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Characterizations of Wishart Processes and Wishart Distributions

We characterize the existence of non-central Wishart distributions (with shape and non-centrality parameter) as well as the existence of solutions to Wishart stochastic differential equations (with initial data and drift parameter) in terms of their exact parameter domains. In particular, we show that the exact parameter domain of Wishart distributions equals the so-called non-central Gindikin set, which links the rank of the non-centrality parameter (resp. initial value) to the size of the shape parameter (resp. drift parameter). Our novel approach utilizes the action of Wishart semigroups on symmetric polynomials. Also, we prove a conjecture by Damir Filipovic (2009) on the existence of such semigroups on the cones of lower rank matrices.

Introduction and Preliminaries

The aim of this paper is to characterize the parameter domain of non-central Wishart distributions (with shape, scale and non-centrality parameters) and that of Wishart processes, a class of continuous-time Markov processes with positive semi-definite state space (with constant drift parameter).

Denote by S p the space of symmetric p × p matrices and let S + p be the open cone of positive definite matrices, with topological closure S+ p , the positive semi-definite matrices. The classical Gindikin1 set W 0 is defined as the set of admissible β ∈ R such that there exists a random matrix X with values in S+ p (equivalently a measure with support in S+ p ) such that its Laplace transform is of the form Ee -tr(uX) = (det(I + Σu)) -β , u ∈ S+ p ,

where Σ ∈ S + p . It is well-known that

W 0 = 1 2 B ∪ p -1 2 , ∞ ,
where B = {0, 1, • • • , p -2} (cf. [START_REF] Faraut | Analysis on symmetric cones. Oxford Mathematical Monographs[END_REF], pp. 137, 349) . A more intricate question concerns the existence of non-central Wishart distributions, which in addition involves a parameter of non-centrality:

Definition 1.1. The general non-central Wishart distribution Γ p (β, ω; Σ) on S+ p is defined (whenever it exists) by its Laplace transform L(Γ(β, ω; σ))(u) = (det(I + Σu)) -β e -tr(u(I+Σu) -1 ω) , u ∈ S + p ,

where β > 0 denotes its shape parameter, Σ ∈ S + p is the scale parameter and the parameter of non-centrality equals ω ∈ S+ p .

Random matrices X verifying (1.1) arise in statistics as estimators of the covariance matrix parameter Σ of a normal population. In fact, for the random matrix X = ξ 1 ξ T 1 + . . . + ξ n ξ T n =: q(ξ), ξ = (ξ 1 , . . . , ξ p ), where ξ i ∼ N p (m i , Σ/2) are independent normal vectors in R p , the Laplace transform of X is given by the right side of (1.1) with β = n/2 and ω = q(m 1 , . . . , m n ). Accordingly, we shall say that the pair (ω, β) belongs to the non-central Gindikin set W if there exists a random matrix X with values in S+ p having the Laplace transform (1.1) for a matrix Σ ∈ S + p2 . Note the following:

• Whenever (ω, β) ∈ W then we have β ≥ 0, otherwise Ee -tr(uX) would be unbounded; and clearly, (0, β) ∈ W if and only if β ∈ W 0 .

• In the case rank(ω) = 1, β = 0, the characterization of the non-central Gindikin set W was given in [START_REF] Peddada | Proof of a conjecture of M. L. Eaton on the characteristic function of the Wishart distribution[END_REF]: one then has (ω, β) ∈ W if and only if β ∈ W 0 .

The general problem of existence and non-existence of non-central Wishart distribution has been next studied by Letac and Massam [START_REF] Letac | The noncentral Wishart as an exponential family, and its moments[END_REF] 3 . A first hint on the non-triviality of this problem is given by Mayerhofer [START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF] who reveals that there is an interplay between the rank of the non-centrality parameter ω and the magnitude of β in the discrete part of the classical Gindikin ensemble. The method used therein involves the construction of affine Markov processes on S+ p whose positivity requires a certain magnitude of their constant drift parameter. The results in [START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF] allow to conjecture4 the following:

