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Abstract

A nonlinear optimization method is proposed for the solution of inverse scatter-
ing problems in the frequency domain, when the scattered field is governed by the
Helmholtz equation. The time-harmonic inverse medium problem is formulated as a
PDE-constrained optimization problem and solved by an inexact truncated Newton-
type iteration. Instead of a grid-based discrete representation, the unknown wave
speed is projected to a particular finite-dimensional basis of eigenfunctions, which
is iteratively adapted during the optimization. Truncating the adaptive eigenspace
(AE) basis at a (small and slowly increasing) finite number of eigenfunctions effec-
tively introduces regularization into the inversion and thus avoids the need for stan-
dard Tikhonov-type regularization. Both analytical and numerical evidence under-
pins the accuracy of the AE representation. Numerical experiments demonstrate the
efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace
inversion method.

Keywords: Inverse medium problem, Helmholtz equation, full waveform in-
version, PDE constrained optimization, frequency stepping, parameter estimation,
adaptive eigenspace inversion, regularization, sample averaging approximation.

1 Introduction

Inverse scattering problems occur in a wide range of applications such as radar and sonar
technology, non-destructive testing, geophysical exploration or medical imaging. By illu-
minating an unknown body, the scatterer, with waves of various directions or wavelengths,
one attempts to obtain information about that body from the scattered waves recorded
at some distance. In the inverse medium problem, the scatterer is a penetrable, bounded
inhomohogeneity inside the medium characterized by one or several varying physical pa-
rameters and the inverse problem consists in estimating these parameters from scattering
data. Typical inverse medium problems include oil and gas exploration [35] in geophysics
or breast tumor detection [23] in medical imaging. Numerical methods for the solution
of inverse scattering problems essentially fall into either of two classes: qualitative and
quantitative methods.
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Qualitative methods [3] generally require little a priori knowledge about the scatterer
and permit to estimate its location and shape quite efficiently. Examples are the MU-
SIC (MUltiple SIgnal Classification) algorithm [6, 19], the DORT (Decomposition of the
Time Reversal Operator) method [27, 4], the linear sampling method [7, 15], the probe
method [26], and the factorization method [19, 20]. These methods provide a criterion for
deciding whether any point lies inside or outside the scatterer only on the basis of far-
field measurements of the scattered field. Hence, they effectively determine the support of
the scatterer and thus permit to quickly detect material defects or obstacles, but do not
provide any further quantitative information about its physical characteristics such as the
local sound speed.

Quantitative methods typically reformulate the inverse scattering problem as a PDE-
constrained optimization problem, where the unknown physical parameters, the control u,
are determined by minimizing an appropriate objective functional [34]. The objective
functional, L[y, u], measures the misfit between the simulated wave field, the state y, and
the true scattered data, the observations yobs. Both optimize-then-discretize or discretize-
then-optimize strategies are common [13, 18]. To tackle the ill-posedness of the inverse
problem, a penalization term is usually included in the objective functional, such as stan-
dard Tikhonov regularization [37, 2].

At least two strategies are then available: the full-space approach, where u and y
are sought simultaneously, and the reduced-space approach, where y is eliminated from the
objective functional as L[u] = L[y(u), u], taking advantage of the linearity of the underlying
wave equation [13, 22, 12, 36]. Then, standard Newton or quasi-Newton methods from
nonlinear optimization can be applied [25, 17]. For inverse medium problems, however, the
exact solution of the Newton equations at each iteration may be prohibitively expensive
due to the very large number of (unknown) parameters. In recent years, inexact truncated
Newton methods [11, 10, 24], where at each (outer) iteration the (quasi-)Newton equations
are solved by using only a few (inner) Krylov subspace iterations, have proved particularly
effective for large-scale inverse medium problems [22, 31].

The spatial discretization of the parameter u on a standard finite difference (FD) or
finite element (FE) mesh typically results in a huge number of (unknown) nodal values, in
fact increasingly so, as the mesh is refined. For time-dependent scattering problems, the
adaptive eigenspace inversion (AEI) method [9, 8] recently achieved a significant reduction
in the number of parameters by projecting u to a finite-dimensional basis of eigenfunc-
tions of a particular elliptic differential operator, which is iteratively adapted during the
nonlinear optimization.

Here, we propose the AEI method for the inverse medium problem in the frequency
domain, where the scattered field is governed by the Helmholtz equation. In Section 2,
we describe our AEI approach, which combines state-of-the-art techniques from large-scale
nonlinear optimization, such as inexact truncated Newton-like methods and frequency
stepping [5, 1, 22], with an adaptive eigenspace representation of u for regularization.
Next, in Section 3, we present both analytical and numerical evidence which underpins
the remarkable accuracy of our particular choice of basis functions. In particular, we show
how adapting the dimension of the eigenspace basis effectively builds regularization into
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the inversion. Finally, we subject our AEI method in Section 4 to a series of numerical tests
that demonstrate not only its accuracy and robustness with respect to missing or noisy
data, but also its versatility by combining it with a sample averaging approximation [14].

