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Optimal Trajectory Planning for Autonomous Driving Integrating Logical
Constraints: A MIQP Perspective

Xiangjun Qian1 Florent Altché1,3 Philipp Bender2 Christoph Stiller2 Arnaud de La Fortelle1

Abstract— This paper considers the problem of optimal
trajectory generation for autonomous driving under both con-
tinuous and logical constraints. Classical approaches based on
continuous optimization formulate the trajectory generation
problem as a nonlinear program, in which vehicle dynamics
and obstacle avoidance requirements are enforced as nonlin-
ear equality and inequality constraints. In general, gradient-
based optimization methods are then used to find the optimal
trajectory. However, these methods are ill-suited for logical
constraints such as those raised by traffic rules, presence of
obstacles and, more generally, to the existence of multiple
maneuver variants. We propose a new formulation of the
trajectory planning problem as a Mixed-Integer Quadratic Pro-
gram. This formulation can be solved effectively using widely
available solvers, and the resulting trajectory is guaranteed
to be globally optimal. We apply our framework to several
scenarios that are still widely considered as challenging for
autonomous driving, such as obstacle avoidance with multiple
maneuver choices, overtaking with oncoming traffic or optimal
lane-change decision making. Simulation results demonstrate
the effectiveness of our approach and its real-time applicability.

I. INTRODUCTION

Autonomous driving has been gaining impetus in the last
few years, thanks to its foreseen potential of increasing traffic
efficiency and reducing the number of road accidents. Recent
studies suggest that up to 50% of vehicles may be automated
by 2030 [1].

A challenging research task for autonomous driving is
to generate optimal trajectories for certain criteria such
as comfort or energy efficiency, while satisfying various
constraints arising both from traffic rules and operational
limits of the vehicles, some of them being highly specific
to the context of driving. A large number of approaches
for the motion planning or trajectory planning problem can
be found in the literature [2], among which one important
category is the sampling-based methods. These methods [3]–
[5] typically generate a large set of candidate trajectories
by deterministically or stochastically sampling a state space,
before executing the best solution among those candidates.
The optimality of the resulting trajectory relies on generating
a high number of samples, which may not allow real-time
applications.
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Recently, new approaches based on model predictive con-
trol (MPC) [6]–[8] have attracted increased attention due to
their ability to systematically handle system constraints and
quickly find the optimal trajectory. MPC-based approaches
rely on iteratively solving a constrained, finite horizon opti-
mal control problem generally using nonlinear optimization
techniques. These approaches are intrinsically more efficient
than sampling-based ones in finding optimal trajectories as
they exploit useful information like gradient fields to orient
the search of optimal trajectories. Examples of real-time
implementations of these methods on actual vehicles can be
found in [6], [7], [9].

Even though MPC-based methods have yielded good re-
sults for problems with continuous constraints, we argue that
there are constraints that are intrinsically logical, in that they
are naturally formulated as logical propositions. First, on-
road driving is by nature highly constrained by traffic rules
and expected driving behaviors, which can be represented
naturally as logical propositions, for instance:

(R.1) A vehicle must slow down when approaching a
speed bump.

(R.2) A vehicle can only overtake from the left side.
(R.3) A vehicle needs to be on the exit lane before exiting

on the highway.
Moreover, driving generally involves discrete decisions

between multiple maneuver variants which makes trajectory
planning combinatorial in nature [10], [11]. Indeed, it has
been shown that each maneuver variant can be mapped to
a unique homotopy class of trajectories [10], [11]. It is
generally straightforward to describe these homotopy classes
using logical propositions. For example, an obstacle in the
middle of the road brings two distinct maneuver choices, as
follows:

(R.4) A vehicle should avoid an obstacle, either in a
clockwise or in a counterclockwise manner.

By nature, sampling-based approaches can accommodate
logical constraints. However, as stated before, we can only
get sub-optimal trajectories even with a large number of
samples. Most current MPC-based approaches are ill-suited
to take these logical rules into account, as most of them
require all constraints to be continuous and differentiable.
Moreover, most continuous solvers use local, gradient-based
optimization methods which can be trapped in a local opti-
mum inside a certain homotopy class. Some heuristics have
been proposed to approximate logical constraints by nonlin-
ear functions [7], [9], [10] and to initialize the algorithm in
a homotopy class that is likely to be the best one [7], but
they provide no guarantee regarding the global optimality of



