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Abstract

During the last years, the kriging model has become one of the most popular
methods in computer simulation and machine learning. Many engineering
applications use the kriging model to approximate the physical phenomena
which is modeled by expensive simulation models, especially aerodynamic
and structural models. When many input variables are used, the conven-
tional kriging model is inefficient mainly due to an exorbitant computational
time required during its construction. To handle high-dimensional prob-
lems (up to 100), one method is recently proposed that combines the kriging
model with the Partial Least Squares technique, the so-called KPLS model.
For a large number of design variables (100+), this method has shown in-
teresting results in terms of saving CPU time required to build model while
maintaining sufficient accuracy, on both academic and industrial problems.
However, the KPLS model has provided a poor accuracy compared to the
conventional kriging model on multimodal functions. To handle this issue,
this paper proposes adding a new step during the construction of the KPLS
model to improve its accuracy for multimodal functions. When the exponen-
tial covariance functions are used, this step is based on a simple identification
between the covariance function of KPLS and kriging. The developed method
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is validated especially by using a multimodal academic function, known as
Griewank function in the literature, and we show the gain in terms of accu-
racy and computer time by comparing with KPLS and ordinary kriging.

Keywords: Kriging, KPLS, Partial Least Squares, Principal components,
Exponential covariance kernels

Symbols and notation

Matrices and vectors are in bold type.

Symbol Meaning

| · | absolute value
R set of real number
R+ set of positive real number
n number of sampling points
d dimension
h number of principal components retained
x a 1× d vector
xi the ith element of a vector x
X a n× d matrix containing sampling points
y(x) the true function y performed on the vector x
y a n× 1 vector containing simulation of X
ŷ(x) the prediction of the true function y(x)
Y (x) a stochastic process
x(i) the ith training point for i = 1, . . . , n

(a 1× d vector)
w(l) a d× 1 vector containing X-weights given by

the lth PLS-iteration for l = 1, . . . , h
X(0) X
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Symbol Meaning

X(l−1) Matrix containing residual of the inner
regression of the (l − 1)th PLS-iteration for
l = 1, . . . , h

k(·, ·) a covariance function
xt Superscript t denotes the transpose

operation of the vector x
≈ approximately sign

1. Introduction

During the last years, the kriging model [1, 2, 3, 4], which is referred to as
the Gaussian process model [5], has become one of the most popular methods
in computer simulation and machine learning. It is used as a substitute of
high-fidelity codes representing a physical phenomena and aims to reduce the
computational time of a particular process. For instance, the kriging model is
used successfully in several optimization problems [6, 7, 8, 9, 10, 11]. Kriging
is not well adapted to high-dimensional problem, principally due to large
matrix inversion problems. In fact, the kriging model becomes much time
consuming when a large number of input variables are used since a large
number of sampling points are required. Indeed, it is recommended in [12]
to use 10d sampling points, with d the number of dimension, for obtaining
a good accuracy of the kriging model. As a result, we need to increase the
size of the kriging covariance matrix which becomes computationally very
expensive to invert. Moreover, this inversion’s problem induces difficulty in
the classical hyper-parameters estimation through the maximization of the
likelihood function.

A recent method, called KPLS [13], is developed to reduce computational
time which uses, during a construction of the kriging model, the dimensional
reduction method “Partial Least Squares” (PLS). This method is able to
reduce the number of hyper-parameters of a kriging model, such that their
number becomes equal to the number of principal components retained by the
PLS method. The KPLS method is thus able to rapidly build a kriging model
for high-dimensional problems (100+) while maintaining a good accuracy.
However, it has been shown in [13] that the KPLS model is less accurate than
the kriging model in many cases, in particular for multimodal functions.
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In this paper, we propose an extra step that supplements [13] in order
to improve its accuracy. Under hypothesis that kernels used for building the
KPLS model are of exponential type with the same form (all Gaussian kernels
for instance), we choose the hyper-parameters found by the KPLS model as
an initial point to optimize the likelihood function of a conventional kriging
model. In fact, this approach is performed by identifying the covariance
function of the KPLS model as a covariance function of a kriging model.
The fact of considering the identified kriging model, instead of the KPLS
model, leads to extend the search space where the hyper-parameters are
defined, and thus to make the resulting model more flexible than the KPLS
model.