2 Adaptive Eigenspace Inversion (AEI)

In this section, we present the Adaptive Eigenspace Inversion (AEI) method for inverse
medium problems in the frequency domain, when the scattered wave field is governed by
the Helmholtz equation. First, we formulate the inverse medium problem for the squared
wave speed u(x) as a PDE-constrained optimization problem. Next, we introduce the
adaptive eigenspace representation for u, the distinguishing feature of the AEI method.
Finally we describe in detail the full AEI algorithm where both the dimension and the
basis functions themselves are adapted during the optimization process.

2.1 Inverse medium problem

We consider a time-harmonic scattering problem in unbounded space from a penetrable
inhomohogeneity located inside a bounded convex domain Ω ⊂ Rd, d = 1, 2, 3. Outside
Ω, the wave speed is known and may vary. Inside Ω, the scattered field y satisfies the
Helmholtz equation together with a Sommerfeld-type radiation condition at the bound-
ary Γ = ∂Ω, for simplicity:

−ω2y − ∇ · (c2(x)∇y) = f(x), in Ω,

∂y

∂n
− ik(x)y = 0, on Γ.

(1)

Here ω > 0 denotes the constant frequency, c(x) > 0 the wave speed and k(x) = ω/c(x)
the wave number.

Next, we perform Ns illuminations of the medium inside Ω with source terms f = f`,
` = 1, ..., Ns, and denote by y` the corresponding (unique) solutions of (1). Given the
measurements yobs` on Γ, or part of it, we seek to reconstruct the (unknown) squared wave
speed u=c2 inside Ω such that every solution y` of (1) with f = f` coincides at Γ with the
measurements yobs` , ` = 1, ..., Ns. In doing so, we assume that the wave speed c is known
on the boundary Γ.

To solve the inverse medium problem, we now formulate it as a PDE-constrained opti-
mization problem and thus seek a minimizer u of the standard data misfit functional

L[u] =
1

2

Ns∑
`=1

∥∥y`(u)− yobs`
∥∥2

L2(Γ)
. (2)

3



Then, the inverse problem reads:

Find u ∈ V = L∞(Ω) such that

u = argmin
v∈V

L[v],

with y`(u) satisfying (1) for f = f`, ` = 1, ..., Ns.

(3)

Since the inverse problem (3) is generally ill-posed, Tikhonov regularization term is typi-
cally added for stability. Instead, we shall incorporate regularization by restricting u to a
finite-dimensional subspace VK , adaptively determined during the optimization.

To solve (3), we shall consider standard Newton or Quasi-Newton methods, which
require the gradient of L[u]. For a direction p, it is given by

〈∇L[u], p〉 =
Ns∑
`=1

(∫
Ω

(∇y`(u) · ∇z̄`(u)) p

)
, (4)

where each Lagrange multiplier z`, ` = 1, ..., Ns, solves the adjoint problem
−ω2z` − ∇ · (u(x)∇z`) = 0, in Ω,

∂z`
∂n

+ ik(x)z` = (y` − yobs` ), on Γ.
(5)

For the solution of (3), we can choose between the optimize-then-discretize or the
discretize-then-optimize approaches. In the former case, we solve the inverse problem (2)-
(4), whereas in the latter case, we consider the discrete functional

Lh[u] =
1

2

Ns∑
`=1

∥∥Py`(u)− yobs`
∥∥2

2
, (6)

together with its corresponding discrete gradient

∇Lh[u] =
Ns∑
`=1

(
∂y`
∂u

)>
P>
(
Py`(u)− yobs`

)
, (7)

where P denotes a projection matrix from the underlying discrete computational subspace
to the observations. We will consider either approach indifferently and in doing so demon-
strate that our approach does not rely on any particular choice of discretization.

2.2 Adaptive eigenspace basis

Instead of a standard nodal basis (FD, FE grid-based discretization), we shall use a basis
of (global) eigenfunctions {φm}m≥1 to represent the parameter u(x) as

u(x) = u0(x) +
∑
m≥1

βmφm(x). (8)
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Here the “background” u0(x) ∈ H1(Ω) solves the elliptic problem:{
−∇ · (µ(x)∇u0(x)) = 0, ∀x ∈ Ω,

u0(x) = c2(x), ∀x ∈ Γ,
(9)

where µ(x) is defined by

µ(x) =
1

max{|∇u(x)|, ε}
, ∀x ∈ Ω, ε > 0. (10)

The parameter ε > 0, which ensures that the denominator of µ does not vanish, is typically
set to a very small value such as ε = 10−6. While the primary role of u0 is to accommodate
the (known) inhomogeneous boundary values of u, we shall demonstrate in Section 3,
that u0 also captures much of the behavior of u in the interior.

Following [8], we choose for the functions φm the orthonormal basis of eigenfunc-
tions φm ∈ H1

0 (Ω) of the elliptic operator,{
−∇ · (µ(x)∇φm(x)) = λmφm(x), ∀x ∈ Ω,

φm(x) = 0, ∀x ∈ Γ,
(11)

with corresponding eigenvalues 0 < λm ≤ λm+1, m ≥ 1. Clearly, at higher λm, the
eigenfunctions φm in (11) will be increasingly oscillatory.

