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Abstract

In this paper, we consider a generalized diffusion problem arising in population dynamics. To
this end, we study a fourth order operational equation of elliptic type, with various boundary
conditions. We show existence, uniqueness and regularity of a classical solution on a cylindrical
domain under some necessary and sufficient conditions on the data. This elliptic problem is solved
in Lp(a, b;X), p ∈ (1,+∞), where (a, b) ⊂ R and X is a UMD Banach space. Our techniques use
essentially the functional calculus and the semigroup theory.
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1 Introduction

Many problems in biology may be described by partial differential equations. It means that the
model is constructed by averaging the density of a population and keeping only time and space
variables. This leads to study the population density, so-called population dynamics, governed by
reaction-diffusion equations. The model considered in general is the following:

∂tu = α∆u+ f(u), in R+ × Ω, (1.1)

where u(t, x) is the density of population at time t and position x, Ω is an open set of Rd, d ≥ 1,
and f is a non-linear growth interaction. The diffusion operator term ∆u is obtained from Fick’s
law. In 1981, D.S. Cohen and J.D. Murray [6] derived a more complete model with a biharmonic
term added to the harmonic one. This model has been obtained by studying the motility of cells,
for which they noticed that the classical diffusion model was not sufficient. This model is:

∂tu = k1∆u− k2∆2u+ f(u) in R+ × Ω, (1.2)

where k1, k2 ∈ R \ {0}. The biharmonic term ∆2u represents the long range diffusion, whereas the
harmonic term ∆u represents the short range diffusion. Another derivation of this model has been
obtained in 1984 by F.L. Ochoa [20] who studied the dynamics of (1.2) when f is a cubic function.
His work brings out the importance of the biharmonic term in the diffusion of the population.

The classical study of nonlinear problems like (1.1) or (1.2) needs first to consider the associated
linearized steady problem. This first step is essential to deduce maximal regularity results for the
linearized unsteady problem. From these maximal regularity results, one can obtain the existence
and uniqueness of the nonlinear problem by a fixed point theorem. In the case where Ω is an open
set with C4-boundary, the result is well-known. For problems (1.1), we can find a detailed study
in [22], see section 4, p. 13 for instance. For problems (1.2), results of existence and regularity are
obtained in Hilbertian case in [19] and some other results were recently obtained in [5].

In this paper, we study problem (1.2) in the linear steady case on a bounded cylindrical open
set Ω := (a, b)× ω of Rd, with ω an open bounded set of Rd−1 with C2-boundary and f ∈ Lp(Ω),
p ∈ (1,+∞), i.e.

k2∆2u− k1∆u = f on Ω. (1.3)
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We follow the work of [11] for second order problems that we adapt to fourth order problems.
For this, we set k := k1/k2 and we consider the Laplace operator A0 on the Banach space Lq(ω),
q ∈ (1,+∞), with homogeneous Dirichlet boundary condition on ω. Thus, equation (1.3) can be
formulated as the fourth order operational differential equation

u(4)(x) + (2A0 − kI)u′′(x) + (A2
0 − kA0)u(x) = f(x), x ∈ (a, b),

where f ∈ Lp(a, b;Lq(ω)), p ∈ (1,+∞), with u(x) := u(x, ·) and f(x) := f(x, ·). Then, we will
consider a generalization of this problem, that is

u(4)(x) + (2A− kI)u′′(x) + (A2 − kA)u(x) = f(x), x ∈ (a, b), (1.4)

under various boundary conditions, with (A,D(A)) a BIP operator of angle θ ∈ (0, π) on a
UMD space X (see section 2 below for the definitions of BIP operator and UMD spaces) and
f ∈ Lp(a, b;X). More precisely, we study (1.4) under one of the following boundary conditions:{

u(a) = ϕ1, u(b) = ϕ2,
u′′(a) = ϕ3, u′′(b) = ϕ4,

(BC1)

{
u′(a) = ϕ1, u′(b) = ϕ2,

u′′(a) +Au(a) = ϕ3, u′′(b) +Au(b) = ϕ4,
(BC2){

u(a) = ϕ1, u(b) = ϕ2,
u′(a) = ϕ3, u′(b) = ϕ4,

(BC3)

or {
u′(a) = ϕ1, u′(b) = ϕ2,
u′′(a) = ϕ3, u′′(b) = ϕ4,

(BC4)

where ϕ1, ϕ2, ϕ3, ϕ4 ∈ X. We obtain (see Theorem 2.5) the existence and uniqueness of a classical
solution u of (1.4)-(BCi), i = 1, 2, 3, 4, if and only if ϕ1, ϕ2, ϕ3, ϕ4 are in some real interpolation
spaces.

Let B0, · · · , Bn−1 be linear operators in X, we recall that u is a classical solution (in Lp(a, b;X))
of a differential equation

u(n)(x) +

n−1∑
j=0

Bju
(j)(x) = f(x), x ∈ (a, b), (1.5)

if u is a solution of (1.5) with the following regularity

u ∈Wn,p(a, b;X) and x 7−→ Bju
(j)(x) ∈ Lp(a, b;X), j = 0, · · · , n− 1. (1.6)

Similarly, u is a classical solution of problem (1.5)-(BC), where (BC) are some boundary conditions
if u is a classical solution of (1.5) and satisfies (BC).

The paper is organised as follows. In section 2, first we detail our assumptions on space X
and operator A and we describe our results. First, we state the existence and the uniqueness
of the solution of (1.4)-(BC2) in Theorem 2.2. This allows us to establish in Proposition 2.3, a
general representation formula for classical solutions of (1.4). Then, we state a result about the
regularity of a difference of two analytic semigroups (Theorem 2.4) which is an interesting result in
itself and constitutes an important tool to prove the main result (Theorem 2.5). We then present
Theorem 2.5, generalizing Theorem 2.2, which gives existence and uniqueness of a classical solution
u of (1.4) under one of the boundary conditions (BC1), (BC2), (BC3) or (BC4). As a consequence
of this theorem, we obtain the Corollary 2.7 which states existence and uniqueness of a solution u
in W 4,p(Ω) of (1.3). In section 3, we prove Theorem 2.2 and Proposition 2.3. Section 4 is devoted
to the proof of Theorem 2.4. Finally, in the last section, we prove Theorem 2.5.

2 Assumptions and statement of results

In all the paper, (X, ‖ · ‖) is a complex Banach space and L(X) stands for the space of bounded
linear operators in X. For any linear operator T in X, we denote by D(T ), R(T ) the domain and
the range of T while

ρ(T ) := {λ ∈ C : (λ I − T )−1 ∈ L(X)} and σ(T ) := C \ ρ(T ),
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denote the resolvent set and the spectrum of T . Recall (see, for instance, [14]) that a closed linear
operator T is called sectorial of angle θ ∈ (0, π) if

i) σ(T ) ⊂ Sθ,

ii) ∀ θ′ ∈ (θ, π), M(T, θ′) := sup
{
‖λ(λ I − T )−1‖L(X), λ ∈ C \ Sθ′

}
<∞,

where
Sθ := {z ∈ C : z 6= 0 and |arg z| < θ} . (2.1)

It is known that any injective sectorial operator T admits imaginary powers T is, s ∈ R, but, in
general, T is is not bounded (see [14], p. 70). We say that a linear operator T in X has bounded
imaginary powers, denoted by T ∈ BIP(X), if T is an injective sectorial operator such that

D(T ) ∩R(T ) = X and ∀ s ∈ R, T is ∈ L(X).

Moreover, if T ∈ BIP(X), we set

θT := inf
{
θ ≥ 0 : ∃ C > 0, ‖T is‖L(X) ≤ Ce|s|θ, ∀ s ∈ R

}
,

and we write T ∈ BIP(X, θ) if T ∈ BIP(X) and θ ≥ θT . All the results stated in this paper used
the well-known Dore-Venni Theorem (see [8] and its generalization [23]), which needs to consider a
UMD space X. Recall that a Banach space X is a UMD space if and only if for some p ∈ (1,+∞)
(and thus for all p) the Hilbert transform is bounded from Lp(R, X) into itself ([1, 3, 4]).

In all the sequel, k ∈ R \ {0}, A denotes a linear operator in X and we assume:

(H1) X is a UMD space,

(H2) 0 ∈ ρ(A),

(H3) −A ∈ BIP(X, θ) for some 0 < θ < π,

(H4) [k,+∞) ⊂ ρ(A).

For some of our results, we need a supplementary assumption:

(H5) σ(A) ⊂ (−∞, 0) and ∀ θ ∈ (0, π), sup
λ∈Sθ

‖λ(λ I −A)−1‖L(X) < +∞,

which means that is a sectorial operator of any angle θ ∈ (0, π). Let us give some remarks on our
assumptions.

Remark 2.1.

1. Assumption (H4) is relevant only if k < 0, since for k > 0, (H2) and (H3) imply (H4).

2. The case k = 0 has been stated (with particular boundary conditions) in [10]. The study is
different from our and requires a particular representation formula for the solution.

