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Abstract 

Pattern drift is a common issue for machine learning in real applications, as the distribution 

generating the data may change under nonstationary environmental/operational conditions. In our 

previous work, a strategy based on Feature Vector Selection (FVS) has been proposed for enabling 

a Support Vector Regression (SVR) model to adaptively update with streaming data, but the 

proposed strategy suffers from the incapability of treating recurring patterns. An instance-based 

online learning approach is proposed in this paper, which can adaptively update an SVR-based 

ensemble model with steaming data points. The proposed approach reduces the computational 

complexity of the updating process by selecting only part of the newly available data and allows 

following timely the ongoing patterns by resorting to FVS. The proposed approach creates new sub-

models directly from a basic model and the sub-models represent separately the data stream at 

different periods. A dynamic ensemble selection strategy is integrated in the approach to select the 

sub-models most relevant to the new data point for deriving the prediction, while reducing the 

influence of the irrelevant ones. The weights of the different models in the ensemble are updated, 

based on their prediction errors. Comparison results with several benchmark approaches on several 

synthetic datasets and on the dataset concerning the leakage from the first seal in a Reactor Coolant 

Pump, prove the efficiency and accuracy of the proposed online learning ensemble approach. 
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1. Introduction 

Predicting malfunctions and failures is a fundamental task for the reliable and safe operation of 

components and systems. Building an efficient and accurate predictor from available data is one of 

the main objectives in machine learning. This is particularly critical in high-risk industries, like 

nuclear, chemical process, aerospace and aviation ones. Regarding the nuclear industry, from which 
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the case study of this paper is taken, most of the current approaches for prediction of parameters in 

NPP components and systems, are developed for static environments only [1], [2], [3], i.e. the data 

are assumed to originate from a process whose underlying distribution does not change with time. 

On the contrary, in practical applications, the underlying, normally unknown distribution generating 

the data can vary with time, causing pattern drifts. Pattern drifts in NPP components and systems 

can be due to a natural evolution of the environment, changes in the operational conditions or faults 

[4]. In such cases, the data originate from nonstationary environments and models are developed 

and trained for static environments can no longer give accurate predictions for the new data.  

Pattern drifts can be divided into sudden pattern drifts, gradual pattern drifts and recurring patterns. 

Different approaches have been developed for tackling the different pattern drifts problems, which 

can be categorized into adaptive single model [5], [6], [7] and online learning ensembles [8], [9], 

[10]. The former approach is based on an adaptive model that learns incrementally the new patterns 

and/or forgets the old inefficient ones; however in practice, the computational burden for 

incremental learning is unacceptable for large datasets, and the recurring patterns are not efficiently 

handled if they have already been deleted from the model. The online learning ensemble approach 

aims at updating an ensemble by adapting the sub-models weights and/or adding/deleting a sub-

model in the ensemble. The work reported in this paper focuses on this latter approach of online 

learning ensembles. 

There are different types of approaches for online learning ensembles, e.g. data-chunk-based 

approaches [14], [15], [16], drift detector-based approaches, [18], [19], [20], [21] instance-based 

approaches, [22], [23], [24] etc.  

Accuracy Weighted Ensemble (AWE) [11], Streaming Ensemble Algorithm (SEA) [12], 

Learning++.NSE [13] are some of the data-chunk-based approaches proposed in the literature. 

Learning++.NSE trains a new sub-model on the new data chunk if the prediction error exceeds a 

predefined threshold, and combines the sub-models built through a dynamically modified weighted 

majority voting. The sub-models weights are calculated based on their weighted-sum performance 

on different data chunks and added to the ensemble. The problem with these data chunk-based 

approaches is the determination of the size of the data chunks, as bigger chunks give more stable 

sub-models but different drifts may be contained in a single sub-model, whereas smaller chunks can 

better separate different drifts but lead to worse sub-models. There is also a delay in the ensemble 

for following the ongoing patterns, as the ensemble is updated only when a new data chunk is 

available and the patterns in the ensemble at this time may no longer be the ongoing patterns. 

In order to overcome these difficulties, various approaches have been proposed in the literature, 

which may combine a drift detector with online learning ensemble to alarm the need for a new sub-

model. Adaptive Classifier Ensemble (ACE) [17] slowly builds a new sub-model when the sub-

models error on the new data reaches a certain threshold. In [18], pattern drifts are detected by 

measuring the normalized weighted average output of the sub-models in the ensemble. Diversity 

analysis is used in [19] to divide different drifts. The most popular drift detector algorithm is the 

Drift Detection Method (DDM) [20], which models the prediction error on each data point according 

to a binominal distribution. A new approach for online learning ensembles, called Diversity for 

Dealing with Drift (DDD) is proposed in [10], which maintains ensembles with different diversity 

levels. The experimental results show that DDD gives robust and accurate results. Although the drift 

detector-based approaches can solve the difficulty in deciding a good size of the data chunk, they, 

compared to instance-based updating approaches, still cannot update the ensemble once a pattern 



drift occurs, i.e. sufficient new data are needed before detecting and reacting to the pattern drifts.  

In [22], a theoretically supported framework for active learning of drifts in data streams is presented 

and three active learning strategies are developed based on separate uncertainty, dynamic allocation 

of labeling efforts over time and randomization of search space. Another instance-based approach, 

named Online Weighted Ensemble (OWE) is proposed in [25] to learn new data points incrementally 

in the presence of different types of pattern drifts and to retain old information in recurring patterns. 

The instance-based updating approaches can learn the pattern drifts effectively and efficiently once 

they occur. But one main disadvantage is the computational complexity of updating the ensemble 

with every new data point. Furthermore, a dynamically weighted ensemble is proposed in [26] to 

store only the features most relevant to the learnt concept, which in turn increases the memory 

efficiency. 

It is important to stress that online learning requires timely updating the ensemble, including its 

weights and sub-models, while minimizing to the extent feasible the computational burden brought 

by the updating operations needed for dealing with the different types of drifts. 

In this paper, an instance-based online learning approach for Support Vector Regression (SVR)-

based ensembles, named Online Ensemble based on Feature Vectors (noted OE-FV, for short), is 

proposed based on the Feature Vector Selection (FVS) approach presented in [27]. For convenience, 

in this paper, the term “input vector” refers to the vector containing all the input variables and 

“input” represents one input variable in the input vector. The term “pattern” refers to one input 

vector – output pair. 

SVR-based ensembles are made of sub-models trained with SVR. FVS calculates the geometrical 

linear relation among different input vectors of the data points in the Reproduced Kernel Hilbert 

Space (RKHS) and selects a small part of them as Feature Vectors (FVs) representing the whole 

training dataset. In our previous work [28], an adaptive online learning approach, named Online-

SVR-FID has been proposed for a single SVR model to effectively follow the ongoing patterns by 

adjusting to two types of drifts (new pattern if the new input vector cannot be represented by a linear 

combination of the FVs in the model and changed pattern if the new input vector can be represented 

by a linear combination of the selected FVs but the prediction error is larger than a predefined 

threshold) and taking the correspondent action. If a new data point is judged as new pattern, it is 

added directly into the model, while if it is judged as a changed pattern, it is used to replace a 

selected pattern that makes least contribution to the recent updated models. Compared to several 

benchmark approaches, Online-SVR-FID has been shown to give comparable results while using 

much less time. One drawback of Online-SVR-FID is that the old patterns are deleted from the 

model and one needs to relearn the recurring patterns from scratch.  

