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Abstract

A self-consistent fluid model for describing Neoclassical Tearing Modes in global Magneto-Hydro-
Dynamic simulations is presented. It is illustrated by its application to a simple toroidal configuration
unstable to the (2, 1) tearing mode. The island saturation is verified to increase with the bootstrap
current fraction. New features that are specific to this model are evidenced, like the unsteady satu-
rated state of the island, and its deformation to a droplet shape, when the magnetic Prandtl number
is not too high. Synthetic diagnostics demonstrate that diamagnetic and neoclassical effects should
have in this case a measurable impact on the signature of magnetic islands.

1 Introduction

Magnetic islands can grow in the plasma of magnetic confinement devices and cause a degradation of
the energy confinement time Sauter et al. (1997) that could impact the fusion gain of a fusion reactor
Halpern et al. (2006). As pressure is increased, their linear stability is improved Glasser et al. (1975);
Lütjens et al. (2001), but a metastable branch emerges due to the nonlinear drive provided by neoclassical
friction forces Carrera et al. (1986). Islands produced by this mechanism are called Neoclassical Tearing
Modes Chang et al. (1995), and their suppression by real-time control systems is crucial for present and
future high performance tokamaks Maraschek (2012).

In view of predicting the threshold and saturation of Neoclassical Tearing Modes (NTM), several
approaches have been adopted. The simplest one is to use the simplified formalism of the Rutherford
Equation Rutherford (1973), where the contributions of various physical effects on the evolution of the
island width can be implemented provided the asymptotic matching procedure is valid (i.e. the island
width remains small compared to equilibrium plasma scales). Neoclassical physics can be inserted in a
Generalized Rutherford Equation using either fluid Smolyakov et al. (1995) or kinetic approaches Wilson
et al. (1996).

Another solution is to compute NTM dynamics from a global code where the plasma fields are evolved
without scale separation. This allows removing the small island limitation of the Rutherford equation
framework as well as the uncertainties related to the modelling of the island saturation Arcis et al. (2007);
Maget et al. (2010), and integrating self-consistently toroidal effects. The drive for NTMs being due to
the perturbation of the self-generated bootstrap current by the island, an ad-hoc implementation of this
current into the single fluid (1F) resistive MHD model has been first used Yu and Günter (1998); Popov
et al. (2002); Lütjens and Luciani (2002); Maget et al. (2010). However, the importance of diamagnetic
rotations for the dynamics of magnetic islands Ara et al. (1978); Yu (2010) claims for the use of a bi-
fluid MHD model covering self-consistently neoclassical physics. The formal derivation of such a model,
proposed in Callen et al. (1986); Callen (2010), has been implemented in the XTOR code Lütjens and
Luciani (2010). Equilibrium flows and bootstrap current are formally recovered, and the nonlinear NTM
threshold can be computed with this model, as shown in Mellet et al. (2013). In that first application,
parallel heat flows were not considered, and their proposed formulation was incomplete. We detail in the
present work how these flows can be implemented, and we show that their contribution to the bootstrap
current is essential.

The paper first describes the Magneto-Hydro-Dynamics (MHD) model that is used in the computa-
tions (section 2). The application to a circular cross-section plasma with an unstable tearing mode is
then presented, and the main characteristics of the saturated state are described (section 3).
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2 Magneto-Hydro-Dynamics model for Neoclassical Tearing Mode
simulations

2.1 The fluid equations

The two-fluid neoclassical model implemented in XTOR solves the following normalized equations Lütjens
and Luciani (2010):

(∂t + Vi · ∇) ρ = −ρ∇ ·Vi −∇ · Γan + Σ (1)

(∂t + V · ∇) p = −Γp∇ ·V − diΓK ·
[
p

ρ
∇pi +

pi
ρ
∇pi −

pe
ρ
∇pe +

p2e − p2i
ρ2

∇ρ
]

+

+H − (Γ− 1)∇ · qχ (2)

ρ (∂t + V · ∇) V = −ρV∗i · ∇V⊥ + J×B−∇p−∇ ·Π‖ +∇ · ν∇Vi (3)

