth µ < 0. We thus obtain for
the grand partition function ΞΛ,

ΞΛ(β, µ, λ) = (1− exp(βµ))−1 exp(−β|λ|2V
µ

) Ξ′
Λ , (4.11)

where
Ξ′
Λ :=

∏

k 6=0

(1− exp(−β(ǫk − µ)))−1 , (4.12)

with ǫk = k2. Recall that the grand-canonical state for the perfect Bose-gas is

ω0
β,µ,Λ,λ(·) :=

1

ΞΛ

Tr[e−βH0,Λ,µ,λ (·)] , (4.13)

see Section 2. Then it follows from (4.11)-(4.13) that the mean density ρ equals to

ρ = ωβ,µ,Λ,λ(
NΛ

V
) =

1

V (exp(−βµ)− 1)
+

|λ|2
µ2

+
1

V

∑

k 6=0

1

exp(β(ǫk − µ))− 1
. (4.14)

Equation (4.14) is the starting point of our analysis. Let

ρc(β) ≡
∫

dk

2π3
(exp(βǫk)− 1)−1 . (4.15)
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Lemma 4.1. Let 0 < β < ∞ be fixed. Then, for each

ρc < ρ < ∞ , (4.16)

and for each λ > 0, V < ∞, there exists a unique solution of (4.14) of the form

µ(V, |λ|, ρ) = − |λ|√
ρ− ρc(β)

+ α(|λ|, V ) , (4.17)

with
α(|λ|, V ) ≥ 0 ∀ |λ|, V , (4.18)

and such that

lim
|λ|→0

lim
V→∞

α(|λ|, V )

|λ| = 0 . (4.19)

Remark 4.2. We skip the proof of this lemma, but we note that besides the cube Λ, it is
also true for the case of three-dimensional anisotropic parallelepiped Λ := V α1×V α2×V α3 ,
with periodic boundary condition (p.b.c.) and α1 ≥ α2 ≥ α3, α1 + α2 + α3 = 1, i.e. the
volume |Λ| = V .

We have now that

lim
λ→+0

lim
V→∞

ω0
β,µ,Λ,λ(ηΛ(b

∗
0)) = lim

λ→+0
lim
V→∞

∂

∂λφ

pβ,µ,Λ,λφ
, (4.20)

where η is defined as in (2.16),(2.17). Above we denote by

pβ,µ,Λ,λ =
1

βV
ln ΞΛ(β, µ, λ) , (4.21)

the pressure. By (4.14),(4.21) and the fact that the second term in (4.14) equals (λφλ̄φ)/µ
2,

we obtain
∂

∂λφ

pβ,µ,Λ,λφ
= − λ̄φ

µ
. (4.22)

By (4.22), (4.17) and (4.20),

lim
λ→+0

lim
V→∞

ω0
β,µ,Λ,λ(ηΛ(b

∗
0)) =

√
ρ0 exp(iφ) , (4.23)

where, for the perfect Bose-gas,
ρ0 = ρ− ρc(β) .

We see therefore that the phase in (4.20) remains in (4.23) even after the limit λ → +0.
Define the states

ω0
β,µ,φ := lim

λ→+0
lim
V→∞

ω0
β,µ,Λ,λφ

, (4.24)

where the double limit along a subnet exists by weak* compactness [Hug72], [BR87].
For this and the forthcoming definitions, we are referring to the full interacting Bose

gas (4.5)-(4.3), with ω replaced by ω0. The corresponding definitions for the general case
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of the quantities ωβ,µ,Λ,λ, ωβ,µ,λ,φ and ωβ,µ,φ are the obvious analogues of (4.13) and (4.24),
with H0,Λ,µ,λ replaced by Hλ,µ,λ.

We say (cf Section 2) that the interacting Bose-gas undergoes the zero-mode Bose-

Einstein condensation (BEC) (and/or ODLRO) if

lim
V→∞

ωβ,µ,Λ(
b∗0b0
V

) = ρ0 > 0 . (4.25)

We define the group of gauge transformations {τλ|λ ∈ [0, 2π)} by the operations

τλ(b
∗(f)) = exp(iλ)b∗(f)τλ(b(f)) = exp(−iλ)b(f) , (4.26)

where b∗(f), b(f) are the creation and annihilation operators smeared over test-functions
f from the Schwartz space. This group is isomorphic to the group U(1).