Based on this previous work, an online learning ensemble is grown from the first kernel-based sub-

model 𝑀1 to store all the past patterns detected in the data, and each sub-model covers patterns in 

a certain period of the data stream. The ensemble is created sequentially by applying an online 

learning approach similar to Online-SVR-FID on 𝑀1. The online learning approach assures that 

the first sub-model 𝑀1 follows always the ongoing patterns. If the sub-models 𝑀1 for different 

periods of the data stream are separately saved and used in an ensemble, each of them is like an 

adjusted “copy” of 𝑀1 tailored to different instances of the online learning process. Every new 

sub-model is saved by copying the current 𝑀1 at the time when an old pattern risks of being 

deleted from the ensemble, as the process for updating 𝑀1 may use new data points to replace an 

existing pattern in 𝑀1 when the new data point is judged as a changed pattern. If the pattern to be 



replaced is unique in the ensemble and there is no more such pattern once deleted, the model before 

the replacement is copied and stored as a new sub-model to guarantee that all the occurred patterns 

appear at least once in the sub-models of the ensemble, and, then, the updated 𝑀1 is still the up-

to-date sub-model that continues to be updated with future new data points. Note that the sub-models 

are created sequentially and automatically from 𝑀1 and are not updated with the new data points. 

Through the FVS, only data points that are judged as new and changed patterns are used to update 

𝑀1 and create new sub-models when the criterion is reached. Note that each time 𝑀1 is updated 

with a new or changed pattern, it is retrained to minimize the MSE on the recent data points. Thus, 

the computational burden bothering the instance-based approaches for online learning ensemble is 

reduced. The sub-models weights are updated with each new data point according to the weighted 

sum of the prediction errors on all the data points, where the prediction errors on the new data points 

are more weighted than the old ones. Thus, the ensemble can follow efficiently the ongoing patterns. 

Inspired by the work in [29], [30] and [31], a dynamic ensemble selection strategy is also integrated 

in the proposed OE-FV. For each new data point, only the most relevant sub-models are used to 

form an ensemble and derive the weighted-sum prediction result, in order to avoid the influence of 

the poor ones. The dynamic selection of the sub-models are based on the geometric relation between 

the input vector of the new data point and the data points in each sub-model. Only the sub-models 

which can well represent the new input vector are selected. 

In order to test the efficiency and accuracy of OE-FV, experiments on several synthetic datasets and 

a real case study concerning the condition of a component of a Nuclear Power Plant (NPP) are 

carried out. Comparisons with Learn++.NSE and OWE show that the proposed approach gives 

better results in the experiments than those of OWE and Learn++.NSE, and the computation time 

of OE-FV is shorter than that of OWE. 

The rest of the paper is structured as follows. FVS and Online-SVR-FID are briefly reviewed in 

Section 2. Section 3 explains the approach proposed to build the ensemble automatically and the 

process of weights updating. The experiments on several synthetic datasets and a real case study 

regarding a component of a NPP are illustrated in Section 4. Comparisons with Learn++.NSE and 

OWE are also reported in this section. Some conclusions are drawn in Section 5. 

2. Brief introduction of FVS and Online-SVR-FID 

The proposed online learning approach for kernel-based ensemble is based on the work in [27] and 

[28]. In order to thoroughly explain the process of building and updating an ensemble with OE-FV, 

FVS [27] and Online-SVR-FID [28] are firstly and briefly reviewed in this section. 

2.1 Feature Vector Selection 

Suppose 𝑻 =  {(𝒙𝑖, 𝑦𝑖): 𝑖 = 1, 2, … , 𝑀} is the dataset at hand. FVS analyzes the geometric relation 

among the input vectors of different data points in a high-dimensional space, i.e. RKHS, and selects 

as FVs the ones which represent the dimensions of the RKHS related to the dataset, in order to 

decrease its complexity. The other input vectors in the dataset can be represented by a linear 

combination of the selected FVs in the RKHS. A model can be trained on the selected FVs with 

classical machine learning methods, e.g. SVR.  

In this paper, 𝝋(𝒙) is the mapping that maps an input vector from the original space to the RKHS 



and 𝑘(𝒙𝑖, 𝒙𝑗)  is the kernel function that represents the inner product 〈𝝋(𝒙𝑖), 𝝋(𝒙𝑗)〉  in the 

RKHS. Once a new data point (𝒙𝒏, 𝑦𝑛) with mapping 𝝋𝒏 is available, we need to judge if this 

new data point is a new FV. Suppose the existing FVs selected form the dataset are {𝒙1, 𝒙2, … , 𝒙𝐿} 

and their mapping are included in the feature space 𝐒 = {𝝋1, 𝝋2, … , 𝝋𝐿}; the verification of a new 

FV amounts to finding the vector 𝒂 = {𝑎1, 𝑎2, … , 𝑎𝐿}, which gives the minimum of Equation (1) 

below:  

𝜇𝑛 =  
‖𝝋𝒏−∑ 𝑎𝑖𝝋𝑖

𝐿
𝑖=1 ‖

‖𝝋𝒏‖
.               (1) 

Normally in kernel methods, it is difficult to know the exact expression of the mapping function 

𝝋(𝒙). But kernel functions which represent the inner product between two mappings in RKHS can 

give a solution to the minimum of Equation (1). The minimum of 𝜇𝑛 can be written as: 

min 𝜇𝑛 = 1 −
𝐾𝑺,𝒏

𝑡 𝐾𝑺,𝑺
−1𝐾𝑺,𝒏

𝑘(𝒙𝒏,𝒙𝒏)
,              (2) 

where 𝐾𝑺,𝑺 is the kernel matrix (gram matrix) of 𝐒 and 𝐾𝑺,𝒏 = (𝑘(𝒙𝑖, 𝒙𝒏)), 𝑖 = 1,2, … , 𝐿 is the 

vector of the inner product between 𝝋𝒏 and S. The derivation of Equation (2) from Equation (1) 

can be found in [27]. 

