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Abstract (126 words)

Understanding the dynamics of multi-type microbial ecosystems remains a challenge, despite advancing
molecular technologies for diversity resolution within and between hosts. Analytical progress becomes diffi-
cult when modelling realistic levels of community richness, relying on computationally-intensive simulations
and detailed parametrisation. Simplification of dynamics in polymorphic pathogen systems is possible using
aggregation methods and the slow-fast dynamics approach. Here we develop one new such framework, tai-
lored to the epidemiology of an endemic multi-strain pathogen. We apply Goldstone’s idea of slow dynamics
resulting from spontaneously broken symmetries, to study direct interactions in co-colonization, ranging
from competition to facilitation between strains. The slow-fast dynamics approach interpolates between a
neutral and non-neutral model for multi-strain coexistence, and quantifies the exact asymmetries that are
important for the maintenance and stabilisation of diversity.
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Introduction

Interacting systems of structured populations are typically hard to describe. The challenges of representing
hierarchical dynamics apply in multi-species ecological ensembles (Auger, 1983; Coyte et al., 2015), multi-
strain microbial pathogens (Ferguson et al., 2003; Gomes and Medley, 2002; Gupta et al., 1996), and
more generally across ecosystems (Levin et al., 1997). To address these challenges, models have to rely on
simplification, such as aggregation methods, separation of time scales and suitable approximation (Auger
and Poggiale, 1998; De Roos et al., 2008; Kryazhimskiy et al., 2007; Levin, 1992; Levins, 1966; Rossberg and
Farnsworth, 2011). The study of multi-strain pathogens is growing rapidly thanks to molecular advances,
quantifying microbial diversity and host immunological history to unprecedented resolution (Biek et al.,
2015; Gog and Grenfell, 2002; Grenfell et al., 2004). Yet, the principles that govern strain composition,
interactions, and dynamics at the within- and between- host levels remain largely undefined.

Here we report a new analytical framework for endemic multi-strain pathogens, characterized by direct
interactions among strains upon co-infection. A resident microbial strain can decrease or increase the rate
of a secondary strain acquisition for the host, and different strains might exhibit different interaction types
and magnitudes (Faust and Raes, 2012). How does this variation affect global epidemiological dynamics?
We address this question focusing on a parsimoniuous epidemiological model that describes colonization
and co-colonization dynamics by circulating subtypes of such a pathogen. We start by analyzing multi-type
coexistence under symmetric type interactions, and derive the explicit links with the non-symmetric system
using a slow-fast dynamics approach, from singular perturbation theory (Fenichel, 1979; Tychonoff, 1935).

Complex systems, such as multi-strain pathogen systems, typically require a high dimensional descrip-
tion with many degrees of freedom, especially under stochasticity. Yet, their long-term behavior is often of
a low dimensional nature. The main challenge lies in the identification of the dynamically meaningful slow
variables and projection of the effective dynamics in this low dimensional representation (Coifman et al.,
2008; Singer et al., 2009).

Our approach is inspired by Goldstone’s idea of symmetry breaking yielding slow dynamics (Goldstone
et al., 1962), with applications in physics (Golubitsky and Stewart, 2002; Sethna, 2006), and Hubell’s
neutral hypothesis for community assembly processes (Hubbell, 2001). A long-standing debate in ecology
is whether coexistence of different species results from niche adaptation (Gause, 1934), or because of a
balance of neutral processes such as immigration, speciation and extinction (MacArthur, 1967). This
question also applies when studying genetic or antigenic polymorphisms in pathogens (Grenfell et al., 2004;
Gupta and Maiden, 2001; Lipsitch et al., 2009; Lipsitch and O’Hagan, 2007). Most likely, neutral and niche
mechanisms combine to generate coexistence patterns within and between species (Leibold et al., 2004),
and one or the other may dominate depending on the scale of consideration (Adler et al., 2007; Wiegand
et al., 2012). The difficulty lies in disentangling the two.

Here we follow the recent efforts to link these two macroecological theories (Chisholm and Pacala, 2010;
Tilman, 2004). With our study on endemic multi-strain pathogens, we contribute to novel conceptual
unification in this field. We show that neutral dynamics between strains occurs on a fast time-scale, whereas
the non-neutral stabilizing forces act on a slow time-scale, dependent on strain interaction asymmetries.
We quantify exactly which asymmetries matter for multi-strain coexistence, and how overall transmission
intensity affects stabilization of diversity. Together, our results define a new analytical approach to better
understand microbial ecosystems.

