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Abstract

We characterize the existence of non-central Wishart distributions (with shape and
non-centrality parameter) as well as the existence of solutions to Wishart stochastic
differential equations (with initial data and drift parameter) in terms of their exact
parameter domains. In particular, we show that the exact parameter domain of Wishart
distributions equals the so-called non-central Gindikin set, which links the rank of the
non-centrality parameter (resp. initial value) to the size of the shape parameter (resp.
drift parameter). Our novel approach utilizes the action of Wishart semigroups on
symmetric polynomials. Also, we prove a conjecture by Damir Filipovic (2009) on the
existence of such semigroups on the cones of lower rank matrices.
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1 Introduction and Preliminaries

The aim of this paper is to characterize the parameter domain of non-central Wishart dis-
tributions (with shape, scale and non-centrality parameters) and that of Wishart processes,
a class of continuous-time Markov processes with positive semi-definite state space (with
constant drift parameter).

Denote by Sp the space of symmetric p × p matrices and let S+
p be the open cone of

positive definite matrices, with topological closure S̄+
p , the positive semi-definite matrices.

The classical Gindikin1 set W0 is defined as the set of admissible β ∈ R such that there
exists a random matrix X with values in S̄+

p (equivalently a measure with support in S̄+
p )

such that its Laplace transform is of the form

Ee− tr(uX) = (det(I + Σu))−β, u ∈ S̄+
p ,

where Σ ∈ S+
p . It is well-known that

W0 =
1

2
B ∪

[
p− 1

2
,∞
)
,

where B = {0, 1, · · · , p − 2} (cf. [6], pp. 137, 349) . A more intricate question concerns
the existence of non-central Wishart distributions, which in addition involves a parameter
of non-centrality:

Definition 1.1. The general non-central Wishart distribution Γp(β, ω; Σ) on S̄+
p is defined

(whenever it exists) by its Laplace transform

L(Γ(β, ω;σ))(u) = (det(I + Σu))−β e− tr(u(I+Σu)−1ω), u ∈ S+
p , (1.1)

where β > 0 denotes its shape parameter, Σ ∈ S+
p is the scale parameter and the parameter

of non-centrality equals ω ∈ S̄+
p .

Random matrices X verifying (1.1) arise in statistics as estimators of the covariance
matrix parameter Σ of a normal population. In fact, for the random matrix

X = ξ1ξ
T
1 + . . .+ ξnξ

T
n =: q(ξ), ξ = (ξ1, . . . , ξp),

where ξi ∼ Np(mi,Σ/2) are independent normal vectors in Rp, the Laplace transform of X
is given by the right side of (1.1) with β = n/2 and ω = q(m1, . . . ,mn).

Accordingly, we shall say that the pair (ω, β) belongs to the non-central Gindikin set W
if there exists a random matrix X with values in S̄+

p having the Laplace transform (1.1) for
a matrix Σ ∈ S+

p
2.

Note the following:

1The name of this set originates from Gindikin’s [8] work in a general multivariate setting .
2As long as Σ is of maximal rank, this definition is indeed independent of Σ, see Lemma 3.5.
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• Whenever (ω, β) ∈ W then we have β ≥ 0, otherwise Ee− tr(uX) would be unbounded;
and clearly, (0, β) ∈ W if and only if β ∈ W0.

• In the case rank(ω) = 1, β 6= 0, the characterization of the non-central Gindikin set
W was given in [16]: one then has (ω, β) ∈ W if and only if β ∈ W0.

The general problem of existence and non-existence of non-central Wishart distribution
has been next studied by Letac and Massam [12] 3. A first hint on the non-triviality of
this problem is given by Mayerhofer [15] who reveals that there is an interplay between
the rank of the non-centrality parameter ω and the magnitude of β in the discrete part of
the classical Gindikin ensemble. The method used therein involves the construction of affine
Markov processes on S̄+

p whose positivity requires a certain magnitude of their constant drift
parameter. The results in [15] allow to conjecture4 the following:

NCGS Conjecture. The non-central Gindikin set is characterized by

(ω, β) ∈ W ⇔ (β ∈
[
p− 1

2
,∞
)
, ω ∈ S̄+

p ) or (2β ∈ B, rank(ω) ≤ 2β).

