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Multidisciplinary analysis (MDA) is nowadays a powerful
tool for analysis and optimization of complex systems. The
present study is interested in the case where MDA involves
feedback loops between disciplines (i.e. the output of a disci-
pline is the input of another and vice-versa). When the mod-
els for each discipline involve non-negligible modeling un-
certainties, it is important to be able to efficiently propagate
these uncertainties to the outputs of the MDA. The present
study introduces a polynomial chaos expansion (PCE) based
approach to propagate modeling uncertainties in MDA. It is
assumed that the response of each disciplinary solver is af-
fected by an uncertainty modeled by a random field over the
design and coupling variables space. A semi intrusive PCE
formulation of the problem is proposed to solve the corre-
sponding nonlinear stochastic system. Application of the
proposed method emphasizes an important particular case
in which each disciplinary solver is replaced by a surrogate
model (e.g. kriging). Three application problems are treated,
which show that the proposed approach can approximate ar-
bitrary (non Gaussian) distributions very well at significantly
reduced computational cost.

Nomenclature
x Lower case letter denoted deterministic variables (scalar

or vector).

X Upper case letter denoted random variables (scalar or
vector).

x(k0) An exponent in parenthesis is used to set the value of
the variable, i.e. x(k0) is a given value of the deter-
ministic variable x.

1 Introduction
This article addresses the topic of multidisciplinary anal-

yses that can appear in the design of complex systems
(e.g. aircraft), involving multiple interacting disciplines (e.g.
aerodynamics, structural mechanics, propulsion for aicraft
design). In the last decades, several authors have shown
that taking into account interactions between disciplines in
the design optimization process allows to reach a better de-
sign (with respect to a global criterion such as the range or
fuel consumption), than the one obtained by sequential op-
timization [1]. Consequently several multidisciplinary opti-
mization (MDO) strategies have been proposed (see [2] for a
review). The most straightforward one is probably the mul-
tidisciplinary feasible (MDF) approach. It consists in a cou-
pled multidisciplinary analysis (MDA), at each candidate de-
sign, during the optimization process. From a computational
point of view, this coupled approach can be quite challeng-
ing, especially if iterative analysis between disciplines are
necessary to reach compatibility conditions (as an example,



the equilibrium between the static deflection and the aerody-
namics efforts applied on a wing). These types of interac-
tions, sometimes called feedback or bidirectional loops [3]
are of interest in the present paper.

The models used in the multidisciplinary analysis typ-
ically involve various levels of modeling errors, which in-
duces a modeling uncertainty on the output of the model.
Let us emphasize that these modeling uncertainties may not
be constant with respect to the design variables and the cou-
pling variables, but may vary over the design domain, since
the model may be more accurate in some areas and less in
others. Propagation of these modeling uncertainties through
the design process must be carried out in order to quantify
the resulting uncertainty on the objective function [4]. In-
deed, relying only on the mean predicted values can lead to
erroneous conclusions about the optimal design. Moreover,
many studies prove the interest of taking into account objec-
tive function uncertainty in an optimization process ( [5] for
a well known example).

Among the various ways of modeling uncertainties into
a numerical model, the probabilistic framework is the most
common one and will also be used in this paper. This leads
to the construction of the uncertainty MDO (UMDO) for-
mulations. As for deterministic MDO formulations, coupled
and uncoupled approaches are proposed. Examples of un-
coupled approaches can be found in [6], [7], but this paper
is focused on coupled approaches involving feedback loops.
Moreover, let us note that, in the context of MDA, the prob-
abilistic framework has been mainly used up to now to deal
with uncertain model input parameters and not model un-
certainties. For example in [8], [9] and [10] Monte Carlo
Simulation (MCS) is used for propagating parameter uncer-
tainties to the objective function. Concerning variable model
uncertainties, i.e random fields with respect to the design and
coupling variables, to the best of our knowledge, only [3]
proposes a method to handle them in an MDA context. Their
work is an adaptation of [7] in which a semi-uncoupled like-
lihood based simulation approach is proposed.

In order to solve the problem of model uncertainty prop-
agation through the coupled MDA, we propose in this pa-
per an approach based on the use of polynomial chaos ex-
pansion (PCE). The developed method constitutes an origi-
nal application of classical PCE in an MDA context and we
will discuss the advantages and drawbacks of this formula-
tion compared to MCS. We will illustrate two real-case ap-
plication problems in the context of preliminary aircraft de-
sign. The first one deals with regression models constructed
from a historical database of aircraft parameters and perfor-
mances. Such models involve significant uncertainty that
varies within the design space since the regression models
are more accurate in certain areas of the design space than
in others. The second one deals with models approximated
by kriging metamodels [11]. Due to the nature of the kriging
metamodel, the model uncertainty varies within the design
space (the model being the most accurate in the vicinity of
the points that served for its construction).

The rest of the paper is organized as follows. Section 2.2
presents the MDA formalism and introduces the probabilistic

framework used for model uncertainties. More precisely, it
describes the modeling of uncertainties by random fields and
focuses on two particular cases. In the first one, the random
fields construction is based on expert judgment possibly in
conjunction with the use of a database and linear regression
methods. In this case a perfectly correlated assumption is
made concerning the correlation of the random field. In the
second one, simplified models are kriging meta-models that
intrinsically represent model uncertainties by conditioned
Gaussian random fields. Section 3 proposes the resolution of
the stochastic coupled MDA by PCE. This section contains
the original part of the paper by introducing a semi-intrusive
PCE approach. Section 4 is devoted to numerical applica-
tions and comparisons with Monte Carlo reference results.
Efficiency of the proposed method is demonstrated first on
an academic example and then on two examples based on
conceptual aircraft design.

2 Back ground on MDA under uncertainty
2.1 Representation of uncertainties

This article addresses the issue of uncertainty propaga-
tion through coupled multidisciplinary problems. In this con-
text a distinction can be made between two major types of
uncertainties: aleatory and epistemic uncertainty. Aleatory
uncertainty is also known as stochastic uncertainty, irre-
ducible uncertainty, inherent uncertainty, variability or type
I uncertainty. It can stem from environmental stochastic-
ity, inhomogeneity of materials, fluctuations in time, vari-
ation in space, heterogeneity or other intrinsic differences
in the features of a system. Epistemic uncertainty on the
other hand, sometimes called reducible uncertainty or type
II uncertainty, stems from lack of knowledge. This kind of
uncertainty is usually related to scientific ignorance, mea-
surement uncertainty (e.g. sensor uncertainty), insufficient
experimental data or data censoring, thus in general terms
lack of knowledge. In particular epistemic uncertainty in-
cludes uncertainty related to numerical approximations and
model uncertainty. While aleatory uncertainty is typically
being modeled within a probabilistic framework, alternative
frameworks have been developed for modeling epistemic un-
certainty (e.g. interval analysis [12], fuzzy sets [13], evi-
dence theory [14], possibility theory [15]). Much debate has
taken place over the best way to represent model uncertainty
and no consensus was reached [16].