This paper is organized in 3 main sections. In section 2, we present a
review of the KPLS model. In section 3, we discuss our new approach under
the hypothesis needed for its applicability. Finally, numerical results are
shown to confirm the efficiency of our method followed by a summary of
what we have achieved.

2. Construction of KPLS

In this section, we introduce the notation and describe the theory be-
hind the construction of the KPLS model. Assume that we have evalu-
ated a cost deterministic function of n points x(i) (i = 1, . . . , n) with x(i) =[
x
(i)
1 , . . . , x

(i)
d

]
∈ B ⊂ Rd, and we denote X by the matrix

[
x(1)t, . . . ,x(n)t

]t
.

For simplicity, B is considered to be a hypercube expressed by the prod-
uct between intervals of each direction space, i.e., B =

∏d
j=1[aj, bj], where

aj, bj ∈ R with aj ≤ bj for j = 1, . . . , d. Simulating these n inputs gives the

outputs y =
[
y(1), . . . , y(n)

]t
with y(i) = y(x(i)), for i = 1, . . . , n.

2.1. Construction of the kriging model

For building the kriging model, we assume that the deterministic response
y(x) is a realization of a stochastic process [14, 15, 16, 17]:

Y (x) = β0 + Z(x). (1)

The presented formula, with β0 an unknown constant, corresponds to or-
dinary kriging [8] which is a particular case of universal kriging [15]. The
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stochastic term Z(x) is considered as a realization of a stationary Gaus-
sian process with E[Z(x)] = 0 and a covariance function, also called kernel
function, given by:

Cov(Z(x), Z(x′)) = k(x,x′) = σ2r(x,x′) = σ2rxx′ , ∀x,x′ ∈ B,
(2)

where σ2 is the process variance and rxx′ is the correlation function between
x and x′. However, the correlation function r depends on hyper-parameters
θ which are considered to be known. We also denote the n × 1 vector as
rxX = [rxx(1) , . . . , rxx(n) ]t and the n× n correlation matrix as
R = [rx(1)X, . . . , rx(n)X]. We use ŷ(x) to denote the prediction of the true
function y(x). Under the hypothesis above, the best linear unbiased predictor
for y(x), given the observations y, is:

ŷ(x) = β̂0 + rtxXR
−1
(
y − β̂01

)
, (3)

where 1 denotes an n-vector of ones and:

β̂0 =
(
1tR−11

)−1
1tR−1y. (4)

In addition, the estimation of σ2 is given by:

σ̂2 =
1

n

(
y − 1β̂0

)t
R−1

(
y − 1β̂0

)
. (5)

Moreover, ordinary kriging provides an estimate of the variance of the pre-
diction, which is given by:

s2(x) = σ̂2
(
1− rtxXR

−1rxX
)
. (6)

Note that the assumption of a known covariance function with known
parameters θ is unrealistic in reality and they are often unknown. For this
reason, the covariance function is typically chosen from among a parametric
family of kernels. In this work, only the covariance functions of exponential
type are considered, in particular the Gaussian kernel. Indeed, the Gaussian
kernel is the most popular kernel in kriging metamodels of simulation models,
which is given by:

k(x,x′) = σ2

d∏
i=1

exp
(
−θi (xi − x′i)2

)
, ∀ θi ∈ R+. (7)
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We note that the parameters θi, for i = 1, . . . , d, can be interpreted as mea-
suring how strongly the input variables x1, . . . , xd, respectively, affect the
output y. If θi is very large, the kernel k(x,x′) given by equation (7) tends
to zero and thus leads to a low correlation. In fact, we see in figure 1 how
the correlation curve rapidly varies from a point to another when θ = 10.

Figure 1: Theta smoothness can be tuned to adapt spatial influence to our problem. The
magnitude of θ dictates how quickly the squared exponential function variates.

