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Abstract 

Prediction of time series data is of relevance for many industrial applications. The 

prediction can be made in one-step and multi-step ahead. For predictive maintenance, 

multi-step ahead prediction is of interest for projecting the evolution of the future 

conditions of the equipment of interest, computing the remaining useful life and taking 

corresponding maintenance decisions. Recursive prediction is one of the popular strategies 

for multi-step ahead prediction. SVM is a popular data-driven approach that has been used 

for recursive multi-step ahead prediction. Tuning the hyperparameters in SVM during the 

training process is challenging, and normally the hyperparameters are tuned by solving an 

optimization problem. This paper analyses the possible objectives of the optimization for 

tuning hyperparameters. Through experiments on one synthetic dataset and two real time 

series data, related to the prediction of wind speed in a region and leakage from the reactor 

coolant pump in a nuclear power plant, a bi-objective optimization combining mean 

absolute derivatives and accuracy on all prediction steps is shown to be the best choice for 

tuning SVM hyperparameters for recursive multi-step ahead prediction. 

Key words: recursive multi-step ahead prediction, support vector machine, 

hyperparameters tuning, single-objective optimization, bi-objective optimization 

1. Introduction 

Prognostics and Health Management (PHM) is becoming an important topic of interest for 

industrial applications (Vichare and Pecht, 2006; Lei et al., 2007; Wu and Chau, 2013; 



Zhao et al., 2014; Javed et al., 2015; Lei et al., 2015). Prognostics includes the prediction 

of the health condition of the equipment of interest in the future (Jardine et al., 2006; Palm, 

2007; Saha et al., 2009; Zio, 2012). This can be done with reference to the next time instant, 

i.e. one-step ahead prediction or  multiple time instants, i.e. multi-step ahead prediction 

(Jardine et al., 2006; Wang and Han, 2015). The latter is definitely more difficult than the 

former. 

Support Vector Machine (SVM) (Drucker et al., 1997; Ding et al., 2013; Wang et al., 2013) 

is a popular data-driven approach, also widely used for prognostics. The inputs are features 

extracted from measurements directly or indirectly related to the prediction of interest. 

SVM has been used for example in Muller et al. (1997), Min and Lee (2005), Asefa et al. 

(2006), Widodo et al. (2011), Zio and Di Maio (2012), Benkedjouh et al. (2013b), Liu et 

al. (2014), Namdari and Jazayeri-Rad (2014). Multi-step ahead prediction, e.g. to compute 

the remaining useful life, i.e. the time at which the component degradation state reaches a 

predefined failure threshold, has been done for example in Asefa et al. (2006),Lin et al. 

(2006), Sorjamaa et al. (2007), Sapankvych and Sanka (2009), Nuhic et al. (2013), 

Benkedjouh et al. (2013a), Bao et al. (2014). Recursive (iterative) prediction is a popular 

strategy for multi-step ahead prediction of time series data. Recursive SVM achieves the 

multi-step ahead prediction on the basis of the predictions of previous steps, which are used 

as in inputs for the prediction in the following step. For example, in Benkedjouh et al. 

(2013a), SVM is used to assess the current status and predict the Remaining Useful Life 

(RUL) of bearings. In Nuhic et al. (2013), SVM is used to recursively predict the future 

capacity of lithium-ion batteries to estimate the time left for reaching 80% of the nominal 

capacity.  

There are three types of hyperparameters in SVM, i.e. the regularization parameter which 

balances the prediction accuracy and the flatness of the model, the hyperparameters related 

to the kernel function which define the high-dimensional feature space and the 

hyperparameters related to the loss function which controls the number of data points in 

the model. 

 



Tuning the hyperparameters of SVM for application to prognostics is a challenge. For the 

same dataset, different hyperparameters values may give either very good or very bad 

prediction results. The best hyperparameters values are those which give best prediction 

on the new data. How to find the optimal hyperparameters values effectively and efficiently 

and how to guarantee the prediction performance without overfitting on the dataset used 

for SVM training are critical problems.  

Cross-Validation is used in Nuhic et al. (2013) to find the best hyperparameters of SVM 

considering the Mean Squared Error (MSE). A hybrid of Particle Swarm Optimization 

(PSO) and Differential Evolution (DE) is used to search the optimal parameter combination 

in the search space in Zhang et al. (2015) with minimal prediction error. PSO is employed 

also in Aich and Banerjee (2014) for the purpose of finding the SVM hyperparameters that 

minimize the Mean Absolute Percentage Error (MAPE) on the training dataset. Adaptive 

PSO is used in Wang et al. (2015) for tuning hyperparameters. Hyperparameters tuning in 

Chapelle et al. (2002) is done by minimizing some estimates of the generalization error of 

SVM using a gradient descent algorithm over the parameters space. In Liu et al. (2006), 

Grid Search (GS) is combined with evolutionary strategies for optimizing hyperparameters 

in SVM, aiming at minimizing the cross-validation accuracy. In Wu et al. (2007), a genetic-

based SVM is developed to determine automatically the hyperparameters values with the 

highest predictive accuracy and generalization ability simultaneously. A fast messy GA is 

used in Chou et al. (2014) to find the best hyperparameters values with a minimum number 

of support vectors and optimal SVM parameters to preserve an acceptable level of 

prediction accuracy. In Igel (2005), different bi-objective optimizations considering model 

complexity and prediction accuracy for hyperparameters tuning are proposed and tested. 