In this work we limit ourselves to the propagation of
modeling uncertainty. Note however that approaches have
also been proposed for propagation of both aleatory and epis-
temic uncertainties [3]. Furthermore, in this work we con-
sider the modeling uncertainty within a probabilistic frame-
work. While there is no consensus on the best framework
for modeling epistemic uncertainty, we chose a probabilis-
tic framework due to its extensive use and strong theoret-
ical background. In particular it allows to treat Gaussian
processes which provide an intrinsic probabilistic model er-
ror and which is commonly used with expensive black-box
type numerical models. The two application problems pro-
vided in section 4.3 illustrate two such cases in aircraft de-



sign where probabilistic frameworks have been used for rep-
resenting modeling uncertainty.

2.2 Introduction of model uncertainties in MDA
A classical deterministic MDA problem, of n disciplines

involving feedback loops, could be written as a system of n
equations,

yi(z,yc(i)) = fi(z,yc(i)), i = 1, · · · ,n (1)

where, z stands for the vector of design variables, yc(i) is the
vector of the coupling variables for the discipline i. c(i) is
the set of indexes that identify the coupling variables i.e.
#(c(i)) ≤ (n− 1) and i /∈ c(i). Finally, fi is the solver of
discipline i. Let us precise that: with the previously intro-
duced notations, disciplines i and j are said to have a feed-
back loop if i ∈ c( j) and j ∈ c(i). In the following, it is as-
sumed that Eqn. (1) contains at least one feedback coupling.
Discipline solvers fi, i = 1, · · · ,n are black boxes. Defini-
tion of fi is unknown to the user (note that fi could be linear
or nonlinear with respect to the design and coupling vari-
ables). It should be noted that this assumption is relevant
in a multidisciplinary context, in which the designer (who is
not necessarily an expert of each domain) is only a user of
the disciplinary tool fi provided by an expert of the disci-
pline. Solution of Eqn. (1) is the vector y of size n. As we
assume feedback coupling, and that fi, i = 1, · · · ,n are black
boxes, this solution is computed by an iterative algorithm.
In the following, existence of a unique solution for Eqn. (1)
is assumed by physical considerations. Finally, this study is
focused on multidisciplinary analysis, not optimization, the
vector of design variables z is thus a constant. Consequently,
the deterministic problem is: find yi, i = 1, · · · ,n such that
Eqn. (1) stands for an arbitrary z = z(0). Note that this leads
us to leave aside the dependence in z in the rest of the paper.

Given this deterministic MDA formulation we now in-
troduce modeling uncertainties that will affect each disci-
pline. Accordingly we associate the modeling uncertainty εi
to the solver fi such that, y?i (yc(i)) = fi(yc(i))+εi(yc(i)) where
y?i is a reference value (either obtained by experimental set
up or high fidelity numerical model). It should be noted that,
the modeling uncertainty depends on the coupling variables
(it also depends on the design variables z, we recall that z is a
constant in this study). An exhaustive presentation of meth-
ods for quantification of modeling uncertainties is out of the
scope of this study, but we refer the interested reader to [17].
In the present work, a probabilistic modeling of these un-
certainties has been chosen. In the numerical examples pre-
sented in section 4 the model uncertainty quantification will
be obtained either by prediction variance formulations as-
sociated with regression methods on experimental databases
or by the use of kriging surrogate models, which explicitly
contains an uncertainty model in its formulation. We intro-
duce Si the space of the coupling variables yc(i) (it is assumed

that Si ⊂ R#c(i)) and a probability space (Ω,F,P) where Ω
is the space of elementary events with elements ω, F is a

σ−algebra on Ω and P a probability measure on F . Then,
εi(yc(i) ,ω) is modeled as a real valued continuous random

field on Si (i.e ∀ y(k0)

c(i)
∈ Si, εi(y

(k0)

c(i)
,ω) is a real valued ran-

dom variable). It is assumed that εi(yc(i) ,ω), i = 1, · · · ,n
are independent random fields. Concerning the choice of the
covariance function of the random field εi(yc(i) ,ω), two par-
ticular cases will be studied:

1. Perfectly correlated random field.
∀ (y(k1)

c(i)
, y(k2)

c(i)
) ∈ S2

i , the random variables

εi(y
(k1)

c(i)
,ω) and εi(y

(k2)

c(i)
,ω) are perfectly dependent

i.e εi(y
(k1)

c(i)
,ω) = g(εi(y

(k2)

c(i)
,ω),y(k1)

c(i)
), where g is a

deterministic function. In the following this case will
be denoted by perfectly correlated case.

2. εi(yc(i) ,ω) is a Gaussian random field conditioned on
some design of experiments (DOE) with a specified co-
variance kernel. This case corresponds to the one where
a kriging meta-model is used as a simplified model and
so it will be denoted as kriging case.

We introduce the stochastic version of Eqn. (1) by taking
into account the modeling uncertainty,

Yi(ω) = fi(Yc(i)(ω))+ εi(Yc(i)(ω),ω), i = 1, · · · ,n (2)

where Yi, i = 1, · · · ,n are real valued random variables. The
solution of the system of Eqn. (2) is the joint probability dis-
tribution of the random vector Yi, i = 1, · · · ,n. One should
note that the difficulty in solving Eqn. (2) is due to the pres-
ence of the coupling random variables Yc(i)(ω). Resolution
of Eqn. (2) involves the discretization of the random fields
εi(yc(i) ,ω), i = 1, · · · ,n. In the perfectly correlated case this
discretization is achieved by a single random variable. In the
kriging case we classically rely on the Karhunen-Loève (KL)
decomposition.

Resolution of Eqn. (2) can be achieved by Monte Carlo
simulation (MCS), which basically consists in solving NMCS
deterministic systems (Eqn. (2) with NMCS constant values
for ω). Usually, MCS could be unaffordable if one evaluation
of the discipline solvers, fi, i = 1, · · · ,n is time consuming.
Moreover, the MCS results is a collection of response real-
izations from which one can estimate statistics with an accu-
racy depending on the number of simulations. Dealing with
this representation of the response might have some draw-
backs for post processing.

To deal with these two shortcomings polynomial chaos
expansion (PCE) offers some advantages by providing a
functional representation of the response Yi, i = 1, · · · ,n with
respect to the random inputs. Besides computational cost
savings, a functional representation allows an easy access to
relevant post processing information such as global sensitiv-
ity analysis (GSA see [18]).