∂tB = −∇×E (4)

with ρ the mass density, p the total pressure, K = ∇ × (B/B2), Vi = V + V∗i , V = VE + V‖i,
VE = E×B/B2 and V∗i = diB×∇pi/(ρB2). Here, the ion skin depth di = VA/(aωci) (VA = B/

√
µ0nimi

and ωci = eiB/mi) is a measure of diamagnetic effect. The ratio of specific heat is Γ = 5/3, H ≡
− (Γ− 1)∇ · χ⊥∇⊥p(t = 0) is the heat source and qχ = −ρχ‖b(b · ∇T )− ρχ⊥∇⊥T is the diffusive heat
flux (b ≡ B/B), with T = p/ρ. This diffusive heat flux is aimed at representing the effect of turbulent
processes in the perpendicular direction (leading to anomalous transport), and of collisions in the parallel
direction. Ion and electron temperatures are assumed to be proportional : Ti = τTe with τ a constant,
and we then have pe = ZiρTe (with Zi the ion charge), pi = ρTi and p ≡ pe + pi. The anomalous particle
flux is defined as Γan = −D⊥∇ρ + ρVpinch with D⊥ the perpendicular diffusion coefficient and Vpinch

the pinch velocity. The introduction of a pinch velocity is aimed at suppressing the particle source in the
plasma core, thus removing any artificial feeding when particles are transported by MHD activity. This
pinch is vanishing in the edge region, outside a prescribed radius y = yped (here y ≡

√
ψ and we prescribe

yped = 0.9):

Vpinch = D⊥
∇ρ
ρ
f(y) (5)

f(y < yped) = 1 (6)

f(y > yped) = 0.5

(
1 + cos

(
π
y − yped
1− yped

))
(7)

The particle source is then defined as Σ = ∇·(−D⊥∇ρ+ ρVpinch) and it vanishes inside yped, as required.
The pinch velocity, as well as the density source, are defined from the initial equilibrium, and are not
evolved.

The system of equation is completed by the Ohm’s law:

E + V ×B = η [J− Jbs − JCD]− di
∇‖pe
ρ

(8)

with JCD the current density source, and Jbs ≡ Jbsb the bootstrap current. The bootstrap current,
whose expression is given in the forthcoming equation (19), can be amplified by a prescribed factor fbs in
the simulations. We detail in the following sections how Jbs and the neoclassical force ∇·Π‖ are precisely
implemented. Note that polarization physics is only partly taken into account because the polarization
drift is not yet included in the density evolution (for this, a density evolution equation based on the
electron population should be implemented). The MHD model that we obtain covers drift-tearing and
neoclassical physics in a consistent way.

2.2 Implementation of neoclassical physics

The neoclassical model implemented in XTOR has been first described in Mellet et al. (2013), and
applied in different regimes in Maget et al. (2013, 2014). We have recently significantly improved the
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implementation of parallel heat fluxes, and the numerical robustness of the model, as explained in the
following. In particular, the formulation proposed here differs from the initial one proposed in Mellet
et al. (2013) regarding the contribution of parallel heat fluxes, which was incorrectly formulated (but
not used in simulations so far). Indeed, they cannot be used as flux-averaged as proposed in that paper,
because the contribution of perturbed quantities would then not be self-consistent.

The stress tensor is expressed in a CGL form as

Π‖ =
3

2
π‖

[
bb− 1

3
I

]
(9)

3

2
π‖ = p‖ − p⊥ (10)

so that

∇ ·Π‖ =
3

2
π‖ [(∇ · b) b + κ] +

(
b · ∇3

2
π‖

)
b− 1

3
∇3

2
π‖ (11)

with ∇ · b = −∇‖ lnB and κ ≡ b · ∇b the magnetic curvature.
The perpendicular heat flow is related to the temperature drift velocity by 2q⊥s/(5ps) = V∗Ts, with

V∗Ts = di/ZsB×∇Ts/B2, and for the parallel heat flow, we use the notation

u2‖,s =
2

5ps
qs ·B (12)

Note that, in contrast with the diffusive heat flux previously introduced (qχ) that represents turbulent
and collisional processes, the heat flow qs derives from the third moment of the Vlasov equation Hirshman
and Sigmar (1981), and is of convective origin.