Aydin et al. (2011) uses the percentage of support vector and prediction accuracy as the 

objectives for tuning hyperparameters in SVM. A comprehensive learning PSO-based 

memetic algorithm that evolves feature selection and parameter optimization 

simultaneously is proposed in Hu et al. (2014) to minimize the MAPE on the training 

dataset. Chen et al. (2014) hybridizes a SVM model with an adaptive Genetic Algorithm 

(GA) search and the seasonal index adjustment to forecast daily flow of holiday tourist. 

The maximum-margin principle and the jackknife technique are used in Chang and Chou 



(2015) for tuning hyperparameters of L2-loss SVM. Fruit fly optimization algorithm is 

used in Shen et al. (2016) for tuning hyperparameters. 

As discussed above, tuning hyperparameters in SVM is normally treated as an optimization 

problem, single-objective or bi-objective. Most methods developed in the literature, then, 

focus on faster processes for optimization. The objective is always prediction accuracy for 

single-objective optimization or prediction accuracy combined with some metrics of model 

generalization ability for bi-objective optimization. These objectives are computed on the 

one-step ahead prediction, even for recursive multi-step ahead prediction. 

Indeed, recursive SVM for multi-step ahead prediction is based on the one-step ahead 

prediction and that is why the prediction accuracy on the one-step ahead prediction is the 

objective of the optimization problem to find the best hyperparameters during the training 

process. This, however, does not always guarantee satisfactory prediction results at multi-

step ahead prediction, as pointed out in Taieb et al. (2010).  

To the authors’ knowledge, there are many good reviews and original research on tuning 

hyperparameters in SVM for one-step ahead prediction, whereas there has not been much 

published research reporting specifically on the problem of the objectives for 

hyperparameters tuning in SVM multi-step predictioin. In this paper, we try to address this 

by considering the prediction accuracy at all steps, also including the last step, during the 

training process for multi-step ahead prediction. Various possibilities for defining the 

objectives for tuning hyperparameters of recursive SVM are compared. Considering 

prediction accuracy, the objectives could be the accuracy (MSE or MAPE) on the first step, 

on all the steps and on the last step of the multi-step ahead prediction on the training dataset. 

Model complexity is also considered as proposed in Igel (2005) to quantify the 

generalization ability: the smaller the model complexity is, the stronger its generalization 

ability is.  The Mean of the Absolute value of the Derivatives (called MAD, in this paper) 

of the estimate function in SVM on all training data points is used to describe the robustness 

of the model under small perturbations in the inputs. Smaller MAD means stronger 

robustness of the SVM model.  

Single-objective optimization for tuning hyperparameters considering only the prediction 

accuracy (for multi-step ahead prediction, as explained previously) and bi-objective 



optimization considering the prediction accuracy (on multi-step ahead prediction) and the 

model inherent characteristics (model complexity and MAD) are compared on the multi-

steps ahead prediction of one synthetic dataset and two real time series datasets.  

One real series relates to the prediction of the leakage from the first seal of the Reactor 

Coolant Pump (RCP) in a Nuclear Power Plant (NPP). The other real series regards 

predicting wind speed. The experimental results obtained in these three cases show that 1) 

optimization considering the prediction accuracy on all the steps of the prediction horizon 

as objective of the optimization for tuning hyperparameters gives better results than the 

one of considering only the prediction accuracy on the first or last step of the prediction 

horizon; 2) the bi-objective optimization gives better results than the single-objective 

optimization. 

The rest of the paper is structured as follows. Section 2 describes briefly the 

hyperparameters to tune in SVM and the objectives in the associated optimization. The 

case studies on one synthetic dataset and two real time series datasets are carried out in 

Section 3 to compare the different objectives. Based on the results obtained, some 

discussions are also given in this Section. Conclusions are drawn in Section 4.  

2. Methodology 

In this Section, the basic strategy for recursive multi-step ahead prediction by SVM is 

introduced at the beginning. Different objectives that can be used for optimizing the 

hyperparameters in SVM for one-step ahead prediction are presented. Their extension to 

multi-step ahead prediction are also presented in this Section. 

