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Abstract

Single-reed instruments can produce multiphonic sounds when they generate quasi-periodic oscilla-
tion regimes. An approach to map the periodic and quasi-periodic regimes of a wind instrument is 
presented. The mapping is performed using an SVM classifier trained using the output of a simpli-
fied  single-reed  instrument  model.  The  SVM classifier  is  iteratively  refined  using  an  adaptive 
sampling scheme referred to as Explicit Design Space Decomposition. This method provides the ex-
plicit boundaries separating quasi-periodic and periodic regimes and highlights the influence of key 
parameters involved in the production of multiphonic sounds. 

1 - Introduction

For wind instruments, the inharmonicity of resonance frequencies is an important criterion in instru-
ment-making. This may affect, for example, the tone color or the tuning of the instrument [1]. For 
an instrument like the saxophone, the inharmonicity of the resonance frequencies is largely inherent 
in the constitution of the instrument (side holes, truncation of the cone).

The single reed instruments can be considered as self-oscillators. Through a valve effect, the 
mouthpiece ensures the conversion of a static pressure (in the mouth) into an alternating pressure 
(inside the mouthpiece) which is sustained by the acoustic feedback of the air column inside the 
bore. The air flow within the instrument is non-linearly related to the static pressure set by the musi-
cian. Therefore, the single-reed instruments are commonly modelled as nonlinear dynamical sys-
tems. The natural frequencies of the bore being inharmonic, the self-oscillator can produce complex 
oscillation regimes. Among these, quasi-periodic oscillations have the particularity of being com-
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posed at least of two incommensurable frequencies [2]. This type of oscillation corresponds to mul-
tiphonic sounds. 

The quasi-periodic regimes produced by wind instruments are rarely studied in the literature and not 
completely understood. Therefore, the two aims of this work are : - to identify the simplest model of 
single reed instruments (in terms of number of degrees of freedom) capable of reproducing quasi-
periodic regimes; - to analyze, for this model, the parameters values giving rise to quasi-periodic re-
gimes.

The following model is tested : only the first two eigen modes of the resonator are taken into 
account and the reed dynamic is ignored, whereas the air flow depends on the square root of the 
pressure difference across the reed, and on the opening of the reed channel. 

To identify the conditions for which quasi-periodic regimes emerge, we investigate the influ-
ence of control parameters (blowing pressure, mouthpiece parameter) and design parameters (para-
meters of the two modes, including inharmonicity). For this, a method called Explicit Design Space 
Decomposition is used to classify the oscillation regimes according to the different parameters val-
ues. A Support Vector Machine classifier allows finding explicitly the boundary between periodic 
and quasi-periodic regimes with respect to the parameters considered. 

The paper is structured as follows. At first,  the single-reed instrument model is presented. In a 
second time, the classification method of oscillating regimes is detailed. In the last part, results are 
presented.

2 - Classical single-reed instrument model

2.1 – Continuous time equation 
By blowing air into the instrument through the reed channel, the player destabilizes the reed from 
its rest position (see Figure 1).  The acoustic response of the instrument acts as a feedback loop 
which influences the reed position. The production of a sound corresponds to the self-sustained os-
cillation of this dynamical system. The reed can be modeled as a mass/spring/damper oscillator. 
However, because its resonance frequency is large compared to the first harmonics of typical play-
ing frequencies, inertia and damping of the reed are ignored in this paper.

Considering as a reference the minimum pressure pM =KH required to close the reed channel 
in the non-oscillating case (where K is the reed stiffness per unit area and H is the height of the reed 
channel at rest), we introduce the following dimensionless quantities for pressure in the mouth and 
in the mouthpiece and for the volume flow through the reed channel respectively [3] (see Figure 1) :

γ=
pm

pM

, p ( t )=
p̃ ( t )
pM

, u ( t )=
Z c ũ ( t )

pM

 (1)

where Z c=
ρc
S

is the characteristic impedance for plane wave inside the resonator of cross section 

S , ρ is the air density and c is the sound speed. Likewise it is convenient to define a dimension-
less reed opening parameter :

ζ=Z c WH √ 2
ρpM

(2)

where W is the width of the reed. The two dimensionless parameters controlled by the musician for 
a given fingering are γ and ζ , the blowing pressure and an mouthpiece parameter respectively.