the generated trajectory.
A possible way of handling logical constraints is to

formulate the problem as a Mixed-Integer Programming
(MIP) problem. General MIP problems are hard to solve,
but efficient algorithms exist for special instances of MIP,
notably Mixed-Integer Linear Programming (MILP) and
Mixed-Integer Quadratic Programming (MIQP). Both have
successfully been used for Unmanned Aerial Vehicle (UAV)
trajectory planning [12], [13] and multi-vehicle collision
avoidance problem [14]. MILP methods have also been used
to design automatic lane change controllers that are proposed
in [15], [16], but they require a simplified vehicle model. To
the best of our knowledge, an efficient MIP formulation using
realistic vehicle dynamics and capable of handling multiple
on-road driving scenarios is not yet available.

The major contribution of this paper is to propose a novel
approach for the trajectory generation problem using Mixed
Integer Quadratic Programming. This approach allows to
seamlessly treat continuous and logical constraints. Further-
more, we apply our framework to several situations which are
still widely recognized as challenging for autonomous driv-
ing, for instance obstacle avoidance, overtaking in presence
of oncoming traffic or optimal lane-change decision making.
We demonstrate that our method can intuitively handle these
problems and generate globally optimum trajectories.

II. OPTIMAL TRAJECTORY GENERATION AS MIQP

This section proposes a MIQP formulation for the problem
of generating optimal trajectories for autonomous driving.
We consider that the ego vehicle is driving on a road with
lane markings. The ego vehicle uses a Model Predictive
Control (MPC) scheme to perform trajectory planning, in
which the planned trajectory is updated in successive stages.
However, in this paper, we only discuss in detail a single
MPC stage. We assume that the road curvature is sufficiently
small to consider the road as straight within the horizon of
one MPC stage, so that we can model the road in a Cartesian
frame (x, y) with x the longitudinal direction of the road and
y the lateral direction.

A. Vehicle dynamics and operating constraints

The ego vehicle is modeled as a third-order point-mass
system, with state x and control vector u defined as

x(t) = [x(t), vx(t), ax(t), y(t), vy(t), ay(t)]
T ,

u(t) = [jx(t), jy(t)]
T

where x and y denote longitudinal and lateral position in
the inertial frame, v the speed and a the acceleration, with
subscript x or y respectively indicating their longitudinal and
lateral components. The vehicle dynamics are ruled by the
following differential equation:

ẋ(t) =
[
A 0
0 A

]
x(t) +

[
B 0
0 B

]
u(t),

A =

0 1 0
0 0 1
0 0 0

 , B =

00
1

 . (1)

For practical purposes, we assume that the control u is
a piecewise constant function with a time step of τ . The
discretized vehicle dynamics can then be rewritten as

x(k + 1) =

[
Ad 0
0 Ad

]
x(k) +

[
Bd 0
0 Bd

]
u(k),

Ad =

1 τ 1
2τ

2

0 1 τ
0 0 1

 , B =

 1
6τ

3

1
2τ

2

τ

 . (2)

where x(k) and u(k) are respectively the state and the control
of the vehicle at the beginning of the time interval [kτ, (k+
1)τ).

Remark that some previous work [8], [17] has used a
first or second order point-mass description. Here, we use
a third-order model to ensure that the second derivative of
the generated trajectory is continuous even with a piecewise
constant input. As a result, the yaw rate of the planned
trajectory is continuous, and the vehicle can thus smoothly
track the trajectory.

Due to the dynamic limitations of the vehicle, bound
constraints are enforced on the state and control signals as

x ∈ [x, x],u ∈ [u,u], (3)

with the bounds defined as

x = [0, 0, ax, y, vy, ay]
T , x = [free, vx, ax, y, vy, ay]T , (4a)

u = [j
x
, j
y
]T ,u = [jx, jy]

T . (4b)

The above formulation does not consider the nonholo-
nomic constraints of the vehicle, and the longitudinal and
lateral dynamics are fully decoupled. The exact coupling
between these dynamics involves nonlinear relations [7];
therefore, we approximate it by two additional constraints
which ensure that the generated trajectory is dynamically
feasible.

The vehicle heading θ can be reconstructed from the
state x as θ = arctan(vy/vx). We model the coupling of
longitudinal and lateral dynamics by enforcing condition
θ ∈ [θ, θ], with

vy ∈ [vx tan(θ), vx tan(θ)]. (5)

We also want to limit the yaw rate of the vehicle as
ω ∈ [ω, ω]. The yaw rate can be reconstructed as ω = θ̇ =
(axvy − vxay)/(v

2
x + v2y). We assume that vx � vy and

vxay � axvy , we approximately have

ay ∈ [−vxω, vxω]. (6)

B. Logic for driving

Winston et al [18] have shown that propositional logic can
be further reformulated as a set of linear inequalities with
integer variables. Here, we briefly present this approach in
the context of autonomous driving.