The value calculated with Equation (3) is called local fitness; the definition of global fitness is given 

in Equation (4); the vector 𝒂 can be calculated by Equation (5): 

𝐽𝑆(𝒙𝒏) =
𝐾𝑺,𝒏

𝑡 𝐾𝑺,𝑺
−1𝐾𝑺,𝒏

𝑘(𝒙𝒏,𝒙𝒏)
                (3) 

𝐽𝑺 = ∑ 𝐽𝑺(𝒙𝑖)
𝑀
𝑖=1                 (4) 

𝒂 =  𝐾𝑺,𝒏
𝑡 𝐾𝑺,𝑺

−1                 (5) 

According to the definition of local fitness, each data point is called a pattern and the pattern drifts 

in this paper are divided into two types: new pattern if the new data point cannot be well represented 

by the existing FVs in any sub-model, i.e. 1 − 𝐽𝑆(𝒙𝒏) > 𝜌, with 𝜌 a small positive value; changed 

pattern if the new data point can be represented by the existing FVs in some sub-models, but the 

predicted value given by all the sub-models is not accurate enough, i.e. 1 − 𝐽𝑆(𝒙𝒏) <

𝜌 & |𝑦̂𝑛 − 𝑦𝑛| > 𝜃 for all sub-models, with 𝑦̂𝑛 being the predicted value given by one current sub-

model and 𝜃 a positive value representing the tolerance on the prediction error. 

2.2 Online-SVR-FID 

Online-SVR-FID proposed in [28] aims at providing an efficient online learning approach for a 

single SVR model, based on FVS. This approach can be divided into two parts: offline training and 

online learning. 

The offline training is aimed at selecting FVs from the training dataset and training a model on the 

selected FVs, with the objective of minimizing the Mean Squared Error (MSE) on the whole training 

dataset. 

In [28], it is showed that the number of selected FVs is very critical, as too few FVs cause low 

accuracy on the test dataset, while too many FVs cause overfitting the training dataset. 

The online learning is aimed at detecting the pattern drifts and taking corresponding reactions to 

update the model. If a new data point is a new FV, it is added to the model and the model is updated; 

if it is not a new FV and its prediction error is larger than the threshold 𝜃, it replaces the FV which 

makes least contribution to the recent models.  

The case studies in [28] show that Online-SVR-FID gives comparable or even better results than 



the SVR trained on the whole training dataset, and Online-SVR-FID uses much less time for online 

learning the same test dataset. Comparisons with other popular online learning methods are also 

carried out with respect to the case studies and Online-SVR-FID gives always comparable accuracy. 

Although the feature selection process increases the computational complexity for data 

preprocessing, the time for tuning hyperparameters in Online-SVR-FID is much less than the classic 

SVR model using the whole training dataset, as the Online-SVR-FID model is much less 

complicated. 

Constrained by the length of the paper, the pseudo-code of Online-SVR-FID and the calculation of 

the contribution of each FV to the recent models are shown in Appendix. Note that Online-SVR-

FID can make the model efficiently follow the ongoing patterns in the data. A main drawback of 

Online-SVR-FID is that some useful FVs are replaced during the UPDATE process shown in 

Appendix. Once these replaced patterns recur in the new data, the model needs to relearn them, i.e. 

the information in the past data are not fully stored in the single model.  

To overcome this problem, in this paper an ensemble approach is proposed to store all the past 

patterns in the data and make a reasonable choice of sub-models when facing recurring patterns. 

3. The proposed approach for online learning ensemble: OE-FV 

As mentioned in previous sections, the main objective of this ensemble is to store all the past patterns 

in the data, propose strategies to build automatically new sub-models, update their weights and 

decrease the computational burden for instance-based approaches for online learning ensemble. The 

whole idea is based on the FVS in [27] and Online-SVR-FID in [28]. OE-FV builds automatically 

an ensemble from the first sub-model trained on the training dataset. All the sub-models are expected 

to represent the characteristics of the data during a certain period and once the old patterns recur, 

the most relevant sub-models are selected by FVS to derive the prediction. As FVS is developed for 

the kernel methods, OE-FV can be applied for all kernel-based ensembles, e.g. sub-models trained 

with kernel ridge regression [33], SVR [34], Gaussian process [35] etc. 

The main procedure is shown in Figures 1 and 2. OE-FV builds an ensemble sequentially from the 

first sub-model, named 𝑀1, that is trained on the preliminary training dataset. All the other sub-

models can be seen as an updated “copy” of 𝑀1 at one instance during the data stream developing 

process. These sub-models are expected to be different from each other and represent the data at a 

certain period of the stream. Only the sub-model 𝑀1 is adaptively updated with new data points, 

while the other sub-models are fixed once created and stored. 

 



Fig. 1 The main procedure of OE-FV. 

 

Fig. 2 Graphical updating process of OE-FV. 

3.1 Training of the first sub-model in the ensemble (step 1 of Figure 1) 

The first sub-model 𝑀1 is trained on the training dataset, which is also the first and basic sub-

model in the ensemble (step 1 of Figure 1). In order to reduce the model complexity and 

computational burden, all the training dataset are not directly used to train the first sub-model. 

Instead, FVS selects the representative data points, i.e. FVs, which are normally of a much smaller 

size than the training dataset, and 𝑀1 is trained on the selected FVs through minimizing the MSE 

of the prediction on the whole training dataset. Such strategy can reduce the model complexity and 

keep the generalization ability of the model, at the same time. The process of FVS applied for 

selecting the FVs from the training dataset is shown in Appendix. 

1. Train the first  sub-model 𝑀1 with kernel methods on the training dataset.  

2. Suppose there are n sub-models (M1, M2, …, Mn) in the ensemble when a new data point is coming: 

2.1 Calculate the predicted value for the new data point by a weighted-sum strategy based on the 

prediction errors 𝐄𝐫 of selected sub-models; 

2.2 If the new data point is new FV, it is added to 𝑀1 and then 𝑀1 is retrained;  

2.3 Else 

2.3.1 If the new data is a changed FV, it will be used to replace the FV that makes least contribution 

in the recent models; 

2.3.1.1 If the existing FV to be replaced in M1 is unique in the ensemble, the model 𝑀1 before 

replacement is saved as a new sub-model, named Mn+1. The selected FV in 𝑀1 is, then, replaced 

by the new data point and then 𝑀1 is retrained; 

2.3.1.2 If the existing FV to be replaced in 𝑀1 is not unique in the ensemble, no new sub-model 

is created and the replacement is carried out directly in 𝑀1 and then 𝑀1 is retrained; 

  2.3.2 Else keep the sub-models in the ensemble unchanged. 

 2.4 Update the prediction error 𝐄𝐫 of each sub-model. 



3.2 Calculation of the predicted value of a new data point (step 2.1 of Figure 1) 

For any new data point coming, prediction is obtained by a dynamic ensemble selection strategy 

(step 2.1 of Figure 1). A dynamic ensemble selection, as presented in [29], [30] and [31], amounts 

to selecting the sub-models that are most relevant to the new data point and calculating their separate 

predictions; then, these predictions are fused by a weighted sum to give the final prediction of the 

ensemble for the new data point.  

The dynamic selection of sub-models can be based on the overall local accuracy, local sub-model 

accuracy, a priori selection or a posteriori selection [29]. In OE-FV, the sub-models are selected on 

the basis of the local fitness of the new data point to the FVs of each sub-model, calculated by 

Equation (3). Only the sub-models with a local fitness that satisfies 1 − 𝐽𝑆𝑖(𝒙) < 𝜌 are selected to 

form the ensemble predictor 𝐸𝑜𝐶 for the new data point. 