Materials and Methods

Slow-fast systems

Separation of dynamics into fast and slow components are ubiquitous in studies of ecological and eco-
evolutionary dynamics (Auger and Poggiale, 1998; Cortez, 2011; Hastings, 2004; Rinaldi and Muratori,
1992; Rinaldi and Scheffer, 2000), and more generally in the evolution of dynamical systems. The approach
relies on a canonical system of equations where the variables change in two (or more) time scales, as follows:

dx

dt
= f(x, y)

dy

dt
= εg(x, y)
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with the small parameter 0 < ε� 1, where f(x, y) and g(x, y) are bounded. In this example, y is the slow
variable and x is the fast one. By taking ε = 0 in this system, we obtain the critical fast system, where the
slow variable may be treated as a constant: y = const. Therefore, one first characterizes x(t) → Φ(y) as
t→ +∞ for some smooth function Φ verifying f(Φ(y), y) = 0. The set (Φ(y), y) is called the slow manifold.

When making the change of time scale τ = εt, one obtains an equivalent slow system:

ε
dx

dτ
= f(x, y)

dy

dτ
= g(x, y)

where by taking ε = 0, we obtain the critical slow dynamics. When reducing to the slow manifold x = Φ(y),
this slow dynamics is defined by:

d

dτ
z(τ) = g(Φ(z), z). (1)

Thus for small ε, in a first time x→ Φ(y) +O(ε), while y remains constant, and in a second time, y follows
the slow dynamics. The precise statement is given by Tychonoff’s theorem (Hoppensteadts, 1966; Lobry and
Sari, 1998, 2005; Tychonoff, 1935). A more geometrical point of view was obtained by Fenichel (Fenichel,
1979) (see also Verhulst (2007) and the references therein for a most recent overview of these methods).
Projection onto the slow manifold is nontrivial, the slow and fast time scales being coupled. Knowledge
of a good parametrisation of such a slow manifold is key to equation-free modelling and computation of
complex multi-scale systems.

Multi-strain model with direct interactions at co-infection

We consider a multi-type pathogen, transmitted via direct contact, following susceptible-infected-susceptible
(SIS) epidemiological dynamics. Examples could include Streptococcus pneumoniae and Haemophilus In-
fluenzae. For generality and analytical convenience, we group the pathogen types in two groups, denoted by
V and N . With a set of ordinary differential equations, we track the proportion of hosts in 6 compartments:
susceptibles, S, hosts colonized by one V type IV , hosts colonized by one N type IN , and co-colonized hosts
IV V , INN , and IV N with two types of each combination, independently of their order of acquisition. We
have: 

d
dtS = µ(1− S)− S(λV + λN ) + γI
d
dtIV = λV S − IV (kV V λV + kV NλN )− (µ+ γ)IV
d
dtIN = λNS − IN (kNV λV + kNNλN )− (µ+ γ)IN
d
dtIV V = kV V λV IV − (µ+ γ)IV V
d
dtINN = kNNλNIN − (µ+ γ)INN
d
dtIV N = kV NλNIV + kNV λV IN − (µ+ γ)IV N ,

(2)

where I = IV + IN + IV V + INN + IV N , and the forces of infection for each sub-group of strains are:
λV = β(IV + IV V + 1

2IV N ) and λN = β(IN + INN + 1
2IV N ).

Because all variables refer to proportions in different classes, the last equation can be omitted using
S + I = 1. Susceptibles are recruited at constant rate µ, equal to the per-capita departure rate. Upon
exposure, a host can become colonized by one V or N type. Single and dual carriers contribute equally to
the force of infection for each group of types, and hosts carrying two pathogen clones transmit either with
equal probability. β denotes the per-capita transmission coefficient, while γ denotes the clearance rate back
to the susceptible class, assuming no immune memory. Single carriers can acquire an additional pathogen
clone at a rate, modified by a relative factor kij , describing the interaction between the resident and the
challenge type upon encounter. Values of kij below 1 correspond to antagonism/competition between types
from group i and j, while kij ≥ 1 correspond to facilitation. All carriage episodes are cleared with equal
efficiency, assuming type-transcending clearance mechanisms.

In this formulation, pathogen diversity is modeled only with a reduced number of - in this case two,
- groupings, assuming equivalence with respect to transmission and clearance rate. Realistic variations
between pathogen types in direct interaction abilities will be studied as dynamic symmetry-breaking per-
turbations to the system (Golubitsky and Stewart, 2002) at the level of groups. A schematic diagram of the
model is given in Figure 1. The model has been recently applied to the context of pneumococcal bacteria
Gjini et al. (2016), focusing on direct serotype competition (Dawid et al., 2007; Riley and Gordon, 1999).
Here we generalize to any interaction between strains, including facilitation (Xavier et al., 2011).
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In the following, we apply the slow-fast dynamics perspective to better understand the time evolution of
such an endemic multi-strain pathogen system. We find a subtle connection between interaction coefficients
among strains in a single host upon co-infection, and useful low-dimensional representations for their
transmission dynamics at the population level. By uncovering a slow-fast dynamic decomposition, directly
related to asymmetric strain interactions, we provide new avenues for theoretical exploration of microbial
competition and facilitation networks.