We define a literal as an atomic statement corresponding to
a linear mathematical condition on one of the state variables,
for instance: the longitudinal position of the vehicle is
larger than 30m. Literals can be combined using connectors,



namely ∧ (and), ∨ (or), ¬ (negation); implications (⇒)
and equivalences (⇔) can be formed using the first three
connectors.

To illustrate, we consider a speed bump covering the range
of longitudinal positions x ∈ [30m, 50m], with a speed limit
of 10m/s in this range. Let us define three literals P1 =
[x(k) ≥ 30], P2 = [x(k) ≤ 50] and P3 = [vx(k) ≤ 10]; rule
(R.1) can then be expressed in the form: ∀k ≥ 0, (P1∧P2)⇒
P3, i.e. if 30 ≤ x(k) ≤ 50, then the vehicle’s longitudinal
speed should be lower than or equal to 10 m/s.

The so-called Big-M method (see [18]) allows to force a
binary variable δ(k) to be equal to 1 when a given literal is
true, and equal to 0 when the literal is false, using only
linear inequalities by introducing a large constant M . In
the previous example, we can let δi(k) = 1 ⇔ Pi for
i ∈ {1, 2, 3} so that (R.1) can be expressed equivalently
as, ∀k ≥ 0,

δ1(k) = 1⇔ x(k) ≥ 30,

δ2(k) = 1⇔ x(k) ≤ 50,

δ3(k) = 1⇔ vx(k) ≤ 10,

− δ1(k) + δ3(k) ≤ 0,

− δ2(k) + δ3(k) ≤ 0,

δ1(k) + δ2(k)− δ3(k) ≤ 1.

(7)

C. MIQP formulation

We introduce a new variable δ such that δ(k) = {0, 1}m
as a collection of all binary variables resulting from the
reformulation of relevant literals as mixed integer linear
inequalities. Let xr be the reference trajectory for the vehicle,
which can be time-dependent, state-dependent, or dependent
on propositions. We also introduce δr as the reference
trajectory for the binary variables, so that we can also express
preferences on some binary states, for instance to specify
a preferred lane in a multi-lane road. Let K = T/τ be
the number of time steps in the prediction horizon. The
optimization problem can now be formulated, in its generic
form, as

min
u,δ

K∑
0

||x(k)− xr(k)||2Q

+ ||δ(k)− δr(k)||2S + ||u(k)||2R,
(8)

subject to

known x(0), z(0) and δ(0), (9a)
vehicle dynamics (2), (9b)
dynamic constraints (3), (5) and (6), (9c)

C

 x
xr
δ

 ≤ D. (9d)

where Q, S, R are positive weighting matrices of proper
dimensions. Constraint (9d) is the set of all linear inequalities
written in matrix form with two matrices C and D of proper
dimensions, incorporating all mixed-integer constraints used
to enforce driving rules.

x = [0, 0,−4m/s2, 0,−2m/s,−1m/s2]T ,
x = [free, 20m/s, 3m/s2, 5m, 2m/s, 1m/s2]T ,

u = [−3m/s3,−2m/s3]T , u = [3m/s3, 2m/s3]T ,
θ = −0.4 rad, θ = 0.4 rad, ω = −0.26 rad/s, ω = 0.26 rad/s,

q1 = 1, q2 = 2, q3 = 1, q4 = 2, q5 = 4, r1 = 4, r2 = 4.

TABLE I: Parameters used for case study

The cost function (8) is quadratic and the constraints (9)
are linear. Therefore, the above optimization problem is an
instance of a mixed-integer quadratic program (MIQP). Exact
resolution algorithms are known to solve such problems,
leading to a globally optimal trajectory which can then be
fed to low-level controller charged of tracking this trajectory.

Remark 1: The proposed MIQP formulation is able to
cover a vast majority of on-road driving scenarios. For exam-
ple, Rules (R.1)-(R.4) can be naturally incorporated in our
framework. If we must consider non-quadratic cost function,
non-linear vehicle dynamics or non-linear constraints, we
can formulate a Mixed Integer Non-linear Program, which,
however, is much harder to solve.