NCGS Conjecture. The non-central Gindikin set is characterized by (ω, β) ∈ W ⇔ (β ∈ p -1 2 , ∞ , ω ∈ S+ p ) or (2β ∈ B, rank(ω) ≤ 2β).
Sufficiency of these conditions was shown by Bru in [START_REF] Bru | Wishart processes[END_REF], except the case 2β = p -1, that may be found in [START_REF] Graczyk | Multidimensional Yamada-Watanabe theorem and its applications to particle systems[END_REF] or [START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF]. What concerns the necessity, [START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF] proved that if (ω, β) ∈ W and 2β ∈ B, then rank(ω) ≤ 2β + 1. A proof of the necessity in the NCGS Conjecture has been put forward by the preprint [START_REF] Letac | Existence and non-existence of the non-central Wishart distributions[END_REF].

The attempt of [START_REF] Letac | Existence and non-existence of the non-central Wishart distributions[END_REF] is very technical and lengthy and as such makes it difficult to understand the key reasons for the particular parametric restrictions of shape and non-centrality parameter.

The present paper gives a first complete proof of the NCGS conjecture, which reveals, and builds on, the intimate connection between the existence of non-central Wishart distributions and that of Wishart processes. These are positive semi-definite solutions (X t ) t≥0 of stochastic differential equations of the form

dX t = X t dW t + dW T t X t + αIdt, X t ∈ S+ p , t ≥ 0; X 0 = x 0 ∈ S+ p , (1.2) 
where √ X t is the unique positive square root of a X t , W is a d × d matrix of standard Brownian motions, and α ≥ 0 is a single drift parameter.

At the same time, we formulate and prove here as a novelty sufficient and necessary condition for the existence of Wishart processes.

Already Bru [START_REF] Bru | Wishart processes[END_REF], who introduced Wishart processes, realized that Wishart processes are Wishart distributed5 : Proposition 1.2. Bru([2, Theorem 3]) If the stochastic differential equation (1.2) with x 0 ∈ S+ p has a global weak solution in S+ p , then X t is Wishart distributed for each t ≥ 0. In particular, we have

E x 0 [exp(-tr(uX t )] = (det(I + 2tu)) -α/2 exp[-tr(x 0 (I + 2tu) -1 u))], u ∈ S + p . (1.3) 
In the present paper, we shall also show how to construct from individual Wishart distributions full-fledged Wishart processes. Our main result is thus a three-fold characterization: Theorem 1.3. Let x 0 ∈ S+ p and α ≥ 0. The following are equivalent: (i) The SDE (1.2) has a global weak solution with X 0 = x 0 .

(ii) Either α ≥ p -1, or α ∈ B and rank(x 0 ) ≤ α.

(iii) (x 0 , α/2) ∈ W .
Our proof of the NCGS Conjecture (that is, Theorem 1.3 (ii) ⇔ (iii)) is based on analysis of affine Wishart semigroups. We use as new tool a class of symmetric polynomials which arise as coefficients of the characteristic polynomial of a symmetric matrix. A full characterization of Wishart processes is provided by (Theorem 1.

3 (i) ⇔ (ii)).
For convenience of the reader, but at the expense of proving an additional implication, Theorem 1.3 is split into two independent theorems in the following two chapters. They require different mathematical tools and therefore can be read independently. Chapter 2 is concerned with the existence of solutions to Wishart stochastic differential equations using elementary stochastic analysis with symmetric polynomials (Theorem 2.3 comprises the equivalence (i) ⇔ (ii) of Theorem 1.3) . Chapter 3 concerns the existence of Wishart distributions (the NCGS conjecture, which comprises (ii) ⇔ (iii) of Theorem 1.3 ). Here we use the Markovian viewpoint, in particular the fact that Wishart semigroups are affine Feller semigroups

Gindikin sets for Wishart Processes

We consider the question of solutions in S+ p of the so-called Wishart SDE (1.2). In particular, using the dynamics of symmetric polynomial functionals of these solutions, we characterize drift parameters and the ranks of initial values that allow solutions of this SDE.