However, the estimator of the kriging parameters (β̂0, σ̂
2 and θ1, . . . , θd)

makes the kriging predictor, given by equation (3), nonlinear and makes the
estimated predictor variance, given by equation (6), biased. We note that
the vector r and the matrix R should get hats above but it is ignored in
practice [18].

2.2. Partial Least Squares

The PLS method is a statistical method which searches out the best
multidimensional direction X that explains the characteristics of the output
y. It finds a linear relationship between input variables and output variable
by projecting input variables onto principal components, also called latent
variables. The PLS technique reduces dimension and reveals how inputs
depend on output. In the following, we use h to denote the number of
principal components retained which are a lot lower than d (h� d); h does
not generally exceed 4, in practice. In addition, the principal components
can be computed sequentially. In fact, the principal component t(l), for
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l = 1, . . . , h, is computed by seeking the best direction w(l) which maximizes
the squared covariance between t(l) = X(l−1)w(l) and y(l−1):

w(l) =

{
argmax

w(l)
w(l)tX(l−1)ty(l−1)y(l−1)tX(l−1)w(l)

such that w(l)tw(l) = 1.
(8)

where X = X(0), y = y(0), and, for l = 1, . . . , h, X(l) and y(l) are the resid-
ual matrix from the local regression of X(l−1) onto the principal component
t(l) and from the local regression of y(l) onto the principal component t(l),
respectively, such that:

X(l) = X(l−1) − t(l)p(l),
y(l) = y(l−1) − clt(l),

(9)

where p(l) (a 1× d vector) and cl (a coefficient) contain the regression coef-
ficients. For more details of how PLS method works, please see [19, 20, 21].

The principal components represent the new coordinate system obtained
upon rotating the original system with axes, x1, . . . , xd [21]. For l = 1, . . . , h,
t(l) can be written as:

t(l) = X(l−1)w(l) = Xw(l)
∗ . (10)

This important relationship is mainly used for developing the KPLS model
which is detailed in section 2.3. The vectors w

(l)
∗ , for l = 1, . . . , h, are given

by the following matrix W∗ =
[
w

(1)
∗ , . . . , .w

(h)
∗

]
which is obtained by (for

more details, see [22]):

W∗ = W
(
PtW

)−1
,

where W =
[
w(1), . . . ,w(h)

]
and P =

[
p(1)t, . . . ,p(h)t

]
.

2.3. Construction of the KPLS model

The hyper-parameters θ = {θi}, for i = 1, . . . , d, given by equation (7)
are found by maximum likelihood estimation (MLE) method. Their esti-
mation becomes more and more expensive when d increases. The vector θ
can be interpreted as measuring how strongly the variables x1, . . . , xd affect
the output y, respectively. For building KPLS, coefficients given by vectors
w

(l)
∗ will be considered as a measuring of the influence of the input variables
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x1, . . . , xd on the output y. By some elementary operations on the kernel
functions, we define the KPLS kernel by:

kkpls1:h(x,x′) =
h∏

l=1

kl(Fl (x) , Fl (x′)), (11)

where kl : B ×B → R is an isotropic stationary kernel and

Fl : B −→ B

x 7−→
[
w

(l)
∗1x1, . . . , w

(l)
∗dxd

]
.

(12)

More details of such construction are given in [13]. Considering the ex-
ample of the Gaussian kernel given by the equation (7), we obtain:

k(x,x′) = σ2

h∏
l=1

d∏
i=1

exp

[
−θl

(
w

(l)
∗i xi − w

(l)
∗i x
′
i

)2]
, ∀ θl ∈ R+. (13)

Since a small number of principal components are retained, the estimation of
the hyper-parameters θ1, . . . , θh is faster than the hyper-parameters θ1, . . . , θd
given by the equation (7), where d is very high (100+).