III. CASE STUDY

The previous section proposes a MIQP framework that
integrates the continuous dynamic of the vehicle and propo-
sitional logic. In this section, we explain how this framework
can be used to effectively handle various on-road driving
scenarios. Note that, although the major purpose of this
section is to demonstrate the universality of the framework,
the detailed strategies for different driving scenarios are by
themselves contributions to some challenging problems for
on-road autonomous driving.

Throughout this section, we use the following cost func-
tion

J =

K∑
0

q1(vx(k)− vr)2 + q2a
2
x(k) + q3(y(k)− yr(k))2

+ q4v
2
y(k) + q5a

2
y(k) + r1j

2
x(k) + r2j

2
y(k),

(10)

such that the vehicle tracks a constant desired speed profile
and a potentially time-varying desired lateral deviation, while
trying to minimize the control effort. We do not assume any
desired binary state, and therefore the term ||δ(k)−δr(k)||2S
in the generic formulation is ignored.

In all cases, the ego vehicle is assumed to start at position
(0, 2.5) in the rightmost lane. The initial and desired speeds
are equal, with vx(0) = vr = 15m/s. The width of each
lane is 5 m. Other parameters that are common in all cases
are recapitulated in Table I. Scenario-specific parameters will
be presented respectively in each case study.

We use the commercial solver Gurobi [19] to compute
solutions to our MIQP formulation. Simulation codes are
written in Python, and experiments are performed on a laptop
with Intel Core i5-5300U CPU clocked at 2.30GHz with 8GB
RAM.

A. Speed bump

The first case study considers the speed bump scenario
(Fig. 1a) that is used as an example in II-B.
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Fig. 1: Speed bump scenario: (a) illustration of the scenario, (b)
longitudinal speed profile w.r.t. the longitudinal offset.

The speed bump conditions are given in (7). In the
simulation, we use a prediction horizon T = 5 s and τ =
0.25 s. Fig. 1b illustrates the longitudinal speed profile of
the planned trajectory with respect to the traveled distance.
We observe that vehicles effectively reduces its speed to less
than 10m/s within the interval of [30, 50].

B. Obstacle avoidance

We now consider an obstacle avoidance scenario during
on-road driving. The irregular shapes of obstacles are approx-
imated using minimal bounding rectangles. A more complex
polygonal modeling is also possible, at the cost of increased
computational complexity. For an obstacle ν with bounding
rectangle [xν(k)−Lν , xν(k)+Lν ]× [yν(k)−W ν , yν(k)+
W ν ], the set of constraints for collision avoidance is then
given as ∀k ≥ 0,

δν1 (k) = 1⇔ x(k) ≤ xν(k)− Lν , (11a)
δν2 (k) = 1⇔ x(k) ≥ xν(k) + Lν , (11b)
δν3 (k) = 1⇔ x(k) ≤ yν(k)−W ν , (11c)
δν4 (k) = 1⇔ x(k) ≥ yν(k) +W ν , (11d)
δν1 (k) + δν2 (k) + δν3 (k) + δν4 (k) = 1. (11e)

Note that the formulation allows both moving and still
obstacles. The conditions (11) state that the vehicle must
be separated separated from the obstacle, either by a longi-
tudinal distance Lν or laterally by W ν .

For illustration, we consider two identical obstacles cen-
tered at (80, 1.5) and (160, 3.5). Parameters are T = 15 s,
τ = 1 s, Lν = 10m and W ν = 2m. The trajectory labeled
“opt” in Fig. 2a is the global optimum found by the MIQP
planner; for comparison purposes, we also plot all locally
optimal trajectories “nopt-1,2,3” with their respective costs.
We observe that our method can effectively find the globally
optimal trajectory. Fig. 2b and 2c respectively illustrate the
longitudinal and lateral speed and acceleration profiles of the
ego vehicle.

C. Overtaking in a two-lane road

This case study considers an overtaking scenario on a two-
lane road with oncoming traffic. Fig. 3a shows the initial
configuration of nearby vehicles, all driving at the constant
speed of 10m/s. This scenario is considered as difficult
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Fig. 2: Obstacle avoidance scenario: (a) the globally optimal tra-
jectory and locally optimal trajectories (respective costs: opt 3.16,
nopt-1 36.5, nopt-2 37.2, nopt-3 84.67), (b) speed profiles, (c)
acceleration profiles.

for both human drivers and autonomous vehicles [8], [17].
Reference [10] shows the existence of multiple homotopy
classes in this scenario and proposes to exhaustively search
for the globally optimal solution. Here, we show that we
can find the globally optimal solution without explicitly
enumerating all homotopy classes.