3. To solve (1.4) in the scalar case (with −A > 0), it is necessary to introduce the roots
±
√
−A+ k, ±

√
−A of the characteristic equation

r4 + (2A− k)r2 + (A2 − kA)r = 0,

this is why, in our operational case, we consider the operators

L := −
√
−A+ k I and M := −

√
−A. (2.2)

Due to (H3) and (H4), −A and −A+ k I are sectorial operators, so the existence of L and M
is ensured (see for instance [14]).

4. Applying Proposition 3.19 in [14], we have D(L) = D(M). Thus, for k, l ∈ N and l 6 k

D(Lk) = D(Mk) = D(LlMk−l).

5. Due to (H3) and (H4), we get that −A + k I is sectorial. So −A + k I ∈ BIP(X, θ) (see [2],
Theorem 2.3, p. 69), from which we deduce

−L,−M ∈ BIP(X, θ/2),

(see [14], Proposition 3.2.1, e), p. 71). Since 0 < θ/2 < π/2, L and M generate analytic
semigroups (exL)x>0 and (exM )x>0 (see [23], Theorem 2, p. 437).
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6. From (H2) and (H4), we deduce that 0 ∈ ρ(M) ∩ ρ(L) (see [14], Proposition 3.3.1, e), p. 62).
Thus, assumptions (H1), (H2) and (H3) lead us to apply Dore-Venni Theorem [8] to obtain
0 ∈ ρ(L+M).

7. Definitions (2.2) imply that

∀ ψ ∈ D(L2) = D(M2), (L2 −M2)ψ = k ψ. (2.3)

Moreover L−M = (L−M)(L+M)(L+M)−1, so

∀ψ ∈ D(L), (L−M)ψ = k(L+M)−1ψ. (2.4)

To determine the conditions on ϕ1, ϕ2, ϕ3, ϕ4 ∈ X characterizing the existence of a unique
classical solution of (1.4)-(BC1), (1.4)-(BC2), (1.4)-(BC3) and (1.4)-(BC4), we need to introduce
interpolation spaces. To this end, we denote (Y,X)θ,q, 0 < θ < 1, 1 ≤ q ≤ ∞, the real interpolation
spaces (see, for instance, [13, 16]) between a subspace Y ⊂ X and X. Moreover, we will use the
following notation:

(D(A), X)k+θ,q :=
{
ψ ∈ D(Ak) : Akψ ∈ (D(A), X)θ,q

}
.

First, we solve problem (1.4)-(BC1) whose boundary conditions are well adapted to the equation
and which can be easily treated by considering two second order problems. We obtain:

Theorem 2.2. Let f ∈ Lp(a, b;X) with a, b ∈ R, a < b and p ∈ (1,∞). Assume that (H1), (H2),
(H3) and (H4) hold. Then, there exists a unique classical solution of (1.4)-(BC1) if and only if

ϕ1, ϕ2 ∈ (D(A), X)1+ 1
2p ,p

and ϕ3, ϕ4 ∈ (D(A), X) 1
2p ,p

.

This unique classical solution is denoted by FΦ,f with Φ := (ϕ1, ϕ2, ϕ3, ϕ4) and is explicitly
described by

FΦ,f (x) = e(x−a)MZϕ1 + e(b−x)MZϕ2

−1

2
e(x−a)MZM−1

∫ b

a

e(s−a)Mv0(s) ds− 1

2
e(b−x)MZM−1

∫ b

a

e(b−s)Mv0(s) ds

+
1

2
M−1

∫ x

a

e(x−s)Mv0(s) ds+
1

2
M−1

∫ b

x

e(s−x)Mv0(s) ds

−e(b−x)Me(b−a)Mϕ1 − e(x−a)Me(b−a)Mϕ2 +
1

2
e(x−a)MZe(b−a)MM−1

∫ b

a

e(b−s)Mv0(s) ds

+
1

2
e(b−x)MZe(b−a)MM−1

∫ b

a

e(s−a)Mv0(s) ds, x ∈ [a, b],

where

v0(x) := e(x−a)LW (ϕ3 +Aϕ1) + e(b−x)LW (ϕ4 +Aϕ2)

−1

2
e(x−a)LWL−1

∫ b

a

e(s−a)Lf(s) ds− 1

2
e(b−x)LWL−1

∫ b

a

e(b−s)Lf(s) ds

+
1

2
L−1

∫ x

a

e(x−s)Lf(s) ds+
1

2
L−1

∫ b

x

e(s−x)Lf(s) ds

−e(b−x)Le(b−a)L (ϕ3 +Aϕ1)− e(x−a)Le(b−a)L (ϕ4 +Aϕ2)

+
1

2
e(x−a)LWe(b−a)LL−1

∫ b

a

e(b−s)Lf(s) ds

+
1

2
e(b−x)LWe(b−a)LL−1

∫ b

a

e(s−a)Lf(s) ds, x ∈ [a, b],

Z :=
(
I − e2(b−a)M

)−1
and W :=

(
I − e2(b−a)L

)−1
.

The existence of Z and W are proved in virtue of (5.9) in subsection 5.1.
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Under other boundary conditions, equation (1.4) is more complicated to study. We need two
results which are important by themselves. The first one is a representation formula for the classical
solution of equation (1.4).

Proposition 2.3. If u is a classical solution of (1.4), then there exist Ki ∈ X, i = 1, 2, 3, 4, such
that for any x ∈ [a, b]

u(x) = e(x−a)MK1 + e(b−x)MK2 + e(x−a)LK3 + e(b−x)LK4 + F0,f (x). (2.5)

where F0,f is defined in Theorem 2.2.

The second result concerns the regularity of the difference of two analytic semigroups stated
below.

Theorem 2.4. Assume that (H1), (H2), (H3) and (H4) hold. For any ψ ∈ X and x ∈ [a, b], we
set

uψ(x) :=
(
e(x−a)L − e(x−a)M

)
ψ and vψ(x) :=

(
e(b−x)L − e(b−x)M

)
ψ.

Then, we have

1. uψ ∈W 2,p (a, b;X) ∩ Lp
(
a, b;D(M2)

)
and u′ψ ∈ Lp (a, b;D(M)) .

2. uψ ∈W 4,p (a, b;X) ∩ Lp
(
a, b;D(M4)

)
if and only if ψ ∈ (D (M) , X)1+ 1

p ,p
.

Furthermore, in this case, u′′ψ ∈ Lp
(
a, b;D(M2)

)
.

3. Statements 1. and 2. hold true if we replace uψ by vψ (it suffices to write vψ(x) = uψ (b+ a− x)).

Note that if ψ ∈ (D(M), X)3+ 1
p ,p

then

e(·−a)Lψ, e(·−a)Mψ ∈W 4,p (a, b;X) ∩ Lp
(
a, b;D(M4)

)
,

(see Remark 4.2 below), from which we deduce that

uψ ∈W 4,p (a, b;X) ∩ Lpa, b;D(M4),

but our result is more precise since (D(M), X)3+ 1
p ,p
⊂ (D (M) , X)1+ 1

p ,p
.

We are now in position to state our main result which generalizes Theorem 2.2:

Theorem 2.5. Let f ∈ Lp(a, b;X) with a < b, a, b ∈ R and p ∈ (1,∞). Assume that (H1), (H2),
(H3) and (H4) hold. Then

1. There exists a unique classical solution u of (1.4)-(BC1) if and only if

ϕ1, ϕ2 ∈ (D(A), X)1+ 1
2p ,p

and ϕ3, ϕ4 ∈ (D(A), X) 1
2p ,p

.

2. There exists a unique classical solution u of (1.4)-(BC2) if and only if

ϕ1, ϕ2 ∈ (D(A), X)1+ 1
2 + 1

2p ,p
and ϕ3, ϕ4 ∈ (D(A), X) 1

2p ,p
.

If in addition, we assume (H5), then

3. There exists a unique classical solution u of (1.4)-(BC3) if and only if

ϕ1, ϕ2 ∈ (D(A), X)1+ 1
2p ,p

and ϕ3, ϕ4 ∈ (D(A), X)1+ 1
2 + 1

2p ,p
.

4. There exists a unique classical solution u of (1.4)-(BC4) if and only if

ϕ1, ϕ2 ∈ (D(A), X)1+ 1
2 + 1

2p ,p
and ϕ3, ϕ4 ∈ (D(A), X) 1

2p ,p
.

Remark 2.6.

1. The result for the boundary conditions (BC1) can be directly generalized to the following
boundary conditions:{

u(a) = ϕ1, u(b) = ϕ2,
u′′(a) +Au(a) = ϕ3, u′′(b) +Au(b) = ϕ4.

(BC5)
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2. In the same way, one can obtain similar results for mixed boundary conditions.

From Theorem 2.5, we deduce regularity results for equation (1.3) under some particular bound-
ary conditions (other conditions can be considered). Let us explicit Theorem 2.5, statement 1 for
instance, when we consider problem (1.3)-(BC1) with A := A0.