If X is a symmetric p × p matrix, we define the polynomials e n (X) as basic symmetric polynomials e n (X) =

i 1 <...<in λ i 1 (X)λ i 2 (X) . . . λ in (X), n = 1, . . . , p; (2.1)
in the eigenvalues λ 1 (X) ≤ . . . ≤ λ p (X) of X. Moreover, we use the convention that e 0 (X) ≡ 1. Up to the sign change, the polynomials e n are the coefficients of the characteristic polynomial of X, i.e.

det(X -uI) = (-1) p u p + (-1) p-1 e 1 (X)u p-1 + . . . -e p-1 (X)u + e p (X)

and are polynomial functions of the entries of the matrix X. In particular, e p (X) = det X.

In [START_REF] Graczyk | Strong solutions of non-colliding particle systems[END_REF], symmetric polynomials related to general class of non-colliding particle systems were studied in details. Here we present similar results adapted to the matrix SDE

dX t = g(X t )dW t h(X t ) + h(X t )dW T t g(X t ) + b(X t )dt, (2.2) 
where the continuous functions g, h, b act spectrally6 on S p and W t is a Brownian p×p matrix. Henceforth we abbreviate σ = 2gh and G(x, y) = g 2 (x)h 2 (y)+g 2 (y)h 2 (x). We use the natural bijection (2.1) between the eigenvalues Λ = (λ 1 . . . λ p ) and the polynomials e = (e 1 , . . . , e p ), extended to the closed Weyl chamber C+ = {(x 1 , . . . , x p ) ∈ R p : x 1 ≤ x 2 < . . . ≤ x p }, see [START_REF] Graczyk | Strong solutions of non-colliding particle systems[END_REF], p.6. We write Λ = Λ(e) for the inverse bijection on the set e(C + ). We use the notation e i n for the incomplete polynomial of order n, not containing the variable λ i (e); the notation e i,j n is analogous.

Proposition 2.1. Let X be a solution of (2.2). Then the symmetric polynomials e n = e n (X), n = 1, . . . , p, are continuous semimartingales described by the system of SDEs (n = 1, . . . , p)

de n = p i=1 σ 2 (λ i (e))(e i n-1 ) 2 1/2 dV n + p i=1 b(λ i (e))e i n-1 - i<j G(λ i (e), λ j (e))e i,j n-2 dt, (2.3)
where V n are Brownian motions on R such that d e n , e m = p i=1 σ 2 (λ i (e))e i n-1 e i m-1 dt.

Proof. The symmetric polynomials (e 1 , . . . , e n ) are given by an analytic function (polynomial of the coefficients) of the matrix X. Thus Itô's formula, applied to the SDE for the matrix process X t , gives a system of the SDEs for (e 1 , . . . , e n ). We determine these SDEs like in Propositions 3.1 and 3.2 in [START_REF] Graczyk | Strong solutions of non-colliding particle systems[END_REF], using the SDE for the eigenvalues

dλ i = 2g(λ i )h(λ i )dB i + b(λ i ) + j =i G(λ i , λ i ) λ i -λ i dt, i = 1, . . . , p, (2.4) 
which are available, according to Theorem 3 from [START_REF] Graczyk | Multidimensional Yamada-Watanabe theorem and its applications to particle systems[END_REF], when eigenvalues λ i (0) of x 0 are all distinct and before their eventual collision. However, the form of the SDEs (2.3) does not depend on the starting point x 0 or on the non-collision of the eigenvalues, i.e. it does not change if we remove the conditions that eigenvalues of the initial point are all different and that they are non-colliding for t > 0.

Using Proposition 2.1 we get the following characterization of the symmetric polynomials related to Wishart processes. Proposition 2.2. Let X t be a Wishart process, i.e. a solution of the matrix SDE (1.2). Then the symmetric polynomials e n = e n (X), n = 1, . . . , p are semimartingales satisfying the following system of SDEs 

where V i , i = 1, . . . , p are one-dimensional Brownian motions and the functions M n are continuous on R p .

Note that by Proposition 2.1, the explicit forms of the martingale parts M n (e 1 , . . . , e p )dV n as well as their brackets d e n , e m are known for every n, m = 1, . . . , p.