2.1 Recursive multi-step ahead prediction 

In recursive multi-step ahead prediction, the model is trained for one-step ahead prediction 

and the predicted value is appended to previous predicted values in input to predict the 

value for the next step. For simplicity, we consider a single-variable time series whose 

values until time 𝑇 are {𝑥1, 𝑥2, … , 𝑥𝑇}. The aim is to predict the future values of 𝑁 steps 

ahead. The inputs are 𝑀  previous values, i.e. the input-output pairs (𝒙𝑡, 𝒚𝑡)  are 

([𝑥𝑡−𝑀+1 𝑥𝑡−𝑀+2 … 𝑥𝑡], [𝑥𝑡+1 𝑥𝑡+2 … 𝑥𝑡+𝑁]). For a time series data with 𝑇  values, the 



number of constructed data points is 𝐾 = 𝑇 − 𝑁 − 𝑀 + 1. In Figure 1, 𝑥̂𝑡+𝑖 , 𝑖 = 1,2, … , 𝑁 

are the predicted values for each step. Figure 1 shows the schematic illustration of the 

recursive prediction process. It is seen that the predictions on all the steps, except the first 

step, use the values predicted at the previous steps. 

 

Fig. 1 Schematic illustration of recursive multi-steps ahead prediction using SVM. 

2.2 Support Vector Regression 

In this paper, we consider regression by SVM with 𝜖-insensitive loss function. The basic 

idea of SVM is to map the training data points into a high-dimensional space, i.e. a feature 

space, where the relation between the training data points becomes linear. 

Suppose we have 𝐾 data points of the form (𝒙𝑡, 𝑦𝑡), 𝑡 = 1,2, … , 𝐾 and that 𝑘(𝒙𝑖, 𝒙) is the 

kernel function that represents the inner product of two training data vectors (points) in the 

feature space. SVM tries to estimate the function of interest 𝑓(𝒙) as the linear combination 

(as in Equation (1) below) that best approximates the underlying relation between the input 

and output, as represented by the data: 

𝑓(𝒙) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝒙𝑖, 𝒙)𝐾

𝑖=1 + 𝑏 .                                                                                  (1) 

In Equation (1), the unknown Lagrange multipliers 𝛼𝑖 and 𝛼𝑖
∗, for 𝑖 = 1,2, … , 𝐾 , can be 

calculated by solving the following optimization problem: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 −
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝑘(𝒙𝑖, 𝒙𝒋)𝐾

𝑖,𝑗=1 − 𝜖 ∑ (𝛼𝑖 + 𝛼𝑖
∗)𝐾

𝑖=1 + ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)𝐾

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾

𝑖=1 = 0 𝑎𝑛𝑑 𝛼𝑖, 𝛼𝑖
∗ ∈ [0, 𝐶]                                                                       

     

                                                                                                                                           (2) 



with 𝐶  being the penalty hyperparameter and 𝜖  the hyperparameter related to the loss 

function. There are also hyperparameters related to the kernel function 𝑘(𝒙𝑖, 𝒙𝒋), e.g. 𝜎 in 

a Radial Basis Function (RBF), with 𝑘(𝒙𝑖, 𝒙𝒋) = 𝑒^(−‖𝒙𝑖 − 𝒙𝑗  ‖2/(2𝜎2 )). The values of 

these hyperparameters are critical for the prediction performance of the SVM model and, 

thus, hyperparameters tuning is very important for implementing SVM.  

The unknown 𝑏 in Equation (1) can be calculated by imposing the so-called Karush-Kuhn-

Tucker (KTT) conditions (Karush, 1939; Kuhn and Tucker, 1951). 

2.3 Objectives for tuning hyperparameters 

Normally the hyperparameters introduced in Section 2.2 are tuned by solving an 

optimization problem. As shown in Figure 1, recursive prediction is achieved by 

recursively applying one-step ahead prediction. In most of the published papers, the 

objective of the optimization problem for tuning hyperparameters in SVM for recursive 

multi-step ahead prediction is the same as for one-step ahead prediction, i.e. to minimize 

the prediction error of the one-step ahead prediction on the training dataset.  

In this section, the possible objectives for hyperparameters tuning of SVM for one-step 

ahead prediction are considered and some of them are extended for multi-steps ahead 

prediction. In Section 3, experiments are carried out comparing these different objectives 

in the case studies to draw some practical conclusions. 

2.2.1 Accuracy-related objectives 

In the published papers, two widely used accuracy-related objectives are MSE and MAPE 

on the one-step ahead prediction: 

𝑀𝑆𝐸 =  
1

𝐾
∑ ‖𝑥̂𝑡+1 − 𝑥𝑡+1‖2𝐾

𝑡=1                                                                                             (3) 

𝑀𝐴𝑃𝐸 =  
1

𝐾
∑

‖𝑥̂𝑡+1−𝑥𝑡+1‖

‖𝑥𝑡+1‖
𝐾
𝑡=1                                                                                               (4) 

where 𝐾 is the number of training data points, 𝑥̂𝑡+1 and 𝑥𝑡+1 are the predicted value and 

true value of the one-step ahead prediction, respectively and ‖∎‖ is the absolute value. 