Results

Neutral model

The simple version of the epidemiological model uses the equivalence assumption for strain interaction at
co-colonization:

kV V = kNN = kV N = kNV = k. (3)

As detailed in Appendices, the neutral system always admits the trivial disease-free equilibrium, stable for
R0 = β

µ+γ < 1, which corresponds to the basic reproduction number of the pathogen (Diekmann et al.,

1990). If R0 > 1 instead, the system has a full curve S0 of neutrally-stable equilibria (see (8)), which is
given by

S0 = {(S, IV (z), IN (z), IV V (z), INN (z), IV N (z)) , z ∈ [−1, 1]} ,
and satisfies

S = 1/R0,

IV (z) + IN (z) = I∗1 (4)

IV V (z) + INN (z) + INV (z) = I∗2 = 1− S − I∗1 .

More specifically,

I∗1 =
R0 − 1

R0(k(R0 − 1) + 1)
and I∗2 =

k(R0 − 1)2

R0(k(R0 − 1) + 1)
,

defining a conservation law for single and dual colonization prevalence. Free variation of z ∈ [−1, 1]
modulates the relative sub-division into type prevalences, and enables hierarchies at the group level. If
R0 > 1 then S0 attracts all trajectories of the dynamical system. Depending on the exact values of R0

and k, single or dual colonization may dominate in the population. Clearly, the neutral model is simple
analytically, but somewhat degenerate: depending on the initial conditions, any point of S0 may be a final
attractor.

Such result stems from the symmetry constraints, related to the population-dynamic neutrality principle
postulated by Hubbell (2001), in which populations can achieve equilibria at arbitrary population sizes,
the requirement being a conservation law for total population size summed over all species. Here, we show
analogously that in an epidemiological system, a conservation law applies to the overall prevalence of single
and dual colonization in the population, which can be freely partitioned among permutable constituent
strains.

The slow-fast dynamics decomposition

Our approach is to take neutrality as a first approximation, to study the effects of deviations from it. Thus,
we consider next the system (2), without the neutral assumption (3), which is biologically more realistic,
but still remains hard to analyze. We investigate the effect of differential interaction coefficients at dual
colonization by two different pathogen types, thus the dynamics of (2) for

kV V ≈ kNN ≈ kV N ≈ kNV . (5)

We denote by k the average within-group interaction coefficient:

k =
1

2
(kV V + kNN ). (6)

Defining ε, in a unique manner, as the Euclidean distance of [kV V , kV N , kNV , kNN ] from [k, k, k, k] in R4:

ε =
√

(kV V − k)2 + (kNN − k)2 + (kV N − k)2 + (kNV − k)2,
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we can rewrite each interaction coefficient of the original system as:

kεij = k + εαij , for i, j ∈ {V,N} and 0 < ε� 1. (7)

In a first approximation (ε = 0), one obtains the neutral model, which we characterized above. If ε > 0
is sufficiently small, in a first time, the dynamics follow the neutral system tending quickly to some point
of S0, and in a second time, the dynamics move slowly on S0. Therefore there are two timescales which are
nontrivially mixed in the system.

Next, we disentagle these two timescales by explicitly finding the fast and the slow variables. Thus,
we are able to compute the slow dynamics, which are described by a single equation, fully determined by
the coefficients αij . By virtue of the Tychonoff theorem (Tychonoff, 1935), we obtain that the long time
behavior of solutions of (2) is asymptotically close to the behavior of solutions of the slow dynamics on S0.

Broken symmetry of interactions: slow manifold

The mathematical derivations for the dynamics for ε 6= 0, are detailed in Supporting Appendices. Here we
report only the main result. We find that two hyper-parameters:

Θ = αV V − αNN +

(
1 +

2

k(R0 − 1)

)
(αNV − αV N )

and
Γ = αNV + αV N ,

govern the asymptotic dynamics of the system for small ε. The epidemiological variables are given by

IV =
1

2
I∗1 (1 + z), IN =

1

2
I∗1 (1− z), IV N =

kR0I
∗
1 I
∗

2
(1− z2) (8)

IV V =
1 + z

2
I∗2 −

kR0I
∗
1 (I∗1 + I∗2 )

4
(1− z2),

INN =
1− z

2
I∗2 −

kR0I
∗
1 (I∗1 + I∗2 )

4
(1− z2),

where z follows the (slow) dynamics

d

dτ
z = A(Θ− Γz)(1− z2), z(0) ∈ [−1, 1], (9)

over the time scale τ = εt. In the above expressions, I∗2 , I
∗
1 and their sum I∗ are derived from the neutral

system, and A is a positive constant.
The possible equilibrium states of (9) are described in Figure 2, depicting stability of the V-N coex-

istence, single stability of either competitive exclusion equilibrium V-only/N-only, or bistability of both
exclusion equilibria separated by an unstable coexistence fixed point. All these asymptotic scenarios are
determined by the magnitudes of the broken symmetries in the group-wise direct interaction coefficients,
as summarized by Θ and Γ. In contrast to the neutral model, the slow dynamics for ε 6= 0 do not display
a global conservation law for single and dual colonization; these may change with z.