3 Uncertainty propagation by polynomial chaos expan-
sion

3.1 Perfectly correlated case
First of all, we parametrize the problem with a vector of

n independent standard normal variables called ξ : (Ω,F)→
(Rn,Bn). Then, Eqn. (2) can be rewritten,

Yi(ξ) = fi(Yc(i)(ξ))+ εi(Yc(i)(ξ),ξi), i = 1, · · · ,n (3)

where the dependence in ω is omitted for sake of clarity.
We now introduced the Hermite PCE ( [19]) of a given

discipline i. Suppose that E[Y 2
i ]< ∞, then Yi(ξ) reads,

Yi(ξ) =
∞

∑
j=0

a(Yi)
j Ψ j(ξ) (4)

where a(Yi)
j denoted the unknown coefficients of Yi PCE and

{
Ψ j
}P−1

j=0 are the n-variate Hermite polynomials. It should
be noted that the choice of Hermite PCE is motivated for
the sake of simplicity, but the use of more advanced PCE
methods is also possible (e.g. [20] and [21] for generalized
PCE, [22] for iterative generalized PCE and [23] for multi
elements generalized PCE).

Decomposition Eqn. (4) is truncated to P terms such
that,

Yi(ξ)≈ Ŷi(ξ) =
P−1

∑
j=0

a(Ŷi)
j Ψ j(ξ). (5)

The retained truncation strategy consists in keeping all
the polynomials with a degree less or equal to d, hence
P = (n+d)!

n!d! . Approximation Ŷi(ξ) leads to the definition of
the residual ri corresponding to the introduction of the PCE
approximation (Eqn. (5)) in the line i of Eqn. (3)),

ri = Ŷi(ξ)− fi(Ŷc(i)(ξ))− εi(Ŷc(i)(ξ),ξi). (6)

We now seek to determine the coefficients a(Ŷi)
j of Eqn. (5).

For this purpose a non intrusive projection approach is used
(let us recall that the solver fi is only accessible as a black
box function). It consists in imposing the projection of the
residual ri on the vectors

{
Ψ j
}P−1

j=0 to be zero, i.e E[riΨ j] =

0, j = 0, · · · ,P−1 leading to

a(Ŷi)
j E[Ψ2

j ] =
∫
Rn

(
fi(Ŷc(i)(ξ))+ εi(Ŷc(i)(ξ),ξi)

)
Ψ j(ξ)ϕ(ξ)dξ

(7)
where ϕ is the probability density function of a normal stan-
dard random variable. In practice, the integral in Eqn. (7) is
computed by Gauss quadrature, leading to (assuming a num-

ber Q of quadrature nodes)

a(Ŷi)
j E[Ψ2

j ]≈
∑Q

q=1 w(q)
[(

fi(Ŷc(i)(ξ
(q)))+ εi(Ŷc(i)(ξ

(q)),ξ(q)i )
)

Ψ j(ξ(q))
]

(8)
where w(q) denotes the quadrature weight associated to the
node ξ(q). The term fi(Ŷc(i)(ξ

(q))) is computed by the solver

fi and the term εi(Ŷc(i)(ξ
(q)),ξ(q)i ) is evaluated by the isoprob-

abilistic transformation,

Φ
(

ξ(q)i

)
= Fεi(Ŷc(i)

(ξ(q)),ξi)

(
εi(Ŷc(i)(ξ

(q)),ξ(q)i )
)

⇒ εi(Ŷc(i)(ξ
(q)),ξ(q)i ) = F−1

εi(Ŷc(i)
(ξ(q)),ξi)

(
Φ
(

ξ(q)i

))
.

Let us specify that, in the cases studied in this arti-
cle, εi(Ŷc(i)(ξ

(q)),ξi), i = 1, · · · ,n are always independent,
with classical proability distributions (normal, uniform etc.)
which makes the computation of F−1

εi(Ŷc(i)
(ξ(q)),ξi)

straightfor-

ward. For other cases one can refer to [24] and [25] for a
detailed presentation of generalized isoprobabilistic transfor-
mations.

After having introduced the PCE for each discipline, we
now come back to the system of n equation of Eqn. (3),
by approximating each line of the system by its PCE (as in
Eqn. (5)), such as to obtain the nonlinear system,

Ŷi(ξ) = ∑P−1
j=0 a(Ŷi)

j Ψ j(ξ)
= fi(Ŷc(i)(ξ))+ εi(Ŷc(i)(ξ),ξi), i = 1, · · · ,n

(9)

where the unknowns are the coefficients a(Ŷi)
j ,

i = 1, · · · ,n, j = 0, · · · ,P−1. This nonlinear system is
solved by a fixed point algorithm described in Algo. 1. This
choice is motivated by the simplicity of implementation
especially for updating the probability distribution of the
random variable εi(Ŷc(i)(ξ

(q)),ξi) at each iteration. Note

that we call a(Ŷi)
j,0 , i = 1, · · · ,n, j = 0, · · · ,P− 1 the initial

PCE coefficients or the coefficients of the previous iteration
and a(Ŷi)

j,1 , i = 1, · · · ,n, j = 0, · · · ,P− 1 the coefficients at
the current iteration. Let Ŷi,0 and Ŷi,1 represent respectively
the PCE approximation given by Eqn. (5) computed with
coefficients a(Ŷi)

j,0 and a(Ŷi)
j,1 , i = 1, · · · ,n, j = 0, · · · ,P− 1.

The algortihm is considered converged when the difference
between the coefficients of the previous and current iteration
is below a certain threshold. More precisely the stopping
criterion is the relative variation of the response, at each
quadrature nodes, between two iterations. This criterion is
retained as it can be used, with the same threshold value
err0 for MCS, which allows a meaningful comparison
between the two approaches. Finally, it should be noted
that the convergence of Algo. 1 will be discussed in several
numerical examples in section 4.



Initialize a(Ŷi)
j,0 , i = 1, · · · ,n, j = 0, · · · ,P−1

while #
{

l/err(ξ(q))≥ err0, q = 1, · · · ,Q
}
> 1 do

err(ξ(q)) = 0, q = 1, · · · ,Q
for i = 1, · · · ,n do

for α ∈ c(i) do
Compute Ŷα(ξ(q)) by Eqn. (5) and

coefficients a(Ŷα)
j,0

end
Update the probability distribution of

εi(Ŷc(i)(ξ
(q)),ξi)

for j = 0, · · · ,P−1 do
Compute a(Ŷi)

j,1 by Eqn. (8)
end

Compute erri(ξ(q)) =
∣∣∣∣

Ŷi,0(ξ(q))−Ŷi,1(ξ(q))
Ŷi,0(ξ(q))

∣∣∣∣ ,
q = 1, · · · ,Q

err(ξ(q)) = err(ξ(q))+ erri(ξ(q)),
q = 1, · · · ,Q

Set a(Ŷi)
j,0 = a(Ŷi)

j,1 , j = 0, · · · ,P−1
end

end
Algorithm 1: Fixed point algorithm used to solve Eqn. (9)

3.2 Kriging case
We are now interested in the case where the models Yi

are provided by kriging metamodels.
Kriging has been introduced by [26] in the geostatistics

field. As the focus of the present article is not on the kriging
method, only the necessary background is explained. Litera-
ture on Kriging is wide and readers could refer, for example,
to [27] for a detailed presentation.