Suppose 𝐄𝐫 is the vector that contains the cumulated prediction errors of all the sub-models and 

𝐄𝐫𝐸𝑜𝑐, which is a subset of 𝐄𝐫, contains the prediction errors of the sub-models in 𝐸𝑜𝐶: the weights 

of the selected sub-models are calculated as Equation (6) below:  

𝛚 =
1/𝑬𝒓𝐸𝑜𝑐

2

∑ 1/𝑬𝒓𝐸𝑜𝑐
2,                (6) 

and the prediction of the ensemble is calculated as a weighted sum of the prediction results of all 

the selected sub-models, as shown in Equation (7), with 𝑦̂𝑖 and 𝑦̂ being the predicted value of the 

i-th selected sub-model and of the ensemble, respectively: 

𝑦̂ = ∑ 𝜔𝑖𝑦̂𝑖𝐸𝑜𝐶  .                (7) 

If none of the sub-models in the ensemble gives a local fitness that satisfies1 − 𝐽𝑆𝑖(𝒙) < 𝜌, all the 

sub-models are used for calculating the prediction of the ensemble. In Equations (6), 𝐄𝐫𝐸𝑜𝑐  is 

replaced by 𝐄𝐫 and in Equation (7), the weighed sum is carried out on all the sub-models. 

3.3 Update of the ensemble with a new pattern (step 2.2 of Figure 1) 

If the local fitness of the new data point to the FVs in each sub-model satisfies the relation 1 −

𝐽𝑆𝑖(𝒙) > 𝜌, such data point is judged as a new FV and it is added to the first sub-model 𝑀1 that 

had been trained on the training dataset (step 2.2 of Figure 1). The other sub-models are not modified 

with the new FV, as they represent only the patterns in the data at a certain historical period and the 

new FV represents the ongoing pattern of the data. A new sub-model is not created in the case of a 

new FV, as it enriches the ensemble without decreasing its performance on the whole data. Thus, 

the number of sub-models are not changed and only the sub-model 𝑀1 is updated to follow the 

ongoing patterns. Once the FVs in 𝑀1 are increased by one, the model is retrained by minimizing 

the MSE on the recent data points (how to choose the recent data points is explained in details in 

Section 3.6). 

3.4 Update of the ensemble with a changed pattern (step 2.3.1 in Figure 1) 

When the new data point is judged as not being a new FV, the verification of a changed FV is carried 

out by calculating the prediction error (absolute bias between the predicted value and the true output) 

of all the sub-models. If the prediction errors are all bigger than a preset threshold θ, the new data 

point is judged as a changed pattern and is used to replace another FV in the sub-model 𝑀1. 

Before the replacement, we need to solve two questions.  



The first one is how to choose the FV in 𝑀1 to be replaced by the new data point. The pseudo-code 

for Online-SVR-FID in Appendix gives a way for SVR models, based on counting the times that an 

FV has been a support vector in the past SVR models during the adaptive learning process and, then, 

the contribution in the recent SVR models are more weighted than those in the older ones. Following 

the same strategy, a more general way is to cumulate the contribution of the FV through a weighted 

sum of its value calculated in Equation (5) for all the data points.  

Suppose the contribution of each FV in 𝑀1 is 𝑚𝑖: when a new data point is coming, Equation (5) 

can compute its similarity with each FV in 𝑀1. A bigger 𝑎𝑖 in 𝒂 represents a larger similarity, 

and, thus, a bigger contribution to the prediction of the new data point: the contribution of the FV 

is, then, updated as 𝑚𝑖
𝑛𝑒𝑤 = 𝛾𝑚𝑖 + 𝑎𝑖, with 𝛾 a positive value smaller than one. 

Once the FV in 𝑀1 to be replaced by the new data point is selected, the second problem is how to 

assure that all the past patterns are stored in the ensemble. If the selected FV is unique in the 

ensemble, i.e. it exists only in 𝑀1, the replacement of this FV may cause a loss of a past pattern in 

the data. Thus, step 2.3.1.1 of Figure 1 proposes to “copy” the model 𝑀1 as a new sub-model and 

before the replacement. The selected FV in 𝑀1 is replaced by the new data point. With such a 

strategy, the changed pattern is learned by 𝑀1 and the old pattern is not deleted from the ensemble 

by adding a new sub-model, which is a copy of M1 before the replacement. Note that all the sub-

models except 𝑀1 are created this way and they can be seen as a copy of 𝑀1 for t different 

periods. As 𝑀1 can always follow the ongoing patterns in the data, the diversity among the sub-

models represents different steps of the data stream. 

If the selected FV in 𝑀1 is not unique in the ensemble, it is replaced directly by the new data point 

without adding a new sub-model (step 2.3.1.2). 

3.5 Update of the prediction error of sub-models (step 2.4 of Figure 1) 

In Section 3.3, the sub-models weights are calculated according to their prediction errors 𝐄𝐫 on the 

data points. After the training of the first sub-model 𝑀1 in step 1 of Figure 1, the prediction error 

for 𝑀1 is the root MSE on the whole training dataset.  

When a new data point is available, part of (if the new data point is not a new FV) or all (if the new 

data point is a new FV) the sub-models are selected to derive the prediction of the dynamically 

selected ensemble, as introduced in Section 3.3. In any case, sub-model 𝑀1 is always selected, as 

the online learning process assures that 𝑀1 contains all the dimensions of the available data in 

RKHS while the other sub-models contain only part of it. Thus, 𝑀1 can give a local fitness for the 

new data point, which is smaller than or equal to those given by other sub-models. At the end of 

each iteration for a new data point, the strategy for updating the prediction error of the sub-models 

for different situations is given below: 

1) For the sub-models, except 𝑀1, in the dynamically selected ensemble 𝑆𝑜𝐶 for the new data 

point (𝒙𝑖 , 𝑦𝑖), their prediction errors are updated as 𝑬𝒓𝐸𝑜𝐶 = 𝛽𝑬𝒓𝐸𝑜𝐶 + |𝒚̂𝑖 − 𝑦𝑖|, with the 

vector 𝑬𝒓𝐸𝑜𝑐 containing their prediction errors, 𝛽 being a positive parameter smaller than 

one and 𝒚̂𝑖 the vector of predicted values of the sub-models in 𝐸𝑜𝐶. 

2) For the sub-models that are not selected into 𝐸𝑜𝐶, their prediction errors are updated as 𝑬𝒓 =

𝛽𝑬𝒓 + 𝜏𝐸𝑟, with 𝐸𝑟 the maximal prediction error given by the sub-models in 𝐸𝑜𝐶 and 𝜏 a 

parameter bigger than one, in order to decrease the weights of these sub-models in the next 

iteration. 

3) The case of 𝑀1 is different from the above two types of sub-models, as it may be adaptively 



updated with the new data point:  

3.1) If it is not updated during steps 2.2 and 2.3 of Figure 1, its prediction error is updated as 

step 1.  