In Section 3, we shall provide analytical and numerical evidence which underpins the
remarkable accuracy of this basis for representing any given u(x). In our AEI approach, the
eigenfunctions {φm}m and the background u0 are repeatedly recomputed as the underlying
control u(x) varies during the optimization. Hence, we call {u0} ∪ {φm}m≥1 an adapted
eigenspace (AE) basis.

Since u(x) is precisely the quantity we seek, and thus unknown, we always use in (10) the
value from the previous optimization step. At the first step, when no information about u
inside Ω is available yet, we simply set µ(x) ≡ 1. Then, u0 is a harmonic prolongation
of c2 from Γ into Ω while the basis {φm}m≥1 simply corresponds to the eigenfunctions of
the Laplacian operator in Ω.

Remark 1. The elliptic operator in (9) and (11) essentially coincides with the gradient of
the penalized total variation (TV) regularization term [32, 38],

RTV (u) =
1

2

∫
Ω

√
|∇u|2 + ε2 dx,

given by

∇RTV (u) = −∇ ·

(
1√

|∇u|2 + ε2
∇u

)
' −∇ · (µ(x)∇u) .

Penalized TV-regularization is well-known in image processing for noise removal, while pre-
serving sharp interfaces. Instead of adding a Tikhonov regularization term to the objective
functional, the AEI approach projects u to the basis of eigenfunctions of the gradient of
the penalized TV-regularization functional; hence, the AE basis inherits similar properties.
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2.3 AEI algorithm

In practice, we truncate the infinite sum in (8) at a finite number K ≥ 1:

u(x) = u0(x) +
K∑
m=1

βmφm(x). (12)

To keep both the memory requirements and the computational effort low, it is imperative
to keep the number K of eigenfunctions minimal. The truncation of the eigenfunction
expansion is also crucial for numerical stability, as it builds regularization into the AEI
approach – see Remark 1 above but also Remark 3 below.

At higher frequencies, waves detect and carry more detailed information about the
scatterer, yet the number of local minima of L[u] may also increase. To minimize the chance
of landing in a (false) local minimum, we also apply a standard frequency continuation
procedure [5, 1]. First, we solve the inverse problem (3) at the lowest frequency ω1. Then
we progressively increase ω = ω2, . . . , ωn while re-initializing the optimization at every ωj
from the previous lower frequency ωj−1. In doing so, we assume that the measurements
are available through a range of frequencies, for instance via Fourier transform of a time-
dependent signal.

AEI Algorithm.
Input: initial guess u = 1, observations yobs` . Output: u∗.

1. Choose K ≥ 1 and compute {φm}Km=1 from (11) and u0 from (9) with µ ≡ 1

2. Expand u(x) = u0(x) +
∑K

m=1 βmφm(x)

3. For ω = ω1, . . . , ωn

(a) Compute L[u] and ∇L[u], set H

(b) STOP: if ‖∇L[u]‖ ≤ Tol

i. Solve Hp = −∇L[u]

ii. Determine step size α and set u := u+ αp

iii. Update L[u], ∇L[u] and H

(c) Set µ from (10) with ∇u
(d) Update K, compute {φm}Km=1 from (11) and u0 from (9)

(e) Expand u(x) = u0(x) +
∑K

m=1 βmφm(x)

4. u∗ = u

The AEI approach applies regardless of the underlying optimization method used. Here
we consider truncated Newton-like methods [10, 24] and denote by H either the true
Hessian or some approximation of it, depending on (Newton, BFGS, or Gauss-Newton)
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method used. In all cases the linear system in 3(b) is solved by a truncated CG-iteration
with the Eisenstat-Walker criterion [11]. In 3(b)ii, the step size α of the search direction p
is determined either by Armijo (Newton, Gauss-Newton) or Wolfe-Powell (BFGS) step-
size control, depending on the underlying method [25]. In steps 1 and 3(d) of the AEI
Algorithm, we compute the first K eigenfunctions in (11) by using a standard restarted
Lanczos iteration [21].

3 Approximation properties of the AEI expansion

In the AEI method presented in Section 2, the (unknown) parameter u is expanded as
in (12) in the L2-orthogonal basis of eigenfunctions {φm}m=1,...,K defined by (11) together
with u0 defined by (9). In this entire section, we shall assume that u is known and shall
now provide some analytical and some numerical evidence which underpins the remarkable
accuracy provided by our particular choice of u0 and the AE basis.

3.1 One-dimensional case

In one space dimension, (9) reduces to −
d

dx

(
µ(x)

d

dx
u0(x)

)
= 0 ∀x ∈ (a, b),

u0(a) = c2(a) , u0(b) = c2(b),
(13)

where

µ(x) =
1

max{|u′(x)|, ε}
, ∀x ∈ (a, b). (14)

The following result is immediate.

Proposition 1. Let u : Ω → R, Ω = (a, b), a < b, u continuous, piecewise differentiable
and with C ≥ u′(x) ≥ ε > 0 or −C ≤ u′(x) ≤ −ε < 0, at every differentiability point x ∈
Ω, u(a) = c2(a) and u(b) = c2(b). If u0 solves (13) then u0(x) = u(x), ∀x ∈ Ω.