Let us call y?i (yc(i)) the actual unknown response. Krig-
ing modeling assumes that y?i (yc(i)) is a realization of a Gaus-
sian process (GP), denoted by Hi(yc(i) ,ω) with mean µi(yc(i))

and covariance function Ci(y
(k1)

c(i)
,y(k2)

c(i)
). Then, assuming that

y?i (yc(i)) is known on a given DOE of size s, kriging con-
sists in the construction of a conditioned GP, denoted by
Yi of mean fi,s(yc(i)) and covariance function ki,s(y

(k1)

c(i)
,y(k2)

c(i)
)

where (y(k1)

c(i)
, y(k2)

c(i)
) ∈ S2

i . Expressions of fi,s(yc(i)) and

ki,s(y
(k1)

c(i)
,y(k2)

c(i)
) in terms of µi(yc(i)) and Ci(y

(k1)

c(i)
,y(k2)

c(i)
) can be

found in [27].
In the context of the stochastic system of Eqn. (2), Yi is

a GP with a random mean fi,s(Yc(i)) and a random covariance

function ki,s(Y
(k1)

c(i)
,Y (k2)

c(i)
). We introduce now the KL decom-

position [19] of Yi.

Yi(Yc(i)(ω),ω)= fi,s(Yc(i)(ω))+
∞

∑
mi=1

√
λmiVmi(Yc(i)(ω))ξmi(ω)

(10)
In the particular case of GP, ξmi are independent standard
normal random variables. λmi and Vmi are respectively the
eigenvalues and corresponding eigenvectors of the covari-

ance function ki,s(y
(k1)

c(i)
,y(k2)

c(i)
). In practice, the KL decom-

position (Eqn. (10)) is truncated to Mi terms (corresponding
to the Mi largest eigenvalues). λmi and Vmi are found as solu-
tions of the equation,

∫
D

ki,s(x1,x2)Vmi(x2)dx2 = λmiVmi(x1). (11)

The solution of this equation is discussed in [19]. Except
for special covariance functions, solutions of Eqn. (11) must
be computed numerically (see [19] for details). In the rest of
the paper, the discretization of the domain D on a fine regular
grid is used.

By analogy with the previous section, we introduce a
vector ξ of M independent standard normal random vari-
ables (M = ∑n

i=1 Mi) and
{

Ψ j
}∞

i=0 the Hermite polynomi-
als of M variables. Then, one can compute the truncated

PCE of Yi on this basis. To this purpose, coefficients a
(Ŷ j)
j ,

j = 0, · · · ,P−1 are still obtained by a non intrusive projec-
tion approach, leading to

a(Ŷi)
j E[Ψ2

j ] =∫
RM

(
fi,s(Ŷc(i)(ξ))+

Mi

∑
mi=1

√
λmiVmi(Yc(i)(ξ))ξmi

)
Ψ j(ξ)ϕ(ξ)dξ

(12)
which is, once again, computed by Gauss quadrature.

The corresponding nonlinear system, resulting from the
introduction of the KL expansion into Eqn. (2), is solved by
Algo. 1.

3.3 Remarks
The first remark concerns the random fields

εi(yc(i) ,ω), i = 1, · · · ,n. In the following it is assumed
that these random fields respect the physics of the problem
and that for all ω(0) ∈ Ω, there exists a unique solution for
Eqn. (2). It should be noted that, in practice, guarantying this
assumption a priori is not straightforward, in particular for
the kriging case. Nevertheless, in section 4 this assumption
is experimentally verified during MCS.

The second remark about the methods introduced in the
previous sections concerns the stochastic dimension of the
problems. In the perfectly correlated case the stochastic di-
mension is equal to the number of disciplines n, whereas
in the kriging case this dimension is equal to M = ∑n

i=1 Mi
(which is between 2n and 6n for the problem we tested)
. After this remark, let us introduce a simplified kriging
case, which is the perfectly correlated case assuming that
εi(Yc(i)(ξ

(q)),ξi) is a Gaussian random variable of zero mean
and variance given by the kriging model. Roughly speaking
this leads to replace the covariance of the kriging by a perfect
correlation assumption. Then, it is interesting to identify the
situations for which this simplified kriging case is a correct
approximation of the kriging case. Indeed, it allows to sig-
nificantly reduce the stochastic dimension. Intuitively, one
is interested in the values of the correlation functions of the



kriging surrogate models in the vicinity of the solution of
Eqn. (2). Numerical experiments are presented in section 4
to illustrate this idea.

4 Numerical applications
4.1 Monte Carlo reference and approximation by PCE

The solution of Eqn. (2) is the joint probability distribu-
tion of Yi, i = 1, · · · ,n. In the following numerical examples,
this probability distribution cannot be calculated analytically
and will be estimated by MCS. For each MCS simulation
the corresponding deterministic system (Eqn. (2) with a con-
stant ω value) is solved by the fixed point algorithm. The
same starting point is used for MCS and for the initialization
step of Algo. 1. Finally, for the kriging case, the same KL
decomposition is used for MCS and PCE approaches.

In order to quantify the accuracy of the method the fol-
lowing procedure is proposed. We call F̂MCS(y) the empirical
joint CDF of the random vector Yi, i = 1, · · · ,n estimated by
MCS. We also denote by F̂PCE(y) the empirical joint CDF
of the random vector Ŷi, i = 1, · · · ,n (where Ŷi is the PCE
approximation of Yi). We now introduce the following esti-
mator of the mean relative error between these two empirical
CDF defined by,

Err(Yi, i=1,···,n) =
1

Ngrid

Ngrid

∑
k=1

∣∣∣∣∣
F̂MCS(y(k))− F̂PCE(y(k))

F̂MCS(y(k))

∣∣∣∣∣ (13)

where Ngrid is the number of estimation points y(k) ∈ Rn.
These estimation points are located on a DOE over the vari-
ation domain of Yi, i = 1, · · · ,n. The sampling size for the
MCS procedures is set to 100000 and, in practice, only the
points y(k) such that F̂MCS(y(k)) ∈ [0.01,0.99] will be con-
sidered for the computation of Err. It is then reasonable
to assume that the sampling variability of Err is almost
zero. Note that this procedure is coherent with the proposed
method, in that the proposed approach aims at approximating
the global behavior of the true probability distribution (with-
out any focus on probability tails for which dedicated meth-
ods are available). Moreover, we highlight the fact that the
PCE approach is purely deterministic and that the sampling
variability of estimator Err is only due to MCS procedures
and that this variability can be driven to zero by choosing a
large sample size.