3.2) Otherwise, it is updated with the prediction error after the update, i.e. after steps 2.2 and 

2.3 of Figure 1. 𝑀1 gives a new prediction for the new data point different from the one 

calculated in step 2.1 of Figure 1 during the calculation of the prediction of the ensemble for 

the new data point. The error of the new prediction is the true error for 𝑀1 at the end of this 

iteration. Its prediction error is updated with the new prediction error as 𝐸𝑟1 = 𝛽𝐸𝑟1 +

|𝑦̂1,𝑛𝑒𝑤 − 𝑦𝑖|, with 𝑦̂1,𝑛𝑒𝑤 being the prediction for the new data point given by the updated 

M1. 

4) If a new sub-model is created during the online learning of the new data point, the prediction 

error of the new sub-model is calculated with 𝐸𝑟𝑛+1 = 𝛽𝐸𝑟1 + |𝑦̂1,𝑜𝑙𝑑 − 𝑦𝑖| , with 𝑦̂1,𝑜𝑙𝑑 

being the prediction for the new data point given by 𝑀1 at step 2.1 of Figure 1, which is not 

updated yet with the new data point, and 𝐸𝑟1  being the prediction error of 𝑀1  at the 

beginning of this iteration in step 2.1 in Figure 1, i.e. before updating. 

3.6 Retraining of the sub-model M1 

Facing a new FV or a changed FV, the sub-model 𝑀1 needs to be updated. However, it is not always 

possible to find a way to update directly the model, as shown in Online-SVR-FID without retraining 

it from scratch. In this paper, we suppose that 𝑀1 is updated by retraining by minimizing the MSE 

on a number (much larger than the number of FVs in the model) of recent data points, in order to 

guarantee the generalization ability of the model. Suppose the last sub-model was added at the i0-th 

data point, when the i-th data point is coming: the objective function to minimize is the MSE on the 

data points from i0 to i. In order to avoid overfitting and underfitting on the recent data points, a 

minimal (Nmin) and a maximal (Nmax) number of the recent data points in the objective function are 

fixed during the retraining of 𝑀1, i.e. the number of the recent data points for retraining 𝑀1 is 

min (max(𝑁𝑚𝑖𝑛, 𝑖 − 𝑖0) , 𝑁_𝑚𝑎𝑥).  

3.7 Advantages of OE-FV 

OE-FV has several advantages compared to other online learning ensemble approaches. It is an 

instance-based ensemble approach, which adaptively modifies the ensemble with each new data 

point, and, thus, can timely learn the new patterns, contrarily to data chunk-based and drift detector-

based approaches for online learning ensemble. Thus, OE-FV can instantly follow the pattern drift 

in the data whereas the online learning ensembles based on data chunk or sliding window can only 

react after a sufficient number of new data points becomes available. 

Also, storing all the patterns in the data makes the ensemble capable of creating new sub-models 

automatically when necessary, without the trouble of setting a fixed size of new data points as the 

data chunk-based approaches must do.  

When a new sub-model needs to be created, there is no need to train this new sub-model, as it is a 

“copy” of the first sub-model 𝑀1 as presented in Section 3 and the new sub-model is fixed once 

created. Only 𝑀1 is updated with new data points, to follow the ongoing patterns.  

The diversity of the sub-models are guaranteed, as each sub-model represents the patterns in the 

data during a different period, with 𝑀1 representing the up-to-date patterns.  



Finally, the new data points are all used to update the sub-models’ weights, and only few of them 

are used to update 𝑀1 and create new sub-models. For each new data point, instead of using all the 

sub-models to derive the prediction of the ensemble, only the most relevant ones are selected to 

form a dynamic ensemble; such strategy can reduce the computational complexity of the online 

learning process. 

4. Experiments 

In this section, comparisons of experimental results on several synthetic datasets and a real dataset 

are carried out mainly among Online-SVR-FID [28], Learn++.NSE [13], OWE [25] and the 

proposed OE-FV, considering prediction accuracy and computation time as the performance 

indicators.  

Learn++.NSE is a typical data chunk-based approach for online learning ensemble. When a new 

data chunk of a fixed size N is available, a new sub-model is added if the prediction error on the 

new data chunk exceeds a predefined threshold ε. The sub-models’ weights are updated according 

to their prediction error on all the data chunks, while the prediction error on the new data chunks 

are more weighted than those of the older ones. Learn++.NSE cannot adapt to the new patterns until 

a number of N new data points are available. When the ensemble is updated with the new chunk, it 

may not follow the ongoing patterns. There is a delay of the patterns in the ensemble compared to 

the patterns in the new data. And it is very difficult to decide the best size of the data chunk. 

In order to solve these problems with Learn++.NSE, OWE updates the sub-models weights with the 

prediction error when a new data point is available. The strategy for adding a new sub-model is also 

different from Learn++.NSE: instead of waiting for a new data chunk, a sliding window is 

integrated. When a new data point is available, a window of a fixed size N moves one step ahead. 

When the prediction error on the data points in the window exceeds a predefined threshold ε, a new 

model on these data points is trained. Thus, there is no need of waiting for N new data points before 

adding a new sub-model. It is more flexible than Learn++.NSE, but there is still a delay compared 

to the instance-based approaches for online learning ensemble.  

There is a pruned version of Learn++.NSE and OWE, which fixes a maximal number of sub-models. 

After the maximal number is reached, the old sub-model which gives worst prediction results on the 

new data points is deleted each time a new sub-model is added. 

Section 4.1 shows the preliminary results on several synthetic datasets and more details of the 

comparison are given in Section 4.2. The experimental procedures are shown in Figure 3. 



 

Fig. 3 Procedures for carrying out the experiments 

4.1 Prediction of synthetic dataset 

The proposed online learning strategy is firstly tested on a synthetic dataset with pattern drifts and 

recurring patterns. The synthetic data is composed of four concept and a total of 𝑀 = 30000 data 

points are generated. As shown in the following equations, concepts 1 and 4 are repeated twice as 

recurring patterns at different period of the dataset. A Gaussian noise with a standard deviation of 

0.05 is added to each input and output variable.  

Concept 1: 𝑦𝑖 = (𝑥𝑖
1 + 𝑥𝑖

2 + 𝑥𝑖
3)/3, for 𝑖 = 1, … ,

𝑀

6
,
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6
+ 1, … ,
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6
; 

Concept 2: 𝑦𝑖 = (𝑥𝑖
2 + 𝑥𝑖

3 + 𝑥𝑖
4)/3, for 𝑖 =

𝑀

6
+ 1, … ,

2𝑀

6
; 

Concept 3: 𝑦𝑖 = (𝑥𝑖
4 + 𝑥𝑖

5 + 𝑥𝑖
6)/3, for 𝑖 =

3𝑀

6
+ 1, … ,

4𝑀

6
; 

Concept 4: 𝑦𝑖 = (𝑥𝑖
7 + 𝑥𝑖

8 + 𝑥𝑖
9)/3, for 𝑖 =

2𝑀

6
+ 1, … ,

3𝑀

6
,

5𝑀

6
+ 1, … , 𝑀. 