Note that (4.23), (4.24) show that the states ωβ,µ,φ are not gauge invariant. Assuming
that they are the ergodic states in the ergodic decomposition of ωβ,µ, which we shall prove
next, in greater generality, for the interacting system, it follows that BEC is equivalent to
SSB for the free Bose gas. It is illuminating to see, however, in the free case, a different
explicit mechanism for the appearance of the phase, which is connected with (4.17) of
Lemma 4.5, i.e., that the chemical potential remains proportional to |λ| even after the
thermodynamic limit (together with (4.22)). This property persists for the interacting
system, see below.

Remark 4.3. Note that these results are independent of the anisotropy, i.e. of whether
the condensation for λ = 0 is in single mode (k = 0) or it is extended as the gBEC-type
III, Section 2. This means that the Bogoliubov quasi-average method solves the question
about equivalence between (BEC)qa, (SSB)qa and (ODLRO)qa if they are defined via
one-mode quasi-average.

To this aim we re-consider the prefect Bose-gas (2.33) with symmetry breaking sources
(4.7) in a single mode q ∈ Λ∗:

H0
Λ(µ; η) := H0

Λ(µ) +
√
V

(
η bq + η b∗q

)
, µ < 0. (4.27)

Then for a fixed density ρ, the the grand-canonical condensate equation (2.35) for (4.27)
takes the following form:

ρ = ρΛ(β, µ, η) :=
1

V

∑

k∈Λ∗
l

ω0
β,µ,Λ,η(b

∗
kbk) = (4.28)

1

V
(eβ(εq−µ) − 1)−1 +

1

V

∑

k∈Λ∗\q

1

eβ(εk−µ) − 1
+

|η| 2
(εq − µ) 2

.

According the quasi-average method, to investigate a possible condensation, one must
first take the thermodynamic limit in the right-hand side of (4.28), and then switch off
the symmetry breaking source: η → 0. Recall that the critical density, which defines the
threshold of boson saturation is equal to ρc(β) = I(β, µ = 0) (2.36), where I(β, µ) =
limΛ ρΛ(β, µ, η = 0).
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Since µ < 0, we have to distinguish two cases:
(i) Let q ∈ Λ∗ be such that limΛ εq > 0, we obtain from (4.28) the condensate equation

ρ = lim
η→0

lim
Λ

ρΛ(β, µ, η) = I(β, µ) ,

i.e. the quasi-average coincides with the average. Hence, we return to the analysis of
the condensate equation (4.28) for η = 0. This leads to finite-volume solutions µΛ(β, ρ)
and consequently to all possible types of condensation as a function of anisotropy α1, see
Section 2 for details.
(ii) On the other hand, if q ∈ Λ∗ is such that limΛ εq = 0, then thermodynamic limit in
the right-hand side of the condensate equation (4.28) yields:

ρ = lim
Λ

ρΛ(β, µ, η) = I(β, µ) + |η| 2
µ 2

. (4.29)

Now, if ρ ≤ ρc(β), then the limit of solution of (4.29): limη→0 µ(β, ρ, η) = µ0(β, ρ) <
0, where µ(β, ρ, η) = limΛ µΛ(β, ρ, η) < 0 is thermodynamic limit of the finite-volume
solution of condensate equation (4.28). Therefore, there is no condensation in any mode.

But if ρ > ρc(β), then limη→0 µ(β, ρ, η) = 0 and the density of condensate is

ρ0(β) = ρ− ρc(β) = lim
η→0

|η| 2
µ(β, ρ, η) 2

. (4.30)

Note that expectation of the particle density in the q-mode (see (4.28)) is

ω0
β,µ,Λ,η(b

∗
qbq/V ) =

1

V
(eβ(εq−µ) − 1)−1 +

|η| 2
(εq − µ) 2

.