The electron dynamics is described in the Ohm’s law, where electron inertia is neglected:

E + V ×B = (di/ρ)Re‖ − (di/ρ)b
[
b · ∇ ·

(
peI + Π‖e

)]
(13)

with Re‖ the parallel friction force exerted on electrons:

(di/ρ)Re‖ = αe di
∑
s

[
Λes11Vs‖ + Λes12

u2‖,s

B2
B
]

(14)

with αs = (Zims)/(Zsmi), Zs the charge number of the species ’s’, and Λss
′

ij are the friction coefficients

for Coulomb collisions (see Hirshman and Sigmar (1981), with the correspondence lss
′

ij = nsmsΛ
ss′

ij in
real units). Parallel heat fluxes are computed in the assumption that they are at equilibrium at any
time. They can therefore be expressed as linear combinations of parallel velocities and thermodynamical
sources: u2‖,s

B
=
∑
s′

[
Css

′

‖ Vs′‖ + Css
′

1 Ss
′

1θ + Css
′

2 Ss
′

2θ

]
(15)

where

Ss
′

1θ = C (B · ∇ lnB) (V∗s + VE) · ∇ lnB (16)

Ss
′

2θ = C (B · ∇ lnB) V∗Ts · ∇ lnB (17)

are a generalization of the neoclassical source terms (see appendix) and C ≡ B2/
〈

(b · ∇B)
2
〉

. The

expressions for coefficients Css
′

‖ , Css
′

1 and Css
′

2 are given in appendix.

The scalar pressure is defined as p = (p‖ + 2p⊥)/3, so that

b · ∇
(
peI + Π‖e

)
=

3

2
π‖e∇ · b +∇‖p‖e (18)

The boostrap current can then be expressed as

Jbs =
η − ηSP

η

[
J‖ +

di
ρ

3/2π‖e

(η − ηSP )
∇ · b− αe

di
η − ηSP

∑
s

Λes12
u2‖,s

B

]
(19)
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Figure 1: Top: Neoclassical resistivity from the inviscid neoclassical problem, using the constraint of null
J‖ contribution (equation 20), and without the parallel heat flows contribution. Middle: Ratio between
the plasma resistivity without and with parallel heat flows. Bottom: Relative difference between the
neoclassical resistivity (equation 20) and the inviscid neoclassical solution ην=0.

where the last sum is performed over the two species, ion and electron, and ηSP ≡ αe d
2
iΛ

ei
11/ρ is the

Spitzer resistivity. The expression for the neoclassical resistivity η can be obtained by imposing that Jbs
does not depend explicitly on the plasma current J‖. When parallel heat flows are taken into account,
this leads to

η ≡ αe
d2i
ρ

[
µe1 + Λei11 + (µe2 − Λee12)Cee‖ − Λei12C

ie
‖

]
(20)

This formulation of plasma resistivity is very close to the exact solution of the neoclassical equilibrium
problem as formulated in Hirshman and Sigmar (1981); Kessel (1994) or Houlberg et al. (1997). It is
not exactly equal to it because in the neoclassical equilibrium problem one has an additional relation
between V‖ and J‖ from the momentum equation where viscous effects have been neglected, and we do
not have this explicit relation. For the example that will be described later, the difference is however less
than 10% (figure 1). In the case where parallel heat flows are neglected, we need to consider

ηno q‖ ≡ αe
d2i
ρ

[
µe1 + Λei11

]
(21)

In this latter expression, neoclassical resistivity is evaluated by adding the neoclassical friction to the
electron-ion collision frequency in the Spitzer estimate ηSP . The plasma resistivity thus obtained, where
parallel heat flows have been neglected, is about a factor of two above the resistivity computation with
parallel heat flows. This corresponds to the ratio between perpendicular and parallel resistivities Wesson
(1997) (figure 1).