The first 1000 data points form the training dataset and the rest imitate the online learning process 

to be fed into the model one by one. 

For this dataset, one more model is added for the comparisons: the SVR with sliding window for 

online learning, noted as SVR in Table I. The main characteristics for computation are Inter Duo i5, 

2.3 GHz, and 4G RAM. 

 

Table I Comparisons of experimental results using Online-SVR-FID, Learn++.NSE, OWE and OE-FV. 

 
Online-

SVR-FID 
Learn++.NSE 

Learn++.NSE 

Pruned 
OWE 

OWE 

Pruned 
OE-FV 

SVR 

MSE 77*10-4 31*10-4 15*10-4 48*10-4 14*10-4 12*10-4 21*10-4 

MARE 0.1557 0.0821 0.0709 0.1062 0.0700 0.0682 0.0770 

Time (s) 2613.6 18.7 20.2 352738 253.5 121.0 67090.9 

# of sub-

models 
1 30 20 18753 20 46 1 

 



From Table I, it is observed that Learn+.NSE Pruned, OWE Pruned and OE-FV give better results 

than other methods, with OE-FV gives a litter better results than the other two methods. OE-FV 

gives better results than SVR with much less time for online learning, as, in SVR, it takes too much 

time to retrain the SVR model for each new data point with a fixed number of most recent data 

points. While in OE-FV, the ensemble is updated only when a new / changed pattern is detected. 

In order to compare statistically the prediction accuracy of OE-FV with the benchmark methods, 

ten synthetic drifting datasets (named separately Dataset 1, Dataset 2, …, Dataset 10) with 6000 

data points are generated. Each dataset is divided into six data chunks of 1000 data points and the 

data of each chunk follows randomly one of the four concepts above. Recurring patterns (two non-

consequent chunks follow same concept) exist in the first five datasets. For each dataset, the first 

500 data points form the training dataset and the rest are in the test dataset.  

 

Table II Prediction results (MSE and MARE) of different methods on ten synthetic datasets. 

 
Online-

SVR-FID 

Learn++.N

SE 

Learn++.N

SE Pruned 
OWE 

OWE 

Pruned 
OE-FV SVR 

 MSE 

Dataset 1 0.0065 0.0066 0.0066 0.0088 0.0050 0.0064 0.0064 

Dataset 2 0.0075 0.0092 0.0092 0.0095 0.0064 0.0057 0.0084 

Dataset 3 0.0079 0.0105 0.0105 0.0068 0.0070 0.0044 0.0096 

Dataset 4 0.0019 0.0032 0.0032 0.0022 0.0025 0.0017 0.0032 

Dataset 5 0.0029 0.0076 0.0076 0.0045 0.0048 0.0023 0.0061 

Dataset 6 0.0026 0.0099 0.0099 0.0059 0.0058 0.0066 0.0073 

Dataset 7 0.0029 0.0080 0.0080 0.0042 0.0062 0.0041 0.0076 

Dataset 8 0.0037 0.0121 0.0121 0.0073 0.0080 0.0055 0.0098 

Dataset 9 0.0025 0.0082 0.0082 0.0051 0.0049 0.0053 0.0062 

Dataset 10 0.0022 0.0067 0.0067 0.0058 0.0049 0.0044 0.0060 

 MARE 

Dataset 1 0.1409 0.1208 0.1208 0.1563 0.1035 0.1194 0.1198 

Dataset 2 0.1498 0.1469 0.1469 0.1744 0.1215 0.1193 0.1434 

Dataset 3 0.1598 0.1586 0.1586 0.1517 0.1250 0.0154 0.1592 

Dataset 4 0.0543 0.0639 0.0639 0.0592 0.0523 0.0474 0.0610 

Dataset 5 0.0723 0.1215 0.1215 0.0940 0.0793 0.0713 0.0918 

Dataset 6 0.0692 0.1548 0.1548 0.1084 0.0841 0.0945 0.0982 

Dataset 7 0.0707 0.1135 0.1135 0.0829 0.0842 0.0752 0.0943 

Dataset 8 0.1004 0.2091 0.2091 0.1498 0.1283 0.1365 0.1480 

Dataset 9 0.0694 0.1381 0.1381 0.0998 0.0783 0.0910 0.0923 

Dataset 10 0.0674 0.0951 0.0951 0.0956 0.0718 0.0754 0.0843 

 

Table II reports the MSE and MARE on the test dataset of each synthetic drifting dataset and the 

bolded values are the best results given by all the methods. It is observed that OE-FV outperforms 

the other methods for four out of the five datasets with recurring patterns. For a dataset without 

recurring patterns, the results of the ensemble approaches are influenced by the sub-models trained 

on the past patterns. That’s why Online-SVR-FID which follows always the current patterns, gives 

best results on such datasets. Learn+.NSE Pruned and Learn.+NSE given same prediction results 



for all datasets, as the maximum number of sub-models is set to be 20 and the non-pruned one does 

not pass this threshold. 

 

Table III Rand of different methods considering their prediction accuracy on the ten synthetic datasets. 

 
Online-

SVR-FID 

Learn++.N

SE 

Learn++.N

SE Pruned 
OWE 

OWE 

Pruned 
OE-FV SVR 

 MSE 

Dataset 1 4 5.5 5.5 7 1 2.5 2.5 

Dataset 2 3 5.5 5.5 7 2 1 4 

Dataset 3 4 6.5 6.5 2 3 1 5 

Dataset 4 2 6 6 3 4 1 6 

Dataset 5 2 6.5 6.5 3 4 1 5 

Dataset 6 1 6.5 6.5 3 2 4 5 

Dataset 7 1 6.5 6.5 3 4 2 5 

Dataset 8 1 6.5 6.5 3 4 2 5 

Dataset 9 1 6.5 6.5 2 3 4 5 

Dataset 10 1 6.5 6.5 4 3 2 5 

 MARE 

Dataset 1 6 4.5 4.5 7 1 2 3 

Dataset 2 6 4.5 4.5 7 2 1 3 

Dataset 3 6 3.5 3.5 7 2 1 5 

Dataset 4 3 6.5 6.5 4 2 1 5 

Dataset 5 2 6.5 6.5 5 3 1 4 

Dataset 6 1 6.5 6.5 5 2 3 4 

Dataset 7 1 6.5 6.5 3 4 2 5 

Dataset 8 1 6.5 6.5 5 2 3 4 

Dataset 9 1 6.5 6.5 5 2 3 4 

Dataset 10 1 5.5 5.5 7 2 3 4 

Average Rank 2.400 5.975 5.975 4.600 2.600 2.025 4.425 

 

Table III shows the ranks of different methods considering their prediction accuracy (MSE or 

MARE) for the same test dataset. Rank 1 means that the corresponding method gives the highest 

prediction accuracy.  

From the average rank in the last line of Table III, it is noted that OE-FV obtained the highest rank 

among all the methods.  

As in [36], Friedman test can check if the average ranks of the different methods are significantly 

different from the mean rank of all the methods under the null hypothesis, and Bonferroni-Dunn test 

can tell if the results of OE-FV is significantly better than those of the benchmark methods. 