Finally let us specify that in all the following examples,
the construction of Hermite polynomials and the associate
quadrature rules rely on the python package OpenTURNS 1.
Construction of the kriging models is done with the python
package scikit learn [28] with a constant trend and a square
exponential covariance kernel. Stopping criterion err0 for
Algo 1 and MCS is set to err0 = 10−7.

1http://www.openturns.org/

Table 1. Convergence of Algo. 1 with respect to the degree of the
PCE approximation. P is the size of the polynomial basis and Q the
number of quadrature points.

d P Nb unknowns Q Niter Algo. 1 Neval fi

2 6 12 36 7 252

3 10 20 49 7 343

4 15 30 64 8 512

5 21 42 81 8 648

4.2 Sellar test case
4.2.1 Description

This test case, inspired by [29], counts two disciplines
and one objective function. According to the formalism used
in this paper the deterministic problem reads,

y1 = z2
1 + z2−0.2y2

y2 =
√

y1 + z1 + z2
y3 = z2 + y1 + e−y2

(14)

This system contains one feedback loop between y1 and y2.
The objective function is y3. Design variables z1 and z2 are
constant such that z1 = 6, z2 = 2.

4.2.2 Perfectly correlated case: uniform random fields
For this first example it is assumed that disciplines y1

and y2 are affected by uniform random fields ε1(y2,ω) and
ε2(y1,ω). Dependence of the uniform distributions parame-
ters with respect to the coupling variables is arbitrarily cho-
sen such as ε1 ∼U(−0.2y2,0.2y2) and ε2 ∼U(−√y1,

√
y1).

It is also assumed that the model of the objective function
y3 is perfect, so, the stochastic dimension of the problem is
n = 2. Figure 1 i) illustrates one realization of the random
model and the bounds of the uniform random fields.

Reference results are obtained by MCS with
NMCS = 100000 simulations. Over these NMCS simula-
tions, the average number of iterations used to reach the
convergence is µMC = 4.78 with a coefficient of variation
of 20%. The number of disciplinary solvers evaluations is
approximately equal to NMCS×µMC = 478000.

Objective of this example is to illustrate the convergence
of the Algo. 1 with respect to the maximal degree d of the
PCE. Quadrature level is chosen iteratively such that the rela-
tive differences between the coefficients a(Ŷ3)

i for two consec-
utive quadrature levels are all less than 5%. A full tensoriza-
tion of the one dimensional quadrature rule is performed to
obtain the quadrature rule in dimension n. Note that our ob-
jective here is not to optimize the quadrature level but to
choose one that ensures a numerical integration error neg-
ligible compared to the truncation error. Table 1 gives the
number of iterations of Algo. 1 for d = 2 to d = 5 to con-
verge, the number Q of quadrature nodes used and the cor-
responding number of disciplinary solver evaluations. The
first remark is that the number of iterations of the Algo. 1
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Fig. 2. PDF of Ŷ1,Ŷ2 obtained by PCE for degree d = 2 to d = 5.
The same color scale as Fig. 1 ii) is used.

is almost insensitive to the number of unknown coefficients
a(Ŷi)

j (the number of unknown coefficients is equal to P×n).
Indeed, it only goes from 7 to 8 iterations while the number
of unknown coefficients goes from 12 to 42. After this re-
mark about the convergence of the Algo. 1, the accuracy of
the approximation is now studied. First, a visual comparison
is performed between the PDF of (Y1,Y2) obtained by MCS
and by PCE. Figure 1 ii) presents the MCS reference results
while Fig. 2 presents the results obtained by PCE approxima-
tion for d = 2 to d = 5. These figures (and all the followings
in the numerical applications section) are normalized two di-
mensional histograms.

Figure 2 shows that the proposed PCE approach con-
verges to the reference results with respect to the degree of
the approximation. More precisely a correct approximation
is obtained for d = 4. Finally, it is notable that for d = 5, even
if the approximation is the best one according to the CDF er-
ror criterion defined by Eqn. (13) (see next paragraph), some

realizations stand far outside the uniform boundaries (one
can note more isolated blue dots than for d = 4). This is due
to the strong oscillations obtained with polynomials of high
degree classically denoted by Gibbs phenomenon (see [30]).
As the proposed approach is applied with Hermite PCE this
behavior is expected. Nevertheless, more advanced PCE ap-
proaches cited previously may fix this issue.

The error criterion defined by Eqn. (13) with respect
to the degree d of the PCE approximation for the estima-
tion of the CDF of (Y1,Y2) is now evaluated. The domain
[30,38]× [8,21] is discretized on a regular grid of 50×
50 = 2500 points. Then, keeping only the points such that
F̂MCS(y(i)) ∈ [0.01,0.99] leads to Ngrid = 1536. The results
are, Err(Y1,Y2)

d=2 ≈ 15.80%, Err(Y1,Y2)
d=3 ≈ 6.95%, Err(Y1,Y2)

d=4 ≈
6.72%, Err(Y1,Y2)

d=5 ≈ 3.05%. The same error criterion for the
CDF of the objective function Y3 is also evaluated. It is eval-
uated on the domain [30,45] discretized in 100 points. After
the selection of the points such that F̂MCS(y(i)) ∈ [0.01,0.99]
one gets Ngrid = 90, leading to Err(Y3)

d=2 ≈ 10.33%, Err(Y3)
d=3 ≈

4.16%, Err(Y3)
d=4 ≈ 3.89%, Err(Y3)

d=5 ≈ 1.88%.
These results show that the relative errors tend toward

zero with respect to the degree d of the PCE which is coher-
ent with the theoretical results. We emphasize that despite
the Gibbs phenomenon, the best results are obtained with the
highest degree.

Finally, the proposed method is efficient on this first
example with less than 650 disciplinary solver evaluations
for the PCE approach (depending on the chosen degree,
see Tab. 1) compared to 478000 evaluations for the MCS
method.