In the problem of multi-step ahead prediction, other accuracy-related objectives can be 

used. In order to distinguish these different accuracy-related objectives, the previous MSE 



and MAPE on one-step ahead prediction in Equations (3) and (4) are named MSE_one and 

MAPE_one. 

For the multi-step ahead prediction, the accuracy on the first step is not the only objective; 

actually, the prediction performance on the following steps is the most important. Thus, 

four other prediction accuracy-related objectives are proposed in this paper for optimizing 

the hyperparameters of SVM, which are the MSE and MAPE on the last step, i.e. MSE_last 

and MAPE_last, and the MSE and MAPE on all the steps, i.e. MSE_all and MAPE_all: 

𝑀𝑆𝐸_𝑙𝑎𝑠𝑡 =  
1

𝐾
∑ ‖𝑥̂𝑡+𝑁 − 𝑥𝑡+𝑁‖2𝐾

𝑡=1   ,                                                                                          (5) 

𝑀𝐴𝑃𝐸_𝑙𝑎𝑠𝑡 =  
1

𝐾
∑

‖𝑥̂𝑡+𝑁−𝑥𝑡+𝑁‖

‖𝑥𝑡+𝑁‖
𝐾
𝑡=1     ,                                                                                          (6) 

𝑀𝑆𝐸_𝑎𝑙𝑙 =  
1

𝐾
∑ ∑ ‖𝑥̂𝑡+𝑖 − 𝑥𝑡+𝑖‖

𝑁
𝑖=1

2𝐾
𝑡=1    ,                                                                                         (7) 

𝑀𝐴𝑃𝐸_𝑎𝑙𝑙 =  
1

𝐾
∑ ∑

‖𝑥̂𝑡+𝑖−𝑥𝑡+𝑖‖

‖𝑥𝑡+𝑖‖
𝑁
𝑖=1

𝐾
𝑡=1   .                                                                                            (8) 

The previous four accuracy-related objectives for hyperparameters tuning give the 

information of interest on the trained SVM model for multi-step ahead prediction and 

remaining useful life estimation. 

2.2.2 Model-characteristics-related objectives 

The accuracy measures in Equations (3-8) can be used separately as objectives of single-

objective optimization or jointly with other model-characteristics-related objectives for 

tuning hyperparameters in a bi-objective optimization framework. One widely used model-

characteristics-related objective is the model complexity of SVM, which describes the 

complexity (or simplicity) of the model. The simpler the model is, the stronger the model 

generalization ability is. The model complexity of SVM is calculated as Igel (2005): 

𝑀𝑐𝑜𝑚𝑝 = 𝑅2 ∑ ‖𝛼𝑡 − 𝛼𝑡
∗‖𝐾

𝑡=1  ,                                                                                          (9) 

where 𝛼𝑡 and 𝛼𝑡
∗ are the Lagrange multipliers, and R denotes the radius of the smallest 

sphere in the feature space containing all training data points. The minimal radius R can be 

calculated by: 



𝑅 =  √∑ 𝛽𝑖𝑘(𝒙𝑖, 𝒙𝑖)
𝐾
𝑖=1 − ∑ 𝛽𝑖𝛽𝑗𝑘(𝒙𝑖, 𝒙𝑗)𝐾

𝑖,𝑗=1   ,                                                              (10) 

where the values of 𝛽𝑖  for 𝑖 = 1,2, … , 𝐾  are calculated by solving the quadratic 

optimization problem: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝛽𝑖𝑘(𝒙𝑖, 𝒙𝑖)
𝐾
𝑖=1 − ∑ 𝛽𝑖𝛽𝑗𝑘(𝒙𝑖, 𝒙𝑗)𝐾

𝑖,𝑗=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝛽𝑖
𝐾
𝑖=1 = 1 𝑎𝑛𝑑 𝛽𝑖 > 0, 𝑖 = 1,2, … , 𝐾

                                                       (11) 

The estimate function in Equation (1) is differentiable if the kernel function is differentiable, 

which is the case most times, e.g. RBF, polynomial kernel function etc. Thus, if the kernel 

function is differentiable, the derivative of the estimate function on each training data point 

characterizes the robustness of the trained SVM model on the training data point under 

small noise. The Mean Absolute Derivative (MAD), proposed in this paper for the first 

time, can be used to characterize the robustness of the model under small noise. 