3. Transition from the KPLS model to the kriging model using the
exponential covariance functions

In this section, we show that if all kernels kl, for l = 1, . . . , h, used in
equation (11) are of the exponential type with the same form (all Gaussian
kernels for instance), then the kernel kkpls1:h given by equation (11) will be
of the exponential type with the same form as kl (Gaussian if all kl are
Gaussian).
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3.1. Proof of the equivalence between the kernels of the KPLS model and the
kriging model

Let us define, for i = 1, . . . , d, ηi =
h∑

l=1

θlw
(l)
∗i

2
, we have:

k1:h(x,x′) =
h∏

l=1

d∏
i=1

exp
(
−θlw(l)

∗i
2
(xi − x′i)2

)
= exp

(
d∑

i=1

h∑
l=1

−θlw(l)
∗i

2
(xi − x′i)2

)
= exp

(
d∑

i=1

−ηi(xi − x′i)2
)

=
d∏

i=1

exp (−ηi(xi − x′i)2) .

(14)

In the same way, we can show this equivalence for the other exponential
kernels where p1 = · · · = ph:

k1:h (x,x′) = σ2

h∏
l=1

d∏
i=1

exp
(
−θl

∣∣∣w(l)
∗i (xi − x′i)

∣∣∣pl) . (15)

However, we must caution that the above proof shows an equivalence
between the covariance functions of KPLS and kriging only on a subspace
domain. More precisely, the KPLS covariance function is defined in a sub-
space from R+d

whereas the kriging covariance function is defined in the
complete R+d

domain. Thus, our original idea is to extend the space where
the KPLS covariance function is defined for the complete space R+d

.

3.2. A new step during the construction of the KPLS model: KPLS+K

By considering the equivalence shown in the last section, we propose
to add a new step during the construction of the KPLS model. This step
occurs just after the θl-estimation, for l = 1, . . . , h. It involves making a
local optimization of the likelihood function of the kriging model equivalent

to the KPLS model. Moreover, we use ηi =
h∑

l=1

θlw
(l)
∗i

2
, for i = 1, . . . , d, as

a starting point of the local optimization by considering the solution θl, for
l = 1, . . . , h, found by the KPLS method. Thus, this optimization is done in
the complete space where the vector η = {ηi} ∈ R+d

.
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This approach, called KPLS+K, aims to improve the MLE of the kriging
model equivalent to the associated KPLS model. In fact, the local optimiza-
tion of the equivalent kriging offers more possibilities for improving the MLE,
by considering a wider search space, and thus it will be able to correct the
estimation of many directions. These directions are represented by ηi for
the ith direction which is badly estimated by the KPLS method. Because
estimating the equivalent kriging hyper-parameters can be time consuming,
especially when d is large, we improve the MLE by a local optimization at
the cost of a slight increase of computational time.

Figure 2 recalls the principal stages of building a KPLS+K model.

1- To choose an exponential kernel function

2- To define the covariance func-
tion given by equation (11)

3- To estimate the param-
eters θl, for l = 1, . . . , h

4- To optimize locally the parameters ηi,
for i = 1, . . . , d, by using the starting

point ηi :=
h∑

l=1

θlw
(l)
∗i

2
(Gaussian example)

Figure 2: Principal stages for building a KPLS+K model.

4. Numerical simulations

We now focus on the performance of KPLS+K by comparing it with
the KPLS model and the ordinary kriging model. For this purpose, we use
the academic function, named Griewank, over the interval [−5, 5] which is
studied in [13]. 20 and 60 dimensions are considered for this function. In
addition, an engineering example, done at Snecma for a multidisciplinary
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optimization, is used. This engineering case is chosen since it was shown in
[13] that KPLS is less accurate than ordinary kriging. The Gaussian kernel
is used for all surrogate models used herein, i.e., ordinary kriging, KPLS and
KPLS+K. For KPLS and KPLS+K using h principal components, for h ≤ d,
will be denoted by KPLSh and KPLSh+K, respectively, and this h is varied
from 1 to 3. The Python toolbox Scikit-learn v.014 [23] is used to achieve the
proposed numerical tests, except for ordinary kriging used on the industrial
case, where the Optimus version is used. The training and the validation
points used in [13] are reused in the following.

4.1. Griewank function over the interval [-5,5]

The Griewank function [24, 13] is defined by:

yGriewank(x) =
d∑

i=1

x2
i

4000
−

d∏
i=1

cos( xi√
i
) + 1,

−5 ≤ xi ≤ 5, for i = 1, ..., d.