For 𝑘 methods and 𝑁 comparison results, the Friedeman statistic in Equation 8 (𝑅𝑗 , 𝑗 = 1, … , 𝑘 

is the mean rank of method j) follows a 𝜒𝐹
2 distribution with 𝑘 − 1 degrees of freedom and the 

statistic in Equation 9 follows the F-distribution with 𝑘 − 1  and (𝑘 − 1)(𝑁 − 1)  degrees of 

freedom,  

 



𝜒𝐹
2 =

12𝑁

𝑘(𝑘+1)
[∑ 𝑅𝑗

2
𝑗 −

𝑘(𝑘+1)2

4
],             (8) 

 

𝐹𝐹 =
(𝑁−1)𝜒𝐹

2

𝑁(𝑘−1)−𝜒𝐹
2.                (9) 

 

For the case studied in this paper, 𝑘 = 7 methods on 𝑁 = 20 comparison results are compared as 

shown in Table III. With the average rank in Table III for all the method, we can calculate that 𝐹𝐹 

equals to 28.3415. 𝐹𝐹 follows the F-distribution with 7 − 1 = 6 and (7 − 1) × (20 − 1) = 114 

degrees of freedom. The critical value of 𝐹(6,114) for 𝛼 = 0.05 is 2.18. As the statistic 𝐹𝐹 

(28.3415) is bigger than the critical value (2.18), the null hypothesis is rejected, i.e. not all the 

methods perform equally for the case studies.  

Bonferroni-Dunn test is used to test the significance of the difference between the average rank of 

two methods. The difference is significant if it is equal or bigger than the critical difference (CD) 

(calculated in Equation (10) with 𝑞𝛼 the Studentized range statistic divided by √2): 

 

𝐶𝐷 = 𝑞𝛼√
𝑘(𝑘+1)

6𝑁
.               (10) 

 

The critical value 𝑞𝛼 of the Bonferroni-Dunn test with 7 algorithms is 2.39 for 𝛼 = 0.10. Then, 

the critical difference (CD) is 1.64, from Equation 10. If the average rank difference between two 

methods is bigger than the CD value, their performances are significantly different. 

From the average ranks in Table III, we can see that, the differences among the prediction results of 

OE-FV, Online-SVR-FID and OWE-Pruned for the ten synthetic datasets are not significant, while 

they all give significantly better results than Learn+.NSE, Learn+.NSE, OWE and SVR. 

4.2 Leakage prediction in NPP 

In this Section, a real case study is considered, concerning a time series dataset collected from a 

sensor monitoring the leak flow from the first seal of a Reactor Coolant Pump (RCP) in a NPP. The 

function of RCP is critical for the control and safe operation of a NPP, as it pumps cold water into 

the reactor to evacuate the heat produced by nuclear fission.  

Figure 4 is the normalized time series dataset which contains 13124 values, measured every four 

hours. It contains gradual, sudden and recurring data. Denoting the data as 𝑙(𝑡), the target of the 

work is to predict the leak flow in the next day, i.e. 𝑦(𝑡) = 𝑙(𝑡 + 6). The partial autocorrelation 

analysis between different time lags and the target shows that the first ten historical values are highly 

correlated with the target and, thus, the input vector considered is 𝒙(𝑡) = [𝑙(𝑡 − 9), 𝑙(𝑡 −

8), … , 𝑙(𝑡)].  

After the reconstruction of the original dataset, the first 500 data points form the training dataset 

and the rest simulate the online learning process, which feed the ensemble one by one. The basic 

models are all built by SVR in this experiment. 

 



 

Fig. 4 Data of the leak flow in RCP. 

4.2.1 Prediction results of the proposed ensemble approach for NPP 

For the real case study, the different parameters in Section 3 are set as follows, based on grid search: 

ρ = 10−6;  θ = 0.05;  γ = 0.8;  β = 0.6;  τ = 4; N_ min = 150;  and N_ max = 500.  

The online learning of a single model in [25] and OE-FV, are firstly compared in this experiment. 

In the case of updating a SVR model with Online-SVR-FID, a SVR model is trained on the training 

dataset and updated with the new data points, as proposed in [28]. In the experiment, there are totally 

1198 new data points judged as changed patterns and 13 new data points as new patterns.  

On the contrary, in the online learning ensemble with OE-FV, only 120 and 7 new data points are 

separately judged as changed and new patterns. OE-FV largely decreases the number of changed 

patterns and, thus, the computational complexity, as all the patterns are stored in the ensemble. Thus, 

OE-FV solves the problem that Online-SVR-FID has with recurring patterns. Figure 5 shows the 

prediction results of the test data points from 4600 to 6000 given by OE-FV and the positions of the 

changed and new patterns.  
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Fig. 5 Prediction results of OE-FV and the positions of changed and new patterns. 

4.2.2 Results comparisons 

In this case study, by grid search, the size 𝑁 of the data chunk in Learn++.NSE and of the time 

window in OWE is fixed at 500. The threshold ε for adding a new sub-model and the discounting 

rate in calculating the prediction error in Learn++.NSE and OWE are (0.04, 0.2) and (0.05, 0.3) 

respectively. In the pruned case, the maximal number of sub-models is 20. 

Table IV presents the MSE and Mean Absolute Relative Error (MARE), the computation time with 

the same computer (Inter Duo i5, 2.3 GHz, and 4G RAM) and the number of sub-models. 

 

Table IV Comparisons of experimental results using Online-SVR-FID, Learn++.NSE, OWE and OE-FV. 

 
Online-

SVR-FID 
Learn++.NSE 

Learn++.NSE 

Pruned 
OWE 

OWE 

Pruned 
OE-FV 

MSE 13*10-4 16*10-4 16*10-4 12*10-4 12*10-4 8.6*10-4 

MARE 0.0977 0.1009 0.1009 0.0879 0.0882 0.0761 

Time (s) 460.117 8.3607 8.0682 30485 188.394 51.299 

# of sub-

models 
1 26 20 7513 20 13 

 

All these approaches give comparable results considering the prediction accuracy, with 

Learn++.NSE giving the worst and OE-FV the best. This is caused by the update strategy integrated 

in the online learning ensemble. The delay during the online learning process in Learn++.NSE is 

longer than in OWE, and OE-FV has the shortest delay. Thus, it is verified that the instance-based 

approach can timely follow the ongoing patterns and give better in frequently changing environment 

results than data chunk-based or sliding window-based ones. 

The computation burden bothering the instance-based online learning ensembles is not so obvious 

in OE-FV. Learn++.NSE uses least time as the ensemble is updated only when a new data chunk is 

available. The specific strategies proposed in OE-FV, e.g. verification of new FV and changed FV, 
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generation of new sub-models and dynamic ensemble selection, reduce the computational 

complexity of the online learning process and the results show that it uses much less time than OWE, 

which is based on the sliding window concept.  