Proof. We first assume that u is strictly increasing and therefore u′(x) ≥ ε > 0. Since
µ(x) = 1/max{|u′(x)|, ε} = 1/u′(x), u itself also satisfies (13) with u0(a) = c2(a) and
u0(b) = c2(b). As µ is strictly positive through Ω, the (weak) solution of (13) is unique
and therefore u0(x) = u(x), ∀x ∈ Ω.
If u is strictly decreasing, the proof is similar for µ(x) = −1/u′(x) > 0.

Remark 2. From Proposition 1 we conclude that our choice for u0 is in fact optimal in
one space dimension when u′ is strictly positive (or negative) throughout Ω, since it auto-
matically yields u itself. The same conclusion immediately holds in higher dimensions, if
the background medium is layered, that is if u(x1, x2, . . . , xn) depends on a single variable.
In general, however, u0 will not equal u, in particular when u is not monotonic.
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Figure 1: One-dimensional case. Comparison of adaptive and harmonic choices for u0.
Left: u monotonically increasing; right: u arbitrary.

First, we illustrate the usefulness of our particular choice for u0 in (13)-(14) by compar-
ing it to a straightforward choice where u0 is harmonic and satisfies (13) with µ(x) ≡ 1. If u
is strictly increasing (or decreasing) over Ω = (0, 1), u0 defined by (13)-(14) automatically
coincides with u – see Proposition 1. Clearly, if u0 is merely harmonic over Ω, it does not
coincide with u, as shown in Fig. 1. If u both increases and decreases over Ω, neither the
harmonic nor the adaptive u0 will coincide with u. However, the adaptively computed u0

will in general better approximate u inside Ω, as shown in Fig. 1; in fact, the adaptive u0

coincides with u over [0.6, 1].
Next, we approximate the difference u − u0 in span{φ1, φ2, . . . , φK}, where all φm

satisfy (11) in one space dimension, that is −
d

dx

(
µ(x)

d

dx
φm(x)

)
= λmφm(x) ∀x ∈ (a, b),

φm(a) = 0 , φm(b) = 0,
(15)

with µ defined in (14).
Clearly, the local behavior of φm in the neighborhood of any fixed x0 ∈ Ω is essentially

determined by the magnitude of C = |u′(x0)|. If |u′(x)| ' C > ε in a neighborhood of x0,
φm essentially behaves like

φm(x) ' Am sin(
√
Cλm x) +Bm cos(

√
Cλm x)

near x0 and hence is strongly oscillatory at higher m. However, if u is essentially constant
near x0, |u′(x)| ' 0, then µ = 1/ε there and φm essentially behaves like

φm(x) ' Am sin(
√
ελm x) +Bm cos(

√
ελm x).

Since ε is very small, φm will also remain essentially constant there for moderate values
of m.
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Figure 2: One-dimensional case. The true profile u (top left), together with the eigenfunc-
tions φ1, φ2, φ3, φ24 and φ25 from (15) with ε = 10−4.
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To illustrate this behavior, we now consider the piecewise linear profile u(x) shown in
Fig. 2, where u′(x) = 3, 0 and −9 on the interval (0, 0.3), (0.3, 0.9) and (0.9, 1), respectively.
Since u′ is piecewise constant, we can immediately determine all eigenfunctions as:

φm(x) =


Am,1 sin(

√
3λm x) +Bm,1 cos(

√
3λm x), x ∈ [0, 0.3),

Am,2 sin(
√
ελm x) +Bm,2 cos(

√
ελm x), x ∈ [0.3, 0.9),

Am,3 sin(
√

9λm x) +Bm,3 cos(
√

9λm x), x ∈ [0.9, 1].

(16)

In Fig. 2, we show u together with some of the eigenfunctions from (15). On every subin-
terval, φm has a different frequency determined by the local value of

√
Cλm. In [0.3, 0.9),

the frequency ελm is very small, as ε = 10−4, and φm appears essentially constant. As λm
further increases, the frequency

√
ελm increases as well and oscillations appear. Clearly,

the smaller ε, the more eigenfunctions φm essentially behave as constants wherever u is
essentially constant. We remark that φ1 nearly coincides with u up to a scaling factor.

0 0.2 0.4 0.6 0.8 1
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1.2

1.4

1.6
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u

0 0.2 0.4 0.6 0.8 1
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0.005
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Laplacian: µ ≡ 1

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

x

φ1

AEI: µ from (14)

Figure 3: One-dimensional case. The true smooth profile u (top) and the first eigenfunc-
tion φ1 from (15): µ ≡ 1 (left), and µ as in (14) (right).
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Finally, we consider for u the smooth polynomial profile

u(x) = 1− 89.95x6 + 281.35x5 − 339.51x4 + 199.56x3 − 60.85x2 + 9.40x.

It is shown in Fig 3 together with the first eigenfunction φ1 obtained from (15) either
with µ ≡ 1 or µ as in (14). Again, we observe that the adaptively determined eigen-
function φ1 captures well the main features of u up to a scaling factor, unlike the first
eigenfunction of the Laplacian. To reach a relative error below 1% for the best approxi-
mation with respect to the L2-norm, only the first six eigenfunctions φ1, . . . , φ6 are needed
in the adaptive case. In contrast, the first six eigenfunctions of the Laplacian yield a
seven times larger relative L2-error, which drops below 1% only once thirteen eigenfunc-
tions are included in the approximation; hence, the AE basis better captures the essential
information about u.