4.2.3 Kriging case
In this section kriging metamodels are used as surro-

gate models of each disciplinary solver. In order to have an
uncoupled approach, each kriging model is built on its own
DOE. We denote by Z1 = [−10,10], and Z2 = [0,10] the in-
tervals of variation of the design variables z1 and z2, and by
S1 = [0,24] and S2 = [3.16,100] the intervals of variation of
yc(1) = y2 and yc(2) = y1 respectively. We call GPY1(z1,z2,y2)
the kriging model of y1. The DOE on which GPY1(z1,z2,y2)



is conditioned counts 7 points obtained by Latin Hypercube
Sampling (LHS). The second model is approximated by a
kriging model called GPY2(z1,z2,y1), conditioned on a DOE
of 5 points also constructed by a LHS. The parameters of
the kriging model are determined by maximum likelihood
(see [27]). Note that only 5 and 7 DOE points were used
here since the models of Eqn. (14) are relatively simple (lin-
ear and quadratic). Furthermore we intentionally limited the
number of DOE points in order to be representative of prob-
lems involving very expensive simulations where an adaptive
construction of the DOE is the most appropriate. Note that
our proposed approach would allow such an adaptive selec-
tion of a new DOE point in order to reduce the uncertainty
on the solution of the MDA problem.

As previously, design variables are set to z1 = 6 and
z2 = 2. Figure 3 i) presents the mean of the two kriging
models (GPY1(6,2,y2) and GPY2(6,2,y1)) and the 99% confi-
dence interval (the mean ± 3 standard deviation). A realiza-
tion of each GP is also drawn on Fig. 3 i) (denoted by random
realization).

The approach developed in section 3.2 is now applied.
First of all, the KL decomposition of the two conditioned GP
is constructed. For both models, the three largest eigenval-
ues are retained (this choice leads to a variance relative error
less than 1% over the studied design space, for both models).
Then, the stochastic dimension of the problem is M = 6. As
mentioned in section 3.3, a simplified version of this prob-
lem is also studied in which the covariance of the kriging
models is replaced by the assumption of perfect correlation.
Then, in this simplified version, the stochastic dimension of
the problem is only n = 2. Reference results are carried out
by MCS of NMCS = 100000 simulations. Over these simula-
tions the mean number of iterations to reach convergence is
µMCS = 4.58 with a coefficient of variation of 18%. This ap-
proximately leads to 458000 evaluations of each disciplinary
solver. The Fig. 3 ii) presents the reference joint PDF of
(Y1,Y2).

Table 2 gives the selected PCE degree, the size of the
basis and the number of quadrature points used for both ap-
proaches. It also presents a comparison of the results ob-
tained by both approaches in terms of number of iterations of
Algo. 1, number of disciplinary solver evaluations and values
of the error defined by Eqn. (13) for the approximation of the
joint CDF of the random vector (Y1,Y2). For computation of
this criterion the domain [5,35]× [5,20] is discretized over a
50× 50 regular grid. After the selection of points such that
F̂MCS(y(i)) ∈ [0.01,0.99] one gets Ngrid = 1979.

Finally, Fig. 3 presents the PDF of Ŷ1,Ŷ2 obtained by
the kriging case, Fig. 3 iii), and by the simplified kriging
case, Fig. 3 iv). Results presented by Tab. 2 and by Fig.3 iii)
and iv) show that the kriging case and the simplified kriging
case both lead to a good approximation of the reference PDF
(Fig. 3 ii)). Moreover, the simplified kriging case required
approximately 300 times less disciplinary solver evaluations
than the kriging case to reach a comparable accuracy (CDF
mean relative error less than 1%).

From our numerical experiments with this simplified
kriging case we observed that this simplified version is a cor-

rect approximation of the kriging case if there is no DOE
point near the mean of Yi, i = 1, · · · ,n. Definition of a spe-
cific criterion must be seen as a prospect of our work, at this
time we simply propose an illustration based on the previous
example and some qualitative comments at the end of this
section.

To illustrate this, a new point is added to the DOE of
GPY1 at coordinates z1 = 6,z2 = 2,y2 = 13. The reference
PDF of (Y1,Y2) is obtained by MCS (100000 simulations)
and presented in the Fig. 4 i). The PDF of Ŷ1,Ŷ2 computed
with the kriging case and with the simplified kriging case
are respectively given by Fig. 4 ii) and iii). We specify
that the parameters of the proposed method (degree, num-
ber of quadrature points) remain the same as for the pre-
vious example. The error criterion proposed in Eqn. (13)
is evaluated on the domain [32,42]× [5,20] discretized on a
100×50 regular grid. After the selection of points such that
F̂MCS(y(i)) ∈ [0.01,0.99] one gets Ngrid = 2991. Numerical
application leads to ErrKg ≈ 1.28% for the kriging case and
to ErrSim−Kg ≈ 3.53% for the simplified kriging case. This
confirms the results of Fig. 4 showing that, on this example,
the simplified kriging case could no longer be considered as
good as the kriging case. Let us add that the approximation
obtained with the kriging case is still very efficient.

Two hypotheses are formulated to explain this behavior.
First one relies on the fact that, on the vicinity of a DOE
point, the correlation of the conditioned Gaussian process
tends to zero. Then, the hypothesis of perfect correlation is
not correct anymore at the neighborhood of a DOE point.
To check this hypothesis we perform a MCS with the perfect
correlation assumption. Results (not shown) are almost iden-
tical to the one of MCS using the kriging correlation func-
tion. Indeed, after a numerical study of the conditioned cor-
relation function, we note that, in this example, the size of the
neighborhood in which the perfect correlation assumption is
not valid is negligible. Note that this behavior is expected
when one deals with kriging interpolation of smooth func-
tions, which is the context of our study. Our second hypoth-
esis is that the polynomial approximations of the responses
in a two dimensional space are not able to catch the singular-
ity at a DOE point. Indeed, this hypothesis is confirmed by
the improvement of the results by increasing the degree of
the PCE (not shown). In practice we increasing the degree to
d = 20, which allows to get a correct approximation except
in the vicinity of the singularity. In order to tackle this issue,
a perspective of our research is to try the multi-elements PCE
( [21]) on this example as this method is especially devoted
to singularity.

4.3 Conceptual aircraft design
4.3.1 Regression models

We consider here the conceptual aircraft design prob-
lem described in [31], which was proposed by Airbus as a
test case for the Integrative Design for Complex Systems
research project. The MDO problem involves determining
the engine thrust and the wing area of an aircraft that mini-
mizes, within operational constraints, the maximum take off
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Table 2. Comparison between the kriging case and the simplified kriging case on the Sellar problem. P is the size of the polynomial
basis and Q the number of quadrature points.

degree Stoc. dim. P Q Niter Algo. 1 Neval fi Err

Kriging 3 M = 6 84 4096 9 36864 0.673%

Simplified kriging 3 n = 2 10 16 7 112 0.846%
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weight (mtow), under a given set of design assumptions and
under given regression models based on historical databases.
The various models considered involve overall 160 parame-
ters but most of them are fixed (performance requirements or
design assumptions) or related through the regression mod-
els. The multidisciplinary analysis involves a single feed-
back loop between the structural and the design mission dis-
ciplinary solvers. The design mission solver uses the Breguet
Leduc range equation [32] to output the mtow of the aircraft
as a function of the zero fuel weight (z f w) of the aircraft
and for fixed values of the range (r), the mach number (m),
the specific fuel consumption (s f c) and the lift over drag ra-
tio (l/d). Conversely the structural solver provides the zero
fuel weight of the aircraft for a given take-off weight, based
on structural strength considerations. For the test case, a
semi analytic model developed at Onera [33] is used. This
model takes the following inputs: the wing surface (ws),
the sweep angle (β), the length of the fuselage (l f ), the di-
ameter of the fuselage (d f ) and the number of passengers
npax. According to our notations, the coupling variables

are y1 = mtow and y2 = z f w and the design variables are
z =

{
r,m,s f c, l/d,β, l f ,d f ,npax

}
.