Sufficiency of these conditions was shown by Bru in [2], except the case 2β = p− 1, that
may be found in [9] or [15]. What concerns the necessity, [15] proved that if (ω, β) ∈ W and
2β ∈ B, then rank(ω) ≤ 2β + 1. A proof of the necessity in the NCGS Conjecture has been
put forward by the preprint [13].

The attempt of [13] is very technical and lengthy and as such makes it difficult to under-
stand the key reasons for the particular parametric restrictions of shape and non-centrality
parameter.

The present paper gives a first complete proof of the NCGS conjecture, which reveals, and
builds on, the intimate connection between the existence of non-central Wishart distributions
and that of Wishart processes. These are positive semi-definite solutions (Xt)t≥0 of stochastic
differential equations of the form

dXt =
√
XtdWt + dW T

t

√
Xt + αIdt, Xt ∈ S̄+

p , t ≥ 0; X0 = x0 ∈ S̄+
p , (1.2)

where
√
Xt is the unique positive square root of a Xt, W is a d × d matrix of standard

Brownian motions, and α ≥ 0 is a single drift parameter.
At the same time, we formulate and prove here as a novelty sufficient and necessary

condition for the existence of Wishart processes.

3However, the statement in [12] is incomplete. In fact, the absence of an additional condition implies
existence of certain affine Markov processes, which has however been ruled out by [3]. This fact has been
pointed out by [14] and [15]. Accordingly, the proof in section 5 of [12] has a gap.

4In [13] and a previous versions of this paper, the name Mayerhofer Conjecture is used. The conjec-
ture has been formally presented at the CIMPA Workshop in Hammamet in 2011 (http://www.cimpa-
icpam.org/IMG/pdf/Cours Mayerhofer Hammamet.pdf).
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Already Bru [2], who introduced Wishart processes, realized that Wishart processes are
Wishart distributed5:

Proposition 1.2. Bru([2, Theorem 3]) If the stochastic differential equation (1.2) with
x0 ∈ S̄+

p has a global weak solution in S̄+
p , then Xt is Wishart distributed for each t ≥ 0. In

particular, we have

Ex0 [exp(− tr(uXt)] = (det(I + 2tu))−α/2 exp[− tr(x0(I + 2tu)−1u))], u ∈ S+
p . (1.3)

In the present paper, we shall also show how to construct from individual Wishart distri-
butions full-fledged Wishart processes. Our main result is thus a three-fold characterization:

Theorem 1.3. Let x0 ∈ S̄+
p and α ≥ 0. The following are equivalent:

(i) The SDE (1.2) has a global weak solution with X0 = x0.

(ii) Either α ≥ p− 1, or α ∈ B and rank(x0) ≤ α.

(iii) (x0, α/2) ∈ W .

Our proof of the NCGS Conjecture (that is, Theorem 1.3 (ii) ⇔ (iii)) is based on anal-
ysis of affine Wishart semigroups. We use as new tool a class of symmetric polynomials
which arise as coefficients of the characteristic polynomial of a symmetric matrix. A full
characterization of Wishart processes is provided by (Theorem 1.3 (i) ⇔ (ii)).

For convenience of the reader, but at the expense of proving an additional implication,
Theorem 1.3 is split into two independent theorems in the following two chapters. They
require different mathematical tools and therefore can be read independently. Chapter 2
is concerned with the existence of solutions to Wishart stochastic differential equations us-
ing elementary stochastic analysis with symmetric polynomials (Theorem 2.3 comprises the
equivalence (i) ⇔ (ii) of Theorem 1.3) . Chapter 3 concerns the existence of Wishart distri-
butions (the NCGS conjecture, which comprises (ii) ⇔ (iii) of Theorem 1.3 ). Here we use
the Markovian viewpoint, in particular the fact that Wishart semigroups are affine Feller
semigroups

2 Gindikin sets for Wishart Processes

We consider the question of solutions in S̄+
p of the so-called Wishart SDE (1.2). In particular,

using the dynamics of symmetric polynomial functionals of these solutions, we characterize
drift parameters and the ranks of initial values that allow solutions of this SDE.