3.2 Two-dimensional case

To illustrate the remarkable approximation properties of the AE basis in two space dimen-
sions, we now consider the profile u(x), x = (x1, x2), shown in Fig. 4. Next, we compute u0

from (9) with ε = 10−6 and µ as in (10). In Fig. 5, we observe that u0 matches with
remarkable accuracy the background medium but misses the embedded kite-shaped obsta-
cle. The first eigenfunction φ1 from (11), however, ignores the background and capture
precisely the remaining obstacle. Using u0 and φ1, we expand u as in (12) with K = 1 and
compute its best L2-approximation. Shown in Fig. 5, it is hardly distinguishable from the
true u with well-defined sharp contours and a relative L2-error below 2%.

In contrast, if we repeat the same experiment with µ ≡ 1, we observe in Fig. 5 how u0

indeed matches the boundary values of u but fails to capture any additional features
inside Ω. Similarly, the first eigenfunction of the Laplacian is independent of u(x) and
thus, as expected, carries no information about it. Again, we expand u as in (12) but
now use the first 1000 eigenfunctions of the Laplacian instead. Although the L2 best
approximation with 1,000 Laplacian eigenfunctions now yields a reasonable approximation
of u with 6% relative L2-error, the contours are blurred while small high-frequency ripples
appear due to the well-known Gibbs-phenomenon. These results illustrate the remarkable
accuracy even of but a few eigenfunctions of the AE basis.

Remark 3. For a given profile u, the corresponding AE basis {u0, φ1, . . . , φK} of relatively
small dimension usually yields a remarkably accurate representation of u. At higher eigen-
values λm, however, the (mutually orthogonal) AE basis functions φm become increasingly
oscillatory and no longer carry useful information about u – see Fig. 6. Truncating the
expansion in (12) at a finite value, K, thus effectively builds regularization into the AEI
approach.
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u(x1, x2 = 0.4)

Figure 4: Two-dimensional case. Left: the exact profile u. Right: cross-cut at x2 = 0.4.

Figure 5: Two-dimensional case. Top, from left to right: the background u0 from (9),
the first AE eigenfunction φ1 from (11), the L2 best approximation of u using {u0, φ1}.
Bottom, from left to right: the harmonic u0, the first Laplace eigenfunction φ1, the L2 best
approximation of u using the first 1,000 Laplace eigenfunctions {u0, φ1, . . . , φ1000}.

4 Numerical Results

We shall now illustrate the usefulness and versatility of the AEI method through a series
of numerical experiments. Clearly, the squared velocity u of the medium is now unknown
and we shall attempt to recover it from boundary measurements by solving (2).

First, we compare the adaptive eigenspace representation to a standard grid-based
nodal representation of the control u to demonstrate the resulting significant reduction
in degrees of freedom. Next we add yet another level of adaptivity by solving the auxil-
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Figure 6: First AEI eigenfunction φ1 (left) and last AEI eigenfunction φN (right) on a
201× 201 grid.

Figure 7: Left: true profile u; Right: real part of y` with f` at (0.1, 0.8) and ω = 90

iary elliptic eigenvalue problem with an adaptive finite element method. We also present
numerical experiments that underpin our choices for the background profile u0 and the
varying dimension of VK with increasing frequency. Then, we show that the AE basis
functions φm are highly localized, and hence easily sparsified; thus, the memory require-
ment of the adaptive eigenspace basis is kept to a minimum. Finally, we demonstrate the
robustness of the AEI approach in the presence of noise or missing data and combine it
with the sample average approximation (SAA) approach [14].

In the entire section, we consider the profile u displayed in Fig. 7, which mimics a
layered material with regions of different wave speed. Unless specified otherwise, the
typical parameter settings in the numerical experiments are the following: nine equispaced
Gaussian sources are located along the upper boundary at (0.1, 0.8), . . . , (0.9, 0.8), whereas
the receivers are located on the four lateral boundaries of Ω = (0, 1)×(0, 1). We use second-
order staggered finite differences on a 500×500 Cartesian mesh for the discretization of (2),
(9)-(11). To avoid any inverse crime, the reference solution is computed on a separate finer
mesh, which does not contain the coarser computational mesh.

In the AEI algorithm described in Section 2.3, we always set the initial guess to u(x) ≡

13



1. Starting at the lowest frequency ω = 8, we progressively increase the frequency ω =
10, 12, 14, . . . , 90. The number of eigenfunctions K starts at K = 16 or 32 and increases
linearly with the frequency ω. For the optimization, we use a standard truncated Gauss-
Newton method [13, 25] without extra regularization term. The search direction is by a
truncated Conjugate-Gradient iteration with the Eisenstat-Walker stopping criterion [11,
22, 24, 10] and the step-size by a standard Armijo rule. In the definition of µ in (10), we
always set ε = 10−6.