The derivative of the estimate function on the training data point (𝒙, 𝑦) is:  

𝑑𝑓(𝒙)

𝑑𝒙
=

𝑑(∑ (𝛼𝑖−𝛼𝑖
∗)𝑘(𝒙𝑖,𝒙)𝐾

𝑖=1 +𝑏)

𝑑𝒙
= ∑ (𝛼𝑖 − 𝛼𝑖

∗)
𝑑𝑘(𝒙𝑖,𝒙)

𝑑𝒙

𝐾
𝑖=1  .                                                   (12) 

Then, MAD can be calculated as:  

𝑀𝐴𝐷 = ∑ ‖
𝑑𝑓(𝒙)

𝑑𝒙
|

𝒙𝑡

‖𝐾
𝑡=1 = ∑ ∑ ‖𝛼𝑖 − 𝛼𝑖

∗‖𝐾
𝑖=1 ‖

𝑑𝑘(𝒙𝑖,𝒙)

𝑑𝒙
|

𝒙𝑡

‖𝐾
𝑡=1   .                                         (13) 

As an example, for the RBF kernel function we have: 

𝑀𝐴𝐷 =  ∑ ∑ ‖𝛼𝑖 − 𝛼𝑖
∗‖𝐾

𝑖=1 ‖
𝒙𝑖−𝒙𝑡

𝜎2
‖ 𝑒

−
‖𝒙𝑖−𝒙𝑡‖

2

2𝜎2𝐾
𝑡=1   .                                                             (14) 

2.4 Possible objectives for tuning hyperparameters in SVM 

Considering the objectives introduced in Sections 2.3 and 2.4, the possible optimization 

for tuning hyperparameters in SVM during the training process can be formed as single-

objective or bi-objective. 

Single-objective optimization considers only the prediction accuracy, which includes 

MSE_one, MSE_last, MSE_all, MAPE_one, MAPE_last and MAPE_all. Bi-objective 

optimization combines the prediction accuracy and the characteristics of the model to find 



compromised hyperparameters values, i.e. MSE_one and model complexity, MSE_last and 

model complexity, MSE_all and model complexity, MSE_one and MAD, MSE_last and 

MAD, MSE_all and MAD, MAPE_one and model complexity, MAPE_last and model 

complexity, MAPE_all and model complexity, MAPE_one and MAD, MAOE_last and MAD, 

MAPE_all and MAD. 

In Section 3, experiments on real time series data are carried out to compare these different 

objectives. 

2.5 Pareto-optimal solution set for bi-objective optimization 

For tuning hyperparameters in SVM, the bi-objective optimization problem can be 

formulated considering the prediction accuracy and the characteristics of the SVM model, 

as introduced in Section 2.4. A Pareto-front results from the bi-objective optimization and 

solutions of compromise of the two objectives can be identified (Kim and De Weck, 2005; 

Blasco et al., 2008). For example, the “Min-Max” method provides a widely accepted way 

to find a compromised solution (Belegundu and Chandrupatla, 1999). Suppose 𝒈𝑛 =

(𝑔𝑛,1, 𝑔𝑛,2), 𝑛 = 1,2, … , 𝑃 are the solution points in the bi-dimensional Pareto front and 

𝑔1
𝑚𝑎𝑥, 𝑔2

𝑚𝑎𝑥 denote the maximal value of the first and second objective functions on this 

front, respectively, i.e. the maximal accuracy-related objective value and model-

characteristics-related objective value, respectively. The relative deviation of each 

objective of each solution (𝑔𝑛,1, 𝑔𝑛,2), 𝑛 = 1,2, … , 𝑃  is calculated as 𝑧𝑛,𝑖 = (𝑔𝑖
𝑚𝑎𝑥 −

𝑔𝑛,𝑖)/𝑔𝑖
𝑚𝑎𝑥 𝑖 = 1, 2  and 𝑧𝑛 = min (𝑧𝑛,1, 𝑧𝑛,2)  represents the solution (𝑔𝑛,1, 𝑔𝑛,2) . The 

optimal compromised solution 𝒈 for the bi-objective optimization is arg(max (𝑧𝑛)) , 𝑛 =

1,2, … , 𝑃. Such a solution represents the “center” of the Pareto-front (Figure 2).  



 

Fig. 2 Best compromised solution 𝒈 selected from the bi-dimensional Pareto-front using “Min-Max” 

method. 

3. Numerical experiments 

Case studies of one synthetic dataset and two real time series datasets are considered with 

respect to the optimization problem of tuning hyperparameters in recursive SVM. One real 

case study considers the leakage from the first seal of RCP in NPP and the other one the 

prediction of wind speed. 

The procedure of the experiments is shown in Figure 3. The time series data 𝑎(𝑡) is 

reconstructed into data points that can be treated with SVM. Partial autocorrelation analysis 

(Rodgers and Nicewander, 1988) between the different time lag and the next step value is 

carried out to decide the best number 𝑀  of historical values in the input vector. The 

reconstructed data points are of the form ([𝑎(𝑡 − 𝑀 + 1), 𝑎(𝑡 − 𝑀 + 2), … , 𝑎(𝑡)], [𝑎(𝑡 +

1), 𝑎(𝑡 + 2), … , 𝑎(𝑡 + 𝑁)]), for N-step ahead prediction. The optimization objective for 

tuning hyperparameters in Figure 3 can be any of the objectives considered in Section 2.4. 