Proof. Applying Proposition 2.1 to the SDE (1.2), we find that

M n = 2 p i=1 λ i (e i n-1 ) 2 1/2
. Moreover, we have the following expressions for the drift parts of de n :

p i=1 αe i n-1 - i<j (λ i + λ j )e i,j n-2 = (p -n + 1)(α -n + 1)e n-1 .
Since a Wishart process is S+ p valued by construction, so e k ≥ 0, for all k = 1, . . . , p. The SDEs describing the symmetric polynomials e 1 , . . . , e p can be used to show that the e p would become negative if e p (0) = 0 and α = 2β was small enough, a mere impossibility. This is idea is used in the proof of the next Theorem to find the precise range for α ≥ 0, where Wishart SDEs have global weak solutions.

Solving the Wishart stochastic differential equations

This section gives a full characterization of the existence of solutions to Wishart SDEs (1.2). (ii) α ≥ p -1, or α ∈ {0, 1, . . . , p -2} and rank(x 0 ) ≤ α.

Proof. Assume first (i). If α ≥ p-1, nothing has to be shown. Suppose, therefore, α < p-1. Recall equations (2.5) -(2.6) from Proposition 2.2 .

We can compute explicitly the expected value of the polynomials starting from the first one. and so on. Consequently Ee n (t) is a polynomial of degree not greater than n. In particular, the coefficient of t n is

p(p -1) • . . . • (p -n + 1) • α(α -1) • . . . • (α -n + 1) n!
If α / ∈ B, we take n = α + 1 and get that Ee n (t) is a polynomial of degree n such that the leading coefficient is negative. Consequently, it can not stay positive for every t > 0. Proof of (ii) ⇒ (i): Several proofs of this fact are known: see, e.g. Bru [START_REF] Bru | Wishart processes[END_REF], where she does however not cover the case α = p -1. Another proof can be obtained by using results from [START_REF] Graczyk | Multidimensional Yamada-Watanabe theorem and its applications to particle systems[END_REF] which show solvability (even in the strong sense) of the SDEs for the eigenvalues of a Wishart process. Here we provide similar, but more elaborate arguments than Bru's, using the theory of affine processes:

• If α ≥ p -1, then existence of an affine Markov process (X t ) t≥0 with state-space Sp + and Laplace transform (1.3) is provided by the general theory of [START_REF] Cuchiero | Polynomial processes and their applications to mathematical finance[END_REF]. This implies a solution to the corresponding martingale problem, that is, for any f ∈ C 2 c ( S+ p ), and any initial value x 0 , we have that

f (X t ) -f (x 0 ) - t 0 Af (X s )ds
is a martingale, where A is the infinitesimal generator of X, see eq. (3.3) below.

• If α ∈ {0, 1, . . . , p -2}, then existence of a solution to the corresponding martingale problem is shown in [START_REF] Bru | Wishart processes[END_REF] by an explicit construction (squaring matrix valued standard Brownian motions), see also [START_REF] Mayerhofer | Stochastic Analysis Methods in Wishart Theory II[END_REF]Example 2.3].

In any case, by [14, Lemma 2.5] (see also [4, Proof of Theorem 6.2, p.53, last paragraph]) , the solution of the Wishart martingale problem implies the existence of a weak solution to the Wishart SDE (1.2).

Remark 2.4. Necessity of (ii) can be also proved, if we assume the validity of the NCGS Conjecture (a fact that is proven in Section 3, and which we have not used above to keep the section self-contained). Suppose the existence of a weak solution. Then by Proposition 1.2, the solution is Wishart distributed, that is, for each t ≥ 0, X t ∼ Γ p (α/2, x 0 ; 2tI). By the NCGS Conjecture, we therefore must have α/2 ∈ W 0 and, in addition, if α < p -1 then rank(x 0 ) ≤ α.

The NCGS Conjecture and Wishart Semigroups

In this section we introduce Wishart semigroups, which are the main tool for the proof of the NCGS Conjecture in Section 3.2 below. In the final subsection 3.3 we characterize all Wishart semigroups on lower rank matrices, which are non-convex state spaces. 

Wishart semigroups

P t f u (x) = det(I + 2tu) -α/2 e -tr(x(u -1 +2tI) -1 ) , x ∈ S+ p . (3.1) 
Here α ≥ 0 is called the constant drift parameter of (P t ) t≥0 .

We summarize a few essential facts in the following Remark 3.2. Let (P t ) t≥0 be a Wishart semigroup with drift parameter α.