Figure 3 shows the degree of complexity of such function which is very mul-
timodal. As in [13], we consider d = 20 and d = 60 input variables. For each

Figure 3: A 2D Griewank function over the interval [−5, 5].

problem, ten experiments based on the random Latin hypercube design are
built with n (number of sampling points) equals to 50, 100, 200, and 300.
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To better visualize the results, boxplots are used to show the CPU time and
the relative error RE given by

Error =
||Ŷ −Y||2
||Y||2

100, (16)

where ||·||2 represents the usual L2 norm, Ŷ and Y are the vectors containing
the prediction and the real values of 5000 randomly selected validation points
for each case. The mean and the standard error are given in tables A.2 and
A.3, respectively, in appendix A. However, the results of the ordinary kriging
model and the KPLS model are reported from [13].

For 20 input variables and 50 sampling points, the KPLS models always
give a more accurate solution than ordinary kriging and KPLS+K, as shown
in figure 4a. Indeed, the best result is given by KPLS3 with a mean of RE
equals to 0.51%. However, the KPLS+K models give more accurate models
than ordinary kriging in this case (0.58% for KPLS2+K and KPLS3+K vs
0.62% for ordinary kriging). For the KPLS model, the rate of improvement
with respect to the number of sampling points is less than for ordinary kriging
and KPLS+K (see figures 4b–4d). As a result, KPLSh+K, for h = 1, . . . , 3,
and ordinary kriging give almost the same accuracy (≈0.16%) when 300
sampling points are used (as shown in figure 4d), whereas the KPLS models
give a RE of 0.35% as a best result, when h = 3.

Nevertheless, the results shown in figure 5 indicate that the KPLS+K
models lead to an important reduction in CPU time for the various number
of sampling points compared to ordinary kriging. For instance, 20.49s are
required for building KPLS3+K when 300 training points are used, whereas
ordinary kriging is built in 94.31s; in this case, KPLS3+K is thus approx-
imately 4 times cheaper than the ordinary kriging model. Moreover, the
computational time required for building KPLS+K is more stable than the
computational time for building ordinary kriging; a standard deviation of
approximately 3s for KPLS+K and 22s for the ordinary kriging model are
observed.

For 60 input variables and 50 sampling points, a slight difference of the
results occurs compared to the 20 input variables case (figure 6a). Indeed, the
KPLS models remain always better, with a mean of RE approximately equals
to 0.92%, than KPLS+K and ordinary kriging. However, the KPLS+K mod-
els give more accurate results than ordinary kriging with an accuracy close to
that of KPLS (≈0.99% vs 1.39%). Increasing the number of sampling points,
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(a) RE(%) for 20 input variables and 50
sampling points.

(b) RE(%) for 20 input variables and
100 sampling points.

(c) RE(%) for 20 input variables and
200 sampling points.

(d) RE(%) for 20 input variables and
300 sampling points.

Figure 4: RE of the Griewank function in 20D over the interval [−5, 5]. The experiments
are based on the 10-latin-hypercube design.

the accuracy of ordinary kriging becomes better than the accuracy given by
the KPLS models, but it remains less accurate than for the KPLSh+K mod-
els, for h = 2 or 3. For instance, we obtain a mean of RE with 0.60%
for KPLS2+K against 0.65% for ordinary kriging (see figure 6d), when 300
sampling points are used.

As we can observe from figure 7d, a very important reduction in terms
of computational time is obtained. Indeed, a mean time of 2894.56s is re-
quired for building ordinary kriging, whereas KPLS2+K is built in 23.03s;
KPLS2+K is approximately 125 times cheaper than ordinary kriging in this
case. In addition, the computational time for building KPLS+K is more sta-
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(a) CPU time for 20 input variables and
50 sampling points.

(b) CPU time for 20 input variables and
100 sampling points.

(c) CPU time for 20 input variables and
200 sampling points.

(d) CPU time for 20 input variables and
300 sampling points.