Then by (4.30) the corresponding Bogoliubov quasi-average for b∗qbq/V is equal to

ρ− ρc(β) = lim
η→0

lim
Λ

ω0
β,µΛ(β,ρ,η),Λ,η

(b∗qbq/V ) = (4.31)

lim
η→0

lim
Λ

1

V
(eβ(εq−µΛ(β,ρ,η)) − 1)−1 +

|η| 2
(εq − µΛ(β, ρ, η)) 2

,

where µΛ(β, ρ, η) < 0 is a unique solution of the condensate equation (4.28) for ρ > ρc(β).
Note that by virtue of (4.30) one has µ(β, ρ, η 6= 0) < 0. Hence, for any k 6= q such

that limΛ εk = 0 we get

lim
η→0

lim
Λ

ω0
β,µΛ(β,ρ,η),Λ,η

(b∗kbk/V ) = lim
η→0

lim
Λ

1

V

1

eβ(εk−µΛ(β,ρ,η))) − 1
= 0 , (4.32)

i.e., for any α1 the quasi-average condensation (BEC)qa occurs only in one mode (type I),
whereas for α1 > 1/2 the BEC is of the type III, see Section 2.

Similarly, diagonalisation (4.10) and (4.30) allow to apply the quasi-average method
to calculate a nonvanishing for ρ > ρc(β) gauge-symmetry breaking (SSB)qa:

lim
η→0

lim
Λ

ω0
β,µΛ(β,ρ,η),Λ,η

(bq/
√
V ) = lim

η→0

η

µ(β, ρ, η)
= ei arg(η)

√
ρ− ρc(β) , (4.33)
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along {η = |η|ei arg(η) ∧ |η| → 0}. Then by inspection of (4.31) and (4.33) we find that
(SSB)qa and (BEC)qa are equivalent:

lim
η→0

lim
Λ

ω0
β,µΛ(β,ρ,η),Λ,η

(b∗q/
√
V ) ω0

β,µΛ(β,ρ,η),Λ,η
(bq/

√
V ) = (4.34)

= lim
η→0

lim
Λ

ω0
β,µΛ(β,ρ,η),Λ,η

(b∗qbq/V ) = ρ− ρc(β) .

Note that by (2.38) the (SSB)qa and (BEC)qa are in turn equivalent to (ODLRO)qa,
whereas for the conventional BEC on gets

lim
Λ

ω0
β,µΛ(β,ρ,η=0),Λ,η=0(b

∗
qbq/V ) = lim

Λ
ω0
β,µΛ(β,ρ,0),Λ,0

(b∗q/
√
V ) ω0

β,µΛ(β,ρ,0),Λ,0
(bq/

√
V ) = 0 ,

for any ρ and q ∈ Λ∗ as soon as α1 > 1/2.

We now consider the interacting case (4.1)-(4.5). The famous Bogoliubov approxi-

mation of replacing ηΛ(b), ηΛ(b
∗) by c-numbers [ZB01] will be instrumental. It was proved

by Ginibre [Gin68], Lieb, Seiringer and Yngvason ([SY05], [SY07]) and Sütö [S0̈5], but
we shall rely on the method of [SY07], which uses the Berezin-Lieb inequality [Lie73].

Let z be a complex number , |z〉 = exp(−|z|2/2+ zb∗0)|0〉 the Glauber coherent vector
in F0 and, as in [SY07], let (HΛ,µ,λ)

′

(z) be the lower symbol of HΛ,µ,λ. Then

exp(βV p
′

β,Λ,µ,λ) = ΞΛ(β, µ, λ)
′

=

∫
d2zTrH′ exp(−β(HΛ,µ,λ)

′

(z)) , (4.35)

where H′

= Fk 6=0, with obvious notations for the Fock spaces associated to the zero mode
and the remaining modes. Consider the weight

Wµ,Λ,λ(z) := ΞΛ(β, µ, λ)
−1TrH′ 〈z| exp(−βHΛ,µ,λ)|z〉 . (4.36)

For almost all λ > 0 it was proved in [SY07] that the density of distribution Wµ,Λ,λ(ζ
√
V )

converges, as V → ∞, to a δ function at the point ζmax(λ) = limV→∞ zmax(λ)/
√
V , where

zmax(λ) maximizes the partition function TrH′ exp(−β(HΛ,µ,λ)
′

(z)). Although [SY07] took
φ = 0 in (4.8), their results in the general case (4.8) may be obtained by the trivial sub-
stitution b0 → b0 exp(−iφ), b∗0 → b∗0 exp(iφ) coming from (4.6). Note that their expression
(34) in [SY07] may be thus re-written as

lim
V→∞

ωβ,µ,Λ,λ(ηΛ(b
∗
0 exp(iφ)) = lim

V→∞
ωβ,µ,Λ,λ(ηΛ(b0 exp(−iφ))

