

Correction: Estimating leaf bulk density distribution in a tree canopy using terrestrial LiDAR and a straightforward calibration procedure

François Pimont, Jean-Luc Dupuy, Eric Rigolot, Vincent Prat, Alexandre Piboule

▶ To cite this version:

François Pimont, Jean-Luc Dupuy, Eric Rigolot, Vincent Prat, Alexandre Piboule. Correction: Estimating leaf bulk density distribution in a tree canopy using terrestrial LiDAR and a straightforward calibration procedure. Remote Sensing, 2016, 8 (1), pp.64. 10.3390/rs8010064 . hal-01342380

HAL Id: hal-01342380 https://hal.science/hal-01342380v1

Submitted on 27 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Correction

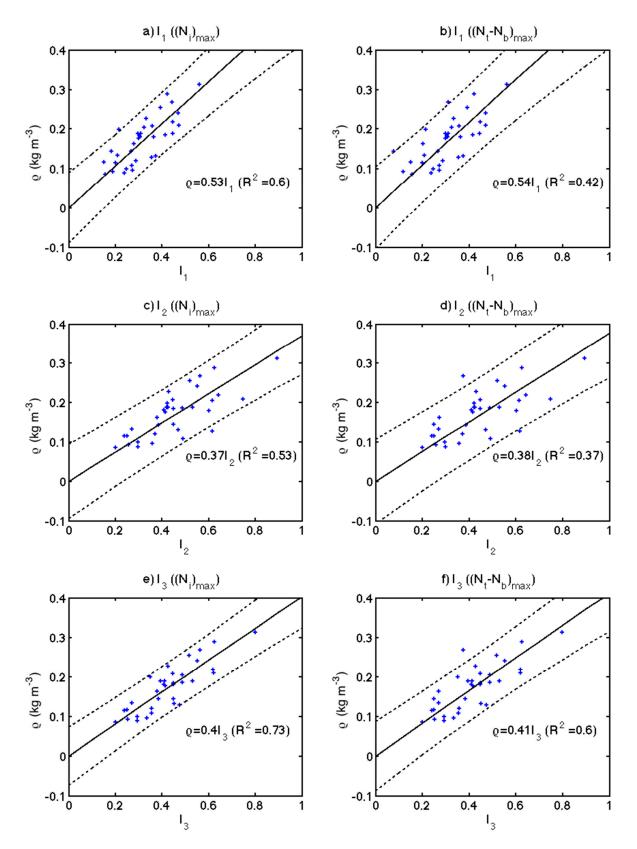
Correction: Pimont, F. *et al.* Estimating Leaf Bulk Density Distribution in a Tree Canopy Using Terrestrial LiDAR and a Straightforward Calibration Procedure. *Remote Sens.* 2015, 7(6), 7995-8018

François Pimont^{1,*}, Jean-Luc Dupuy¹, Eric Rigolot¹, Vincent Prat¹ and Alexandre Piboule²

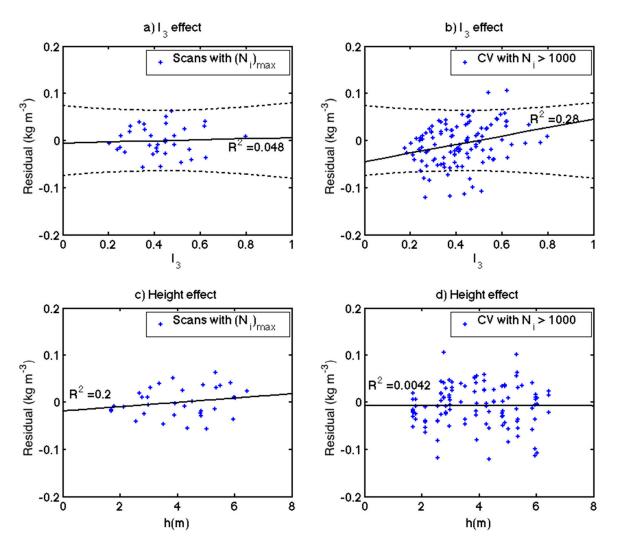
Received: 5 January 2016; Accepted: 8 January 2016; Published: 14 January 2016 Academic Editor: Prasad S. Thenkabail