The time of OE-FV is also much smaller than Online-SVR-FID, as Online-SVR-FID deletes some 

old patterns during the updating process and when these patterns recur, it has to relearn them before 

giving a good prediction result. This disadvantage increases the number of updating actions during 

online learning and, thus, the computational burden, and decreases the prediction accuracy. On the 

contrary OE-FV applies a dynamic ensemble selection strategy to select the most relevant sub-

models for each new data point in order to reduce the influence of the irrelevant ones. The sub-

models weights are updated with each new data point and the flexibility of the ensemble is increased. 

In this case study, the Learn++.NSE and OWE with and without pruning give similar prediction 

results. As shown in [25], a larger maximal number of sub-models does not always increase the 

accuracy: the accuracy is no longer improved when the number of sub-models is bigger than a 

certain value. 

Figure 6 shows the prediction results of the test data points from 5300 to 5400 given by Online-

SVR-FID, Learn++.NSE, OWE and OE-FV. It is observed that OE-FV can adapt to the target faster 

than the others. Learn++.NSE and OWE are updated with the longest delay, as explained in the 

Introduction. 

 

Fig. 6 Comparisons of the prediction results of the test data points from 5300 to 5400. 

5. Conclusions 

Based on FVS and Online-SVR-FID, a new online learning approach for SVR-based ensembles, 

OE-FV, is proposed. OE-FV can create an ensemble automatically from a single model. The new 

sub-models represent separately a certain stage of the first sub-model, whereby the diversity among 

them is guaranteed. To the authors’ knowledge, this paradigm is used for the first time in online 

learning for ensembles. The dynamic ensemble selection strategy eliminates the sub-models 

irrelevant to the new data point, and, thus, reduces their influences on the prediction results of the 

ensemble. The computational burden with instance-based online learning ensemble is reduced by 



taking different strategies for pattern verification and a dynamic ensemble selection.  

Although developed for SVR models, the online learning strategy proposed can also be used for 

other kernel methods.  

Comparisons on two case studies show that OE-FV outperforms Online-SVR-FID and OWE in both 

prediction accuracy and computation time. Learn++.NSE uses less time than OE-FV, but gives 

slightly worse prediction results.  
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Appendix 

 

Online-SVR-FID is divided into two parts, i.e. Offline Training and Online Learning. The Offline 

Training contains the feature vector selection and SVR model training, while the Online Learning 

contains the actions to take, when facing a new or a changed pattern. 

 

The pseudo-code of Online-SVR-FID is repeated below. 

 

Initialization: 

Training dataset: 𝑻𝑟 = {(𝒙𝑖, 𝑦𝑖)}, for 𝑖 = 1, 2, … , 𝑀 

Testing dataset: 𝑻𝑒 = {(𝒙𝑖 , 𝑦𝑖)}, for 𝑖 = 𝑀 + 1, 𝑀 + 2, … , 𝑀 + 𝐻 

Feature space: S = [ ] 

Threshold of local fitness: ρ 

Threshold of prediction error: θ 

 

Offline Training: 

First FV in S: 

For i = 1 to M calculate 

𝐒 = {𝒙𝑖}, compute global fitness 𝐽𝑺.  

End for. 

Select the point which gives the maximum of the global fitness as the first FV and add it to S as 

the first FV. 

𝑻𝑟 is reduced as the complement of S in 𝑻𝑟, i.e. 𝑻𝑟 = 𝑻𝑟\𝑺. 

Second and the other FVs: 

Calculate local fitness for data points in 𝑻𝑟 with the present feature space S; 

Select the data point k which gives the minimum of local fitness;  

If 1 − 𝐽𝑺,𝑘 > ρ, this point is a new FV and added to S; 

𝐄 = {(𝒙𝑘 , 𝑦𝑘) 𝑎𝑛𝑑 (𝒙𝑖 , 𝑦𝑖): 1 − 𝐽𝑺(𝒙𝑖)  ≤  ρ} and 𝑻𝑟 is reduced as the complement of 

𝐄 in 𝑻𝑟, i.e. 𝑻𝑟 = 𝑻𝑟\𝐄; 

If 1 − 𝐽𝑺,𝑘 ≤ ρ, end the process of FVs selection; 



Train the SVR model on the FVs in S to minimize the MSE on the whole training dataset. 

 

Online Learning: 

When a new data point (𝒙𝑁, 𝑦𝑁) is available  

DO   

Calculate the local fitness 𝐽𝑺,𝑁 of this new data point; 

If 1 − 𝐽𝑺,𝑁 > ρ 

ADDITION: this new data point is a new FV; add it to S and add this new data point in the model 

using the Incremental Learning [32]. Go back to the beginning of Online learning and wait for 

the next new data point. 

If 1 − 𝐽𝑺,𝑁 ≤ ρ, verify the bias between the target of this new data point and the predicted 

value  

  If the bias is smaller than θ 

Keep the model unchanged. Go back to the beginning of Online learning and wait for 

the next new data point. 

Otherwise 

UPDATE: find the FV with least contribution for the SVR models and nonzero value in 

Eq. (5). Unlearn this FV found with decremental learning [32] and add the new data 

point with incremental learning. Go back to the beginning of Online learning and wait 

for the next new data point. 

 

Strategy for selecting the least contribution FV to be updated in UPDATE. 

1. A vector 𝒎 = (𝑚1, 𝑚𝟐, … , 𝑚𝒍) is used to record the contribution of each FV to the SVR 

models. Each value in 𝒎 corresponds to a FV in the model.  

2. 𝒎 is set to be a zero vector before Offline Training. 

3. When the model M is trained during Offline Training with the selected FVs from the training 

dataset, 𝑚𝑖 is increased by 1 if the corresponding FV is a SV. Otherwise, its contribution 𝑚𝑖 

is zero. 

4. Each time the model is added with one new data point, a new 𝑚𝒍+𝟏 is added to 𝒎 to record 

the contribution of the new FV in the model. After the model is updated with ADDITION, the 

contribution 𝑚𝑖 of each FV in the model is updated with the contribution update rules: if the 

data point is a SV in the new updated model, its new contribution is calculated as 𝑚𝑖
𝑛𝑒𝑤 ←

𝜏 ∗ 𝑚𝑖 + 1, with 𝜏 a positive constant smaller than 1, i.e. the contribution of a FV in the new 

model is more weighted than that in the old models; otherwise it is kept unchanged. 

5. When a change is detected with respect to the old patterns, the first step is to calculate the 

values 𝒂 for the new data point according to Equation (5). Then, among all the FVs in the 

model with non-zero values in 𝒂, the one with least contribution, say 𝑚𝐼, is deleted from the 

model using Decremental Learning as in [29] and 𝑚𝐼 is reset to zero. If there are several FVs 

with the same contribution and the least contribution, the FV to be replaced is selected as the 

oldest one among them. 

6. The new data point is added to the model using Incremental Learning in [29] and it inherits the 

contribution 𝑚𝐼, which is zero for now. The vector 𝒎 and the feature space S are updated, 

and also the contribution of the FV is updated according to the rules in step 4 above. 

 