It is assumed that both models have been computed from
different designs representing a database of existing aircraft.
Then, Figure 5 presents the points from the database as well
as the corresponding linear regressions with their 99% con-
fidence interval constructed by the method proposed in [31].
This method leads to the definition of the modeling error as
a perfectly correlated Gaussian random field. The stochastic
dimension of the problem is thus n = 2. It should be noted
that there is no closed form expression of the variance with
respect to the coupling variable contrary to the previous ex-
ample, hence the variance should be computed pointwise.

As for the previous examples, reference results are ob-
tained with MCS of 100000 simulations. Over these 100000
simulation the mean number of fixed point iterations used to
reach the convergence is µMC ≈ 27.24 with a coefficient of
variation of 20%. The number of disciplinary solver evalua-
tions is then approximately equal to 2724000.

The PCE approximation for the perfectly correlated case
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Fig. 6. i) PDF of (MTOW,ZFW ) obtained by MCS (100000 sim-
ulations) ii) PDF of ˆMTOW , ˆZFW obtained by the proposed ap-
proach

is set up with a maximal degree d = 3, thus the polynomial
basis size is P = 10. Quadrature level is set to 6, so the num-
ber of quadrature points is Q = 36. The number of iterations
is Niter Algo.1=57, hence the number of disciplinary solver
evaluations is Neval fi =2052. Figure 6 i) and ii) respec-
tively present the PDF of (MTOW,ZFW ) and the PDF of its
PCE approximation ˆMTOW , ˆZFW . Error criterion defined
by Eqn. (13) is evaluated on a regular grid over the domain
[30000,108000]× [30000,80000] of size 200× 200. After
the selection of points such that F̂MCS(y(i)) ∈ [0.01,0.99] one
gets Ngrid = 18726, leading to Err(MTOW,ZFW ) = 1.82%

This result and the visual comparison presented by
Fig. 6 show that the proposed method leads to a correct ap-
proximation of the reference probability distribution of the
random vector (MTOW,ZFW ) for 2052 disciplinary solver
evaluations (the mean relative error on the CDF being of
approximately 2%). Nevertheless, it is interesting to note
that the number of iterations of Algo. 1 is approximately ten
times higher than the one obtained on the previous example
with the same stochastic dimension n = 2. This result illus-
trates the difficulties encountered by a fixed point algorithm
to converge as the residual decreases slowly (in this example
this is due to the fact that the two linear relations have very
close slopes). This remark can motivate some effort for the
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Fig. 7. Conception diagram of the SSBJ test case

Table 3. Values of the design variables used for the SSBJ test case

variable designation value

thickness/chord ratio t/c 0.05

altitude h 45000 f t

Mach number m 1.6

Aspect ratio ar 5.5

Wing sweep β 55 deg

Wing surface area sre f 1000 f t2

Wing taper ratio λ 0.25

Wingbox x sectional area x 1

Coefficient of friction c f 1

Throttle setting ts 0.5

implementation of other nonlinear solvers such as Newton
Raphson for solving Eqn. (9). It should also be noted that
the same behavior is encountered for MCS as it relies on the
same fixed point algorithm.

4.3.2 Supersonic business jet
Presentation
This test case has been proposed in [34] for the evaluation
of the BLISS MDO architecture and it is a common test case
in the MDO community. Objective is to maximize the range
of a supersonic business jet (SSBJ) with respect to the struc-
tural strength, the aerodynamics and the propulsion. Figure 7
presents the SSBJ test case and details the feedback loops be-
tween the structural, aerodynamics and propulsion solvers. z
denotes the vector of shared design variables, xstr, xaer and
xpro are the vectors of local design variables. All these vari-
ables are set to their initial values (see [34]). Table 3 gives
the details of the numerical values and designation of each
variables.

This test case counts 6 coupling variables that are the



wing twist θ, the total weight wT , the lift coefficient l, the
drag coefficient d, the engine scale factor es f and the engine
weight wE . These 6 variables are linked by the following
nonlinear system

θ = g1(l,z,xstr)
wT = g2(l,wE ,z,xstr)
l = g3(wT )
d = g4(wT ,θ,es f ,z,xaer)
es f = g5(d,xpro)
wE = g6(d)

. (15)

The range is then computed by the Breguet Leduc equation,

r =
661
√

0.7519(l/d)m
s f c

ln
(

wT

wT −wF

)
(16)

where s f c = g7(z,xpro) is the specific fuel consumption and
w f = g8(z) is the fuel weight. Implementation details of
gk, k = 1, · · · ,8 can be found in the annex of [34].

In the following, all disciplinary solvers gk, k = 1, · · · ,8
are approximated by kriging surrogate models. As for the
Sellar example, independent DOE per discipline are used to
construct the kriging models. Hence, the kriging models of
g1, g2, g8 respectively called GPΘ, GPWT , GPWF are build
on the same DOE of 80 points, the kriging models of g3, g4
respectively called GPL, GPD are build on a second DOE of
100 points and the kriging models of g5, g6, g7 respectively
called GPESF , GPWE and GPSFC are build on a third DOE of
100 points. These three DOE are constructed by LHS.

Based on our previous comparison on kriging and sim-
plified kriging and considering the higher stochastic dimen-
sion of the problem the simplified kriging assumption will be
used. The validity of this assumption will be confirmed once
the results obtained. The stochastic version of Eqn. (15) thus
reads,

Θ = f1(L,z,xstr)+ ε1(L,z,xstr)
WT = f2(L,wE ,z,xstr)+ ε2(L,wE ,z,xstr)
L = f3(WT )+ ε3(WT )
D = f4(WT ,Θ,ESF,z,xaer)+ ε4(WT ,Θ,ESF,z,xaer)
ESF = f5(D,xpro)+ ε5(D,xpro)
WE = f6(D)+ ε6(D)

(17)
where fi, i = 1, · · · ,6 are the mean prediction of the krig-
ing models and εi, i = 1, · · · ,6 are zero mean normal random
variables with standard deviation given by the kriging mod-
els.