Interpretation of Θ and Γ

Our analysis shows that the V-N coexistence steady state, corresponds to the solution z∗ = Θ
Γ , which is

positive when |Θ| < |Γ|, and is stable whenever Γ > 0 (represented by the dark grey region in Figure 2).
Upon substitution of this solution into the original variables, this steady state can be obtained in terms of
the original model parameters. Intuitively, Γ > 0 means a strong exchange between groups while Γ < 0
means a weak exchange between the two groups. This shows that V-N that coexistence is stable if pathogen
subtypes from each group allow co-colonization by the other group easily, and unstable otherwise.

Similarly, the N-only steady state corresponds to the z = −1 solution, while the V-only steady steady
corresponds to the z = 1 solution. These two solutions may be stable or unstable. A scenario of bistability
of the exclusion equilibria (z = ±1) arises for Γ < 0, and |Θ| < |Γ|, where the coexistence solution z∗ = Θ

Γ
is unstable.
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Notice that the slow dynamics depend nontrivially on the basic reproduction number R0, the mean
value of within-group interaction k, and the relative asymmetries in group-wise directed coefficients, given
by the αij . While Γ depends only on the total sum of between-group interaction, Θ is a nonlinear function
of more parameters, including R0 and k, and subtle differences in the α’s.

More specifically, Θ comprises a first term that represents ∆self = αV V − αNN , a measure of how
different the two groups of pathogen types are in relation to self -interaction, plus a term ∆non−self =
αNV − αV N , a measure of how different the two groups of pathogen types are in relation to interaction
with non− self , i.e. the other group. The latter term is weighted by a k- and R0- dependent factor.

As shown in Appendices, the latter factor represents exactly the ratio between dual and single coloniza-
tion (I∗2/I

∗
1 ) in the symmetric system (Eqs.(2), (3)), namely how predominant carriage of two pathogen

clones versus just one, is in the population. It is this general dominance of strain co-occurrence that scales
the relative importance of cross-group interaction differences in the slow dynamics of the complete system.

Approximation error

Since our approximation is derived from a singular perturbation expansion for small deviation from neu-
trality, we expect that convergence of the approximation to the exact solution improves as the perturbation
becomes smaller and is uniform over all time, as our system does not have chaotic or periodic attractors.
Thus, we measure accuracy through the maximum error over all times when approximating 5-dimensional
trajectories (S equation omitted), similar to the approach by Rossberg and Farnsworth (2011), evaluating
aggregation methods for multi-species dynamics. The overall error of our slow-fast approximation is given
by:

E =

√√√√ 5∑
i=1

max
t

(
varapproxi (t)− vari(t)

)2

, (10)

where variable var is indexed to represent IV (t), IN (t), IV V (t), INN (t) and IV N (t). We ran trajectories of
the original and approximated systems starting from the slow manifold at the point z(0) = 0 for a period
of time equal to T = 108. As expected, we find that the error tends to zero as ε tends to zero, i.e. as
the asymmetry in interaction coefficients decreases. Furthermore, the speed of convergence is independent
of R0 or k (Figure 3). This confirms the validity of our approximation, and its robustness to variation in
overall intensity of transmission or interaction strength between types.

Temporal description

The slow-fast decomposition of the epidemiological dynamics of interacting strains allows us to be precise
about the temporal course of system trajectories. Our analysis reveals that first, during a time scale of the
order O(ε ln(1/ε)), the system follows the neutral dynamics from any initial condition and approaches the
line of neutrally-stable equilibria. Subsequently, in a time-scale of the order O(ε) the dynamics follow the
slow manifold, where the stabilizing forces act. Figure 4 illustrates these two time-scales.

Although in our model, we have assumed a constant R0, this does not exclude the possibility that R0

may change or fluctuate over time, for example due to weather conditions or antibiotic use. Indeed, from
the definition of Θ and the equilibria on the slow manifold (Figure 2), we can see that under fixed strain
interaction parameters, changes in R0 alone can be sufficient to alter the pattern of dominance among
groups of strains at the stable coexistence equilibrium, or even shift the system from stable coexistence to
an exclusion state. For such changes in R0 to effectively impact the slow dynamics, a necessary requirement
is that they must occur over a time scale slower than O(ε).

Discussion

Microbial pathogens display diversity on many levels, including genetic and antigenic polymorphisms,
and thus are bound to be resilient in nature. Understanding the ecology underpinning this diversity is
crucial to explain how these systems might respond to human interventions, such as vaccines and drugs
(Colijn and Cohen, 2015; Lipsitch, 1997; Martcheva et al., 2008), and how they might spontaneously evolve
(Dercole et al., 2002). We therefore must seek for comprehensive models that can provide mathematical
and ecological insight into the short- and long- term dynamics of such systems. On one hand, computer
simulations may offer quick illustrations of hypotheses and investigation of scenarios. Yet, they cannot
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provide a deep understanding, required for successful control. Given the complexity and nonlinearity of
such multi-strain systems, approximations are key to maximimize insight and explanatory power at minimal
complexity.