In order to simplify the experiments, the searching method implemented in these 

experiments is grid search method and k-fold cross-validation. Grid search method finds 

the optimal hyperparameters among the given discrete values for each hyperparameter and 

k-fold cross validation aims at reducing the risk of overfitting during the training part. The 

best solution is either the one that gives the minimal prediction error for single-objective 



optimization or the compromised one that is the center of the Pareto-front for bi-objective 

optimization, as shown in Section 2.5.  

 

Fig. 3 Flow chart of the experiment. 

The prediction errors for the last step (Nth step) on the test dataset are compared among 

different optimization objectives for hyperparameters tuning. The best objectives for 

tuning hyperparameters in SVM are identified, for the experiments considered. 

3.1 Prediction of one synthetic time series data 

In this section one synthetic dataset is used to test different objectives for optimizing SVM 

hyperparameters. The synthetic data, as shown in Figure 4 is a time series data of sinc 

function added with a certain noise. The results are shown in Tables 1 and 2. 

In all the Tables in Sections 3.1, 3.2 and 3.3, the first column and the first line list the 

possible objectives that can be used for tuning hyperparameters during training. The second 

line shows the prediction results on the test dataset using only accuracy-related objectives, 

and the third and fourth lines show the prediction results on the test dataset using bi-

objective optimization, i.e. combining the prediction accuracy on the training dataset with 

the model complexity or the MAD. 



 

Fig. 1 Normalized values of synthetic time series data. 

Table 1 MSE of the prediction results on the last step for the test dataset with respect to the different 

objectives used for optimizing the SVM hyperparameters for synthetic data prediction. 

 MSE_one MSE_all MSE_last MAPE_one MAPE_all MAPE_last 

Single-objective 0.0658 0.0062 0.0056 0.0415 0.0072 0.0071 

Bi-objective with model 

complexity 

0.0415 0.0055 0.0055 0.0168 0.0066 0.0127 

Bi-objective with MAD 0.0307 0.0055 0.0054 0.0070 0.0066 0.0127 

 

Table 2 MAPE of the prediction results on the last step for the test dataset with respect to the different 

objectives used for optimizing the SVM hyperparameters for synthetic data prediction. 

 MSE_one MSE_all MSE_last MAPE_one MAPE_all MAPE_last 

Single-objective 0.4316 0.0319 0.0333 0.2711 0.0326 0.0323 

Bi-objective with model 

complexity 

0.2711 0.0328 0.0328 0.1021 0.0314 0.0833 

Bi-objective with MAD 0.1941 0.0328 0.0326 0.0034 0.0314 0.0833 

 



3.2 Prediction of the leakage from the RCP of a NPP 

RCP is a very important component of a NPP, as it must provide sufficient coolant to 

transport the heat from the reactor core to the steam generator. Radioactive coolant leaked 

from RCP may endanger the personnel and equipment in NPP. In the extreme case of loss 

of coolant accident, the reactor core could also melt down if proper safety actions are not 

taken. Thus, the prediction of leakage is critical for the operation of a NPP.  

Figure 5 is a time series dataset which contains 1553 values, measured every four hours. 

The values are normalized for confidentiality reasons. The objective of the analysis is the 

ten-step ahead prediction. The leakage in the last 10 4-hour time steps are used to predict 

the leakage values in the next 10 4-hour time steps. A set of 1534 data points are 

constructed as explained in Section 2.1. The first 1234 data points are used as training 

dataset and the remaining 300 data points form the test dataset. The prediction results, 

including MSE and MAPE of the prediction on the last step for the test dataset are shown 

separately in Tables 3 and 4, using different objectives for optimizing the SVM 

hyperparameters during the training process.  

 

Fig. 5 Normalized values of the leakage measured at time steps of 4 hours. 

Table 3 MSE of the prediction results on the last step for the test dataset with respect to the different 

objectives used for optimizing the SVM hyperparameters for leakage prediction. 
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 MSE_one MSE_all MSE_last MAPE_one MAPE_all MAPE_last 

Single-objective 0.4709 0.8397 1.4053 0.0187 0.0166 0.0166 

Bi-objective with model 

complexity 

0.0101 0.0098 0.0104 0.0095 0.0094 0.0095 

Bi-objective with MAD 0.0103 0.0102 0.0102 0.0187 0.0166 0.0125 

 

Table 4 MAPE of the prediction results on the last step for the test dataset with respect to the different 

objectives used for optimizing the SVM hyperparameters for leakage prediction. 