In the following numerical experiments, we either use finite differences for the discretize-
then-optimize approach, or finite elements for the optimize-then-discretize approach. We
shall not emphasize any particular choice for the discretization as it did not affect the
results.

4.1 Adaptive eigenspace vs. nodal basis

The use of an adaptive eigenspace (AE) basis for the control variable u instead of a standard
grid-based nodal basis is the distinguishing feature of the AEI method. Thus, we now
compare the AE vs. a standard nodal representation for the reconstruction of u. In both
cases, we omit extra Tikhonov-type regularization.

First, we include an additional tenth source located at (0.15, 0.15). The two corre-
sponding reconstructed profiles are shown in Fig. 8. Although both methods recover the
essential features of the medium, the AEI method clearly yields much crisper boundaries
but also higher accuracy inside the various subregions. Moreover, the AEI method achieves
the higher accuracy with fewer than Nu = 360 degrees of freedom vs. Nu = 501, 000 for the
standard nodal representation – see Table 1. Clearly, adding regularization would certainly
remove some of the artifacts in the grid-based approach and thus yield a smoother, but
not necessarily more accurate, reconstruction.

Figure 8: Adaptive eigenspace vs. nodal basis. Full boundary data: reconstruction with a
nodal basis (left) or an AE basis (right).

Next, we repeat the previous experiment but now omit all the receivers at the lower
boundary of Ω together with the tenth source located at (0.15, 0.15). Hence, much less
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Full data Partial data
Basis L2-Error Nu L2-Error Nu

Nodal 15.91% 501,000 30.24% 501,000
AEI 4.65% ≤ 360 4.80% ≤ 360

Table 1: Adaptive eigenspace vs. nodal basis. Relative L2-error and number of degrees of
freedom for u.

information about the lower part of the medium is available in the data. Nevertheless, as
shown in Fig. 9, the AEI method is still able to recover u everywhere inside Ω, unlike the
standard grid-based approach. Indeed, as shown in Table 1, the relative L2-error for the
nodal approach has now almost doubled whereas the error for the AEI method has hardly
changed. Although the AEI method uses much fewer control variables than the grid-based
approach, i.e. Nu = K, the reconstructions appear remarkably accurate and tolerant to
missing data.

Figure 9: Adaptive eigenspace vs. nodal basis. Missing boundary data: reconstruction
with a nodal basis (left) or an AE basis (right).

4.2 Adaptive finite element discretization

The AEI method uses two separate computational meshes, the first for the forward and ad-
joint problems (1), (5) and the second for the auxiliary elliptic eigenvalue problems (9), (11).
So far both meshes were spatially uniform. Here we include yet another level of adaptivity
by adapting the finite element (FE) mesh in the solution of (9) and (11) to better capture
small-scale features of u.

In the AEI Algorithm, mesh adaptation is performed after the while loop in step 3b
and before the update in step 3c. We use a standard a priori FE adaptive mesh strategy
based on the Hessian of the current u [30], which is available in the open source soft-
ware FreeFem++ [16]. Again, the mesh to solve the forward problem (1) and the adjoint
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problem (5) remains fixed and uniform (200 × 200 Cartesian mesh) throughout the en-
tire computation. For the optimization, we now use a truncated Quasi-Newton (BFGS)
method with Wolfe-Powell step-size control.

In Fig. 10, we present the numerical results for the AEI method with and without mesh
adaptation. The reconstruction on a uniform triangular mesh yields 4.86% relative L2-
error, whereas the reconstruction with adaptive FE strategy yields 4.17% relative L2-error,
yet with a ten times smaller number of vertices. Hence, we have not only reduced the error
in the reconstruction with even crisper and smoother edges, but also greatly reduced the
number of degrees of freedom in the control thereby dividing the overall execution time
by 2.5. As shown in Fig. 10, the adapted mesh automatically concentrates the degrees of
freedom along variations of u and is refined only where it is needed.

Figure 10: Adaptive FE discretization. Top: uniform triangular mesh with 30,534 vertices
(left) and recovered u (right). Bottom: with mesh adaptation, final mesh for ω = 90 with
2,783 vertices (left) and recovered u (right).

4.3 Adaptive vs. harmonic background u0

As shown in Section 3.2, the background state u0 defined through (9) allows the AEI
method to accomodate varying boundary data. Here we compare the accuracy in the
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reconstruction for two different choices for u0:

– harmonic: u0 is computed only once at the beginning of the AEI Algorithm by solv-
ing (9) with µ ≡ 1

– adaptive: u0 is recomputed at each frequency step by solving (9) with µ as in (10)

Figure 11: Adaptive vs. harmonic background. Top: without mesh adaptation, har-
monic u0 (left) and adaptive u0 (right). Bottom: with mesh adaptation, harmonic u0 (left)
and adaptive u0 (right).

In Fig. 11, we compare the recovered u for the above two different background states u0,
both either with or without the adaptive mesh strategy from Section 4.2. Clearly, the
adaptive background u0 improves the accuracy of the reconstruction as the relative L2-
errors are approximately halved – see Table 2. Moreover, the artifacts near the exterior
boundary, visible in the harmonic background approach, are now completely absent.