Corollary 2.7. Consider a cylindrical domain Ω := (a, b)× ω of Rd, where a, b ∈ R, a < b and ω
is a bounded domain of Rd−1 with C2-boundary. Let f ∈ Lp(Ω), p ∈ (1,+∞); let k1, k2 ∈ R \ {0}
such that k1 > k2 Cω, where Cω > 0 is the Poincaré constant in ω. Then, there exists a unique
solution u ∈W 4,p(Ω) of

−k1∆u(x, y) + k2∆2u(x, y) = f(x, y), (x, y) ∈ Ω,

u(x, y) = ∆yu(x, y) = 0, (x, y) ∈ (a, b)× ∂ω,

u(a, y) = ϕ1, y ∈ ω,

u(b, y) = ϕ2, y ∈ ω,

∆yu(a, y) = ϕ3, y ∈ ω,

∆yu(b, y) = ϕ4, y ∈ ω,

(2.6)

if and only if

ϕ1, ϕ2 ∈W 2,p(ω) ∩W 1,p
0 (ω) and ∆ϕ1,∆ϕ2, ϕ3, ϕ4 ∈

(
W 2,p(ω) ∩W 1,p

0 (ω), Lp(ω)
)

1
2p ,p

. (2.7)

In view to make explicit the above result, let us consider ω := (c, d) ⊂ R. Then X := Lp(c, d)
and {

D(A0) := W 2,p(c, d) ∩W 1,p
0 (c, d),

(A0ψ)(y) := ψ′′(y).

With these notations, problem (2.6) becomes (1.4) with the boundary conditions (BC1). From [25]
(Proposition 23), X satisfies (H1) and from [12] (Theorem 19.15 and Lemma 9.17), A0 satisfies (H2).
Theorem C of [24] ensured that (H3) is satisfied and, from [15], we have

σ(A0) =

{
− n2π2

(d− c)2
: n ∈ N \ {0}

}
.

So σ(A0) ⊂ (−∞, Cω], where Cω := − π2

(d− c)2
. Since k > Cω, we obtain [k,+∞) ⊂ ρ(A0). Thus,

assumption (H4) is satisfied. Finally, all the assumptions of Theorem 2.5 are satisfied. We have

(D(A0), X) 1
2p ,p

=
(
W 2,p(ω) ∩W 1,p

0 (ω), Lp(ω)
)

1
2p ,p

=

{
ψ ∈ B2− 1

p
p (c, d) : ψ(c) = ψ(d) = 0

}
,

where B
2− 1

p
p (0, 1) is a Besov space described in [13], p. 680.

Note that since 2 − 1
p >

1
p , we have C([c, d]) ↪→ B

2− 1
p

p (c, d) with continuous embedding and,

since 2− 1
p >

1
p is never integer, B

2− 1
p

p (c, d) = W 2− 1
p ,p(c, d). Therefore,

(D(A0), X) 1
2p ,p

=
{
ψ ∈W 2− 1

p ,p(c, d) : ψ(c) = ψ(d) = 0
}
,

and

(D(A0), X)1+ 1
2p ,p

=
{
ψ ∈ D(A0) : A0ψ ∈ (D(A0), X) 1

2p ,p

}
=

{
ψ ∈W 2,p(c, d) ∩W 1,p

0 (c, d) : ψ′′ ∈ (D(A0), X) 1
2p ,p

}
=

{
ψ ∈W 2,p(c, d) ∩W 1,p

0 (c, d) : ψ′′(c) = ψ′′(d) = 0 and ψ′′ ∈W 2− 1
p ,p(c, d)

}
=

{
ψ ∈W 2,p(c, d) : ψ′′ ∈W 2− 1

p ,p(c, d) and ψ(c) = ψ(d) = ψ′′(c) = ψ(d) = 0
}
.
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Now, the classical solution u of

u(4)(x) + (2A0 − k I)u′′(x) + (A2
0 − k A0)u(x) = f(x), a.e. x ∈ (a, b),

satisfies 
u ∈W 4,p(a, b;Lp(c, d))

x 7−→ A0u
′′(x) ∈ Lp(a, b;Lp(c, d))

x 7−→ A2
0u(x) ∈ Lp(a, b;Lp(c, d)),

and 

u(a, y) = ϕ1(y), y ∈ (c, d)

u(b, y) = ϕ2(y), y ∈ (c, d)

∂2u

∂y2
(a, y) = ϕ3(y), y ∈ (c, d)

∂2u

∂y2
(b, y) = ϕ4(y), y ∈ (c, d)

u(x, c) =
∂2u

∂y2
(x, c) = 0, x ∈ (a, b)

u(x, d) =
∂2u

∂y2
(x, d) = 0, x ∈ (a, b).

Since 

u ∈W 2,p(a, b;Lp(c, d))

u ∈ Lp(a, b;W 2,p(c, d) ∩W 1,p
0 (c, d))

u(x, c) = u(x, d) = 0

ϕ1(c) = ϕ1(d) = 0,

it is possible to use the Sobolev extension Theorem to R2 and the Mihlin Theorem (see [18]). We
deduce that

u ∈W 2,p((a, b)× (c, d)) = W 2,p(Ω).

By reiterating the same arguments to the other regularities, we obtain

u ∈W 4,p((a, b)× (c, d)) = W 4,p(Ω).

In the same way, we can obtain this result with ω in Rd−1. Equation (1.3) can be studied with
other boundary conditions taking into account the results of Theorem 2.5. We can also obtain
anisotropic results by considering f ∈ Lp(a, b;Lq(ω)), p, q ∈ (1,+∞).

3 Proofs of preliminary results

First, we recall some classical trace results:

Remark 3.1.

1. Let T be a closed linear operator in X and k ∈ N \ {0}. From [13] p. 677 and [16] p. 39, if

u ∈Wn,p(a, b;X) ∩ Lp(a, b;D(T k)),

where n ∈ N \ {0}, then for any j ∈ N satisfying the Poulsen condition 0 < 1
p + j < n and

c ∈ {a, b}, we have
u(j)(c) ∈ (D(T k), X) j

n+ 1
np ,p

. (3.1)

Moreover, recall that, if we denote (X,D(T k))1−θ,p := (D(T k), X)θ,p, where k ∈ N \ {0} and
θ ∈ (0, 1) such that kθ /∈ N, from reiteration theorem [13, 16], we have

(D(T k), X)θ,p = (X,D(T k))1−θ,p = (X,D(T ))k−kθ,p. (3.2)
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2. Let u ∈W 4,p(a, b;X) ∩ Lp(a, b;D(A2)). Then, from (3.1), for any c ∈ {a, b}, we obtain

u(c) ∈ (D(A2), X) 1
4p ,p

, u′(c) ∈ (D(A2), X) 1
4 + 1

4p ,p
and u′′(c) ∈ (D(A2), X) 1

2 + 1
4p ,p

.

From (3.2), we deduce, for any c ∈ {a, b},

u(c) ∈ (D(A), X)1+ 1
2p ,p

, u′(c) ∈ (D(A), X)1+ 1
2 + 1

2p ,p
and u′′(c) ∈ (D(A), X) 1

2p ,p
. (3.3)

3.1 Proof of Theorem 2.2

Let ϕ1, ϕ2, ϕ3, ϕ4 ∈ X be such that

ϕ1, ϕ2 ∈ (D(A), X)1+ 1
2p ,p

and ϕ3, ϕ4 ∈ (D(A), X) 1
2p ,p

. (3.4)

From (3.4), there exists (see e.g. [11], Theorem 4, p. 200) a unique classical solution

v0 ∈W 2,p (a, b;X) ∩ Lp (a, b;D(A)) ,

of  v′′(x) + (A− k I)v(x) = f(x), a. e. x ∈ (a, b)
v(a) = ϕ3 +Aϕ1,
v(b) = ϕ4 +Aϕ2.

(3.5)

Then, since ϕ1, ϕ2 ∈ (D(A), X)1+ 1
2p ,p
⊂ (D(A), X) 1

2p ,p
, there exists a unique classical solution

u0 ∈W 2,p (a, b;X) ∩ Lp (a, b;D (A)) ,

of  u′′(x) +Au(x) = v0(x), a. e. x ∈ (a, b)
u(a) = ϕ1,
u(b) = ϕ2.

(3.6)

A simple computation shows that u0 satisfies (1.4)-(BC1). It remains to show that u0 satisfies
(1.6). Let w0 ∈W 2,p (a, b;X) ∩ Lp (a, b;D(A)) be the unique classical solution of w′′(x) +Aw(x) = Av0(x), a.e. x ∈ (a, b)

w(a) = Aϕ1,
w(b) = Aϕ2.

Then A−1w0 is a classical solution of (3.6). So, by uniqueness of the solution, we obtain

u0 = A−1w0 ∈ Lp
(
a, b;D(A2)

)
.

Moreover, from (3.6), we have

u′′0 = v0 −Au0 = v0 − w0 ∈W 2,p (a, b;X) ∩ Lp (a, b;D(A)) .