(i) (Markovian representation) In view of the Riesz representation theorem for positive functionals [17, Chapter 2.14], for each t > 0, x ∈ D there exists a positive measure p t (x, dξ) such that

P t f (x) = D f (ξ)p t (x, dξ). (3.2) 
Furthermore, the semigroup property of (P t ) t≥0 implies, that p t (x, dξ) satisfies the Chapman-Kolmogorov equations, thus p t (x, dξ) is a Markov transition function. Hence, the semigroup has a stochastic representation as a Markov process (P x ) x∈D , where for each x ∈ D, P x denotes the resulting probability on the canonical path space D R + with initial law X 0 = x, and X t (ω) := ω(t), where ω ∈ D R + .

(ii) (Càdlàg Paths) It is a well established fact, that any Feller process (that is, a Markov process with strongly continuous C 0 semigroup), has a càdlàg modification.

(iii) (Affine Property) By definition, Wishart semigroups are affine semigroups (see [START_REF] Cuchiero | Affine processes on positive semidefinite matrices[END_REF]), that is, the Laplace transform of its transition function is of the form E[e -tr(uXt) | X 0 = x] = e -φ(t,u)-tr(ψ(t,u)x) , where φ(t, u) = α 2 log(det(I + 2tu)), ψ(t, u) = (u -1 + 2tI) -1 .

(iv) (Wishart transition function) By construction, the Markovian transition function p t (x, dξ) is Γ p (α/2, x; 2It) distributed, for each t ≥ 0 and for all x ∈ D.

(v) (Non-Explosion) (P t ) t≥0 is conservative: Let u n ∈ S + p such that u n → 0 as n → ∞. By (3.2) we thus have

P t 1 = lim n→∞ P t f un (x) = 1.
(vi) (Continuity) If, in addition, we assume that the linear span of D has non-empty interior, (X, P x ) for each x is (by [START_REF] Cuchiero | Path properties and regularity of affine processes on general state spaces[END_REF]) an affine semimartingale, that is, a semimartingale with characteristics which are affine functions in the state. Since the associated jump measure vanishes, continuity of the sample paths follows.

(vii) (Strong Maximum Principle) For a strongly continuous C 0 semigroup (P t ) t≥0 with infinitesimal generator A, the following are equivalent

• A satisfies the strong maximum principle, that is, Af (x 0 ) ≥ 0, for any f ∈ C 0 that satisfies f (x) ≥ f (x 0 ).

• (P t ) t≥0 is positive (hence a Feller semigroup).

The second implication is simple. A proof of the non-trivial implication employs the positivity of the Yoshida approximations of A ([11, Corollary 2.8]).

Wishart semigroups on D = S+ p are well understood; they are affine diffusion processes. By [START_REF] Cuchiero | Affine processes on positive semidefinite matrices[END_REF] the following are equivalent:

• The Wishart semigroup with drift parameter α exists with state space D = S+ p . • α ≥ p -1.

However, for state-spaces D which are strict subsets of D = S+ p , less is known about Wishart semigroups. We shall state and prove a particular result when D is the set of rank k ≤ p -1 matrices (Theorem 3.9).

We consider operators acting on functions on S p (as a p × (p + 1)/2-dimensional vector space), and the nabla operator as the symmetric matrix operator (∂ ij f ) ij (for this notation and results related to the following, see [2, section 2.2] or [1, Proposition 3]).

For a subset D ⊆ S+ p we let S * p (D) be the restriction of the space of rapidly decreasing smooth functions on S p to D.

Proof of the NCGS Conjecture.

The existence of non-central Wishart distribution satisfying the stated rank condition is proved in [START_REF] Mayerhofer | Stochastic Analysis Methods in Wishart Theory II[END_REF] by quadratic construction (for shape parameters less than p) and by their explicit densities (for shape parameters greater or equals p -1). Conversely, suppose the existence of a single distribution Γ p (β, ω; I). Then by Lemma 3.5, also Γ p (β, 0; I) exists. Since the latter is a classical Wishart distribution with non-degenerate scale parameter, we infer β ∈ W 0 , the classical Gindikin set. Let us assume β ∈ {0, 1/2, . . . , (p -2)/2} and suppose that rank(ω) = 2β + k and 1 ≤ k ≤ p -2β. By Lemma 3.5 we can obtain noncentral Wishart distributions for Γ p (β, ω ; σ) with any rank(ω ) ≤ 2β + k and any invertible σ.