Hence the more accurate background state u0 enables the AEI method to better approx-
imate the remainder u− u0 with the AE basis. Still, the adaptive strategy is also slightly
more expensive since it adaptively recomputes u0 for every frequency. These conclusions
also appear to hold if an adaptive FE strategy is included in the solution of (9), (11), which
in fact seems to have little impact on the overall accuracy here.
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background state u0 harmonic adaptive
without mesh adaptation 10.73% 4.86%
with mesh adaptation 10.90% 4.17%

Table 2: Adaptive vs. harmonic background. Relative L2-error in u.

4.4 Constant vs. adaptive dimension of VK

Our AEI method does not require extra regularization term, such as standard Tikhonov reg-
ularization. Instead it restricts the optimization to the AE subspace VK = span{u0, φ1, . . . , φK},
which effectively acts as inherent regularization of the inverse problem. Here we focus on
the choice of K to understand the regularization effect of the AEI method. To prevent any
intrinsic regularization from a very fine mesh or over-abundant data, we omit the receivers
at the lower boundary of Ω (missing data) and use a coarser 200× 200 Cartesian mesh.

Figure 12: Constant vs. adaptive dimension of VK . Top: for constant K = 100, truncated
full-Newton method with relative L2-error = 14.79% (left) and truncated Gauss-Newton
method with relative L2-error = 7.95% (right). Bottom: for linearly varying K, truncated
full-Newton method with relative L2-error = 6.50% (left) and truncated Gauss-Newton
method with relative L2-error = 6.72% (right).
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First, we keep the number of eigenfunctions constant through the entire frequency
stepping process. In Fig. 12, we present the numerical results for constant K = 100 using
either a truncated full-Newton or Gauss-Newton method. For the full-Newton method, the
regularization is not sufficient to reduce the perturbation at the top of the computational
domain, although the reconstruction is more accurate than with the nodal basis. In con-
trast, for the Gauss-Newton method, the regularization is too strong and the method has
difficulty reconstructing the kite. Similar conclusions hold for other constant values of K,
which underlines the need for K to vary with the frequency ω.

Next, we let K vary linearly with ω, starting at a small number of eigenfunctions
(K = 32) to reduce the risk of landing in a false local minimum. As ω increases during
frequency continuation, we slowly increase K to capture smaller details of the scatterer.
In Fig. 12, both reconstructions are now quite accurate with an L2-error of 6.50% for the
Newton and 6.72% for the Gauss-Newton method, respectively.

Remark 4. The number of eigenfunctions K controls the regularization, similarly to the
parameter α in a standard Tikhonov regularization term αR[u]. For Tikhonov regular-
ization, α is initially large but then gradually decreases to zero as the nonlinear iteration
approaches the desired minimum. In contrast for our AEI approach, K is initially small
but then gradually increases during optimization so that the AE basis includes a higher
number of eigenfunctions for better accuracy.

4.5 Sparse AEI method

The AEI method greatly reduces the number of parameter values by restricting the opti-
mization to the subspace VK = span{u0, φ1, . . . , φK} of much smaller dimension. Since the
discretized version of the eigenvalue problem (11) leads to a sparse, symmetric and posi-
tive definite matrix, the first K eigenfunctions can be efficiently computed via a standard
Lanczos iteration [21]. Still, the storage of the first K eigenfunctions, which are global
functions in Ω, may at first appear quite large, especially in three space dimensions.

In fact, much of the information contained in those eigenfunctions is highly localized
in space and essentially negligible in most of Ω. Again we consider the example described
at the beginning of Section 4. Next, for each eigenfunctions φm, we monitor all entries
smaller than η · ‖φm‖∞ in magnitude. In Fig. 13, we display the percentage of small entries
in φm for each frequency averaged over all m ≤ K; recall that K increases linearly with ω.
As ω increases, the percentage of small entries also increases and quickly saturates above
90% at higher frequencies; hence, more than 90% of all entries are in fact negligible. To
save memory space, we can therefore set to zero all those small values and simply replace
the eigenfunctions φm by their sparse approximations.

In Fig. 14, we show the resulting reconstruction with the sparse AEI approach, where all
small entries in the eigenfunctions below η‖φm‖∞ are set to zero for η = 0.1, 0.05, or 0.01.
Remarkably, the reconstruction hardly changes and, in fact, is even slightly better (L2-
errors below 4%), while saving more than 90% of memory.
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Figure 13: Sparse AEI method. Percentage of entries smaller than η · ‖φm‖∞ in magnitude
averaged over all m ≤ K at each frequency.