- ¹ INRA, UR 629, Ecologie des Forêts Méditerranéennes, Domaine Saint Paul, Site Agroparc, F-84914 Avignon Cedex 9, France; jean-luc.dupuy@avignon.inra.fr (J.-L.D.); eric.rigolot@avignon.inra.fr (E.R.); vincent.prat84@gmail.com (V.P.)
- ² ONF, Département RDI-Pôle Nancy 11 rue de l'île de Corse 54000 Nancy, France; alexandre.piboule@onf.fr
- * Correspondence; francois.pimont@avignon.inra.fr; Tel.: +33-432-722-947; Fax: +33-432-722-902

After publication of the research paper [1] an error during the data analysis process was recognized. In the Model Calibration Section 3.2, the indices I_1 , I_2 and I_3 were accidentally divided by the volume of calibration volume, $v = 4/3\pi 0.35^3 = 0.180$ m³.


Regressions for calibration and confidence intervals were re-computed based on the correct indices, and the corresponding tables and figures of Section 3.2 are presented in the same order as the paper in the following Table 1 and Figures 1 and 2. In comparison to the originally stated values the calibration parameters and standard errors were simply multiplied by 1/v, whereas R² values were not modified, so that the statements of the section remain correct.

In the Model Application and Evaluation Section 3.3, the same 1/v factor was initially used in the computation of indices at plot scale as in the calibration, so that the mistake has no consequence on the results presented at plot scale. Consequently, the statements, figures and tables in the rest of the document are correct.


To summarize, the error was limited to a factor 1/v in calibration coefficients and standard errors. We apologize for any inconvenience this has caused.

Index I	Element Distribution	Criteria	Calibration Parameter	Standard Error	R ²	R ² (on CV with Ni>1000)
I_1	Spherical	(N _i) _{max}	0.534	0.0194	0.60	-0.19
I_1	Spherical	$(N_t - N_b)_{max}$	0.542	0.0239	0.42	-0.16
I ₂	Spherical	(N _i) _{max}	0.370	0.0145	0.53	0.34
I ₂	Spherical	$(N_t - N_b)_{max}$	0.376	0.0172	0.37	0.36
I_3	Spherical	(N _i) _{max}	0.403	0.0120	0.73	0.45
I_3	Spherical	$(N_t - N_b)_{max}$	0.412	0.0149	0.60	0.45
I ₃	Plagiophile	(N _i) _{max}	0.427	0.0122	0.74	0.32
I ₃	Uniform	(N _i) _{max}	0.432	0.0125	0.74	0.29
I ₃	Erectophile	(N _i) _{max}	0.380	0.0137	0.60	0.36
I ₃	Planophile	(N _i) _{max}	0.426	0.0220	0.22	-0.78

Table 1. Correction of Table 3 in [1]. Bulk density model characteristics.

Figure 1. Correction of Figure 6 in [1]. Calibration of indices I_1 (**a**,**b**), I_2 (**c**,**d**), I_3 (**e**,**f**) against leaf bulk densities in 35 CVs. Left figures (**a**, **c** and **e**) used the largest number of intercepted beams in the CV for scan selection (N_i)_{max}; Right figures (**b**, **d** and **f**) used the largest number of incident beams on the CV for scan selection (N_t - N_t)_{max}. Dashed lines are 95% confidence interval.

Figure 2. Correction of Figure 7 [1]. Analysis of residuals of the model based on I_3 and the $(N_i)_{max}$. (a) function of I_3 on the $(N_i)_{max}$ data set (b) function of I_3 on the $N_i > 1000$ data set (c) function of calibration volume heights on the $(N_i)_{max}$ data set (d) function of calibration volume heights on the $N_i > 1000$ data set.

Reference

 Pimont, F.; Dupuy, J.-L.; Rigolot, E.; Prat, V.; Piboule, A. Estimating leaf bulk density distribution in a tree canopy using terrestrial LiDAR and a straightforward calibration procedure. *Remote Sens.* 2015, 7, 7995–8018.
[CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).