In this paper we have presented a new analytical approach, based on a slow-fast decomposition for the
dynamics of interacting subtypes at the epidemiological level. While the neutral model, based on sym-
metric interactions at co-colonization, provides the template of neutrally-stable equilibria for coexistence
reachable on a fast time scale, the non-neutral model, allowing for asymmetric interactions, captures the
slow-stabilizing dynamics. Proponents of the neutral theory have recognized that trophically similar species
in communities might be ecologically equivalent, at least to a first approximation (Chave, 2004; Hubbell,
2006). Although the notion that species differences promote coexistence, - by inducing stabilizing effects at
the community level - is generally accepted, it is still unclear which differences matter for coexistence, or
whether differences are necessarily needed for coexistence. This debate is ongoing for almost all pathogen
systems, most-prominently multi-strain pathogens such as the bacteria pneumococci (Lipsitch et al., 2009),
dengue viruses (Mier-y Teran-Romero et al., 2013) or Human papillomaviruses (Murall et al., 2014).

Here, focusing on direct interaction at co-colonization between strains as our trait of interest, we have ad-
dressed exactly the question of which differences matter at the group level, summarizing the slow stabilizing
forces with only two hyper-parameters Γ and Θ. In these hyper-parameters, the asymmetries in intra-group
and inter-group interactions at co-colonization combine with type-transcending basic reproduction number
R0 and average interaction coefficient k. The net result is that effective multi-strain coexistence at the level
of groups occurs only within certain regions of parameter space, depending on the corresponding Γ and Θ.

This slow-fast dynamics approach can be applied to study various perturbations of the system and its
relaxation time back to equilibrium, or to consider the effects of globally-changing trends such as a time-
varying R0. For instance, if seasonality drives a different transmission intensity in winter and in summer,
depending on the amplitude of the difference in R0, we may expect not only overall endemic prevalence to
fluctuate, but also different dominance patterns between pathogen types to arise in the two periods, despite
their underlying interaction parameters remaining constant. This influence of R0 on the slow component
of the dynamics that we have characterized here, highlights that knowledge of the asymmetry in strain
interactions is critical to understand how type-specific prevalences may change purely due to the effect
of changes in global transmission. Time-varying R0 may occur alone or in conjunction with type-specific
interventions such as multivalent vaccines. Thus, it is possible that parallel changes in overall transmission
of a multi-strain pathogen, during a targeted vaccination programme, might boost the reduction of vaccine
subtypes, or counteract it, depending on the underlying interaction strengths between vaccine and non-
vaccine strains.

In theoretical ecology, much attention has been paid to the shape of competition kernels as a major
determinant of the equilibrium distributions of species along the phenotype space and their demographic
stability (Leimar et al., 2013; Scheffer and van Nes, 2006). The role of transient dynamics for persistence
on ecological time scales has also been increasingly appreciated, especially in cyclic systems (Hastings,
2001). As the study of community ecology is gaining momentum in the microbiome era (Bucci and Xavier,
2014; Pepper and Rosenfeld, 2012), elucidating the dynamical components and consequences of inter- and
intra-species interactions is becoming increasingly important. Interactions within microbial communities
occur in a range of habitats as diverse as the gut (Flint et al., 2007), nasopharynx (Bosch et al., 2013)
and the skin (Grice and Segre, 2011). Although some studies have addressed the magnitude of interaction
strengths (McCann et al., 1998) and the diversity of interaction types (Mougi and Kondoh, 2012) for
ecological community stability, theoretical advances in this field are still much needed. In this context,
approaches similar to the one adopted here, based on a slow-fast dynamics decomposition, can prove useful
to better understand within-host processes in health and disease, also mediated by interactions between
micro-organisms.

In this study, extending and generalizing previous work (Gjini et al., 2016), we have detailed how
asymmetric direct interaction (competition/facilitation) between clones at the epidemiological level acts as
an alternative route to stabilization of polymorphism in endemic pathogen systems, with the neutral model
as a first-order approximation. When pathogen sub-types are grouped in two sets, interaction parameters
that describe each group can vary with type composition. While the symmetric system accommodates a
family of neutrally-stable steady states, realistic small perturbations drive slow stabilizing dynamics nearby,
that we have fully characterized.

Although we have considered groups of pathogen subtypes equivalent in all other life-history traits, e.g.
transmission rates, in the future, a more realistic scenario could allow for some variation. This would intro-
duce another layer of varibility between the two groups, namely in their ability to colonize susceptible hosts,
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besides simply their ability to co-colonize. Such transmission rate differential would alter the landscape
of steady-states, potentially allowing for multistability of alternative coexistence equilibria. Furthermore,
the magnitude of such differential (RV0 /R

N
0 ), would reshape the slow-fast dynamics decomposition that we

obtained here, possibly enabling a third relevant time-scale to emerge. Such theoretical scenario could be
relevant in studies of antibiotic resistance dynamics, where strains may vary in their direct competitive
abilities, as well as in their fitness cost of resistance (e.g. lower transmission rate).