Figure 5: CPU time of the Griewank function in 20D over the interval [−5, 5]. The
experiments are based on the 10-latin-hypercube design.

ble than ordinary kriging, except the KPLS3+K case; a standard deviation
of approximately 0.30s for KPLS1+K and KPLS2+K is observed, against
728.48s for ordinary kriging. However, the relatively large standard of devi-
ation of KPLS3+K (26.59s) is probably due from the dispersion caused by
KPLS3 (26.59s). But, it remains too lower than the standard deviation of
the ordinary kriging model.

For the Griewank function over the interval [−5, 5], the KPLS+K models
are slightly more time consuming than the KPLS models, but they are more
accurate, in particular when the number of observations is greater than the
dimension d, as is implied by the rule-of-thumb n = 10d in [12]. They seem
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to perform well than the ordinary kriging model with an important gain in
terms of saving CPU time.

(a) RE(%) for 60 input variables and 50
sampling points.

(b) RE(%) for 60 input variables and
100 sampling points.

(c) RE(%) for 60 input variables and
200 sampling points.

(d) RE(%) for 60 input variables and
300 sampling points.

Figure 6: RE of the Griewank function in 60D over the interval [−5, 5]. The experiments
are based on the 10-latin-hypercube design.

4.2. Engineering case

In this section, let us consider the third output, y3, from tab1 problem
studied in [13]. This test case is chosen because the KPLS models, from
1 to 3 principal components, do not perform well (see table 1). We recall
that this problem contains 24 input variables. 99 training points and 52
validation points are used and the relative error (RE) given by equation (16)
is considered.
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(a) CPU time for 60 input variables and
50 sampling points.

(b) CPU time for 60 input variables and
100 sampling points.

(c) CPU time for 60 input variables and
200 sampling points.

(d) CPU time for 60 input variables and
300 sampling points.

Figure 7: CPU time of the Griewank function in 60D over the interval [−5, 5]. The
experiments are based on the 10-latin-hypercube design.

As we see in table 1, we improve the accuracy of KPLS by adding the step
for building KPLS+K. This improvement is verified whatever the number of
principal components used (1, 2 and 3 principal components). For these three
models, a better accuracy is even found than the ordinary kriging model. The
computational time required to build KPLS+k is approximately twice lower
than the time required for ordinary kriging.

5. Conclusions

Motivated by the need to accurately approximate high-fidelity codes rapidly,
we develop a new technique for building the kriging model faster than clas-

16



Table 1: Results for tab1 experiment data (24 input variables, output variables y3)
obtained by using 99 training points, 52 validation points, and the error given by

equation (16). “Kriging” refers to the ordinary kriging Optimus solution, “KPLSh” and
“KPLSh+K”refer to KPLS and KPLS+K with h principal components, respectively.

Best results of the relative error are highlighted in bold type.

Surrogate model RE(%) CPU time
ta
b 1

Kriging 8.97 8.17s
KPLS1 10.35 0.18s
KPLS2 10.33 0.42s
KPLS3 10.41 1.14s
KPLS1+K 8.77 2.15s
KPLS2+K 8.72 4.22s
KPLS3+K 8.73 4.53s

sical techniques used in literature. The key idea for such construction relies
on the choice of the start point for optimizing the likelihood function of the
kriging model. For this purpose, we firstly prove equivalence between KPLS
and kriging when an exponential covariance function is used. After opti-
mizing hyper-parameters of KPLS, we then choose the solution obtained as
an initial point to find the MLE of the equivalent kriging model. This ap-
proach will be applicable only if the kernels used for building KPLS are of
the exponential type with the same form.

The performance of KPLS+K is verified in the Griewank function over
the interval [-5,5] with 20 and 60 dimensions, and an industrial case from
Snecma, where the KPLS models do not perform well in terms of accuracy.
The results of KPLS+K have shown a significant improvement in term of
accuracy compared to the results of KPLS, at the cost of a slight increase
in computational time. We have also seen, in some cases, that accuracy of
KPLS+K is even better than accuracy given by the ordinary kriging model.
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Appendix A. Results of Griewank function in 20D and 60D over
the interval [−5, 5]

In tables A.2 and A.3, the mean and the standard deviation (std) of the
numerical experiments with the Griewank function are given for 20 and 60
dimensions, respectively.
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Table A.2: Results of the Griewank function in 20D over the interval [−5, 5]. Ten trials
are done for each test (50, 100, 200, and 300 training points). Best results of the relative

error are highlighted in bold type for each case.