If X is a symmetric p × p matrix, we define the polynomials en(X) as basic symmetric
polynomials

en(X) =
∑

i1<...<in

λi1(X)λi2(X) . . . λin(X), n = 1, . . . , p; (2.1)

5Bru did not introduce the notion of non-central Wishart distribution, but she realized the explicit formula
for the Laplace transform.
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in the eigenvalues λ1(X) ≤ . . . ≤ λp(X) of X. Moreover, we use the convention that
e0(X) ≡ 1. Up to the sign change, the polynomials en are the coefficients of the characteristic
polynomial of X, i.e.

det(X − uI) = (−1)pup + (−1)p−1e1(X)up−1 + . . .− ep−1(X)u+ ep(X)

and are polynomial functions of the entries of the matrix X. In particular, ep(X) = detX.
In [10], symmetric polynomials related to general class of non-colliding particle systems

were studied in details. Here we present similar results adapted to the matrix SDE

dXt = g(Xt)dWth(Xt) + h(Xt)dW
T
t g(Xt) + b(Xt)dt, (2.2)

where the continuous functions g, h, b act spectrally 6 on Sp andWt is a Brownian p×pmatrix.
Henceforth we abbreviate σ = 2gh and G(x, y) = g2(x)h2(y)+g2(y)h2(x). We use the natural
bijection (2.1) between the eigenvalues Λ = (λ1 . . . λp) and the polynomials e = (e1, . . . , ep),
extended to the closed Weyl chamber C̄+ = {(x1, . . . , xp) ∈ Rp : x1 ≤ x2 < . . . ≤ xp}, see

[10], p.6. We write Λ = Λ(e) for the inverse bijection on the set e(C+). We use the notation
ein for the incomplete polynomial of order n, not containing the variable λi(e); the notation
ei,jn is analogous.

Proposition 2.1. Let X be a solution of (2.2). Then the symmetric polynomials en = en(X),
n = 1, . . . , p, are continuous semimartingales described by the system of SDEs (n = 1, . . . , p)

den =

(
p∑
i=1

σ2(λi(e))(e
i
n−1)2

)1/2

dVn +

(
p∑
i=1

b(λi(e))e
i
n−1 −

∑
i<j

G(λi(e), λj(e))e
i,j
n−2

)
dt,(2.3)

where Vn are Brownian motions on R such that d 〈en, em〉 =
∑p

i=1 σ
2(λi(e))e

i
n−1e

i
m−1dt.

Proof. The symmetric polynomials (e1, . . . , en) are given by an analytic function (polynomial
of the coefficients) of the matrix X. Thus Itô’s formula, applied to the SDE for the matrix
process Xt, gives a system of the SDEs for (e1, . . . , en). We determine these SDEs like in
Propositions 3.1 and 3.2 in [10], using the SDE for the eigenvalues

dλi = 2g(λi)h(λi)dBi +

(
b(λi) +

∑
j 6=i

G(λi, λi)

λi − λi

)
dt, i = 1, . . . , p, (2.4)

which are available, according to Theorem 3 from [9], when eigenvalues λi(0) of x0 are all
distinct and before their eventual collision.

However, the form of the SDEs (2.3) does not depend on the starting point x0 or on
the non-collision of the eigenvalues, i.e. it does not change if we remove the conditions that
eigenvalues of the initial point are all different and that they are non-colliding for t > 0.

6Recall that if g : R 7→ R then g(X) is defined spectrally, i.e. g(U diag(λi)U
T ) = U diag(g(λi))U

T , where
U ∈ SO(p).
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Using Proposition 2.1 we get the following characterization of the symmetric polynomials
related to Wishart processes.

Proposition 2.2. Let Xt be a Wishart process, i.e. a solution of the matrix SDE (1.2).
Then the symmetric polynomials en = en(X), n = 1, . . . , p are semimartingales satisfying
the following system of SDEs

den = Mn(e1, . . . , ep)dVn + (p− n+ 1)(α− n+ 1)en−1dt, n = 1, . . . , p− 1, (2.5)

dep = 2
√
ep−1epdVp + (α− p+ 1)ep−1dt, (2.6)

where Vi, i = 1, . . . , p are one-dimensional Brownian motions and the functions Mn are
continuous on Rp.

Note that by Proposition 2.1, the explicit forms of the martingale parts Mn(e1, . . . , ep)dVn
as well as their brackets d 〈en, em〉 are known for every n,m = 1, . . . , p.

Proof. Applying Proposition 2.1 to the SDE (1.2), we find that Mn = 2
(∑p

i=1 λi(e
i
n−1)2

)1/2

.