Using, in addition, the support information of Proposition 3.8, we thus obtain a Wishart semigroup (P t ) t≥0 with state space D p (2β + k) and with drift 2β, by creating Γ p (β, x; 2tI), for each t > 0, and for each x with rank(x) ≤ 2β +k. Denote by A the infinitesimal generator of (P t ) t≥0 .

We distinguish now the following two cases. (ii) k = p -2β, then rank(ω) = p. Then (P t ) t≥0 acts on C 0 ( S+ p ). The positivity of the Feller semigroup implies that its infinitesimal generator A satisfies the positive maximum principle. Applied to e p (x) = det(x) this implies that A det(x 0 ) ≥ 0 for any x 0 with rank(x 0 ) < p. In particular, for rank p -1 matrices x 0 , this yields by Proposition 3.4, equation (3.5) (using k = p), A det(x 0 ) = (2β -p + 1)e p-1 (x 0 ) ≥ 0 and since e p-1 (x 0 ) > 0, we must have 2β ≥ p -1, done.

Non-convex states

We conclude the paper with the following characterization of Wishart semigroups on p × p symmetric positive semi-definite matrices of rank ≤ k. 9 The statement has been conjectured by Damir Filipovic [START_REF] Filipovic | [END_REF] Proof. When k = p, that is D = S+ p , we have α ≥ p -1 due to [START_REF] Cuchiero | Affine processes on positive semidefinite matrices[END_REF]. We thus confine ourselves to k < p.

Proof of (ii) ⇒ (i): The existence is shown by construction, using squares. See, for instance, the proof of Theorem 2. Proof of (i) ⇒ (ii): Assume the existence of a Wishart semigroup on D k (p) 10 . Since e k+1 vanishes on D k (p), we obtain using Proposition 3.4 that 0 = (Ae k+1 )(x) = (p -k)(α -k)e k (x). Since k < p, and e k (x) > 0 for rank(x) = k matrices, we conclude that α = k.

  de n = M n (e 1 , . . . , e p )dV n + (p -n + 1)(α -n + 1)e n-1 dt, n = 1, . . . , p -1, (2.5) de p = 2 √ e p-1 e p dV p + (α -p + 1)e p-1 dt,

Theorem 2 . 3 .

 23 Let α ≥ 0, and x 0 ∈ S+ p . The following are equivalent. (i) The SDE (1.2) has a global weak solution with X 0 = x 0 .

Ee 1 0 Ee 1

 101 (t) = e 1 (0) + pα t 0 ds = e 1 (0) + pαt Thus we have Ee 2 (t) = e 2 (0) + (p -1)(α -1) t (s)ds = e 2 (0) + (p -1)(α -1)e 1 (0)t + p(p -1)α(α -1) t 2 2

0

  Contradiction.If α = m ∈ B we look at Ee n (t) where n = m + 1. ThenEe n (t) = e n (0) + (p -n + 1)(α -n + 1) t Ee n-1 (s)ds = e n (0) If e n (0) > 0, then Ee n+1 (t) = e n+1 (0) + (p -n)(α -n)e n (0)ti.e. the leading term is negative and thus Ee n+1 (t) < 0 for large t. It implies e n (0) = 0, i.e. rank(x 0 ) ≤ n -1 = m = α.

For p ≥ 1 ,Definition 3 . 1 .

 131 let D p (k) ⊂ S+ p be the subcones of rank ≤ k matrices, 0 ≤ k ≤ p, where clearly D p (0) = {0} and D p (p) = S+ p . Denote by f u (x) = exp(tr(-ux)), where u, x ∈ S+ p . Let D ⊂ S+ p . A Wishart semigroup (P t ) t≥0 on D is a positive, strongly continuous C 0 (D) contraction semigroup which for any u ∈ S + p acts as

  (i) k < p -2β. We know that for all x ∈ D p (2β + k), e 2β+k+1 ≡ 0, thus by Proposition 3.4, equation (3.5), 0 = A0 = Ae 2β+k+1 (x) = (p-(2β+k))(-β-k)e 2β+k (x) = 0, for all x with rank(x) = 2β+k, a contradiction.