It is possible to model surrounding vehicles as rectangles
as in the previous case study, thus requiring four integer
variables for each vehicle and each time step k. However, by
introducing the so called ramp barrier [8], [17], the problem
can be further simplified by approximating the rectangular
obstacle region by a triangle only using two linear constraints
as shown in Fig. 3a.

Let ν be a surrounding vehicle; if ν is in the same lane
as the ego vehicle, the constraints are given as

δν(k) = 0⇔ −x(k)− x
ν(k)

Lν
+
y(k)− yν(k)

W ν
≥ 1, (12a)

δν(k) = 1⇔ x(k)− xν(k)
Lν

+
y(k)− yν(k)

W ν
≥ 1, (12b)

where Lν and W ν are minimal longitudinal and lateral
separations during lane change. Similarly, the constraints for
an oncoming vehicle ν can be modeled as

δν(k) = 0⇔ x(k)− xν(k)
Lν

+
y(k)− yν(k)

W ν
≤ −1, (13a)

δν(k) = 1⇔ −x(k)− x
ν(k)

Lν
+
y(k)− yν(k)

W ν
≤ −1.

(13b)

Using this formulation, only one integer variable δν is
required per vehicle and per time step. In addition, we add
a final constraint

y(K) = yr (14)
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Fig. 3: Overtaking scenario: (a) illustration of the scenario and the
ramp barrier methods, (b) the trajectory of overtaking, (c) speed
profiles, (d) acceleration profiles.

such that the vehicle is required to come back to the
centerline yr of its desired lane, thus ensuring that the ego
vehicle plans a complete overtaking trajectory within the
prediction horizon.

In the simulation, we adopt a prediction horizon of T =
15 s and we let τ = 1 s. To allow the ego vehicle to
temporarily cross the lane border, the upper limit y is relaxed.
Fig. 3b illustrates the trajectory of overtaking. We observe
that the ego vehicle decides to accelerate slightly so that it
can use the space between the first on-coming vehicle and
the second on-coming vehicle to perform the overtaking.

For comparison purposes, we reduce the penalty on speed
deviation q1 to 0.5 in the cost function (8). The resulting
trajectory is shown in Fig. III-C: in this case, the ego vehicle
chooses not to overtake, as the cost of this maneuver is
higher than that of following the slower car, due to the
small penalty on the speed deviation. This demonstrates the
flexibility of the MIQP formulation: different driving styles
can be configured simply by modulating the weighting terms.
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10

x(m)

y
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)

Fig. 4: Case of overtaking: the effect of reducing the speed deviation
weight to q1 = 0.5.

D. Lane change
This final case study considers the problem of decision

making and trajectory generation for a lane change maneu-
ver: the ego vehicle must decide the objective lane as well
as the optimal trajectory to reach this lane, without colliding
with surrounding vehicles. The complexity of this problem
lies in the multiple discrete choices raised from multiple
lanes and multiple vehicles on each lane. References [15],
[16] have considered this problem using MILP formulations;
however, their modeling cannot ensure that trajectories are
dynamically feasible due to important simplifications of the
vehicle dynamics.

We consider a road with N lanes, labeled by γ ∈
{1, ..., N}. We introduce a binary variable δγ(k) that equals
1 if the ego vehicle is on lane γ at time step k. Let V be
the set of surrounding vehicles and V γ be the set of vehicles
inside lane γ. We introduce the following logical constraint:
∀k > 0,

δγ(k) = 1⇔
(
yr(k) = yγ ∧ y(k) ∈ [yγ , yγ ]

)
, (15)

such that, if the ego vehicle is in lane γ, then the vehicle
should be within the boundary of lane γ and the reference
centerline should be set to the centerline of the lane.

Moreover, we add the following collision avoidance con-
straints: ∀k ≥ 0,

δγ(k) = 1⇔ ∀ν ∈ V γ ,δν(k) = 1⇔ x(k) ≤ xν(k)− Lν ,
δν(k) = 0⇔ x(k) ≥ xν(k) + Lν ,

(16)

such that the ego vehicle must avoid collisions with all the
vehicles in lane γ.