Moreover, we have the following expressions for the drift parts of den:

p∑
i=1

αein−1 −
∑
i<j

(λi + λj)e
i,j
n−2 = (p− n+ 1)(α− n+ 1)en−1.

Since a Wishart process is S̄+
p valued by construction, so ek ≥ 0, for all k = 1, . . . , p.

The SDEs describing the symmetric polynomials e1, . . . , ep can be used to show that the ep
would become negative if ep(0) = 0 and α = 2β was small enough, a mere impossibility.
This is idea is used in the proof of the next Theorem to find the precise range for α ≥ 0,
where Wishart SDEs have global weak solutions.

2.1 Solving the Wishart stochastic differential equations

This section gives a full characterization of the existence of solutions to Wishart SDEs (1.2).

Theorem 2.3. Let α ≥ 0, and x0 ∈ S̄+
p . The following are equivalent.

(i) The SDE (1.2) has a global weak solution with X0 = x0.

(ii) α ≥ p− 1, or α ∈ {0, 1, . . . , p− 2} and rank(x0) ≤ α.

Proof. Assume first (i). If α ≥ p−1, nothing has to be shown. Suppose, therefore, α < p−1.
Recall equations (2.5) –(2.6) from Proposition 2.2 .

We can compute explicitly the expected value of the polynomials starting from the first
one.

Ee1(t) = e1(0) + pα

∫ t

0

ds = e1(0) + pαt
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Thus we have

Ee2(t) = e2(0) + (p− 1)(α− 1)

∫ t

0

Ee1(s)ds

= e2(0) + (p− 1)(α− 1)e1(0)t+ p(p− 1)α(α− 1)
t2

2

and so on. Consequently Een(t) is a polynomial of degree not greater than n. In particular,
the coefficient of tn is

p(p− 1) · . . . · (p− n+ 1) · α(α− 1) · . . . · (α− n+ 1)

n!

If α /∈ B, we take n = dαe+ 1 and get that Een(t) is a polynomial of degree n such that
the leading coefficient is negative. Consequently, it can not stay positive for every t > 0.
Contradiction.

If α = m ∈ B we look at Een(t) where n = m+ 1. Then

Een(t) = en(0) + (p− n+ 1)(α− n+ 1)

∫ t

0

Een−1(s)ds = en(0)

If en(0) > 0, then

Een+1(t) = en+1(0) + (p− n)(α− n)en(0)t

i.e. the leading term is negative and thus Een+1(t) < 0 for large t. It implies en(0) = 0, i.e.
rank(x0) ≤ n− 1 = m = α.

Proof of (ii) ⇒ (i): Several proofs of this fact are known: see, e.g. Bru [2], where she
does however not cover the case α = p− 1. Another proof can be obtained by using results
from [9] which show solvability (even in the strong sense) of the SDEs for the eigenvalues
of a Wishart process. Here we provide similar, but more elaborate arguments than Bru’s,
using the theory of affine processes:

• If α ≥ p− 1, then existence of an affine Markov process (Xt)t≥0 with state-space S̄p
+

and Laplace transform (1.3) is provided by the general theory of [4]. This implies a
solution to the corresponding martingale problem, that is, for any f ∈ C2

c (S̄+
p ), and

any initial value x0, we have that

f(Xt)− f(x0)−
∫ t

0

Af(Xs)ds

is a martingale, where A is the infinitesimal generator of X, see eq. (3.3) below.

• If α ∈ {0, 1, . . . , p − 2}, then existence of a solution to the corresponding martingale
problem is shown in [2] by an explicit construction (squaring matrix valued standard
Brownian motions), see also [14, Example 2.3].
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In any case, by [14, Lemma 2.5] (see also [4, Proof of Theorem 6.2, p.53, last paragraph]) ,
the solution of the Wishart martingale problem implies the existence of a weak solution to
the Wishart SDE (1.2).

Remark 2.4. Necessity of (ii) can be also proved, if we assume the validity of the NCGS
Conjecture (a fact that is proven in Section 3, and which we have not used above to keep
the section self-contained). Suppose the existence of a weak solution. Then by Proposition
1.2, the solution is Wishart distributed, that is, for each t ≥ 0, Xt ∼ Γp(α/2, x0; 2tI). By
the NCGS Conjecture, we therefore must have α/2 ∈ W0 and, in addition, if α < p− 1 then
rank(x0) ≤ α.

