Transforming a Quantum Controller of Gravity into a Gravitational Spacecraft

by

Fran De Aquino

Professor Emeritus of Physics, Maranhao State University, UEMA. Titular Researcher (R) of National Institute for Space Research, INPE

Copyright © 2016 by Fran De Aquino. All Rights Reserved.

$$
\text { July } 2016
$$

Consider the Quantum Controller of Gravity (QCG) shown in Fig. 4 of reference [1]. Here, Fig. 1 shows it transformed into a spacecraft. It was shown that in the region hatched in red on Fig. 1 we have $m_{g}^{\prime}=\chi m_{g}$, where χ is given by

$$
\begin{equation*}
\chi=\frac{m_{g(\Delta x)}}{m_{i 0(\Delta x)}}=\left\{1-2\left[\sqrt{1+2.64 \times 10^{-3} V}-1\right]\right\} \tag{1}
\end{equation*}
$$

Thus, the gravitational mass of the spacecraft becomes $m_{g}^{\prime}=\chi m_{g}=\chi m_{i 0}$, where $m_{i 0}$ is its inertial mass.

Equation (6) of reference [2] shows that the spacecraft will acquires an acceleration \vec{a}, given by

$$
\begin{equation*}
\vec{a}=\frac{\vec{F}_{i}}{m_{g}^{\prime}}\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{3}{2}}=\frac{\vec{F}_{i}}{\chi m_{i 0}}\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{3}{2}} \tag{2}
\end{equation*}
$$

where F_{i}^{\prime} is the thrust produced by the thruster of the spacecraft (See Fig.1). In the nonrelativistic case ($v \ll c$), Eq. (2) reduces to

$$
\begin{equation*}
\vec{a} \cong \frac{\vec{F}_{i}}{\not m_{i 0}} \tag{3}
\end{equation*}
$$

Equation (1) shows that for $V=473.428$ volts, we obtain $\chi \cong 1 \times 10^{-4}$. Then, if the inertial mass of the spacecraft is $m_{i 0}=10,000 \mathrm{~kg}$, we get

$$
\begin{equation*}
|\vec{a}| \cong\left|\vec{F}_{i}\right| \tag{4}
\end{equation*}
$$

Therefore, if $\left|\vec{F}_{i}\right| \cong 10,000 \mathrm{~N}$ (The thrust of the F-22 Raptor reaches $160,000 \mathrm{~N}$) then the spacecraft will acquires an acceleration

$$
\begin{equation*}
|\vec{a}| \cong 10,000 \mathrm{~m} \cdot \mathrm{~s}^{-2} \tag{5}
\end{equation*}
$$

This means that at one second the velocity of the spacecraft will be about $36,000 \mathrm{~km} / \mathrm{h}$ (Earth's circumference at the equator has about $40,000 \mathrm{~km}$).

The total energy of the spacecraft, according to Eq. (7) of reference [2], is given by

$$
\begin{equation*}
E_{g}=\frac{m_{g} c^{2}}{\sqrt{1-v^{2} / c^{2}}}=\frac{\chi m_{i 0} c^{2}}{\sqrt{1-v^{2} / c^{2}}} \tag{6}
\end{equation*}
$$

and consequently, its kinetic energy, in the nonrelativistic case, is expressed by

$$
\begin{equation*}
K \cong \frac{1}{2} \chi m_{i 0} v^{2} \tag{7}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
K \cong \frac{1}{2} m_{i 0} v_{e q}^{2} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{e q}=v \sqrt{\chi} \tag{9}
\end{equation*}
$$

Therefore, for $\chi=10^{-4}$ and $v=36,000 \mathrm{~km} / \mathrm{h}$, the equivalent velocity of the spacecraft is only

$$
\begin{equation*}
v_{e q}=360 \mathrm{~km} / \mathrm{h} \tag{10}
\end{equation*}
$$

This means that, despite the enormous velocity of the Gravitational Spacecraft ($v=36,000 \mathrm{~km} / \mathrm{h}$), its surface temperature due to the friction with the atmospheric air, does not increase significantly, because it becomes equivalent to the surface temperature of a conventional spacecraft, flying in atmospheric air, with only $360 \mathrm{~km} / \mathrm{h}$.

References

[1] De Aquino, F. (2016) Quantum Controller of Gravity. https://uema.academia.edu/FranDeAquino/Papers
[2] De Aquino, F. (2010) Mathematical Foundations of the Relativistic Theory of Quantum Gravity, Pacific Journal of Science and Technology, 11 (1), pp. 173-232.
https://hal.archives-ouvertes.fr/hal-01128520