The ego vehicle is only allowed to be in one lane at any
given time, thus we add the following constraint:∀k ≥ 0,

N∑
γ=1

δγ(k) = 1 (17)

Finally, to ensure that the lane change maneuver is com-
pleted within the prediction horizon, we also require

y(K) = yr(K). (18)

Fig. 5a shows a highway with three lanes. The ego
vehicle starts in the rightmost lane with a speed of 15m/s.
Surrounding vehicles are distributed over three lanes. The
vehicle on the leftmost lane drives at a speed of 15m/s
while other surrounding vehicles drive at a speed of 10m/s.
Constraints (15), (16), (17) and (18) are enforced along
with other constraints on the formulated MIQP problem. The
horizon is set to T = 15 s and the time step τ = 1 s. The
constraint on lane boundary is temporarily deactivated. We
observe in Fig. 3b that the ego vehicle chooses the left-
most lane as the objective lane and plans a dynamically
feasible and collision-free trajectory to reach the lane within
the prediction horizon.

Table II presents the computation times for the four
case studies, demonstrating the real-time capability of the
proposed formulation; future work will focus on further
reducing this computation time.
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Fig. 5: Lane change scenario: (a) illustration of the scenario, (b)
trajectory of the ego vehicle and the surrounding vehicles, (c) speed
profiles, (d) acceleration profiles.

Speed bump Obstacle avoidance Overtaking Lane change

17ms 73ms 81ms 228ms

TABLE II: Time statistics

IV. DISCUSSION AND CONCLUSION

We have addressed the problem of optimal trajectory gen-
eration integrating both continuous and logical constraints
using a MIQP based approach. This approach is well-suited
to the on-road autonomous driving environment as logical
constraints can arise from different aspects of driving: traffic
rules, on-road obstacles and the existence of multiple ma-
neuver variants. We have showcased the universality and the
efficiency of the method by applying it to various challenging
driving scenarios.

This paper uses a third-order linear vehicle model for
trajectory generation. This model is suitable if the longi-
tudinal motion dominates the lateral one, for example when
driving on highways or on urban arterial roads. However, for
application to low-speed driving, a non-linear vehicle model
might be more desirable. Future work will investigate the
applicability of combining the feedback linearization with
the MIQP formulation. Another important assumption in this
paper is that the vehicle is driving on road segments with
small curvature. For large road curvatures, the current model
can be imprecise. Future work will investigate this issue.

In the future, we will also integrate the proposed method
into a receding horizon framework so that the ego vehicle

re-plans regularly to incorporate new information. The algo-
rithm will be implemented in the AnnieWay [20] autonomous
vehicle to study the performance of our approach in a real-
world setting.

REFERENCES

[1] A. de La Fortelle, X. Qian, S. Diemer, F. Moutarde, and S. Bonnabel,
“Network of Automated Vehicles: the AutoNet2030 vision,” in ITS
World Congress, 2014.

[2] B. Paden, M. Cap, S. Yong, D. Yershov, and E. Frazzoli, “A survey
of motion planning and control,” IEEE Transactions on Intelligent
Vehicles, vol. PP, no. 99, pp. 1–1, 2016.

[3] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. P. How, and G. Fiore,
“Real-time motion planning with applications to autonomous urban
driving,” Control Systems Technology, IEEE Transactions on, vol. 17,
no. 5, pp. 1105–1118, 2009.

[4] M. Werling, S. Kammel, J. Ziegler, and L. Groll, “Optimal trajectories
for time-critical street scenarios using discretized terminal manifolds,”
The International Journal of Robotics Research, vol. 31, no. September
2015, pp. 346–359, 2012.

[5] T. Gu, J. Snider, J. M. Dolan, and J.-W. Lee, “Focused trajectory
planning for autonomous on-road driving,” in Intelligent Vehicles
Symposium (IV), 2013 IEEE, pp. 547–552, IEEE, 2013.

[6] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
bertha; a local, continuous method,” in 2014 IEEE Intelligent Vehicles
Symposium Proceedings, pp. 450–457, June 2014.

[7] Y. Gao, Model Predictive Control for Autonomous and Semiau-
tonomous Vehicles. PhD thesis, University of California, Berkeley,
2014.

[8] J. Nilsson, P. Falcone, M. Ali, and J. Sjöberg, “Receding horizon
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[11] Ö. Ş. Taş, “Integrating Combinatorial Reasoning and Continuous
Methods for Optimal Motion Planning of Autonomous Vehicles,” Mas-
ter’s thesis, Karlsruhe Institute of Technology, Germany, September
2014.
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