3 The NCGS Conjecture and Wishart Semigroups

In this section we introduce Wishart semigroups, which are the main tool for the proof of
the NCGS Conjecture in Section 3.2 below. In the final subsection 3.3 we characterize all
Wishart semigroups on lower rank matrices, which are non-convex state spaces.

3.1 Wishart semigroups

For p ≥ 1, let Dp(k) ⊂ S̄+
p be the subcones of rank ≤ k matrices, 0 ≤ k ≤ p, where clearly

Dp(0) = {0} and Dp(p) = S̄+
p . Denote by fu(x) = exp(tr(−ux)), where u, x ∈ S̄+

p .

Definition 3.1. Let D ⊂ S̄+
p . A Wishart semigroup (Pt)t≥0 on D is a positive, strongly

continuous C0(D) contraction semigroup which for any u ∈ S+
p acts as

Ptfu(x) = det(I + 2tu)−α/2e− tr(x(u−1+2tI)−1), x ∈ S̄+
p . (3.1)

Here α ≥ 0 is called the constant drift parameter of (Pt)t≥0.

We summarize a few essential facts in the following

Remark 3.2. Let (Pt)t≥0 be a Wishart semigroup with drift parameter α.

(i) (Markovian representation) In view of the Riesz representation theorem for positive
functionals [17, Chapter 2.14], for each t > 0, x ∈ D there exists a positive measure
pt(x, dξ) such that

Ptf(x) =

∫
D

f(ξ)pt(x, dξ). (3.2)

Furthermore, the semigroup property of (Pt)t≥0 implies, that pt(x, dξ) satisfies the
Chapman-Kolmogorov equations, thus pt(x, dξ) is a Markov transition function. Hence,
the semigroup has a stochastic representation as a Markov process (Px)x∈D, where for
each x ∈ D, Px denotes the resulting probability on the canonical path space DR+ with
initial law X0 = x, and Xt(ω) := ω(t), where ω ∈ DR+.
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(ii) (Càdlàg Paths) It is a well established fact, that any Feller process (that is, a Markov
process with strongly continuous C0 semigroup), has a càdlàg modification.

(iii) (Affine Property) By definition, Wishart semigroups are affine semigroups (see [3]),
that is, the Laplace transform of its transition function is of the form

E[e− tr(uXt) | X0 = x] = e−φ(t,u)−tr(ψ(t,u)x),

where
φ(t, u) =

α

2
log(det(I + 2tu)), ψ(t, u) = (u−1 + 2tI)−1.

(iv) (Wishart transition function) By construction, the Markovian transition function pt(x, dξ)
is Γp(α/2, x; 2It) distributed, for each t ≥ 0 and for all x ∈ D.

(v) (Non-Explosion) (Pt)t≥0 is conservative: Let un ∈ S+
p such that un → 0 as n → ∞.

By (3.2) we thus have
Pt1 = lim

n→∞
Ptfun(x) = 1.

(vi) (Continuity) If, in addition, we assume that the linear span of D has non-empty inte-
rior, (X,Px) for each x is (by [5]) an affine semimartingale, that is, a semimartingale
with characteristics which are affine functions in the state. Since the associated jump
measure vanishes, continuity of the sample paths follows.

(vii) (Strong Maximum Principle) For a strongly continuous C0 semigroup (Pt)t≥0 with in-
finitesimal generator A, the following are equivalent

• A satisfies the strong maximum principle, that is, Af(x0) ≥ 0, for any f ∈ C0

that satisfies f(x) ≥ f(x0).

• (Pt)t≥0 is positive (hence a Feller semigroup).

The second implication is simple. A proof of the non-trivial implication employs the
positivity of the Yoshida approximations of A ([11, Corollary 2.8]).

Wishart semigroups on D = S̄+
p are well understood; they are affine diffusion processes.

By [3] the following are equivalent:

• The Wishart semigroup with drift parameter α exists with state space D = S̄+
p .

• α ≥ p− 1.

However, for state-spaces D which are strict subsets of D = S̄+
p , less is known about

Wishart semigroups. We shall state and prove a particular result when D is the set of rank
k ≤ p− 1 matrices (Theorem 3.9).

We consider operators acting on functions on Sp (as a p × (p + 1)/2-dimensional vector
space), and the nabla operator as the symmetric matrix operator (∂ijf)ij (for this notation
and results related to the following, see [2, section 2.2] or [1, Proposition 3]).