= ζmax(λ) =
∂p(µ, λ)

∂λ
, (4.37)

and consequently
lim
V→∞

ωβ,µ,Λ,λ(ηΛ(b
∗
0ηΛ(b0)) = |ζmax(λ)|2 . (4.38)

Here above,
p(β, µ, λ) = lim

V→∞
pβ,µ,Λ,λ , (4.39)

is the pressure in the thermodynamic limit. Equality (4.37) follows from the convexity of
pβ,µ,Λ,λ in λ by the Griffiths lemma [Gri66]. As it is shown in [SY07] the pressure p(β, µ, λ)
is equal to

p(β, µ, λ)
′

= lim
V→∞

p
′

β,µ,Λ,λ . (4.40)
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As well as it is also equal to the pressure p(β, µ, λ)
′′

, which is the thermodynamic limit of
the pressure associated to the upper symbol of HΛ,µ,λ.

It is crucial in the proof of [SY07] that all of these three pressures coincide with
pmax(β, µ, λ), which is the pressure associated to maxzTrH′ exp(−β(HΛ,µ,λ)

′

(z)).

Theorem 4.4. Consider the system of interacting Bosons (4.5)-(4.8). If the system dis-
plays ODLRO in the sense of (4.25), spontaneous breaking of gauge symmetry occurs.
Conversely, if the system exhibits spontaneous breaking of gauge symmetry, ODLRO oc-
curs. Moreover, under any of the two equivalent conditions of ODLRO or SSB stated
above, the state defined by ωβ,µ,φ := limλ→+0 limV→∞ ωβ,µ,Λ,λφ

, when restricted to the set
{η(b∗0)mη(b0)n}m,n=0,1 satisfies

ωβ,µ,φ(η(b
∗
0)) =

√
ρ0 exp(iφ) , (4.41)

ωβ,µ,φ(η(b0)) =
√
ρ0 exp(−iφ) , (4.42)

together with

ωβ,µ,φ(η(b
∗
0)η(b0) = ωβ,µ((η(b

∗
0)η(b0)) = ρ0 ∀φ ∈ [0, 2π) , (4.43)

and

ωβ,µ =
1

2π

∫ 2π

0

dφ ωβ,µ,φ . (4.44)

The states ωβ,µ,φ, φ ∈ [0, 2π) are ergodic states and coincide with those states that explic-
itly constructed in Theorem 6.1.

Proof. We need only prove the direct statement, because the converse follows by applying
the Schwarz inequality to the states ωβ,µ,φ, together with the forthcoming (4.51).

We thus prove ODLRO ⇒ SSB. We first assume that some state ωβ,µ,φ0
, φ0 ∈ [0, 2π)

satisfies ODLRO. Then by (4.38),

lim
λ→+0

lim
V→∞

ωβ,µ,Λ,λ(η(b
∗
0)η(b0)) = lim

λ→+0
|ζmax(λ)|2 =: ρ0 > 0 . (4.45)

The above limit exists by the convexity of p(µ, λ) in λ and (4.20) by virtue of (4.45),

lim
λ→+0

∂p(µ, λ)

∂λ
6= 0 . (4.46)

At the same time, (4.37) shows that all states ωβ,µ,φ satisfy (4.45). Thus, SSB is broken
in the states ωβ,µ,φ, φ ∈ [0, 2π). We now prove that the original assumption (4.25) implies
that all states ωβ,µ,φ, φ ∈ [0, 2π) exhibit ODLRO.

Gauge invariance of ωβ,µ,Λ (or equivalently HΛ,µ) yields, by (4.7), (4.26),

ωβ,µ,Λ,λ(η(b
∗
0)η(b0)) = ωβ,µ,Λ,−λ(η(b

∗
0)η(b0)) . (4.47)

Again by (4.7), (4.17) and gauge invariance of HΛ,µ,

lim
λ→−0

∂p(µ, λ)

∂λ
= − lim

λ→+0

∂p(µ, λ)

∂λ
,
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and, since by convexity the derivative ∂p(µ, λ)/∂λ is monotone increasing, we find

lim
λ→+0

∂p(µ, λ)

∂λ
= lim

λ→+0
ζmax(λ) =

√
ρ0 , (4.48)

lim
λ→−0

∂p(µ, λ)

∂λ
= − lim

λ→+0
ζmax(λ) = −√

ρ0 . (4.49)