 MSE_one MSE_all MSE_last MAPE_one MAPE_all MAPE_last 

Single-objective 2.5034 4.9544 8.2861 0.1067 0.1014 0.1014 

Bi-objective with model 

complexity 

0.1212 0.1173 0.1281 0.1073 0.1085 0.1082 

Bi-objective with MAD 0.1204 0.1152 0.1252 0.1067 0.1014 0.1000 

 

3.2 Wind speed prediction 

As more wind power generation is connected to the electrical network, prediction of wind 

speed becomes more and more important for effective electricity generation planning and 

management, while guaranteeing network stability and end-users service satisfaction (AK 

et al., 2013).  

In this case study, we consider the wind speed data measured of Regina, Saskatchewan, a 

region of central Canada (Canadian Weather Office, 2012) over a period of two months, 

from 1st of February 2012 to 31st of March 2012. According to a partial autocorrelation 

analysis, wind speed in the last two 1-hour time steps are used as inputs to predict the wind 

at the next five 1-hour time steps. The total data set includes 1438 values (as shown in 

Figure 6) (Ak et al., 2013). The first 800 of the total constructed 1432 data points are used 

as training dataset and the rest as test dataset. The prediction results are compared by using 

different objectives for optimizing the SVM hyperparameters during the training process, 

as shown in Tables 5 and 6. 



 

Fig. 6 Normalized values of the wind speed with a time step of 1 hour. 

Table 5 MSE (10^-4) of the prediction results on the last step for the test dataset with respect to the 

different objectives used for optimizing the SVM hyperparameters for wind speed prediction. 

 MSE_one MSE_all MSE_last MAPE_one MAPE_all MAPE_last 

Single-objective 9.5748 5.1991 5.2952 9.5748 6.2335 6.2335 

Bi-objective with model 

complexity 

7.7724 6.0290 6.3404 5.9548 5.6379 5.6379 

Bi-objective with MAD 5.8448 5.2072 5.2816 6.0042 5.3199 5.3199 

 

Table 6 MAPE of the prediction results on the last step for the test dataset with respect to the different 

objectives used for optimizing the SVM hyperparameters for wind speed prediction. 

 MSE_one MSE_all MSE_last MAPE_one MAPE_all MAPE_last 

Single-objective 0.0062 0.0048 0.0049 0.0062 0.0050 0.0050 

Bi-objective with model 

complexity 

0.0059 0.0055 0.0072 0.0052 0.0058 0.0058 

Bi-objective with MAD 0.0050 0.0049 0.0050 0.0050 0.0047 0.0047 

 

3.3 Discussions 

Several insights can be drawn from the results of the three case studies. 
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(1) Single-objective optimization based on MSE for tuning SVM hyperparameters for 

leakage prediction, leads to prediction results that are not satisfactory, as the MSE during 

the search for optimal hyperparameters values is strongly influenced by the bad predictions 

of only few training data points. This is one drawback of using MSE as accuracy measure, 

because the MSE can be dominated by relatively big errors on only a small number of data 

points and the optimization efforts are, then, specifically dedicated to improving these 

errors. Figure 7 is an example of this drawback using MSE as the objective for tuning SVM 

hyperparameters. The solid line without marker is the output of the training data points. If 

the MSE on the training data points is the sole objective for tuning SVM hyperparameters, 

the first set of hyperparameters with a MSE of 0.0013 is slightly better than the second set 

of hyperparameters with a MSE of 0.0018. But the fact is that the second set of 

hyperparameters gives better results than the first set, except for the really bad prediction 

on the 15th and 24th data points. In such case, the MSE as objective does not choose the 

best set (the second set of hyperparameters). 

 

Fig. 7 Illustration of the possible drawback of using MSE as objective for tuning SVM 

hyperparameters. 

 (2) For predictions of the three case studies, Figures 8, 9, 10, 11, 12 and 13 show the 

comparisons of the prediction results of each line of Tables 1, 2, 3, 4, 5 and 6, i.e. the 

prediction accuracy obtained by SVM when tuning the hyperparameters calculated on 



different time horizons as explained in Section 2.3.1 e.g. comparing the prediction accuracy 

obtained by using bi-objective optimization with model complexity and MSE with single-

objective MSE at the first step, at all the prediction steps or at the last step as objective, for 

tuning hyperparameters. It is observed that compared to using only the prediction accuracy 

on the one-step ahead prediction, for most of the cases the prediction accuracy on the test 

dataset can be improved by using the prediction accuracy (MSE or MAPE) on all the steps 

or on the last step as optimization objective for tuning the SVM hyperparameters. This 

seems to confirm the observation in Taieb et al. (2010) that the relation between the input 

and the one-step ahead prediction cannot guarantee the relation between the input and the 

multi-step ahead prediction. If the training focuses only on minimizing the prediction error 

of the one-step ahead prediction, the trained model can be trapped in overfitting such 

prediction, and the prediction accuracy on the following steps may decrease. From Figures 

8, 9, 10, 11, 12 and 13, it can also be observed that in the experiments considered, using 

the prediction accuracy on all steps as objective in the optimization problem for tuning the 

SVM hyperparameters leads, in general, to better results than using the prediction accuracy 

only on the last step as objective of the optimization. 