For a subset D ⊆ S̄+
p we let S∗p(D) be the restriction of the space of rapidly decreasing

smooth functions on Sp to D.
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Proposition 3.3. Suppose (Pt)t≥0 is a Wishart semigroup on D, and that Dp(1) ⊆ D. Then
its infinitesimal generator A is given by

A = tr(2x∇2 + α∇). (3.3)

and S∗p(D) ⊂ D(A) is a core.

Proof. By the definition of the affine property, we have

Afu(x) = (F (u) + tr(R(u)x)fu(x) (3.4)

for fu(x) = exp(−tr(ux)) and u ∈ S̄+
p , and thus fu(x) ∈ D(A). Here F (u) = α tr(u) =

∂φ(t,u)
∂t
|t=0 and R(u) = −2u2 = ∂ψ(t,u)

∂t
|t=0. The assumption that D contains rank one matrices

implies that the convex hull of D equals S̄+
p , and thus F and R are uniquely defined. It is

readily seen that the action of (3.3) on fu(x) coincides with (3.4).
According to the density argument [3, Theorem B.3], the linear hull of such exponentials

for strictly positive definite u is dense in the space of rapidly decreasing functions on S̄+
p ,

and thus, its restriction S∗p(D) is a valid choice for a core of A.

Recall that a Feller process is polynomial if the action of its semigroup can be extended
to linear polynomials of any order ([4]).

Proposition 3.4. Suppose X is a Wishart semigroup supported on D ⊂ S̄+
p with drift α ≥ 0.

X is polynomial and its infinitesimal generator acts on symmetric polynomials as follows

Aek(x) = (p− k + 1)(α− k + 1)ek−1(x), 1 ≤ k ≤ p. (3.5)

Proof. Since the domain of the moment generating function of Xt | X0 = x for each t contains
an open neighborhood of zero, the process is polynomial [4] and thus the semigroup action
of X can be extended to polynomials of any order. Equation (3.5) thus can be inferred from
Proposition 2.2.

We further require three Lemmas.

Lemma 3.5. If Γp(β, ω;σ) is a positive measure on S̄+
p , where σ is invertible, then Γp(β, ω

′;σ′)
exists for any ω′ satisfying rank(ω′) ≤ rank(ω) and for any invertible σ′.

Proof. The statement is a mild improvement of Proposition 3.1 (iii)(b) in [15]) (where the
case rank(ω) = p is discussed). However, it applies also in this situation of lower rank
matrices. In fact, S̄+

p is a symmetric cone, as its linear automorphism group is transitive.
Hence, any ω′ with rank k = rank(ω) can be mapped by a linear automorphism on ω: there
exists a d×d matrix A such that ω′ = AωA>. Hence, by the proof of Proposition 3.1 (iii)(b)
in [15]) we obtain a distribution Γ(p, ω′;σ). Finally, let rank(ω′) ≤ rank(ω). Then there
exists a sequence ωn → ω′, where rank(ωn) = k for each n. A glance at the characteristic
function7 of Γ(p, ωn;σ) suffices to realize that Lévy’s continuity theorem ensures also the
existence of a distribution Γ(p;ω′;σ).

7Lévy’s continuity theorem in its original form applies to characteristic functions only, but it can be
extended to the Laplace transform for cone-valued measures.
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Lemma 3.6. Let Ξ be a positive semi-definite random matrix supported on Dp(r − 1) and
rank(Ξ) = r − 1 with nonzero probability. Let further η ∼ N (µ,Σ) with µ ∈ Rp and with
covariance matrix Σ ∈ S+

p . If Ξ and η are independent, then rank(Ξ+ηη>) = r with nonzero
probability.

Proof. Assume first the constant case Ξ = Ξ0 ∈ S̄+
p . Without loss of generality, we may

assume Ξ0 = diag(Ir−1, 0), where Ik is the k × k unit matrix. Define

V =

(
Ir−1 −Ω
0 Ip−r+1

)
with a (r − 1)× (p− r + 1) matrix Ωij = δij

ηi
ηr+1−j

. Then

V (Ξ0 + ηη>)V > = diag(Ir−1, (ηη
>)r≤i,j≤d)

and since (ηk)r≤k≤d ∼ N ((µk)r≤k≤d, (Σij)r≤i,j≤d), we have that ηη> has rank 1 almost surely.
Thus rank(V (Ξ0 + ηη>)V >) = r − 1 + 1 = r almost surely.