In conditions where the pressure anisotropy is small compared to the scalar pressure, we can identify
p‖e with pe in equation (18). Compared to the initial implementation Mellet et al. (2013), this one has a
better numerical behaviour thanks to the incorporation of ∇‖π‖e in the scalar pressure. The Ohm’s law
finally writes as shown in equation 8.
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For the momentum equation, we obtain similarly

∇p+∇ · (Πi + Πe) =
(
p‖ − p⊥

)
[(∇ · b) b + κ] +∇‖

(
p‖ − p⊥

)
+∇p⊥ (22)

and for situations where the pressure anisotropy is small compared to the scalar pressure, we can again
identify p⊥ with p for the last term.

2.3 Pressure anisotropy

The pressure anisotropy for a species ”s” (3/2π‖s) can been formulated in the fluid framework as a
function of plasma flow (Vs) and heat flux (qs):

3

2
π‖,s = −ραsC

{
µs1F(Vs) + µs2

2

5ps
F(qs)

}
(23)

Two equivalent forms have been proposed for the operator F Grimm and Johnson (1972); Callen
(2010):

F(W) = ∇‖W‖ −W · κ− 1

3
∇ ·W (24)

F(W) = W · ∇ lnB +
b

B
· ∇ × (W ×B) +

2

3
∇ ·W (25)

For numerical stability, we will show later that the first one is more appropriate for the momentum
equation.

Assuming incompressible flows (∇ ·Vs = 0 and ∇ · qs = 0), we obtain the two equivalent forms for
the heat flow contribution:

2

5ps
F(qs) =

u‖2,s

B2
B · ∇ lnB −V∗Ts · (κ+∇ ln ps)−∇ ·V∗Ts (26)

2

5ps
F(qs) =

(
V∗Ts +

u‖2,s

B2
B
)
· ∇ lnB +

b

B
· ∇ × (V∗Ts ×B)−V∗Ts · ∇ ln ps (27)

Finally, this gives the two equivalent expressions for the pressure anisotropy

3

2
π‖,s = −ραsµsC

{
∇‖V‖s − (Vs + ksV

∗
Ts) · κ

−ks
(
∇ ·V∗Ts + V∗Ts · ∇ ln ps −

u‖2,s

B2
B · ∇ lnB

)}
(28)

3

2
π‖,s = −ραsµsC

{[
Vs + ks

(
V∗Ts +

u‖2,s

B2
B
)]
· ∇ lnB

+
b

B
· [∇× (Vs ×B) + ks∇× (V∗Ts ×B)]− ksV∗Ts · ∇ ln ps

}
(29)

where we adopt the notations µs ≡ µs1 and ks ≡ µs2/µs1. We use the first formulation for the momentum
equation, with Vi = V + V∗i , because the second one can introduce spurious instabilities, as shown in
the following. But we use the second formulation for Ohm’s law, with Ve = V + V∗e − di/ρJ‖, because
it avoids implementing the parallel derivative of the current.

2.4 Flow stability

We point here the question of numerical stability for the momentum equation. For simplicity, we consider
simplified pressure anisotropy, neglecting heat flows. This gives

3

2
π‖,i = −ρµiC

{
∇‖V‖ −V · κ

}
(30)
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The projection of the momentum equation on the curvature and on the magnetic field gives

ρ
D (V · κ)

Dt
= ρµiC

(
∇‖V‖ −V · κ

)
κ2 + · · · (31)

ρ
DV‖

Dt
=

2

3
∇‖
[
ρµiC

(
∇‖V‖ −V · κ

)]
+ · · · (32)

with D/Dt ≡ (∂t + V · ∇). This shows that the perpendicular flow is forced to its neoclassical value by
a friction µiCκ

2, while the parallel flow is damped by a parallel diffusion coefficient 2
3µiC.

Using the second formulation
3

2
π‖,i = −ρµiC {V · ∇ lnB} (33)

would lead to

ρ
D (V · κ)

Dt
= ρµiC (V · κ)κ2 + · · · (34)

using κ ≈ ∇⊥ lnB, which was observed to lead to spurious instabilities when the friction coefficient µi
was too strong.