Hence u0 is a classical solution of (1.4)-(BC1). Uniqueness is straightforward since if u is a classical
solution of (1.4)-(BC1) then v := u′′+Au is a classical solution of (3.5). By uniqueness, v = v0, so
u is a classical solution of (3.6) and again, by uniqueness, u = u0.

Conversely, if there exists a classical solution of (1.4)-(BC1), then (3.4) holds (see (3.3)).

3.2 Proof of Proposition 2.3 (Representation formula)

Let u be a classical solution of (1.4). By Theorem 2.2, we can consider the classical solution F0,f

of (1.4)-(BC1); i.e. which satisfies

F0,f (a) = F0,f (b) = F ′′0,f (a) = F ′′0,f (b) = 0. (3.7)

We set uhom := u− F0,f . Then, uhom is a classical solution of

u(4)(x) + (2A− kI)u′′(x) + (A2 − kA)u(x) = 0, a. e. x ∈ (a, b).
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So it remains to show the existence of constants Ki, for i = 1, 2, 3, 4 such that

uhom(x) = e(x−a)MK1 + e(b−x)MK2 + e(x−a)LK3 + e(b−x)LK4, a. e. x ∈ (a, b). (3.8)

It implies that
u(4)(x) = (L2 +M2)u′′(x)− L2M2u(x), a. e. x ∈ (a, b). (3.9)

Since u and F0,f are classical solutions of (1.4), uhom is also a classical solution, so

uhom ∈W 4,p (a, b;X) ∩ Lp
(
a, b;D(M4)

)
and u′′hom ∈ Lp

(
a, b;D(M2)

)
.

Thus, for almost every x ∈ (a, b), we can set{
v(x) := k−1L2uhom(x)− k−1u′′hom(x) ∈ Lp

(
a, b;D(M2)

)
w(x) := −k−1M2uhom(x) + k−1u′′hom(x) ∈ Lp

(
a, b;D(L2)

)
.

(3.10)

From (2.3), we obtain

v(x) + w(x) = k−1(L2 −M2)uhom(x) = uhom(x), a. e. x ∈ (a, b). (3.11)

Moreover, from (3.9), for almost every x ∈ (a, b), we deduce that

L−2v′′(x) = k−1u′′hom(x)− k−1L−2u
(4)
hom(x)

= k−1u′′hom(x)− k−1L−2
(
(L2 +M2)u′′(x)− L2M2u(x)

)
= M2L−2v(x),

and in the same way

M−2w′′(x) = −k−1u′′hom(x) + k−1M−2u
(4)
hom(x) = L2M−2w(x).

Thus, v and w are, respectively, solutions of

v′′(x)−M2v(x) = 0 and w′′(x)− L2w(x) = 0, a. e. x ∈ (a, b).

The previous functional equalities are set in Lp(a, b;X) and make sense due to (3.9). From [11],
we obtain

v(x) = e(x−a)MK1 + e(b−x)MK2 and w(x) = e(x−a)LK3 + e(b−x)LK4, x ∈ (a, b). (3.12)

Then, from (3.11) and (3.12), we deduce (3.8).

4 Proof of Theorem 2.4

The proof is essentially based on analytic semigroups results (see [17]) and interpolation spaces
(see, for instance, [7] p. 381-386 and [26], Theorem p. 96) and on a corollary of the well-known
Dore-Venni Theorem [8]. We recall below these results as lemmas for the readers convenience.

Lemma 4.1 ([7, 26]). Let ψ ∈ X and T be a generator of an analytic semigroup in X. Then, for
any n ∈ N \ {0}, the two next properties are equivalent:

1. x 7→ Tne(x−a)Tψ ∈ Lp(a, b;X),

2. ψ ∈ (D(Tn), X) 1
np ,p

.

Remark 4.2. Under the assumptions of Lemma 4.1, from (3.2) it follows that, for any n ∈ N\{0},
the two next properties are equivalent:

1. x 7→ e(x−a)Tψ ∈Wn,p(a, b;X) ∩ Lp (a, b;D(Tn)),

2. ψ ∈ (D(T ), X)n−1+ 1
p ,p

.
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Lemma 4.3 ([8]). Let T ∈ BIP (X, θ) with θ ∈ (0, π/2), and g ∈ Lp(a, b;X). Then, for almost
every x ∈ (a, b), we have∫ x

a

e(x−s)T g(s) dt ∈ D(T ) and

∫ b

x

e(s−x)T g(s) dt ∈ D(T ).

Moreover,

x 7→ T

∫ x

a

e(x−s)T g(s) dt ∈ Lp(a, b;X) and x 7→ T

∫ b

x

e(s−x)T g(s) dt ∈ Lp(a, b;X).

Remark 4.4. The assumption that X is a UMD space is not necessary in Lemma 4.1, but is
essential in Lemma 4.3.

Now, we state the proof of Theorem 2.4.
1. Let ψ ∈ X. Recall that

∀ x > a, uψ(x) :=
(
e(x−a)L − e(x−a)M

)
ψ.

Since, for T := L or M , (exT )x≥0 is an analytic semigroup, we have (see, for instance, [17],
Proposition 2.1.1, p. 35)

x 7→ e(x−a)T ∈ C∞ ((a, b];X) ∩ C0([a, b];X), (4.1)

and for any x > a,

e(x−a)Lψ ∈ D(L∞) = D(M∞) and e(x−a)Mψ ∈ D(M∞), (4.2)

where
D(M∞) = D(L∞) :=

⋂
k>0

D(Mk) =
⋂
k>0

D(Lk). (4.3)

From (4.1) and (4.2), we deduce

∀ x > a, uψ ∈ C∞ ((a, b];X) ∩ C0 ([a, b];X) and u(x) ∈ D(M∞).

Then, from (2.4), we obtain

∀ x > a, u′ψ(x) =
(
Le(x−a)L −Me(x−a)M

)
ψ

= M
(
e(x−a)L − e(x−a)M

)
ψ + (L−M) e(x−a)Lψ

= Muψ (x) + k (L+M)
−1
e(x−a)Lψ.

Thus, uψ ∈ C1 ((a, b];X) ∩ C0 ([a, b];X) is a solution of the Cauchy problem{
u′(x) = Mu (x) + k (L+M)

−1
e(x−a)Lψ, a.e. x ∈ (a, b],

u(a) = 0.

Hence, (see e.g. [21], Corollary 2.2 p. 106), u is given by the variation of constant formula:

∀ x ∈ (a, b], uψ (x) =

∫ x

a

e(x−s)Mk (L+M)
−1
e(s−a)Lψ ds

= k (L+M)
−1
M−1

[
M

∫ x

a

e(x−s)Me(s−a)Lψ ds

]
.

(4.4)

Since
s 7−→ e(s−a)Lψ ∈ C0 ([a, b];X) ⊂ Lp (a, b;X) ,

from Lemma 4.3, we have

gψ : x 7−→M

∫ x

a

e(x−s)Me(s−a)Lψ ds ∈ Lp (a, b;X) .
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Then, since M2(L+M)−1M−1 ∈ L(X), we deduce that

x 7−→M2uψ(x) = kM2(L+M)−1M−1gψ(x) ∈ Lp (a, b;X) .

We also have uψ ∈W 1,p (a, b;X) because uψ ∈ C1 ((a, b];X) ∩ C0 ([a, b];X) and

u′ψ(·) = Muψ(·) + k (L+M)
−1
e(·−a)Lψ ∈ Lp (a, b;X) .

Furthermore,

x 7−→Mu′ψ(x) = M2uψ(x) + kM(L+M)−1e(x−a)Lψ ∈ Lp (a, b;X) .

so u′ψ ∈ Lp (a, b;D(M)). For a. e. x ∈ (a, b], since e(x−a)Lψ ∈ D(M2), from (2.3) we obtain

u′′ψ(x) =
(
L2e(x−a)L −M2e(x−a)M

)
ψ

= M2
(
e(x−a)L − e(x−a)M

)
ψ +

(
L2 −M2

)
e(x−a)Lψ

= M2 uψ(x) + k e(x−a)Lψ.

(4.5)

Thus u′′ψ ∈ Lp (a, b;X), hence uψ ∈W 2,p (a, b;X).

2. First step. Assume that ψ ∈ (D(M), X)1+ 1
p ,p

. We set ϕ := Mψ ∈ (D(M), X) 1
p ,p

. Then, we

have Muψ = uϕ. Thus, equality (4.4), for a. e. x ∈ (a, b), yields

M3uϕ(x) = kM(L+M)−1M2M−1

[
M

∫ x

a

e(x−s)Me(s−a)Lϕds

]
= kM(L+M)−1ML−1

[
M

∫ x

a

e(x−s)MLe(s−a)Lϕds

]
.

(4.6)

Since ϕ = Mψ ∈ (D(M), X) 1
p ,p

, from Lemma 4.1, we have

s 7−→ Le(s−a)Lϕ ∈ Lp (a, b;X) .