Surrogate Statistic 50 points 100 points

error (%) CPU time error (%) CPU time

kriging mean 0.62 30.43s 0.43 40.09s
std 0.03 9.03s 0.04 11.96s

KPLS1 mean 0.54 0.05s 0.53 0.12s
std 0.03 0.007s 0.03 0.02s

KPLS2 mean 0.52 0.11s 0.48 1.04s
std 0.03 0.05s 0.04 0.97s

KPLS3 mean 0.51 1.27s 0.46 3.09s
std 0.03 1.29s 0.06 3.93s

KPLS1+K mean 0.59 1.20s 0.45 2.42s
std 0.04 0.16s 0.07 0.44s

KPLS2+K mean 0.58 1.28s 0.42 3.38s
std 0.04 0.15s 0.05 1.06s

KPLS3+K mean 0.58 2.45s 0.41 5.61s
std 0.03 1.32s 0.05 3.99s

Statistic 200 points 300 points

error (%) CPU time error (%) CPU time

kriging mean 0.15 120.74s 0.16 94.31s
std 0.02 27.49s 0.06 21.92s

KPLS1 mean 0.48 0.43s 0.45 0.89s
std 0.03 0.08s 0.03 0.02s

KPLS2 mean 0.42 1.14s 0.38 2.45s
std 0.04 0.92s 0.04 1s

KPLS3 mean 0.37 3.56s 0.35 3.52s
std 0.03 2.75s 0.06 1.38s

KPLS1+K mean 0.20 8.00s 0.17 19.07s
std 0.04 1.51s 0.07 3.19s

KPLS2+K mean 0.18 9.71s 0.16 19.89s
std 0.02 1.29s 0.05 2.67s

KPLS3+K mean 0.16 11.67s 0.16 20.49s
std 0.02 3.88s 0.05 3.46s
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Table A.3: Results of the Griewank function in 60D over the interval [−5, 5]. Ten trials
are done for each test (50, 100, 200, and 300 training points). Best results of the relative

error are highlighted in bold type for each case.

Surrogate Statistic 50 points 100 points

error (%) CPU time error (%) CPU time

kriging mean 1.39 560.19s 1.04 920.41s
std 0.15 200.27s 0.05 231.34s

KPLS1 mean 0.92 0.07s 0.87 0.10s
std 0.02 0.02s 0.02 0.007s

KPLS2 mean 0.91 0.43s 0.87 0.66s
std 0.03 0.54s 0.02 1.06s

KPLS3 mean 0.92 1.57s 0.86 3.87s
std 0.04 1.98s 0.02 5.34s

KPLS1+K mean 0.99 2.14s 0.90 2.90s
std 0.03 0.72s 0.03 0.03s

KPLS2+K mean 0.98 2.44s 0.88 3.44s
std 0.04 0.63s 0.02 1.06s

KPLS3+K mean 0.99 3.82s 0.88 6.68s
std 0.05 2.33s 0.03 5.34s

Statistic 200 points 300 points

error (%) CPU time error (%) CPU time

kriging mean 0.83 2015.39s 0.65 2894.56s
std 0.04 239.11s 0.03 728.48s

KPLS1 mean 0.82 0.37s 0.79 0.86s
std 0.02 0.02s 0.03 0.04s

KPLS2 mean 0.78 2.92s 0.74 1.85s
std 0.02 2.57s 0.03 0.51s

KPLS3 mean 0.78 6.73s 0.70 20.01s
std 0.02 10.94s 0.03 26.59s

KPLS1+K mean 0.76 9.88s 0.66 22.00s
std 0.03 0.06s 0.02 0.15s

KPLS2+K mean 0.75 12.38s 0.60 23.03s
std 0.03 2.56s 0.03 0.50s

KPLS3+K mean 0.74 16.18s 0.61 41.13s
std 0.03 10.95s 0.03 26.59s
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