Our study delineates the path for further inquiry into co-variation between group-specific R0 and in-
teraction strengths kij , likely to drive new coexistence patterns and eco-evolutionary dynamics. Feedbacks
arising from asymmetrical competition have been shown to lead to evolutionary reversals in regimes of eco-
logical bistability (Dercole et al., 2002), where the evolution of traits modifying competitive performance
follows selection forces that switch direction whenever the population alternates between a high and low
density equilibrium. Extending our model to group-specific R0 could allow for multiple coexistence equilib-
ria, such that the multi-strain system could rest in a state of high prevalence or in a state of low prevalence
under the exact same conditions. The slow-fast epidemiological and evolutionary dynamics pertinent to
these cases remain to be addressed in future studies.

Finally, our model considers an ecological scenario with only two sets of pathogen subtypes, (n = 2)
characterized by net pairwise interactions. The next obvious challenge is to extend the slow-fast dynamic
decomposition to a higher n. Will multiple nested slow-fast dynamics emerge? In practice, we might
always want to restrict analysis to a relatively small set of functionally relevant groups of types, defined
by taxonomic or antigenic properties, or practical purposes such as types targeted by a vaccine vs. non-
target ones. Thus, an explicit resolution at the level of individual types may not strictly be needed. Yet,
generalising our framework to a larger number of competing groups of pathogen subtypes is an exciting
avenue for the future, and the basic setup for slow-fast dynamic decomposition that we develop here will
provide a useful foundation.
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Figure 1: Model diagram. A) Pathogen strains grouped in two sets, V and N , characterized by within-group and
between-group interaction. B) SIS structure with single and dual colonization. The black arrows refer
to λV , λN . The gray arrows refer to altered acquisition of a secondary clone kijλi. The dashed arrows
depict clearance.

Figure 2: Graphical summary of the system equilibria for multi-strain dynamics on the slow manifold described

by Eq.(9), as a function of the hyper-parameters Θ = αV V − αNN +

(
1 +

2

k(R0 − 1)

)
(αNV − αV N ) and

Γ = αNV + αV N .
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Figure 3: As the asymmetries among interaction coefficients vanish ε→ 0, the error of the slow-fast approximation
tends to zero. The different lines depict different random combinations of R0 and k, in the range R0 ∈ (1, 8]
and k ∈ (0, 1], and random choice of αij ∈ (−1, 1).

Figure 4: Convergence to the equilibrium in two timescales. The system trajectories (black arrows) reach an ε
neighborhood of the slow manifold (in blue) in a time of the order O(ε ln(1/ε)). Once in this neighborhood,
the trajectories stay ε-close to the slow manifold and follow the slow dynamics, taking a time of order
O(ε) to reach (more precisly, to go exponentially close to) the equilibria. Left panel: single colonization
variables. Right panel: dual colonization variables.
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Online Supporting Appendices

for A slow-fast dynamic decomposition links neutral and non-neutral coexistence in inter-
acting multi-strain pathogens, by Erida Gjini and Sten Madec

A An equivalent representation by change of variables

The first step is to write the original system in an equivalent slow-fast form allowing the use of singular
perturbation theory. For this, it is convenient to adopt the following change of variables:

I1 := IV + IN , I := I1 + IV V + INN + IV N

and
J1 := IV − IN , J = IV − IN + IV V − INN .

With these notations, one gets λV = β
2 (I +J) and λN = β

2 (I −J). With these variables and kij = k+ εαij
for i, j ∈ {N,V }, the system reads:

d
dtS = m(1− S)− βSI
d
dtI = βSI −mI
d
dtI1 = βSI −mI1 − βkII1 + εβ4 g1(I, I1, J, J1)
d
dtJ = βSJ −mJ + kβ

2 (I1J − J1I) + εβ4 g2(I, I1, J, J1)
d
dtJ1 = βSJ −mJ1 − kβJ1I + εβ4 g3(I, I1, J, J1)
d
dtIV N = −mIV N + kβ

2 (I1I − J1J) + εβ4 g4(I, I1, J, J1)

(11)

Where m = γ + µ and the functions gk are explicit quadratic functions of the variables I, I1, J and J1 and
of the parameters αij (see Appendix E).
The main aim for this change of variables arises from the following two facts about the system (11): i)
The system is triangular by (three) blocks : the dynamics of (S, I) depend only on (S, I), the dynamics of
(I1, J, J1) do not depend on IV N . ii) The dynamics of the first block (S, I) do not depend on ε.