Mainly based on considerations from Hirschberg [4], an explicit expression for the air flow 
u  is given below :
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u=ζ (1−γ+ p ) √∣γ− p∣sign (γ− p ) if γ− p⩽1
u=0 if γ− p>1

(3)

The first equation corresponds to the case of an open reed channel. In that case, the incoming air 
flow depends only on the pressure drop γ− p  between the mouth and the mouthpiece. When the 
tip of the reed gets in contact with the lay, it completely closes the reed channel, therefore canceling 
the air flow, which is expressed by the second equation.

The input impedance of the instrument, denoted Z (ω ) , is defined in the frequency domain as the 
ratio between the pressure P (ω )  and the air flow U (ω )  into the mouthpiece. It can be written as 
the modal expansion :

Z (ω )=jω∑
n

F n

ωn
2−ω2 +jωωn /Qn

(4)

where ωn  is the natural pulsation, Qn  is the quality factor and F n  is the modal factor of the nth 
resonance. Simplification is obtained by truncating the series. To obtain a simple model (in terms of 
degrees of freedom), the series (4) is truncated at the second order ( n= 2 ) which is the minimum 
condition to expect quasi-periodic oscillations. The inverse Fourier transform of the truncated series 
allows modelling a reed instrument as a self-sustained oscillator defined by the following coupled 
system :

d2

dt 2 p1(t )+
ω1

Q1

d
dt

p1(t )+ω1
2 p1(t )=F 1

d
dt

u (t )

d 2

dt 2
p2(t)+

ω2

Q2

d
dt

p2(t )+ω2
2 p2(t)=F 2

d
dt

u (t)
(5)

The pressure inside the mouthpiece p ( t )  is defined as the sum of the two components p1 ( t )  and 
p2 ( t ) .  The  modal  parameters  used  thereafter  are  F 1=687 , F 2=1088 , Q1=21.5 , Q2=33.9 ,
ω1=539.4  and ω2=1348.4 . The quality factors and the first modal factor and the first frequency 
resonance correspond to a cylindrical tube of radius r=7.5mm and a length l=1m . The parameter 
F 2  is fixed in order to impose the same amplitude for the two first impedance peaks (see Figure 2). 

The frequency ω2  is chosen to obtain an inharmonicity
ω2
ω1

=2.5  (see Figure 2).

2.2 - Numerical aspects
The system of equations (5) is solved using an ordinary differential equation solver. As multiple 
time scales are involved in the problem (duration of blowing pressure transient,  bore resonance 
frequencies ...) and since the equations are not the same when the reed channel is closed or open, an 
ODE solver designed for stiff problems, namely ode23s from the Matlab ODE Suite is used.
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Figure 1: Schematic representation of a musician playing a 
single-reed instrument



Using a solver requires the setting of initial states of the dynamical system (5). The pressure 
inside the mouthpiece at the onset of sound production is still not well understood. Therefore, the 
initial conditions used for the resolution of the model are chosen arbitrarily. A pressure is imposed 
at time t=0  on the first mode of the bore, which is represented by the condition p1=0.01 . The 
other initial conditions are imposed to be zero.

3 - Classification of oscillation regimes

3.1 - Criterion to identify quasi-periodic regimes
The mouthpiece pressure is the signal chosen to test quasi-periodicity of the regime. More precisely, 
the  discriminating  quantity  is  its  power  envelope,  denoted pwr (obtained  with  the  toolbox 
YIN [5] in this paper). For a periodic signal, the power envelope does not vary significantly in the 
steady  part  of  the  sound.  Contrary  to  a  quasi-periodic  signal  whose  power  envelope  varies 
especially  as  these  beats  have  large  amplitude.  On the  basis  of  this  observation,  the  following 
descriptor ε  is introduced :

ε=
Var ( pwr )

〈 pwr 〉
(6)

where Var ( pwr) and 〈 pwr 〉 are the variance and the mean of signal pwr respectively. The 
descriptor ε  is calculated from a stationary part of the pressure signal, that is the second half of 
the pressure signal. After a parametric study, it is found that beyond the threshold 1.10−2 % , the 
descriptor ε systematically describes a quasi-periodic pressure signal.Therefore, the following cri-
terion is retained : -  ε<1.10−2 %  the signal is tagged "periodic"; -  ε⩾1.10−2 %  the signal is 
tagged "quasi-periodic".