 

Fig. 8 Comparison of MSE on the test dataset of synthetic data prediction considering the prediction 

accuracy on different time horizons, i.e. one step, all steps and last step as optimization objective for tuning 

hyperparameters. 



 

Fig. 9 Comparison of MAPE on the test dataset of synthetic data prediction considering the prediction 

accuracy on different time horizons, i.e. one step, all steps and last step as optimization objective for tuning 

hyperparameters. 

 

Fig. 10 Comparison of MSE on the test dataset of leakage prediction considering the prediction accuracy on 

different time horizons, i.e. one step, all steps and last step as optimization objective for tuning 

hyperparameters. 
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Fig. 11 Comparison of MAPE on the test dataset of leakage prediction considering the prediction accuracy 

on different time horizons, i.e. one step, all steps and last step as optimization objective for tuning 

hyperparameters. 

 

Fig. 12 Comparison of MSE on the test dataset of wind speed prediction considering the prediction 

accuracy on different time horizons, i.e. one step, all steps and last step as optimization objective for tuning 

hyperparameters. 



 

Fig. 13 Comparison of MAPE on the test dataset of wind speed prediction considering the prediction 

accuracy on different time horizons, i.e. one step, all steps and last step as optimization objective for tuning 

hyperparameters. 

(3) Figures 14, 15, 16, 17, 18 and 19 show the comparisons of the prediction results on the 

test datasets using single-objective and bi-objective optimization for the SVM 

hyperparameters tuning, with the same prediction-accuracy-related objective, e.g.  MSE 

(i.e. MSE on all steps, MSE on all steps and model complexity, MSE on all steps and 

MAD). Generally, the bi-objective optimization gives better results on the test datasets than 

the single-objective optimization, as simply minimizing the prediction accuracy on the 

training dataset can fall into overfitting of the training dataset. For the two bi-objective 

optimizations, the combination of prediction accuracy with MAD, which characterizes the 

robustness of the model, gives more stable and accurate results than the combination with 

model complexity. This can be explained by the inherent meaning of the two model 

characteristics: MAD characterizes the robustness of the model against small noises, which 

can decrease the influence of the prediction error that may cumulate during the recursive 

prediction process; model complexity characterizes the generalization ability of the model, 

which guarantees the prediction performance for different inputs. 

 



 

Fig. 14 Comparison of MSE on the test dataset of synthetic data prediction considering accuracy-related 

measures in combination with model complexity and MAD, as optimization objectives for tuning SVM 

hyperparameters. 

 

Fig. 15 Comparison of MAPE on the test dataset of synthetic data prediction considering accuracy-related 

measures in combination with model complexity and MAD, as optimization objectives for tuning SVM 

hyperparameters. 



 

Fig. 16 Comparison of MSE on the test dataset of leakage prediction considering accuracy-related measures 

in combination with model complexity and MAD, as optimization objectives for tuning SVM 

hyperparameters. 

 

Fig. 17 Comparison of MAPE on the test dataset of leakage prediction considering accuracy-related 

measures in combination with model complexity and MAD, as optimization objectives for tuning SVM 

hyperparameters. 

Single objective: accuracy Bi-objective: accuracy & model complexity Bi-objective: accuracy & MAD
0

2

4

6

8

10

M
AP

E 
on

 t
he

 t
es

t 
da

ta
se

t 
of

 le
ak

ge
 p

re
di

ct
io

n

 

 

MSE one

MSE all

MSE last

MAPE one

MAPE all

MAPE last



 

Fig. 18 Comparison of MSE on the test dataset of wind speed prediction considering accuracy-related 

measures in combination with model complexity and MAD, as optimization objectives for tuning SVM 

hyperparameters. 

 

Fig. 19 Comparison of MAPE on the test dataset of wind speed prediction considering accuracy-related 

measures in combination with model complexity and MAD, as optimization objectives for tuning SVM 

hyperparameters. 

(4) From the discussions above, we can draw the conclusion that for recursive multi-step 

ahead prediction by SVM, the combination of model complexity or MAD with prediction 
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accuracy on all the steps as objectives of the optimization for hyperparameters tuning give 

the best results, with MAD guaranteeing more robustness than model complexity. 

4. Conclusions 

In this paper, we have considered the objectives for optimizing the hyperparameters of 

SVM for recursive multi-step ahead prediction. The candidate objectives have been 

presented and discussed, distinguishing between accuracy-related and model-

characteristics-related objectives, and considering different step horizons (single step, all 

steps and last step). Experiments on one synthetic time series data and two real time series 

data (leakage from RCP in NPP and wind speed) show that the bi-objective optimization 

combining the MAD and the prediction accuracy (MSE or MAPE) on all the steps is a 

preferable choice for SVM hyperparameters tuning for recursive multi-step ahead 

prediction. 
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