Now consider a random matrix Ξ. Clearly, rank(Ξ + ηη>) ≤ r. The set ΩΞ := {ω ∈
Ω | rank(Ξ(ω)) = r − 1} is Borel, since it is given by the inverse image of the measurable
function8 rank(ξ) : S̄+

p → {0, 1, . . . , p}. By assumption P[ΩΞ] > 0, thus the first part of the
proof implies

E[rank(Ξ + ηη>) | rank(Ξ) = r − 1] = r

and thus we conclude rank(Ξ + ηη>) = r on all of ΩΞ.

Lemma 3.7. Suppose Ξ0 ∈ S̄+
p with rank(Ξ0) = p − 1, and let Ξ ∼ Γp((p − 1)/2,Ξ0;σ),

where σ is non-degenerate. Then rank(Ξ) ≤ p − 1, almost surely, and equals p − 1 with
positive probability.

Proof. By Lemma 3.5 we can without loss of generality assume σ = I. Let A be the
infinitesimal generator of an Wishart semigroup (Pt)t with drift α = p − 1 and state space
S̄+
p , and denote by Ξ its canonical realization. Then Ξ1/2 | Ξ0 ∼ Γp((p − 1)/2,Ξ0; I). By

Proposition 3.4
Aep(x) = 0

and hence for any x ∈ S̄+
p ,

(Pt det)(x) = E[det(Ξt) | Ξ0 = x] = ep(x0) + E[

∫ t

0

Af(Ξs)ds] = 0 + 0 = 0,

8This map is measurable, since it can be written as

rank(ξ) = min{r ∈ {0, 1, . . . , p− 1} | er(ξ) 6= 0}.

where we recall the convention e0 = 1 (to identify the 0).
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and thus rank(Ξ1/2) ≤ p − 1 almost surely. Furthermore, by Proposition 3.4 we have
Aep−1(x) = 2ep−2(x) and thus for each t > 0

(Ptep−1)(x) = E[ep−1(Ξt) | Ξ0 = x] = ep−1(x0) +

∫ t

0

E[ep−2(Xs)ds] ≥ ep−1(x0) > 0

We conclude that whenever rank(x0) = p−1, we have for each t > 0, rank(Ξt | Ξ0 = x) = p−1
with non-zero probability and thus also rank(Ξ) = rank(Ξ1/2 | Ξ0 = ω) = p−1 with non-zero
probability.

The following statement concerns the support of Wishart distributions with general shape
parameter.

Proposition 3.8. Suppose β ∈ {0, 1/2, . . . , (p − 1)/2}. Suppose rank(ω) = 2β + k, where
1 ≤ k ≤ p− (2β+1). Then Γp(β, ω;σ), if exists, is supported in Dp(2β+k). In other words,
almost surely,

rank(Ξ) ≤ 2β + k (3.6)

for any Ξ ∼ Γp(β, ω;σ).

Proof. The case β = (p− 1)/2 is trivial.
Suppose next, β = 0, and rank(ω) ≥ 1. Then, also Γp(β = 0, ω; 2tI) exists, with

rank(ω) = 1, see Lemma 3.5. Let x ∈ S̄+
p , then we can write

x =

p∑
i=1

µiµ
>
i , µi ∈ Rp

Let Ξi ∼ Γp(β = 0, µiµ
>
i ; 2tI), for i = 1, . . . , p, then by p-fold convolution

Ξ = Ξ1 + · · ·+ Ξp ∼ Γp(0, x; 2tI),

and thus we have constructed a transition function of a Wishart semigroup with zero drift,
thus violating the drift condition for affine Markov processes on S̄+

p [3] (which rules out drifts
strictly below (p− 1)/2). Thus ω = 0 whenever β = 0.

Let now β ∈ {1/2, . . . , (p − 2)/2}, then, since 2β + k ≥ 2β + 1 ≥ 2, there is nothing to
show when p ≤ 2. Set therefore p ≥ 3. We have

• β′ := (p− 1)/2− β satisfies 1/2 ≤ β′ ≤ (p− 2)/2.