Then, from Lemma 4.3, we deduce

x 7−→M

∫ x

a

e(x−s)MLe(s−a)Lϕ ds ∈ Lp (a, b;X) .

Hence, from (4.6) and the fact that M(L+M)−1ML−1 ∈ L(X), we obtain

x 7−→M4uψ(x) = M3uϕ ∈ Lp (a, b;X) . (4.7)

It follows
uψ ∈ Lp

(
a, b;D(M4)

)
and uϕ ∈ Lp

(
a, b;D(M3)

)
. (4.8)

Moreover, from (4.5) and (2.4), for x > a, we have

u′′′ψ (x) = M2u′ψ(x) + k Le(x−a)Lψ

= M2
(
Le(x−a)L −Me(x−a)M

)
ψ + k Le(x−a)Lψ

= M3
(
e(x−a)L − e(x−a)M

)
ψ +M2(L−M)e(x−a)Lψ + k Le(x−a)Lψ

= M3uψ(x) + kM2(L+M)−1e(x−a)Lψ + k Le(x−a)Lψ

= M3uψ(x) + k
(
M2(L+M)−1 + L

)
e(x−a)Lψ

= M2uϕ(x) + k
(
M2(L+M)−1 + L

)
M−1e(x−a)Lϕ.

Since
(
M2(L+M)−1 + L

)
M−1 ∈ L(X), from (4.8) and (4.1), we deduce

u′′′ψ ∈ Lp (a, b;X) . (4.9)
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Furthermore, for x > a, we have

u
(4)
ψ (x) = M2u′ϕ(x) + k

(
M2(L+M)−1 + L

)
M−1Le(x−a)Lϕ

= M3uϕ(x) + kM2(L+M)−1e(x−a)Lϕ+ k
(
M2(L+M)−1 + L

)
M−1Le(x−a)Lϕ

= M3uϕ(x) + k
(
M2(L+M)−1L−1 +M2(L+M)−1M−1 + LM−1

)
Le(x−a)Lϕ.

From Lemma 4.1, since ϕ = Mψ ∈ (D(M), X) 1
p ,p

= (D(L), X) 1
p ,p

, we obtain

x 7→ Le(x−a)Lϕ ∈ Lp(a, b;X).

Then, since M2(L+M)−1L−1 +M2(L+M)−1M−1 + LM−1 ∈ L(X) and from (4.8), we deduce

u
(4)
ψ ∈ L

p (a, b;X) . (4.10)

From statement 1. (see above), (4.8), (4.9) and (4.10), we deduce the result.

Second step. Assume that uψ ∈W 4,p (a, b;X) ∩ Lp
(
a, b;D(M4)

)
. From (3.1), with k = n = 4 and

j = 2, we have u′′ψ(a) ∈ (D(M4), X) 1
4p+ 1

2 ,p
, then from (3.2), we deduce u′′ψ(a) ∈ (D(M), X)1+ 1

p ,p
.

From (4.5), for x > a, we have

M−2u′′ψ(x) = uψ(x) + kM−2e(x−a)Lψ.

Passing to the limit when x tends to a, we obtain u′′ψ(a) = k ψ and thus

ψ = k−1u′′ψ(a) ∈ (D(M), X)1+ 1
p ,p
.

Finally, since uψ(x) = M−1uϕ(x), from (4.5), we obtain

∀ x > a, M2u′′ψ(x) = M3uϕ(x) + kML−1Le(x−a)Lϕ.

Applying Lemma 4.1 with ϕ := Mψ ∈ (D(M), X) 1
p ,p

, the fact that ML−1 ∈ L(X) and (4.8), the

previous equality yields u′′ψ ∈ Lp(a, b;D(M2)).

5 Proof of Theorem 2.5

Statement 1 has been treated in section 2.2. We give here the proofs for the others boundary condi-
tions. Note that from Remark 3.1, in Theorem 2.5, we only have to prove the reverse implications.

For each kind of boundary conditions, the proof of Theorem 2.5 is divided in two steps. First,
from the representation formula obtained in section 2.3, we show uniqueness of a classical solution.
Then, we state the existence of this solution. At this end, we establish the following technical
result.

Lemma 5.1. Let V ∈ L(X) such that I + V is invertible in L(X). Then, there exists W ∈ L(X)
such that

(I + V )−1 = I −W

and W (X) ⊂ V (X). Moreover, if T is a linear operator in X such that V (X) ⊂ D(T ) and for any
ψ ∈ D(T ), TV ψ = V Tψ, then

∀ψ ∈ D(T ), WTψ = TWψ.

Proof. We set
W := V (I + V )−1 ∈ L(X).

Then, obviously (I + V )−1 = I −W and W (X) ⊂ V (X) ⊂ D(T ). Moreover, for ψ ∈ D(T )

(I + V )WTψ = V Tψ = TV ψ = T (I + V )Wψ = (I + V )TWψ,

thus WTψ = TWψ.
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5.1 Proof of statement 2. (Boundary conditions (BC2))

Assume (H1) ∼ (H4) and

ϕ1, ϕ2 ∈ (D(A), X)1+ 1
2 + 1

2p ,p
and ϕ3, ϕ4 ∈ (D(A), X) 1

2p ,p
. (5.1)

First we prove the uniqueness of the solution of (1.4)-(BC2) by determining the constants Ki,
i = 1, 2, 3, 4, of the representation formula (2.5). Then, we show that the formula obtained consti-
tutes a classical solution.

First step: Uniqueness.
If u is a classical solution of (1.4)-(BC2), then from Proposition 2.3, u satisfies (2.5). In order

to obtain a simplified model, we set

α1 :=
K1 −K2

2
, α2 :=

K3 −K4

2
, α3 :=

K1 +K2

2
and α4 :=

K3 +K4

2
. (5.2)

Then for a.e. x ∈ (a, b), u is given by

u(x) =
(
e(x−a)M − e(b−x)M

)
α1 +

(
e(x−a)L − e(b−x)L

)
α2 +

(
e(x−a)M + e(b−x)M

)
α3

+
(
e(x−a)L + e(b−x)L

)
α4 + F0,f (x) .

(5.3)

Since F0,f satisfies (3.7), the boundary conditions (BC2) applied to M−2u(x) for a.e. x ∈ (a, b),
imply the following relations(

I + e(b−a)M
)
M−1α1 +

(
I + e(b−a)L

)
LM−2α2

+
(
I − e(b−a)M

)
M−1α3 +

(
I − e(b−a)L

)
LM−2α4 = M−2

(
ϕ1 − F ′0,f (a)

)
,

(5.4)

(
e(b−a)M + I

)
M−1α1 +

(
e(b−a)L + I

)
LM−2α2

+
(
e(b−a)M − I

)
M−1α3 +

(
e(b−a)L − I

)
LM−2α4 = M−2

(
ϕ2 − F ′0,f (b)

)
,

(5.5)

(
I − e(b−a)L

) (
L2 −M2

)
M−2α2 +

(
I + e(b−a)L

) (
L2 −M2

)
M−2α4 = M−2ϕ3, (5.6)(

e(b−a)L − I
) (
L2 −M2

)
M−2α2 +

(
e(b−a)L + I

) (
L2 −M2

)
M−2α4 = M−2ϕ4. (5.7)

Note that we have considered M−2u(x) for a.e. x ∈ (a, b), because we do not know if αi ∈ D(M),
i = 1, 2, 3, 4. Using (2.3) and summing (5.4) with (5.5) and (5.6) with (5.7), we obtain the abstract
system

(
I + e(b−a)M

)
M−1α1 +

(
I + e(b−a)L

)
LM−2α2

+
(
I − e(b−a)M

)
M−1α3 +

(
I − e(b−a)L

)
LM−2α4 = M−2

(
ϕ1 − F ′0,f (a)

)
,

2
(
I + e(b−a)M

)
M−1α1 + 2

(
I + e(b−a)L

)
LM−2α2 = M−2

(
ϕ1 + ϕ2 − F ′0,f (a)− F ′0,f (b)

)
,

k
(
I − e(b−a)L

)
M−2α2 + k

(
I + e(b−a)L

)
M−2α4 = M−2ϕ3,

2k
(
I + e(b−a)L

)
M−2α4 = M−2 (ϕ3 + ϕ4) .