Again by (4.47),

lim
λ→−0

lim
V→∞

ωβ,µ,Λ,λ(η(b
∗
0)η(b0)) = lim

λ→+0
lim
V→∞

ωβ,µ,Λ,λ(η(b
∗
0)η(b0)) . (4.50)

By [SY07], the weight Wµ,λ is, for λ = 0, supported on a disc with radius equal to the
right-derivative (4.46). Convexity of the pressure as a function of λ implies

∂p(µ, λ−
0 )

∂λ−
0

≤ lim
λ→−0

∂p(µ, λ)

∂λ
≤ lim

λ→+0

∂p(µ, λ)

∂λ
≤ ∂p(µ, λ+

0 )

∂λ+
0

,

for any λ−
0 < 0 < λ+

0 . Therefore, by the Griffiths lemma (see e.g. [Gri66], [SY07]) one
gets

lim
λ→−0

lim
V→∞

ωβ,µ,Λ,λ(η(b
∗
0)η(b0)) ≤ lim

V→∞
ωβ,µ,Λ(

b∗0b0
V

) ≤ lim
λ→+0

lim
V→∞

ωβ,µ,Λ,λ(η(b
∗
0)η(b0)) .

(4.51)
Then (4.50) and (4.51) yield

lim
V→∞

ωβ,µ,Λ(
b∗0b0
V

) = lim
λ→+0

lim
V→∞

ωβ,µ,Λ,λ(η(b
∗
0)η(b0)) ∀φ ∈ [0, 2π) . (4.52)

This proves that all ωβ,µ,φ, φ ∈ [0, 2π) satisfy ODLRO, as asserted.
By (4.37) and (4.48) one gets (4.41) and (4.42). Then (4.44) is a consequence of the

gauge-invariance of ωβ,µ. Ergodicity of the states ωβ,µ,φ, φ ∈ [0, 2π follows from (4.52) and
(4.41), (4.42).

Since the Weyl algebra is asymptotically abelian for the space translations, the ergodic
decomposition (4.44) is unique ([BR87]. Thus, the ωβ,µ,φ, φ ∈ [0, 2π) coincide with the
states constructed in Theorem A.1.

Remark 4.5. Our Remark 4.3 and Theorem 4.4 elucidate a problem discussed in [SY07].
In this paper the authors defined a generalised Gauge Symmetry Breaking via quasi-
average (GSB)qa , i.e. by limλ→+0 limV→∞ ωβ,µ,Λ,λ(ηΛ(b0)) 6= 0. (If it involves other
than gauge group, we denote this by (SSB)qa.) Similarly they modified definition of
the one-mode condensation denoted by (BEC)qa (4.45), and established the equivalence:
(GSB)qa ⇔ (BEC)qa. They asked whether (BEC)qa ⇔ BEC ? We show that (GSB)qa
coincides with GSB (Definition 2.2), and that BEC is indeed equivalent to (BEC)qa.

Remark 4.6. The states ωβ,µ,φ in Theorem 4.4 have the property ii) of Theorem 6.1, i.e.,
if φ1 6= φ2, then ωβ,µ,φ1

6= ωβ,µ,φ2
. By a theorem of Kadison [Kad62], two factor states are

either disjoint or quasi-equivalent (see Remark 3.1 and references given there), and thus
the states ωβ,µ,φ for different φ are mutually disjoint. This fact has a simple explanation:
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only for a finite system is the Bogoliubov transformation (4.10) (which also applies to the
interacting system), which connects different φ, unitary: for infinite systems one has to
make an infinite change of an extensive observable b0

√
V , and mutually disjoint sectors

result. This phenomenon also occurs with regard to the magnetization in quantum spin
systems, in correspondence to (2.30) and it is in this sense that the word ”degeneracy”
must be understood (compare with the discussion in [Bog70]).

5 Concluding remarks

In this paper, we reexamined the issue of ODLRO versus SSB by the method of Bogoliubov
quasi-averages, commonly regarded as a symmetry-breaking trick. We showed that it
represents a general method of construction of extremal, pure or ergodic states, both for
quantum spin systems (Proposition 3.1) and many-body Boson systems (Theorem 4.4).
The breaking of gauge symmetry in the latter has some analogy with the breaking of gauge
and γ5 invariance in the Schwinger model (quantum electrodynamics of massless electrons
in two dimensions) ([LS71]), in which the vacuum state decomposes in a manner similar
to (4.44). We believe, and argued so in Section 3, that the quasi-average method is the
only universally applicable method, in particular to relativistic quantum field theory, to
which the imposition of classical boundary conditions is bound to be inconsistent with the
general principles of local quantum theory, as in the case of the Casimir effect [KNW07].