• Since
2 ≤ rank(ω) = 2β + k ≤ 2β + (p− (2β + 1)) = d− 1

there exists ω′ ∈ S̄+
p with rank(ω′) = (p− 1)− rank(ω) = (p− 1)− (2β + k) and such

that ω∗ := ω + ω′ satisfies rank(ω∗) = p− 1. Furthermore, since

rank(ω′) = β − 1− (2β + k) = 2β′ − k ≤ 2β′′

we conclude that a random variable Y ∼ Γp(β
′, ω′;σ) exists, independent of Ξ.

By convolution, we define Ξ′ = Ξ + Y , which is Γp((p − 1)/2, ω∗, σ) distributed. Since
rank(ω∗) = p− 1, Lemma 3.7 applies and states that rank(Ξ′) = p− 1, and thus, by Lemma
3.6 (applied exactly 2β′ times, since Y can be constructed by a sum of 2β′ squares of normally
distributed vectors) we must have rank(Ξ) ≤ 2β almost surely, done.
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3.2 Proof of the NCGS Conjecture.

The existence of non-central Wishart distribution satisfying the stated rank condition is
proved in [14] by quadratic construction (for shape parameters less than p) and by their
explicit densities (for shape parameters greater or equals p − 1). Conversely, suppose the
existence of a single distribution Γp(β, ω; I). Then by Lemma 3.5, also Γp(β, 0; I) exists.
Since the latter is a classical Wishart distribution with non-degenerate scale parameter, we
infer β ∈ W0, the classical Gindikin set. Let us assume β ∈ {0, 1/2, . . . , (p − 2)/2} and
suppose that rank(ω) = 2β + k and 1 ≤ k ≤ p − 2β. By Lemma 3.5 we can obtain non-
central Wishart distributions for Γp(β, ω

′;σ) with any rank(ω′) ≤ 2β + k and any invertible
σ.

Using, in addition, the support information of Proposition 3.8, we thus obtain a Wishart
semigroup (Pt)t≥0 with state space Dp(2β + k) and with drift 2β, by creating Γp(β, x; 2tI),
for each t > 0, and for each x with rank(x) ≤ 2β+k. Denote by A the infinitesimal generator
of (Pt)t≥0.

We distinguish now the following two cases.

(i) k < p − 2β. We know that for all x ∈ Dp(2β + k), e2β+k+1 ≡ 0, thus by Proposition
3.4, equation (3.5),

0 = A0 = Ae2β+k+1(x) = (p−(2β+k))(−β−k)e2β+k(x) 6= 0, for all x with rank(x) = 2β+k,

a contradiction.

(ii) k = p − 2β, then rank(ω) = p. Then (Pt)t≥0 acts on C0(S̄+
p ). The positivity of

the Feller semigroup implies that its infinitesimal generator A satisfies the positive
maximum principle. Applied to ep(x) = det(x) this implies that

A det(x0) ≥ 0

for any x0 with rank(x0) < p. In particular, for rank p− 1 matrices x0, this yields by
Proposition 3.4, equation (3.5) (using k = p),

A det(x0) = (2β − p+ 1)ep−1(x0) ≥ 0

and since ep−1(x0) > 0, we must have 2β ≥ p− 1, done.

3.3 Non-convex states

We conclude the paper with the following characterization of Wishart semigroups on p × p
symmetric positive semi-definite matrices of rank ≤ k.9 The statement has been conjectured
by Damir Filipovic [7] in fall 2009.

9Note that for k < p these are non-convex domains, but the semigroups on Dk(p) cannot be extended to

the convex hull S+p .
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Theorem 3.9. Let k ∈ {1, . . . , p} and let α ≥ 0. The following are equivalent:

(i) The Wishart semigroup with state-space D = Dk(p) exists.

(ii) If k ∈ {1, . . . , p− 1}, then α = k, and if k = p, then α ≥ p− 1.

Proof. When k = p, that is D = S̄+
p , we have α ≥ p−1 due to [3]. We thus confine ourselves

to k < p.
Proof of (ii) ⇒ (i): The existence is shown by construction, using squares. See, for

instance, the proof of Theorem 2.3, or [14, Example 2,2 and Example 2.3].
Proof of (i) ⇒ (ii): Assume the existence of a Wishart semigroup on Dk(p)

10. Since ek+1

vanishes on Dk(p), we obtain using Proposition 3.4 that

0 = (Aek+1)(x) = (p− k)(α− k)ek(x).

Since k < p, and ek(x) > 0 for rank(x) = k matrices, we conclude that α = k.
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