This leads to the system

M
(
I − e(b−a)M

)
M−2α3 + L

(
I − e(b−a)L

)
M−2α4 = M−2ϕ̃2

M
(
I + e(b−a)M

)
M−2α1 + L

(
I + e(b−a)L

)
M−2α2 = M−2ϕ̃1,

k
(
I − e(b−a)L

)
α2 =

ϕ3 − ϕ4

2
,

k
(
I + e(b−a)L

)
α4 =

ϕ3 + ϕ4

2
,
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where

ϕ̃1 :=
ϕ1 + ϕ2 − F ′0,f (a)− F ′0,f (b)

2
and ϕ̃2 :=

ϕ1 − ϕ2 − F ′0,f (a) + F ′0,f (b)

2
. (5.8)

For T invertible with bounded inverse, from [21] p. 70, for any n ∈ N, we have:

∃ δ > 0, ∃M > 1 :
∥∥∥en(b−a)T

∥∥∥
L(X)

6Me−n(b−a)δ. (5.9)

Therefore, there exists n0 ∈ N \ {0} such that
∥∥en(b−a)n0T

∥∥
L(X)

< 1. So I ± en(b−a)T is invertible

with bounded inverse. Then, for T := L or M , we deduce

α1 =
(
I + e(b−a)M

)−1 (
M−1ϕ̃1 − LM−1

(
I + e(b−a)L

)
α2

)
α2 = k−1

(
I − e(b−a)L

)−1
(
ϕ3 − ϕ4

2

)
,

α3 =
(
I − e(b−a)M

)−1 (
M−1ϕ̃2 − LM−1

(
I − e(b−a)L

)
α4

)
,

α4 = k−1
(
I + e(b−a)L

)−1
(
ϕ3 + ϕ4

2

)
.

(5.10)

It follows that u is uniquely determined by (5.3), (5.8) and (5.10).

Second step: Existence.
Consider this uniquely determined u and set

K̃1 := K1 +K3 = α1 + α2 + α3 + α4 and K̃2 := K2 +K4 = α3 + α4 − α1 − α2,

thus, for any x ∈ (a, b),

u(x) = e(x−a)MK̃1 + e(b−x)MK̃2 +
(
e(x−a)L − e(x−a)M

)
K3

+
(
e(b−x)L − e(b−x)M

)
K4 + F0,f (x).

(5.11)

Then, from Remark 4.2 and Theorem 2.4, it suffices to show that K̃1, K̃2 ∈ (D(M), X)3+ 1
p ,p

and

K3,K4 ∈ (D(M), X)1+ 1
p ,p

. From Lemma 5.1, for T := L or M , we have

(
I ± e2(b−a)T

)−1

= I +R±, where R±(X) ⊂ D(M∞) and R±T = TR±.

Hence, from (5.10), there exists Ri ∈ D(M∞), i = 1, 2, 3, 4, such that

α1 =
1

2
M−1

(
2ϕ̃1 − k−1L(ϕ3 − ϕ4)

)
+R1

α2 = k−1ϕ3 − ϕ4

2
+R2,

α3 =
1

2
M−1

(
2ϕ̃2 − k−1L(ϕ3 + ϕ4)

)
+R3,

α4 = k−1ϕ3 + ϕ4

2
+R4.

From (5.2) and (5.8), we obtain

K1 = M−1
(
ϕ1 − F ′0,f (a)

)
− k−1LM−1ϕ3 + R̃1

K2 = −M−1
(
ϕ2 − F ′0,f (b)

)
− k−1LM−1ϕ4 + R̃2,

K3 = k−1ϕ3 + R̃3,

K4 = k−1ϕ4 + R̃4,
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where R̃i ∈ D(M∞), i = 1, 2, 3, 4. From (3.2), we have

(D(A), X)1+ 1
2 + 1

2p ,p
= (D(M2), X)1+ 1

2 + 1
2p ,p

= (D(M), X)2+ 1
p ,p

(5.12)

and
(D(A), X) 1

2p ,p
= (X,D(M))1+1− 1

p ,p
= (D(M), X)1+ 1

p ,p
. (5.13)

Since F ′0,f (a) ∈ (D(A), X)1+ 1
2 + 1

2p ,p
, from (2.4), (5.1), (5.12) and (5.13), we have

K̃1 = M−1
(
ϕ1 − F ′0,f (a)

)
+ k−1(I − LM−1)ϕ3 + R̃1 + R̃3

= M−1
(
ϕ1 − F ′0,f (a)

)
− (L+M)−1M−1ϕ3 + R̃1 + R̃3 ∈ (D(M), X)3+ 1

p ,p
,

and, in the same way, K̃2 ∈ (D(M), X)3+ 1
p ,p

. Moreover,

K3 = k−1ϕ3 + R̃3 ∈ (D(M), X)1+ 1
p ,p

and K4 = k−1ϕ4 + R̃4 ∈ (D(M), X)1+ 1
p ,p
,

which gives the result.

5.2 Proof of statement 3. (Boundary conditions (BC3))

In all the sequel, we assume (H1) ∼ (H5). For statements 1. and 2., the representation formula
is easily obtained by taking into account the boundary conditions. But for statement 3. (and also
statement 4.), to build the representation, we need the invertibility of some determinant operators.

More precisely, we have to prove that U and V given by
U := I − e(b−a)(L+M) − k−1(L+M)2

(
e(b−a)M − e(b−a)L

)
,

V := I − e(b−a)(L+M) + k−1(L+M)2
(
e(b−a)M − e(b−a)L

)
,

(5.14)

are invertible with bounded inverse. This will be a consequence of a functional calculus result.
To state this result, we need some notations and technical lemmas. For θ ∈ (0, π), we denote by
H(Sθ) the space of holomorphic functions on Sθ (defined by (2.1)) with values in C. Moreover, we
consider the following subspace of H(Sθ):

E∞(Sθ) :=
{
f ∈ H(Sθ) : f = O(|z|−s) (|z| → +∞) for some s > 0

}
.

In other words, E∞(Sθ) is the space of polynomial decreasing holomorphic functions at ∞. Let T
be an invertible sectorial operator of angle θT ∈ (0, π). If f ∈ E∞(Sθ), with θ ∈ (θT , π), then we
can define, by functional calculus, f(T ) ∈ L(X), see [14], p. 45.

Set, for z ∈ C

fk(z) := 1− e−c(
√
z+
√
z+k) − k−1(

√
z +
√
z + k)2

(
e−c
√
z − e−c

√
z+k
)
,

and
gk(z) := 1− e−c(

√
z+
√
z+k) + k−1(

√
z +
√
z + k)2

(
e−c
√
z − e−c

√
z+k
)
,

where c := b− a > 0. Note that, we can write formally U = fk(−A) and V = gk(−A).

Lemma 5.2. For any k > 0, fk and gk do not vanish in R+ \ {0}.

Proof. First, we consider for τ > 0, ϕ(τ) := τ
1 + e−τ

1− e−τ
, then ϕ is a strictly increasing function on

R+ \ {0} since

ϕ′(τ) = 2
sinh(τ)− τ
e−τ (eτ − 1)

2 > 0, τ > 0.

Let x > 0. Since fk(x) ≤ gk(x), it suffices to show that fk(x) > 0. Set s := c
√
x and t := c

√
x+ k,

then 0 < s < t and

fk(x) = 1− e−(s+t) − t+ s

t− s
(
e−s − e−t

)
=

1

t− s

[
(t− s)

(
1− e−(s+t)

)
− (t+ s)

(
e−s − e−t

)]
=

1

t− s
[
t
(
1− e−s

) (
1 + e−t

)
− s

(
1− e−t

) (
1 + e−s

)]
=

(1− e−s) (1− e−t)
t− s

[ϕ (t)− ϕ (s)] > 0,
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which leads to the result.

Lemma 5.3. Let P be a sectorial operator in X of angle θ, for all θ ∈ (0, π). Let f ∈ H(Sθ), for
some θ ∈ (0, π), be such that

(i) 1− f ∈ E∞(Sθ),

(ii) f 6= 0 on R+ \ {0}.
Then, f(P ) ∈ L(X), is invertible with bounded inverse.

Proof. Since we have
1

f
= 1 + h, where h :=

1− f
f

, it suffices to show that h ∈ E∞(Sθ0), for some

θ0 ∈ (0, π), to obtain the result. Indeed, since σ(P ) ⊂ Sθ0 , from [14], pp. 28 and 45, in this case
we can set:

1

f
(P ) = I + h(P ) ∈ L(X),

and the invertibility of f(P ) is obtained by writing

1

f
(P )f(P ) =

(
1

f
× f

)
(P ) = 1(P ) = I,

and similarly, f(P )
1

f
(P ) = I.

From (i), there exists R > 0 such that, for all z ∈ Sθ with |z| > R, we have |1 − f(z)| < 1/2.
Then f(z) is never equal to 0 if z ∈ Sθ and |z| > R, so

h ∈ H
(
Sθ ∩

(
C \B(0, R)

))
. (5.15)

Let θ1 ∈ (0, θ). In the compact set Sθ1 ∩ B(0, R), the holomorphic function f has only a finite
number of zeros, which from (ii), are not in (0, R]. So there exists θ0 ∈ (0, θ1) such that f 6= 0 in

Sθ0 ∩B(0, R). Thus h ∈ H
(
Sθ0 ∩B(0, R)

)
and from (5.15), we deduce h ∈ H (Sθ0).

Since 1 − f ∈ E∞(Sθ0), there exists R0 > 0 such that, if z ∈ Sθ0 and |z| > R0, then
|1− f | < C |z|−α where α > 0, C > 0.