Theorem 3 . 9 .

 39 in fall 2009. Let k ∈ {1, . . . , p} and let α ≥ 0. The following are equivalent: (i) The Wishart semigroup with state-space D = D k (p) exists. (ii) If k ∈ {1, . . . , p -1}, then α = k, and if k = p, then α ≥ p -1.

  3, or [14, Example 2,2 and Example 2.3].

The name of this set originates from Gindikin's[START_REF] Gindikin | Invariant generalized functions in homogeneous domains[END_REF] work in a general multivariate setting .

As long as Σ is of maximal rank, this definition is indeed independent of Σ, see Lemma

3.5. 

However, the statement in[START_REF] Letac | The noncentral Wishart as an exponential family, and its moments[END_REF] is incomplete. In fact, the absence of an additional condition implies existence of certain affine Markov processes, which has however been ruled out by[START_REF] Cuchiero | Affine processes on positive semidefinite matrices[END_REF]. This fact has been pointed out by[START_REF] Mayerhofer | Stochastic Analysis Methods in Wishart Theory II[END_REF] and[START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF]. Accordingly, the proof in section 5 of[START_REF] Letac | The noncentral Wishart as an exponential family, and its moments[END_REF] has a gap.

In[START_REF] Letac | Existence and non-existence of the non-central Wishart distributions[END_REF] and a previous versions of this paper, the name Mayerhofer Conjecture is used. The conjecture has been formally presented at the CIMPA Workshop in Hammamet in 2011 (http://www.cimpaicpam.org/IMG/pdf/Cours Mayerhofer Hammamet.pdf).

Bru did not introduce the notion of non-central Wishart distribution, but she realized the explicit formula for the Laplace transform.

Recall that if g : R → R then g(X) is defined spectrally, i.e. g(U diag(λ i )U T ) = U diag(g(λ i ))U T , where U ∈ SO(p).

Lévy's continuity theorem in its original form applies to characteristic functions only, but it can be extended to the Laplace transform for cone-valued measures.

Note that for k < p these are non-convex domains, but the semigroups on D k (p) cannot be extended to the convex hull S + p .

Using the NCGS conjecture, the following, weaker, conclusion may be made. Assume the existence of a Wishart semigroup on D k (p). Then Γ p (α, x 0 , I) exists with rank(x 0 ) = k. By the NCGS Conjecture, we must have α/2 ∈ W 0 and, if α < p -1, then rank(x 0 ) ≤ α. This implies α ≥ k.
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Proposition 3.3. Suppose (P t ) t≥0 is a Wishart semigroup on D, and that D p (1) ⊆ D. Then its infinitesimal generator A is given by A = tr(2x∇ 2 + α∇).

(3.3) and S * p (D) ⊂ D(A) is a core. Proof. By the definition of the affine property, we have Af u (x) = (F (u) + tr(R(u)x)f u (x) (3.4) for f u (x) = exp(-tr(ux)) and u ∈ S+ p , and thus f u (x) ∈ D(A). Here F (u) = α tr(u) = ∂φ(t,u) ∂t | t=0 and R(u) = -2u 2 = ∂ψ(t,u) ∂t | t=0 . The assumption that D contains rank one matrices implies that the convex hull of D equals S+ p , and thus F and R are uniquely defined. It is readily seen that the action of (3.3) on f u (x) coincides with (3.4).

According to the density argument [START_REF] Cuchiero | Affine processes on positive semidefinite matrices[END_REF]Theorem B.3], the linear hull of such exponentials for strictly positive definite u is dense in the space of rapidly decreasing functions on S+ p , and thus, its restriction S * p (D) is a valid choice for a core of A.

Recall that a Feller process is polynomial if the action of its semigroup can be extended to linear polynomials of any order ( [START_REF] Cuchiero | Polynomial processes and their applications to mathematical finance[END_REF]).