3.2 - SVM classification
A technique referred to as Explicit Design Space Decomposition, called EDSD [6], is presented be-
low. The basic idea is to construct the boundaries of an n-dimensional map using a Support Vector 
Machine (SVM) [7], which provides an explicit expression of the boundary in terms of the chosen 
parameters. SVM is a machine learning technique that is widely used for classification. In optimiza-
tion and reliability assessment, SVM is used to approximate highly nonlinear constraints and limit-
state functions. The most important features of SVMs are their ability to handle multiple criteria us-
ing a single classifier, to be insensitive to discontinuities, and to be computationally very efficient.  
The ability of a SVM to handle discontinuities is essential in the case of sudden changes in the 
nature of oscillation regimes.
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Figure 2: Modulus of the input impedance of the resonator modeled with the modal parameters : 
F 1=687 , F 2=1088 , Q1=21.5 , Q2=33.9 , ω1=539.4  and ω2=1348.4



An initial approximation of the map is obtained using a design of experiments (DOE) such as 
Latin Hypercube Sampling (LHS) of the parameters. These DOE techniques are tailored so as to 
provide information over the whole space using a reasonable number of samples in higher dimen-
sions. The initial approximation of the boundary using a DOE might not be accurate and needs to be 
refined while maintaining a reasonable number of resolution of the single-reed instrument model. 
This refinement is performed using an adaptive sampling scheme that is described in [6].

4 - Results

Figure 3 highlights three different area into the parameter space (γ , ζ) . Represented by a green 
line, the SVM is the boundary separating periodic and quasi-periodic oscillation regimes. One can 
see two different areas of quasi-periodic oscillations. This map was obtained with 200 initial points,  
distributed  throughout  the  parameter  space.  Additionally,  300 adaptive points  were  used to  de-
scribed the complex shape of the two boundaries.

The  500 total samples used to make this map allows a precise definition of the complex 
shape of the boundaries. The adaptive samples are concentrated around the border described by the 
SVM, which comes from the adaptive sampling scheme [6]. Such a density of points could not have 
been imposed uniformly across the parameter space, which underlines why the adaptive aspect of 
the classification method is essential to evaluate precisely these regions of quasi-periodicity.

Figure 4 and Figure 5 show typical periodic and quasi-periodic signals, taken from the map 
in Figure 3.  One can see that the periodic signal is  characterized by a spectrum built  around a 
fundamental frequency (see Figure 6). Furthermore, the quasi-periodic signal is characterized by a 
spectrum built around two incommensurate frequencies (see Figure 7).

5 - Conclusion

A first conclusion is that the basic model considered in this paper is able to produce quasi-periodic 
sounds. Since the mass and the damping of the reed are ignored, and only two modes of the reson-
ator are retained, it is probability the minimal model in terms of number of degrees of freedom cap-
able of producing quasi-periodic sounds.
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Figure 3: Detection of quasi-periodic regimes. The boundaries between periodic and quasi-periodic regimes 
(green line) is obtained using SVM with adaptive sampling (200 initial points and 300 adaptive points).



Classification through the EDSD approach proved to be an effective and efficient way of 
highlighting a desired behaviour, namely quasi-periodic, in a multidimensional parameter space. 
Moreover the choice of the magnitude variation of the power envelope is relevant to distinguish 
periodic and quasi-periodic signal.

A  perspective  of  this  work  is  to  benefit  from  the  multidimensional  aspect  of  the 
classification method to study the influence of the inharmonicity variation in the parameter space.
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Figure 6: Spectrum of the periodic signal shown in 
Figure 4

Figure 4: Temporal evolution of a periodic signal (red 
dot from Figure 3)

Figure 5: Temporal evolution a quasi -periodic signal 
(blue dot from Figure 3)

Figure 7: Spectrum of the quasi-periodic signal shown 
in Figure 5