3 Application

3.1 Equilibrium

For the purpose of illustrating the implementation of the neoclassical model, we performed nonlinear
simulations for a linearly unstable tearing mode. We set up a tokamak magnetic equilibrium with circular
cross-section and inverse aspect ratio ε = 0.3, using the equilibrium code CHEASE Lütjens et al. (1996).
The pressure profile is given by ∂ψp ∝ (1− ψ) and the current density profile by I∗ ∝ (1−ψ)2 (see Lütjens
et al. (1996) for the definition of I∗). At magnetic axis (R0 = 2.4m), the magnetic field is B0 = 3T , the ion
density ni(0) = 2× 1019m−3, electron temperature Te(0) = 3910eV , and τ ≡ Ti/Te = 1, these quantities
being chosen so that they are consistent with the CHEASE equilibrium : p(0) = eni(0)Te(0) [1 + τ ]. The
position of q = 2 is prescribed at

√
ψ = 0.5, which corresponds to x ≡

√
Φ ≈ 0.34 and the magnetic shear

there is s = 0.585. The density profile is prescribed in the following analytical form

ρ(ψ) =
1− d1ψd2
1 + d3ψd4

(35)

with (d1, d2, d3, d4) = (0.32, 1, 0.1, 4). The main plasma profiles are shown in figure 2.
This analytical equilibrium, designed for the study of the single tearing mode (m = 2, n = 1), is

characterized by βp = 1.12, βt = 0.15%, βN = 0.84 and li = 1.58, and a Lundquist number at magnetic
axis Sreal0 = η−1 = 8 × 108. The ion skin depth is di = 0.1. The neoclassical equilibrium is established
in a few hundred of Alfvén times, while the tearing mode is still at the noise level. During this period
of time, the current source, restricted to its toroidal component, evolves so as to compensate for the
variation of the bootstrap current, i.e. JCD(t) = [Jt=0 − 〈Jbsn=0(t)〉]ϕ. In the period that follows, the
current source can be chosen to be kept fixed, or to continue evolving (thus compensating for the loss
of bootstrap current due to the evolution of plasma equilibrium after the growth of a tearing mode for
example). The bootstrap current represents about 29% of the total plasma current (figure 3, left plot).
The electron contribution to the total neoclassical stress tensor in the momentum equation is small, and
slightly increases the bootstrap fraction from 29% to 30%. In the simulations presented hereafter, this
contribution is neglected. The comparison of the computed bootstrap current with the Sauter-Angioni
evaluation Sauter et al. (1999, 2002) is satisfactory. Note that we damp the neoclassical terms in the
very core and at the edge to reduce the discretization needs, using Lorentzian-like functions of the type
yn/(yn0 + yn) with y =

√
ψ in the core and y = (1−

√
ψ) in the edge, n = 6 and y0 = 0.05.

The role of parallel heat flux can be quantified by letting the equilibrium evolve without their con-
tribution. We then find a much lower bootstrap current density, and a total contribution to the plasma
current that falls from 29% to about 10% (see figure 3, middle plot). The large contribution of parallel
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Figure 2: Safety factor profile (top), ion density and electron temperature profiles (middle), total current
density and bootstrap current density profiles (bottom).

heat flows tends to decrease at larger collisionality, as shown on the right plot for a density that is three
times larger (the temperature is reduced accordingly to maintain the total pressure constant). Even then
however, they contribute to more than half of the total bootstrap current.

Finally, the variation of the flux averaged bootstrap current due to plasma viscosity (measured here
by the magnetic Prandtl number Prm) is shown in figure 4. The departure from the analytical formulae
Sauter et al. (1999, 2002) increases as Prm impacts more significantly the equilibrium plasma flow and
deviates it from the neoclassical drive.

3.2 Nonlinear simulation of a Neoclassical Tearing Mode

We will now focus on the nonlinear aspects, i.e. the dynamics towards saturation, the structure of the
perturbations and the impact of the bootstrap fraction. In these simulations, we choose to evolve the
current density source so as to compensate for the variation of the averaged bootstrap current density
: JCD = [Jt=0 − 〈Jbs(t)〉]ϕ. This simplifies the interpretation of the results, since the resonant surface
q = 2 will not move due to the loss of the bootstrap current density. The situation is then equivalent to a
Rutherford-like formulation where the ∆′ term is not connected to the bootstrap term. We first start by
investigating the role of the mode spectrum, by including an increasing number of toroidal modes. We
then evidence the role of neoclassical forces, by looking at the impact of the bootstrap current contribution
on the island saturation.