Proposition 3.4. Suppose X is a Wishart semigroup supported on D ⊂ S+ p with drift α ≥ 0. X is polynomial and its infinitesimal generator acts on symmetric polynomials as follows

(3.5)

Proof. Since the domain of the moment generating function of X t | X 0 = x for each t contains an open neighborhood of zero, the process is polynomial [START_REF] Cuchiero | Polynomial processes and their applications to mathematical finance[END_REF] and thus the semigroup action of X can be extended to polynomials of any order. Equation (3.5) thus can be inferred from Proposition 2.2.

We further require three Lemmas.

Lemma 3.5. If Γ p (β, ω; σ) is a positive measure on S+ p , where σ is invertible, then Γ p (β, ω ; σ ) exists for any ω satisfying rank(ω ) ≤ rank(ω) and for any invertible σ .

Proof. The statement is a mild improvement of Proposition 3.1 (iii)(b) in [START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF]) (where the case rank(ω) = p is discussed). However, it applies also in this situation of lower rank matrices. In fact, S+ p is a symmetric cone, as its linear automorphism group is transitive. Hence, any ω with rank k = rank(ω) can be mapped by a linear automorphism on ω: there exists a d × d matrix A such that ω = AωA . Hence, by the proof of Proposition 3.1 (iii)(b) in [START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF]) we obtain a distribution Γ(p, ω ; σ). Finally, let rank(ω ) ≤ rank(ω). Then there exists a sequence ω n → ω , where rank(ω n ) = k for each n. A glance at the characteristic function 7 of Γ(p, ω n ; σ) suffices to realize that Lévy's continuity theorem ensures also the existence of a distribution Γ(p; ω ; σ). Lemma 3.6. Let Ξ be a positive semi-definite random matrix supported on D p (r -1) and rank(Ξ) = r -1 with nonzero probability. Let further η ∼ N (µ, Σ) with µ ∈ R p and with covariance matrix Σ ∈ S + p . If Ξ and η are independent, then rank(Ξ+ηη ) = r with nonzero probability.

Proof. Assume first the constant case Ξ = Ξ 0 ∈ S+ p . Without loss of generality, we may assume Ξ 0 = diag(I r-1 , 0), where I k is the k × k unit matrix. Define

with a (r -1) Proof. By Lemma 3.5 we can without loss of generality assume σ = I. Let A be the infinitesimal generator of an Wishart semigroup (P t ) t with drift α = p -1 and state space S+ p , and denote by Ξ its canonical realization. Then Ξ 1/2 | Ξ 0 ∼ Γ p ((p -1)/2, Ξ 0 ; I). By Proposition 3.4

Ae p (x) = 0 and hence for any x ∈ S+ p , 8 This map is measurable, since it can be written as

where we recall the convention e 0 = 1 (to identify the 0).

and thus rank(Ξ 1/2 ) ≤ p -1 almost surely. Furthermore, by Proposition 3.4 we have Ae p-1 (x) = 2e p-2 (x) and thus for each t > 0

We conclude that whenever rank(x 0 ) = p-1, we have for each t > 0, rank(Ξ t | Ξ 0 = x) = p-1 with non-zero probability and thus also rank(Ξ) = rank(Ξ 1/2 | Ξ 0 = ω) = p-1 with non-zero probability.

The following statement concerns the support of Wishart distributions with general shape parameter. for any Ξ ∼ Γ p (β, ω; σ).

Proof. The case β = (p -1)/2 is trivial. Suppose next, β = 0, and rank(ω) ≥ 1. Then, also Γ p (β = 0, ω; 2tI) exists, with rank(ω) = 1, see Lemma 3.5. Let x ∈ S+ p , then we can write

Let Ξ i ∼ Γ p (β = 0, µ i µ i ; 2tI), for i = 1, . . . , p, then by p-fold convolution

and thus we have constructed a transition function of a Wishart semigroup with zero drift, thus violating the drift condition for affine Markov processes on S+ p [START_REF] Cuchiero | Affine processes on positive semidefinite matrices[END_REF] (which rules out drifts strictly below (p -1)/2). Thus ω = 0 whenever β = 0.

Let now β ∈ {1/2, . . . , (p -2)/2}, then, since 2β + k ≥ 2β + 1 ≥ 2, there is nothing to show when p ≤ 2. Set therefore p ≥ 3. We have