Once the PCE approximation of the 6 coupling variables
is obtained, a classical PCE approach is used to compute the
PCE approximation of the range. To this purpose we con-
sider the two other surrogate models, SFC = f7(z,xpro) +
ε7(z,xpro) and Wf = f8(z) + ε8(z) where f7 and f8 are the
mean prediction of the corresponding kriging models and ε7
and ε8 are zero mean normal random variables with variance
specified by the kriging models.

Finally, this test case is solved in two steps. First by
computing the PCE approximation of the 6 coupling vari-
ables. This resolution is achieved by the proposed method
with the simplified kriging assumption. The stochastic di-
mension of the problem is thus n = 6. Then, in a second step,
the PCE approximation of the range is computed by classical
PCE. This second problem has a stochastic dimension n = 8
but without any feedback loop.

Resolution and comparisons
Reference results are obtained by MCS with 100000 simu-
lations. The mean number of fixed point iterations to reach
convergence is µMC ≈ 11.12 with a standard deviation of 3%.
The number of disciplinary solver evaluations is then approx-
imately 1112000. For the PCE approximation, the degree is
set to d = 3 leading to a polynomial basis of size P = 84 and
the quadrature level is set to 3 leading to a number of quadra-
ture nodes Q = 729. The number of iterations of Algo. 1 to
converge is Niter = 11. The number of disciplinary solver
iteration is thus equal to Neval = 8029.

Figure 8 presents the PDF by pairs between the 6 cou-
pling variables. The lower triangular part presents the MCS
reference results and the upper triangular part the results ob-
tained by the proposed method. The diagonal contains two
superposed histograms of the marginal PDF, one obtained by
MCS and one by the proposed approach. This figure allows
to conclude that the PCE approximation catches the global
behavior of the joint probability distribution. Indeed, con-
cerning the marginal PDF, the two histograms are almost per-
fectly superposed, and concerning the pairs PDF, results by
MCS and by PCE seem very similar. In order to confirm this
visual results, the error criterion defined by Eqn. (13) is com-
puted by pairs on 50×50 grids ad presented in Tab. 4. Note
that in parenthesis is given the number of points Ngrid such
that F̂MCS(y(i)) ∈ [0.01,0.99]. The approximation obtained
by the proposed approach leads to a CDF mean relative error
less than 1% for all the pairs of variables, which confirms the
accuracy of the method.

After these results on the coupled problem solved by
Algo. 1, we present some results on the objective function,

R =
661
√

0.7519(L/D)m
SFC

ln
(

WT

WT −WF

)

whose PCE, R̂, is computed based on the previous results.
The interest of the PCE approximation in terms of obtain-
ing the GSA at no additional cost is illustrated on R̂. The
method proposed in [18] is used to compute the first or-
der Sobol’ indices [35] denoted by S(εi)

1 , i = 1, · · · ,8. The
following results are obtained, S(ε1)

1 = 6.56× 10−4, S(ε2)
1 =

4.96×10−4, S(ε3)
1 = 7.02×10−2, S(ε4)

1 = 9.11×10−1, S(ε5)
1 =

2.07× 10−3, S(ε6)
1 = 5.25× 10−4, S(ε7)

1 = 7.50× 10−6 and
S(ε8)

1 = 1.35× 10−2. As a first comment, one can note that
the sum of the first order Sobol’ indices is almost equal to
1 (≈ 0.9987) which indicates that there is no interaction be-
tween the model uncertainties. Moreover, this indices allows
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Fig. 8. Comparison between the MCS and the proposed method results. The lower triangular part presents the MCS PDF whereas the
upper triangular part presents the PDF obtained with the proposed method. On the diagonal the histograms of the marginal obtained by both
methods are superposed.

Table 4. Evaluation of the error criterion defined by Eqn. (13) by pairs of variables for the 6 coupling variables of the SSBJ test case. Between
parenthesis is given the number of points of evaluatin Ngrid

Variables (θ,WT ) (θ,L) (θ,D) (θ,ESF) (θ,WE) (WT ,L)

Err 0.78% (1132) 0.74% (1126) 0.77% (1145) 0.95% (1190) 0.63% (1201) 0.97% (1333)

Variables (WT ,D) (WT ,ESF) (WT ,WE) (L,D) (L,ESF) (L,WE)

Err 0.93% (1193) 0.78% (1201) 0.80% (1351) 0.95% (1195) 0.72% (1197) 0.77% (1358)

Variables (D,ESF) (D,WE) (ESF,WE)

Err 0.82% (1183) 0.80% (1238) 0.63% (1251)

to rank the surrogate models that must be improved in order
to decrease the variance of the response R. In this example,
the index related to ε4 clearly dominates the others. Then,
according to the notation of Eqn. (17) the surrogate model
GPD, that computes the drag coefficient, must be improved
to decrease the variance of the range R.

5 Conclusions
The present paper addresses the problem of modeling

uncertainties propagation in a multidisciplinary analysis. It
is assumed that uncertainties are modeled by random fields
over the design and coupling variables space. Two particular
cases are studied namely the perfectly correlated case and the
kriging case. These two cases are retained for their relevance
from a practical point of view. Indeed, the first one corre-
sponds to the case where modeling uncertainties are based on
expert judgment or historical databases whereas the second
case corresponds to the use of kriging surrogate models. Ac-

cording to these hypothesis the random MDA problem con-
sists in solving a random nonlinear system (as presented by
section 2.2).

The proposed method is based on the resolution of this
nonlinear system by a semi intrusive polynomial chaos ex-
pansion approach. The method is denoted by semi intrusive
as each equation of the random nonlinear system is approx-
imated by a non intrusive PCE (the projection approach is
retained) but the solver of the deterministic nonlinear system
has to be adapted intrusively (an adaptation of the fixed point
algorithm is proposed).

Perspectives of this work include moving from scalar
output of the disciplinary solvers to field output. Indeed de-
sign of complex multidisciplinary systems (e.g. aerostruc-
tural wing design) may involve exchanging vector-fields be-
tween disciplines. In order to achieve this challenging prob-
lem, coupling the proposed non intrusive PCE approach with
model order reduction could be investigated. A second per-
spective of this work is its application to MDO. The proposed



approach could be particularly beneficial in the context of a
noisy, kriging based adaptive optimization framework. In-
deed the uncertainty estimation we obtain at a given design
point can be used to determine whether to refine or not the
models in the context of improving the objective function.
Note that while our approach for propagating uncertainty
would need to be repeated at each new iteration point of the
optimization, we can significantly accelerate the fixed point
calculation in Algo. 1 by a smart initial guess for the PCE
coefficients (for example the solution at the nearest design
point).
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