B The explicit slow-fast system

The point ii) above ensures that (S, I) tends to

(S∗, I∗) =

(
1

R0
, 1− 1

R0

)
as t→ +∞ and uniformly in ε. Hence, without loss of generality, one may suppose that S = S∗ and I = I∗

and we note
g∗i (J, J1) = gi(I

∗, I∗1 , J, J1).

Moreover, since the dynamics of IV N does not have any effect on the dynamics of the variables (I1, J, J1),
we may reduce our analysis to the system of the block (I1, J, J1). Finally, since we are interested only on
the approximation of the order 1 in ε, we write I1(t) = I∗1 + εx(t) where I∗1 is the stationary solution of the
equation of I1 for ε = 0, that is

I∗1 =
βS∗I∗

m+ βkI∗
=

(R0 − 1)

R0 (1 + k(R0 − 1))
.

We will also denote the stationary solution of I2 = I − I1 for ε = 0 by

I∗2 = I∗ − I∗1 =
kβ(I∗)2

m+ kβI∗
=

k(R0 − 1)2

R0(1 + k(R0 − 1))
.

Using these notations, we focus on the system
d
dtx = −(m+ βkI∗)x+ β

4 g
∗
0(J, J1) +O(ε)

d
dt

(
J
J1

)
= A

(
J
J1

)
+ ε

2kβx

(
1 0
0 0

)(
J
J1

)
+ εβ4

(
g∗1(J, J1)
g∗2(J, J1)

)
+O(ε2)

(12)
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where the linear part of the dynamic of (J, J1) is given by the matrix

A =

(
1
2kβI

∗
1 − 1

2kβI
∗

m −(kβI∗ +m)

)
.

The system (12) is not yet written on a slow-fast form. However, the order 0 terms of the dynamics of
(J, J1)t are linear, and independent of x. This implies that the slow and fast directions can be computed
by a simple spectral analysis of the matrix A. The matrix A has two real eigenvalues : 0 and −µ = tr(A) =
1
2kβI

∗
1 − (kβI∗+m) < 0. Denoting Vµ = (I∗2 , 2I

∗)t and V0 = (I∗, I∗1 )t the two corresponding eingenvectors,
we see that the component y(t) of (J(t), J1(t))t in the direction of Vµ goes exponentially fast to zero,
while the component z(t) of (J(t), J1(t))t in the direction of V0 varies very slowly. Hence, Vµ and V0 give
respectively the fast and the slow directions. The new variables y(t) and z(t) are obtained explicitly from
J(t) = I∗2y(t) + I∗z(t) and J1(t) = 2I∗y(t) + I∗1 z(t). This leads to

z = a
J

I
+ (1− a)

J1

I1

with a = 2I2

2I2−I2I1 ∈ [0, 1]. Since J/I and J1/I1 both belong to (−1, 1), we get z ∈ (−1, 1). With these new
variables, one obtains the explicit slow-fast system:

d
dtx = −(m+ βkI∗)x+ β

4 f0(y, z) +O(ε)
d
dty = −µy +O(ε)
d
dtz = ε

(
f2(x, y, z) +O(ε)

) (13)

where f0(y, z) = g∗0
(
I∗2y + I∗z, 2I∗y + I∗1 z

)
and f2 may be computed explicitly. Now, we can apply the

Tychonov’s Theorem. This is done in two steps: i) First we show that the fast dynamics of the fast variables
x and y goes exponentially fast in time to a (slow) manifold parametrized by the slow variable z. ii) Second,
we describe the slow dynamics of z while (x, y) belong to this slow manifold.

C Fast dynamics: the Neutral system

Taking ε = 0 in (13), we obtain the system describing the fast dynamics
d
dtx = −(m+ βkI∗)x+ β

4 f0(y, z)
d
dty = −µy
d
dtz = 0

(14)

It is clear that any solution x, y, z tends to Φ(z) = (x∗(z), 0, z) where z = z(0) and x∗(z) = βf0(0,z)
4(m+βkI∗) .

Remark that, returning to the original variables, the system (14) describes the dynamics of the system (12)
for ε = 0. This system matches exactly the neutral dynamics: that is the system (2) with kV V = kNN =
kNV = kV N = k (Eq. (5)). More precisely, if ε = 0 in (12), it is clear that when R0 > 1,

(S(t), I(t), I1(t)) −→
t→+∞

(S∗, I∗, I∗1 )

Moreover, from y → 0 in (14) we deduce J → I∗1 z which implies

IV (t) =
1

2
(I1(t) + J1(t)) −→

t→+∞

1

2
I∗1 (1 + z)

and

IN (t) =
1

2
(I1(t)− J1(t)) −→

t→+∞

1

2
I∗1 (1− z).

Besides, we have J(t)→ I∗z, so from the last equation of (12), we get

IV N (t)→ kβI∗1 I
∗

2m
(1− z2).