Moreover, since for all z ∈ Sθ0 with |z| > max(R,R0) we have |1− f(z)| < 1/2, we deduce that
|f(z)| > 1/2. So, for all z ∈ Sθ0 with |z| > max(R,R0) we obtain |h(z)| ≤ 2C |z|−α. It follows that
h ∈ E∞(Sθ0).

Proposition 5.4. U and V , defined by (5.14), are invertible with bounded inverse.

Proof. We first consider the case k > 0. Due to (H5), P := −A satisfies the assumptions of
Lemma 5.3. Moreover, it is clear that for a given θ ∈ (0, π), fk ∈ H(Sθ) and 1 − fk ∈ E∞(Sθ).
Furthermore, from Lemma 5.2, fk does not vanish on R+ \ {0}. So applying Lemma 5.3, we get
that U = fk(−A) is invertible. The invertibility of V = gk(−A) is obtained in the same way.

Now, assume that k < 0. The linear operator −A+k I is a sectorial operator from Remark 2.1 5.
and as in the first case, setting l := −k > 0, we deduce that U = fl(−A+k I) and V = gl(−A+k I)
are invertible with bounded inverse.

Now, we prove Theorem 2.5 for the boundary conditions (BC3). The proof is divided in two
steps. First we prove the uniqueness of the solution of (1.4)-(BC3) by determining the constants
Ki, i = 1, 2, 3, 4, of the representation formula (2.5). Then, we show that the formula obtained is
a classical solution.

First step: Uniqueness.
Assume that

ϕ1, ϕ2 ∈ (D(A), X)1+ 1
2p ,p

and ϕ3, ϕ4 ∈ (D(A), X)1+ 1
2 + 1

2p ,p
. (5.16)

If u is a classical solution of (1.4)-(BC3) then, as in section 5.1, u satisfies (5.3). Since F0,f satisfies
(3.7), the boundary conditions (BC3) applied to M−1u(·) imply the following relations(

I − e(b−a)M
)
M−1α1 +

(
I − e(b−a)L

)
M−1α2

+
(
I + e(b−a)M

)
M−1α3 +

(
I + e(b−a)L

)
M−1α4 = M−1ϕ1,

(5.17)
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(
e(b−a)M − I

)
M−1α1 +

(
e(b−a)L − I

)
M−1α2

+
(
e(b−a)M + I

)
M−1α3 +

(
e(b−a)L + I

)
M−1α4 = M−1ϕ2,

(5.18)

M
(
I + e(b−a)M

)
M−1α1 + L

(
I + e(b−a)L

)
M−1α2

+ M
(
I − e(b−a)M

)
M−1α3 + L

(
I − e(b−a)L

)
M−1α4 = M−1

(
ϕ3 − F ′0,f (a)

)
,

(5.19)

M
(
e(b−a)M + I

)
M−1α1 + L

(
e(b−a)L + I

)
M−1α2

+ M
(
e(b−a)M − I

)
M−1α3 + L

(
e(b−a)L − I

)
M−1α4 = M−1

(
ϕ4 − F ′0,f (b)

)
.

(5.20)

Summing (5.17) with (5.18) and (5.19) with (5.20), we obtain the system

(
I − e(b−a)M

)
M−1α1 +

(
I − e(b−a)L

)
M−1α2

+
(
I + e(b−a)M

)
M−1α3 +

(
I + e(b−a)L

)
M−1α4 = M−1ϕ1,

2
(
I + e(b−a)M

)
M−1α3 + 2

(
I + e(b−a)L

)
M−1α4 = M−1 (ϕ1 + ϕ2) ,

M
(
I + e(b−a)M

)
M−1α1 + L

(
I + e(b−a)L

)
M−1α2

+M
(
I − e(b−a)M

)
M−1α3 + L

(
I − e(b−a)L

)
M−1α4 = M−1

(
ϕ3 − F ′0,f (a)

)
,

2M
(
I + e(b−a)M

)
M−1α1 + 2L

(
I + e(b−a)L

)
M−1α2 = M−1

(
ϕ3 + ϕ4 − F ′0,f (a)− F ′0,f (b)

)
.

From which we deduce the two second order systems
(
I − e(b−a)M

)
M−1α1 +

(
I − e(b−a)L

)
M−1α2 = M−1

(
ϕ1 − ϕ2

2

)
M
(
I + e(b−a)M

)
M−1α1 + L

(
I + e(b−a)L

)
M−1α2 = M−1ϕ̃1

(5.21)

and 
(
I + e(b−a)M

)
M−1α3 +

(
I + e(b−a)L

)
M−1α4 = M−1

(
ϕ1 + ϕ2

2

)
M
(
I − e(b−a)M

)
M−1α3 + L

(
I − e(b−a)L

)
M−1α4 = M−1ϕ̃2,

(5.22)

where

ϕ̃1 :=
ϕ3 + ϕ4 − F ′0,f (a)− F ′0,f (b)

2
and ϕ̃2 :=

ϕ3 − ϕ4 − F ′0,f (a) + F ′0,f (b)

2
. (5.23)

Then, the unique determination of the constants αi, i = 1, 2, 3, 4, is equivalent to show that the
matrices Λ1 and Λ2 of the systems (5.21) and (5.22) have an invertible determinant. From (2.4),
we have

det(Λ1) =

∣∣∣∣ (I − e(b−a)M )M−1 (I − e(b−a)L)M−1

M(I + e(b−a)M )M−1 L(I + e(b−a)L)M−1

∣∣∣∣
=

(
(I − e(b−a)M )L(I + e(b−a)L)−M(I + e(b−a)M )(I − e(b−a)L)

)
M−2

=
(
L−M − (L−M)e(b−a)(L+M) − (L+M)(e(b−a)M − e(b−a)L)

)
M−2

= kM−2(L+M)−1U,

and in the same way

det(Λ2) =

∣∣∣∣∣ (I + e(b−a)M )M−1 (I + e(b−a)L)M−1

M(I − e(b−a)M )M−1 L(I − e(b−a)L)M−1

∣∣∣∣∣
= kM−2(L+M)−1V,
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where U and V are given by (5.14). Since U and V are invertible with bounded inverse (see
Proposition 5.4), from (5.21) and (5.22), we deduce

α1 =
1

2k
(L+M)U−1

[
L(I + e(b−a)L)(ϕ1 − ϕ2)− 2(I − e(b−a)L)ϕ̃1

]
α2 = − 1

2k
(L+M)U−1

[
M(I + e(b−a)M )(ϕ1 − ϕ2)− 2(I − e(b−a)M )ϕ̃1

]
α3 =

1

2k
(L+M)V −1

[
L(I − e(b−a)L)(ϕ1 + ϕ2)− 2(I + e(b−a)L)ϕ̃2

]
α4 = − 1

2k
(L+M)V −1

[
M(I − e(b−a)M )(ϕ1 + ϕ2)− 2(I + e(b−a)M )ϕ̃2

]
.

(5.24)

Note that, since F0,f ∈W 4,p(a, b;X) ∩ Lp(a, b;D(M2)), from Remark 3.1 we have

F ′0,f (a) ∈ (D(M2), X)1+ 1
2 + 1

2p ,p
and F ′0,f (b) ∈ (D(M2), X)1+ 1

2 + 1
2p ,p

. (5.25)

This combined with (5.16) implies that F ′0,f (a), F ′0,f (b), ϕi ∈ D(M2), i = 1, 2, 3, 4. Thus all the
previous equalities are well defined. This shows that the eventual classical solution of (1.4)-(BC3)
is characterized by (5.3), (5.23) and (5.24).

Second step: Existence.
It suffices to prove that u, determined in the first step, satisfies (1.6). From Lemma 5.1, we

have
U−1 = I +RU and V −1 = I +RV .

Set T := L or M . Then, from (4.2), since TexT = exTT on D(T ), for any x ≥ 0, Lemma 5.1 implies

RU (X), RV (X) ⊂ D (M∞) , RUT = TRU and RV T = TRV .

This combined with (4.2) implies that there exist Ri ∈ D(M∞), i = 1, 2, 3, 4, such that

α1 =
1

2k
(L+M) [L(ϕ1 − ϕ2)− 2ϕ̃1] +R1

α2 = − 1

2k
(L+M) [M(ϕ1 − ϕ2)− 2ϕ̃1] +R2

α3 =
1

2k
(L+M) [L(ϕ1 + ϕ2)− 2ϕ̃2] +R3

α4 = − 1

2k
(L+M) [M(ϕ1 + ϕ2)− 2ϕ̃2] +R4.

Then, from (5.2) and (5.23), we obtain

K1 =
1

k
(L+M)

[
Lϕ1 − ϕ3 + F ′0,f (a)

]
+ R̃1

K2 =
1

k
(L+M)

[
Lϕ2 + ϕ4 − F ′0,f (b)

]
+ R̃3

K3 = −1

k
(L+M)

[
Mϕ1 − ϕ3 + F ′0,f (a)

]
+ R̃2

K4 = −1

k
(L+M)

[
Mϕ2 + ϕ4 − F ′0,f (b)

]
+ R̃4,

(5.26)

with R̃i ∈ D(M∞), i = 1, 2, 3, 4. We set

K̃1 := K1 +K3 and K̃2 := K2 +K4,

thus, from (5.11), for any x ∈ (a, b),

u(x) = e(x−a)MK̃1 + e(b−x)MK̃2 +
(
e(x−a)L − e(x−a)M

)
K3 +

(
e(b−x)L − e(b−x)M

)
K4 + F0,f (x).