Figure 14: Sparse AEI method. Reconstruction of u with sparsified eigenfunctions. Left:
with η = 0.1 (error = 3.83%). Center: η = 0.05 (error = 3.81%). Right: η = 0.01 (error
= 3.90%)

4.6 Noisy data

To illustrate the robustness of the AEI method with respect to noise, we now add multi-
plicative noise to the observations for each observation point xi and frequency ωj:

yobs,δ(xi, ωj) = yobs(xi, ωj)(1 + δ · ξi,j),

where ξi,j are i.i.d. Gaussian random variables with mean zero and variance equal to one.
The level of noise is denoted by δ.
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Again, we consider the parameter settings described at the beginning of Section 4,
but use the adaptive finite element strategy from Section 4.2. In Fig. 15 we present the
reconstruction results for two different levels of noise: for δ = 10% (left) we obtain a
relative L2-error of 4.01% and for δ = 20% (right) we obtain a relative L2-error of 5.22%.
As shown in Fig. 15, the AEI method is still able to reconstruct the profile without any
added regularization and without artifacts due to noise. In fact, at the smaller noise level
δ = 10%, the relative L2-error is even slightly better than that without noise, 4.01% vs.
4.17%; each case, however, leads to (slightly) different meshes and eigenfunctions due to
the adaptive finite element strategy.

Figure 15: Noisy data for varying noise level δ. Left: δ = 10% (L2-error = 4.01%). Right:
δ = 20% (L2-error = 5.22%).

4.7 Sample Average Approximation

As the number of sources Ns in (2) or (6) increases, the cost of computing Ns forward
and adjoint solutions in (1), (5) may become prohibitive. To limit the computational cost
without ignoring any of the available data, we consider the sample average approximation
(SAA) approach from [14], which replaces the sources f` by Nr “super-shots”, Nr � Ns,

Fj =
Ns∑
`=1

ξj` f` , j = 1, . . . , Nr, (17)

where the ξj` are i.i.d. random variables with zero mean and unit variance and correspond-
ing observations

Y obs
j =

Ns∑
`=1

ξj` y
obs
` , j = 1, . . . , Nr. (18)

During frequency stepping, we choose for each ω a different realization of ξj` – here ξj` = ±1
with probability 0.5.
Again, we consider the parameter settings described at the beginning of Section 4, but now
with Ns = 201 Gaussian sources located at (0.1, 0.8), (0.11, 0.8), . . . , (0.89, 0.9), (0.9, 0.8).
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The SAA approach [14] with only a single “super-shot”, Nr = 1, yields the reconstruction
shown in Fig. 16. For comparison, we also display the reconstruction without SAA with a
single source located at (0.5, 0.8). Although the computational cost of both approaches is
identical, the SAA approach yields better accuracy, remarkably so, given that only a single
(“super-shot”) source is used for the approximation.

Figure 16: SAA approach. Reconstruction of u with a single source. Left: without SAA and
with Ns = 1 (10.05% relative error). Right: with a single SAA “super-shot”, i.e. Nr = 1,
from Ns = 201 sources (5.79% relative error). Note that the computational effort is
identical.

5 Concluding remarks

We have presented a nonlinear optimization method for the solution of inverse scat-
tering problems in the frequency domain, when the scattered field is governed by the
Helmholtz equation. Instead of a standard (FD or FE) grid-based representation, the
unknown (squared) sound speed u is projected to the finite-dimensional subspace VK =
span{u0, φ1, . . . , φK} of much smaller dimension. The “background” u0 is determined by
solving (9) whereas the remaining orthonormal basis functions φm are determined by com-
puting the first K eigenfunctions in (11). The time-harmonic inverse medium problem is
formulated as a PDE-constrained optimization problem and solved by an inexact trun-
cated Newton or quasi-Newton iteration. During the optimization process, which includes
frequency continuation, both the basis and the dimension of VK are repeatedly adapted to
the current iterate. The full Adaptive Eigenspace Inversion (AEI) Algorithm is given in
Section 2.3.

For monotonic one-dimensional or layered media, we have proved that our choice for
u0 is in fact optimal. For arbitrary media, our numerical results suggest that it is clearly
superior to a straightforward harmonic extension from the known boundary values. To-
gether with but a few eigenfunctions, the adaptive eigenspace basis yields a remarkably
accurate representation of u. At higher eigenvalues, the eigenfunctions become increasingly
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oscillatory while no longer carrying useful information about u. Hence adapting the di-
mension of the eigenspace basis in (12), effectively builds regularization into the inversion,
so that no additional Tikhonov regularization is needed – see Remark 4. As the frequency
ω increases, smaller scale features of the scatterer become visible and the dimension of VK
thus ought to increase accordingly.

In contrast to a standard grid-based nodal representation, the AEI method uses much
fewer control variables for u. Still the reconstructions are remarkably accurate, display less
artifacts and prove more tolerant to partial or missing data. Moreover, our AEI method
leads to a significant reduction in execution time and proves robust with respect to added
noise. By combining it with the Sample Average Approximation (SAA) approach from [14],
it also efficiently handles large numbers of sources.

Since the discrete version of the eigenvalue problem (11) leads to a sparse, symmetric
and positive definite matrix, the first K eigenfunctions can be efficiently computed via a
standard Lanczos iteration. If finite element mesh adaptation is used for the numerical so-
lution of (11), small-scale features and interfaces are captured with even greater accuracy
in the reconstruction, without increasing the computational effort. Although the eigen-
functions are global, their information content is highly localized in space so that most
entries are in fact negligible.

Our current work involves the extension of the AEI method to multi-parameter inverse
scattering problems [28, 29, 33]. We shall report on those results elsewhere in the near
future.
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