Finally, since IV V = I2(t) + J(t)− J1(t)− IV N (t), we obtain

IV V (t) −→
t→+∞

I∗2
2

(1 + z)− kβI∗1 I
∗

2m
(1− z2)

and similarly

INN (t) −→
t→+∞

I∗2
2

(1− z)− kβI∗1 I
∗

2m
(1− z2).
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D Slow dynamics: the Non-neutral system

If 0 < ε � 1, the parameter z is not free, but varies deterministically very slowly. Thus, what remains to
compute are the slow dynamics of z. To do so, we define the slow time-scale τ = εt. Plugging this in (13),
we obtain  ε ddτ x = −(m+ βkI∗)x+ β

4 f0(y, z) +O(ε)
ε ddτ y = −µy +O(ε)
d
dτ z = f2(x, y, z) +O(ε)

(15)

Taking ε = 0 in (15) yields  0 = −(m+ βkI∗1 )x+ β
4 f0(y, z)

0 = −µy
d
dτ z = f2(x, y, z)

(16)

The manifold Φ(z) = (x∗(z), 0, z) is invariant for (16). The dynamics of z along this manifold are given by
the slow equation

d

dτ
z = f2(x∗(z), 0, z)

Replacing f2 and x∗ by their expressions, we obtain:

d

dτ
z = A(Θ− Γz)(1− z2), (17)

where we have

A =
βI∗I∗1 I

∗
2

8(I∗)2 − 4I∗1 I
∗
2

,

Γ = αV N + αNV

and

Θ = αV V − αNN +

(
1 + 2

I∗1
I∗2

)
(αNV − αV N ).

E Details of the mathematical derivations

E.1 Explicit functions in system (11)

In the system (11), using the fact that αV V + αNN = 0, the functions gk are given explicitly by :

g0(I, I1, J, J1) =− I1I(αNV + αV N )

− I1J(αV V − αNN + αNV − αV N )

− J1I(αV V − αNN − αNV + αV N )

+ J1J(αNV + αV N )

g1(I, I1, J, J1) = + I1I(αNV − αV N )

+ I1J(αNV + αV N )

− J1I(αNV + αV N )

− J1J(αNV − αV N )

g2(I, I1, J, J1) = + I1I(αNN − αV V + αNV − αV N )

+ I1J(αV N + αNV )

− J1I(αV N + αNV )

− J1J(αV V − αNN + αNV − αV N )
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g3(I, I1, J, J1) =− I1I(αNV + αV N )

+ I1J(αNV − αV N )

− J1I(αNV − αV N )

− J1J(αV N + αNV )

E.2 Details of the computation of the slow-fast form (13)

The explicit slow-fast form is given by making the following linear change of variables in the system (11):(
J(t)
J1(t)

)
= P

(
y(t)
z(t)

)
where P =

(
I∗2 I∗

2I∗ I∗1

)
.

Thus, we obtain

d

dt

(
y
z

)
= P−1 d

dt

(
J
J1

)
= P−1AP

(
y
z

)
+
ε

2
kβxP−1

(
1 0
0 0

)
P

(
y
z

)
+
ε

4
βP−1

(
g∗1(I∗2y + I∗z, I∗y + I∗1 z)
g∗2(I∗2y + I∗z, I∗y + I∗1 z)

)
+O(ε2).

From the very definition of P , we get the following:

P−1AP =

(
−µ 0
0 0

)
.

Straightforward calculations give:

P−1

(
1 0
0 0

)
P =

1

det(P )

(
I∗1 I
∗
2 I∗I∗1

−2I∗I∗2 −2(I∗)2

)
P−1

(
g∗1(I∗2y + I∗z, I∗y + I∗1 z)
g∗2(I∗2y + I∗z, I∗y + I∗1 z)

)
=

1

det(P )

(
υ(y, z)
γ(y, z)

)
,

where υ and γ are two polynomials of y and z of degree 2, and may easily be computed using the definitions
of the functions g∗i and of the matrix P . Thus, denoting

f2(x, y, z) = − kβx

det(P )

[
I∗I∗2y + (I∗)2z

]
+
β

4
γ(y, z), (18)

we obtain the system (13).

E.3 Explicit computation of the slow dynamics equation

Denote A = αV V − αNN , B = αNV − αV N and Γ = αV N + αNV . From y = 0, we deduce J = I∗z and
J1 = I∗1 z which provides

γ(0, z) =
I∗I∗1 I

∗
2

det(P )

(
(B −A)− z2(B +A)− 2

I∗

I∗2
B(1− z2)

)
.

and

x∗(z) =
I∗1 I
∗
2

4kI∗
(
γ(1− z2) + 2Az

)
.

Plugging these two expressions into (18) and remarking that det(P ) < 0, yields the final expression

f2(x∗(z), 0, z) =
βI∗I∗1 I

∗
2

4 det(P )

(
Γz + (B −A)− 2

I∗

I∗2
B

)
(1− z2)

=
βI∗I∗1 I

∗
2

4|det(P )|

(
A+B(1 +

I∗1
I∗2

)− Γz

)
(1− z2).
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