A general necessary feature for the applicability of the Bogoliubov method is the exis-
tence of an order parameter. In the two examples treated, quantum spin systems (Section
2) and many-body Boson systems (Section 4), the respective symmetry-breaking fields
(3.3) and (4.7) are qualitatively different. Note that (3.3) commutes with HΛ and the
corresponding order parameter, the magnetization, is physically measurable. Whereas
(4.7) does not commute with HΛ−µNΛ (even in the free-gas case!), and the order param-
eter involves a phase by (4.41),(4.42), which, at first glance, is not physically measurable.
It has been observed, however, in the interference of two condensates of different phases
[KK97] , [BZ], in the case of trapped gases. In the latter case, Condensation takes place
at k 6= 0, and the version of Theorem 4.4 due to Pulè et al [VZ05] is the relevant one.
Finally, in the quantum spin case there is a residual symmetry (Remark 2.4, but none, of
course, in the Boson case. These remarks exemplify the rather wide diversity of types of
the Bogoliubov quasi-avearge, which make its conjectured universal applicability further
plausible.

As remarked by Swieca [Swi70], it is the fluctuations occurring all over space which do
not allow to take the ”charge” (e.g. (2.26)) in the limit V → ∞ as a well-defined operator
(this would, in particular, contradict (2.23)), even if a meaning has been given to the
density - as in (2.24) - see also Remark 2.6. The additional input we offer is that the
fluctuation of the charge density (or of a related operator) is precisely a very nontrivial
condition of ODLRO ((2.32) or (4.25) respectively).

As a final question, the treatment of the free Bose gas suggests that the chemical
potential µ(λ) < 0 for λ 6= 0 even after the thermodynamic limit also for interacting
systems. It should be interesting to look at Bose gases with repulsive interactions [BR80]
from the point of view of quasi-average: (SSB)qa, using the symmetry breaking term (4.7).
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6 Appendix A

In this Appendix we reproduce, for the reader’s convenience, the statement of the basic
theorem of Fannes, Pulè and Verbeure [PV82], see also [VZ05] for the extension to nonzero
momentum, and Verbeure’s book [Ver11]. Unfortunately, neither [PV82] nor [VZ05] show
that the states ωβ,µ,φ, φ ∈ [0, 2π) in the theorem below are ergodic. The simple, but
instructive proof of this fact was given by Verbeure in his book [Ver11].

Theorem 6.1. Let ωβ,µ be an analytic, gauge-invariant equilibrium state. If ωβ,µ exhibits
ODLRO (4.25), then there exist ergodic states ωβ,µ,φ, φ ∈ [0, 2π), not gauge invariant,
satisfying (i) ∀θ, φ ∈ [0, 2π) such that θ 6= φ, ωβ,µ,φ 6= ωβ,µ,θ; (ii) the state ωβ,µ has the
decomposition

ωβ,µ =
1

2π

∫ 2π

0

dφωβ,µ,φ .

(iii) For each polynomial Q in the operators η(b0),η(b
∗
0), and for each φ ∈ [0, 2π),

ωβ,µ,φ(Q(η(b∗0), η(b0)X) = ωβ,µ,φ(Q(
√
ρ0 exp(−iφ),

√
ρ0 exp(iφ)X) ∀X ∈ A .

We remark, with Verbeure [Ver11], that the proof of Theorem A.1 is constructive.
One essential ingredient is the separating character (or faithfulness) of the state ωβ,µ, i.e.,
ωβ,µ(A) = 0 implies A = 0. This property, which depends on the extension of ωβ,µ to the
von-Neumann algebra πω(A)

′′

(see [BR97], [Hug72]) is true for thermal states, but is not
true for ground states, even without this extension: in fact, a ground state (or vacuum)
is non-faithful on A (see proposition 3 of [Wre05]). We see, therefore, that thermal states
and ground states might differ with regard to the ergodic decomposition (ii). Compare
also with our discussion in the Concluding remarks.
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