From (3.2), we have
(D(A), X)1+ 1

2p ,p
= (D(M), X)3+ 1

p ,p
. (5.27)
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Thus, since ϕ1, ϕ2 ∈ (D(A), X)1+ 1
2p ,p

, from (2.3), we have

K̃1 = K1 +K3 =
1

k
(L+M)(L−M)ϕ1 + R̃1 + R̃3 = ϕ1 + R̃1 + R̃3 ∈ (D(M), X)3+ 1

p ,p

and, in the same way,

K̃2 = K2 +K4 = ϕ2 + R̃2 + R̃4 ∈ (D(M), X)3+ 1
p ,p
.

Then, from Lemma 4.1 and Remark 4.2, we obtain that

uM : x 7→ e(x−a)MK̃1 + e(b−x)MK̃2,

satisfies
uM ∈W 4,p(a, b;X) ∩ Lp

(
a, b;D(A2)

)
and u′′M ∈ Lp (a, b;D(A)) . (5.28)

Thus, from (5.25), (5.16) and (5.27) , Mϕ1, ϕ3, F
′
0,f (a) ∈ (D(M), X)2+ 1

p ,p
. From (5.26), we deduce

K3 ∈ (D(M), X)1+ 1
p ,p
.

So, from Theorem 2.4, we obtain that vK3
: x 7→

(
e(x−a)L − e(x−a)M

)
K3 satisfies

vK3 ∈W 4,p(a, b;X) ∩ Lp
(
a, b;D(A2)

)
and v′′K3

∈ Lp (a, b;D(A)) . (5.29)

By the same arguments, vK4
: x 7→

(
e(x−a)L − e(x−a)M

)
K4 satisfies

vK4
∈W 4,p(a, b;X) ∩ Lp

(
a, b;D(A2)

)
and v′′K4

∈ Lp (a, b;D(A)) . (5.30)

Since F0,f satisfies (1.6), from (5.11), (5.28), (5.29) and (5.30), we deduce that u satisfies (1.6) and
so is a classical solution of (1.4)-(BC3).

5.3 Proof of statement 4. (Boundary conditions (BC4))

We proceed as in the proof of the previous statement. We only point out the differences between
the two proofs.

First step: Uniqueness.
Assume that

ϕ1, ϕ2 ∈ (D(A), X)1+ 1
2 + 1

2p ,p
and ϕ3, ϕ4 ∈ (D(A), X) 1

2p ,p
. (5.31)

If u is a classical solution of (1.4)-(BC4), then u is given by (5.3). Since F0,f satisfies (3.7), the
boundary conditions (BC4) applied to M−1u′(a),M−1u′(b),M−2u′′(a),M−2u′′(b) and the same
computations as in the proof of subsection 5.2 lead to the two second order systems

(
I + e(b−a)M

)
α1 + LM−1

(
I + e(b−a)L

)
α2 = M−1ϕ̃1,(

I − e(b−a)M
)
α1 + L2M−2

(
I − e(b−a)L

)
α2 = M−2ϕ3 − ϕ4

2
,

(5.32)

and 
(
I − e(b−a)M

)
α3 + LM−1

(
I − e(b−a)L

)
α4 = M−1ϕ̃2,(

I + e(b−a)M
)
α3 + L2M−2

(
I + e(b−a)L

)
α4 = M−2ϕ3 + ϕ4

2
,

(5.33)

where

ϕ̃1 :=
ϕ1 + ϕ2 − F ′0,f (a)− F ′0,f (b)

2
and ϕ̃2 :=

ϕ1 − ϕ2 − F ′0,f (a) + F ′0,f (b)

2
. (5.34)

Let Λ1 and Λ2 be their corresponding matrices. From (2.4), we have

det(Λ1) =

∣∣∣∣ I + e(b−a)M LM−1
(
I + e(b−a)L

)
I − e(b−a)M L2M−2

(
I − e(b−a)L

) ∣∣∣∣
= L2M−2(I − e(b−a)L)(I + e(b−a)M )− LM−1(I + e(b−a)L)(I − e(b−a)M )

= kLM−2V (L+M)−1,
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and

det(Λ2) =

∣∣∣∣∣ I − e
(b−a)M LM−1(I − e(b−a)L)

I + e(b−a)M L2M−2(I + e(b−a)L)

∣∣∣∣∣
= L2M−2(I − e(b−a)M )(I + e(b−a)L)− LM−1(I − e(b−a)L)(I + e(b−a)M )

= kLM−2(L+M)−1U,

where U and V are given by (5.14). Since U and V are invertible in L(X) (see Proposition 5.4),
from (5.32) and (5.33), we deduce

α1 =
1

2k
(L+M)V −1

[
2(I − e(b−a)L)LM−1ϕ̃1 − (I + e(b−a)L)M−1(ϕ3 − ϕ4)

]
α2 = − 1

2k
(L+M)V −1

[
2(I − e(b−a)M )ML−1ϕ̃1 − (I + e(b−a)M )L−1(ϕ3 − ϕ4)

]
α3 =

1

2k
(L+M)U−1

[
2(I + e(b−a)L)LM−1ϕ̃2 − (I − e(b−a)L)M−1(ϕ3 + ϕ4)

]
α4 = − 1

2k
(L+M)U−1

[
2(I + e(b−a)M )ML−1ϕ̃2 − (I − e(b−a)M )L−1(ϕ3 + ϕ4)

]
.

(5.35)

Then, from (5.2) and (5.35) we obtain the uniqueness of the solution of (1.4)-(BC4).

Second step: Existence.
Let u, determined in the first step, then u is also given by (5.11). Then, it suffices to show that

K̃1, K̃2 ∈ (D(M), X)3+ 1
p ,p

and K3,K4 ∈ (D(M), X)1+ 1
p ,p

. By the same arguments as in the proof

of subsection 5.2, there exist Ri ∈ D(M∞), i = 1, 2, 3, 4, such that

α1 =
1

2k
(L+M)

[
2LM−1ϕ̃1 −M−1(ϕ3 − ϕ4)

]
+R1

α2 = − 1

2k
(L+M)

[
2ML−1ϕ̃1 − L−1(ϕ3 − ϕ4)

]
+R2

α3 =
1

2k
(L+M)

[
2LM−1ϕ̃2 −M−1(ϕ3 + ϕ4)

]
+R3

α4 = − 1

2k
(L+M)

[
2ML−1ϕ̃2 − L−1(ϕ3 + ϕ4)

]
+R4.

Then, from (5.2) and (5.34), we obtain

K1 =
1

k
(L+M)

[
LM−1(ϕ1 − F ′0,f (a))−M−1ϕ3

]
+ R̃1

K2 =
1

k
(L+M)

[
LM−1(−ϕ2 + F ′0,f (b))−M−1ϕ4

]
+ R̃2

K3 = −1

k
(L+M)

[
ML−1(ϕ1 − F ′0,f (a))− L−1ϕ3

]
+ R̃3

K4 = −1

k
(L+M)

[
ML−1(−ϕ2 + F ′0,f (b))− L−1ϕ4

]
+ R̃4,

(5.36)

with R̃i ∈ D(M∞), i = 1, 2, 3, 4. Then, combining (5.12) and (5.13), since ϕ1, F
′
0,f (a) ∈ (D(A), X)1+ 1

2 + 1
2p ,p

and ϕ3 ∈ (D(A), X) 1
2p ,p

, from (2.3), we have

K̃1 = K1 +K3 =
1

k
(L+M)

[
(LM−1 −ML−1)(ϕ1 − F ′0,f (a)) + (L−1 −M−1)ϕ3

]
+ R̃1 + R̃2

=
1

k
(L+M)

[
(L2 −M2)M−1L−1(ϕ1 − F ′0,f (a))− (L−M)M−1L−1ϕ3

]
+ R̃1 + R̃2

= (L+M)M−1L−1(ϕ1 − F ′0,f (a))−M−1L−1ϕ3 + R̃1 + R̃2 ∈ (D(M), X)3+ 1
p ,p

and, in the same way,

K̃2 = K2 +K4 = (L+M)M−1L−1(F ′0,f (b)− ϕ2)−M−1L−1ϕ4 + R̃2 + R̃4 ∈ (D(M), X)3+ 1
p ,p
.
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Moreover, since (L+M)ϕ1, (L+M)F ′0,f (a), ϕ3 ∈ (D(M), X)2+ 1
p ,p

, from (5.36), we deduce

K3 ∈ (D(M), X)1+ 1
p ,p
,

and, in the same way, K4 ∈ (D(M), X)1+ 1
p ,p

, which leads to the result.
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