The 9th International Conference on Computers and Games

Pruning playouts in Monte-Carlo Tree Search for the game of Havannah

Joris Duguépéroux Ahmad Mazyad Fabien Teytaud Julien Dehos

LISIC - Université du Littoral Côte d'Opale

June 2016

2 Monte Carlo Tree Search & beyond

Proposed method

2 Monte Carlo Tree Search & beyond

3 Proposed method

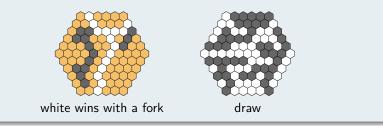
5 Conclusion

Presentation

- Invented by Christian Freeling in 1979.
- 2-player connection game.
- Hexagonal board of hexagonal cells.
- At each turn a player has to put a stone in an empty cell.
- To win a player has to realize one of these shapes: fork, bridge, ring.

The winning shapes

white wins with a ring white wins with a bridge



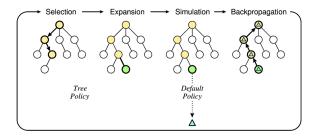
2 Monte Carlo Tree Search & beyond

3 Proposed method

5 Conclusion

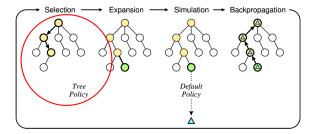
MCTS principle

- Compute a good move to play.
- Build a tree of the possible future states (tree policy).
- Estimate moves using playouts (default policy).



Tree policy

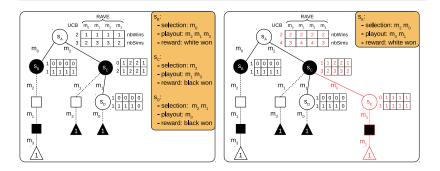
- How to build the tree.
- Classic MCTS: Upper Confidence Bound $\rightarrow \underset{j \in C_{s_1}}{\arg \max} \left[\frac{w_j}{n_j} + K \sqrt{\frac{\ln(n_{s_1})}{n_j}} \right]$.
- Improvement with biaising techniques: RAVE...



Tree policy: RAVE

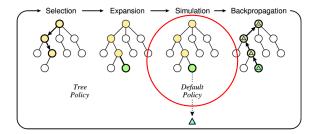
- Rapid Action Value Estimate.
- Gelly and Silver, 2007.
- Select a state using previous playouts

$$\rightarrow \underset{j \in \mathcal{C}_{s_1}}{\arg \max} \left[(1 - \beta) \frac{w_j}{n_j} + \beta \frac{w_{s_1,j}'}{n_{s_1,j}'} + K \sqrt{\frac{\ln(n_{s_1})}{n_j}} \right] \,.$$



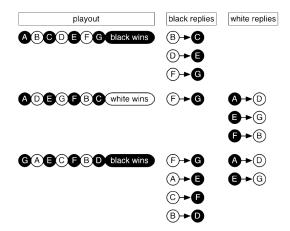
Default policy

- How to estimate a move.
- Classic MCTS: Monte-Carlo (play random games, compute win rate)
- Improvement with biaising techniques: LGR, PoolRave, N-grams...



Default policy: LGR

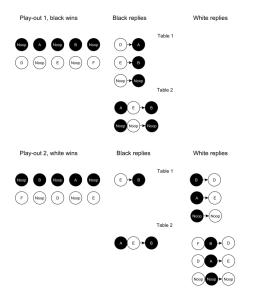
- Last Good Reply.
- Baier and Drake, 2009.
- For each possible moves, remember the lastly played reply if it leads to a win.



Default policy: N-grams

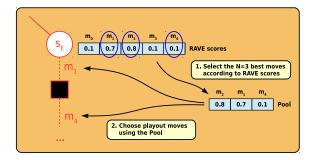
- Tak et al., 2011.
- Remember sequences of N moves which lead to a win.

Monte Carlo Tree Search & beyond



Default policy: PoolRave

- Rimmel et al., 2011
- Fill a pool of possible moves using RAVE scores.



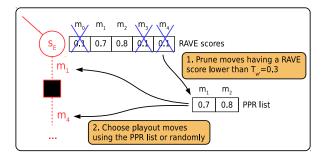
2 Monte Carlo Tree Search & beyond

Proposed method

5 Conclusion

Pruning Playout with Rave (PPR)

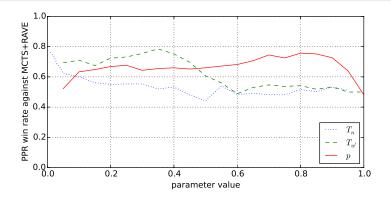
- Biased default policy.
- Prune bad moves, according to RAVE scores.



Proposed method

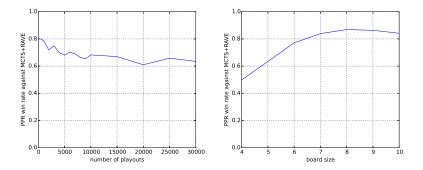
PPR parameters

- T_n : minimum ratio of playouts for the node to consider for PPR.
- $T_{w'}$: win rate threshold for pruning bad moves.
- p: probability for using the PPR list.



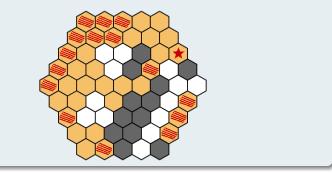
Influence of the number of playouts and of the board size

• PPR is more efficient for "complex" configurations.



Which moves are eventually pruned ?

• after 100k playouts, for black:



2 Monte Carlo Tree Search & beyond

3 Proposed method

5 Conclusion

Results against other well known improvements (small size)

size	playouts	player	win rate	std dev
6	1,000	Rave	74.4%	±1.78
		PoolRave	70.17%	±1.87
		LGRF1	71.67%	±1.84
		Mast	74.0%	±1.79
		Nast2	85.0%	±1.46
	10,000	Rave	63.67%	±1.96
		PoolRave	67.0%	±1.92
		LGRF1	63.17%	±1.97
		Mast	64.5%	±1.95
		Nast2	76.5%	±1.73
	30,000	Rave	66.33%	±1.92
		PoolRave	73.66%	±1.79
		LGRF1	65.66%	±1.93
		Mast	65.5%	±1.94
		Nast2	60.5%	±1.99

Duguépéroux, Mazyad, Teytaud, Dehos

Results against other well known improvements (large size)

size	playouts	player	win rate	std dev
10	1,000	Rave	86.33%	±1.40
		PoolRave	72.16%	±1.82
		LGRF1	79.00%	±1.66
		Mast	83.66%	±1.50
		Nast2	85.50%	±1.43
	10,000	Rave	79.16%	±1.65
		PoolRave	89.00%	±1.27
		LGRF1	83.83%	±1.50
		Mast	79.00%	±1.66
		Nast2	85.16%	±1.45
	30,000	Rave	75.85%	±2.13
		PoolRave	91.01%	±1.42
		LGRF1	79.69%	±2.01
		Mast	82.04%	±1.91
		Nast2	84.08%	±1.82

Duguépéroux, Mazyad, Teytaud, Dehos

2 Monte Carlo Tree Search & beyond

3 Proposed method

Take home message

- Sort of dynamic PoolRave.
- Great results vs other Monte-Carlo improvements (at least 60%).
- Small overall extra cost (if RAVE values are already computed).
- But no such good results on the game of Hex (maybe RAVE is not able to detect "dead areas", if they exist in this game).

Future work

- Measure the strongness of PPR with a better bot.
- Test on the game of Go as PoolRave gives good results on this game.

Thank you !

Questions ?