For these simulations, we choose S0 = 107, i.e. a resistivity that is about 80 times larger than the
real one, and a magnetic Prandtl number Prm≡ ν/η = 10. We also take χ‖/χ⊥ = 108, χ⊥/η = 150, and
D⊥ = 2/3χ⊥. The radial discretization is of 510 points, and we consider a maximum physical toroidal
mode number ranging from 2 to 8, taking into account aliasing constraints Press et al. (2007). In the
poloidal direction, poloidal mode numbers in the range [max(0, n−minf ), n+msup] are described, with
n ∈ [0, nmax], minf = 12 and msup = 23.
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Figure 3: Equilibrium bootstrap current and analytical formulae from Sauter et al. (1999, 2002) (left).
Equilibrium bootstrap current with and without the parallel heat flow contribution, and with the electron
contribution in the momentum equation, for the reference low density case (middle), and for larger density
(right). The numbers in parenthesis indicate the fraction of total bootstrap current.

Figure 4: Equilibrium bootstrap current for different magnetic Prandtl numbers (Prm= ν/η), compared
with the analytical formulae from Sauter et al. (1999, 2002).

8



Figure 5: Summary on the influence of the mode spectrum. Left from top to bottom: time evolution of

the island width on q = 2 from Poincaré maps ; of 0.5 M
1/4
(2,1), where M(2,1) is the magnetic energy of

the (2,1) mode ; maximum relative temperature fluctuation δT/T ; maximum relative bootstrap current
fluctuation δJbs/Jbs; flux averaged bootstrap current at q = 2. Top right: maximum saturation level
of the island on q = 2 (determined from Poincaré plots) as a function of the maximum toroidal mode
number nmax considered in the simulation. Bottom right: mean profile at saturation (t > 7× 104τA) of
the flux averaged bootstrap current for nmax = 2, 4, 6 and 7.

3.2.1 Nonlinear dynamics of the Neoclassical Tearing Mode

We first investigate the saturation of the Neoclassical Tearing Mode with its nominal bootstrap fraction
(i.e. fbs = 1), for different spectra of modes. In terms of physical modes, we consider a spectrum
n = 0, ..., nmax with nmax ranging from 2 to 8. A summary of the results of numerical simulations is
displayed in figure 5, where we show the evolution of a quantity that is generally representative of the

(2, 1) island width, 0.5 M
1/4
(2,1), where M(2,1) is the magnetic energy of the (2,1) mode, the evolution of

the relative temperature and relative bootstrap perturbations in the island region, as well the averaged
bootstrap current density at

√
ψ = 0.5. The relative bootstrap perturbation is defined as the maximum

difference between the extrema of the n 6= 0 component of the bootstrap current (equation 19), divided
by its mean value. The figure also shows the maximum island width (as measured from Poincaré maps)
as a function of nmax, as well as the mean profile of the averaged bootstrap current in the island region
at saturation.

For the lowest resolution (n = 0, ..., 2), the island grows above 8% of the minor radius (it has not
saturated yet at the end of the simulation), and the averaged bootstrap current is strongly decreased
(due to the reduction of temperature and density gradients) in the island region. For nmax ≥ 3, the
saturation is completed at a lower island size, in the range 5 − 6% of the minor radius, and the impact
on the averaged bootstrap current is also reduced.

Interestingly, when the resolution is large enough, the nonlinear saturation is not steady, but it is
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Figure 6: Evolution of M
1/4
n with Mn the magnetic energy of toroidal mode number n, and Poincaré

maps at selected times during the first burst of small scale modes after reaching saturation (nmax = 8).

accompanied by bursts of energy originating from the smallest structures. The level of fluctuations varies
a lot during these bursts, but the island size measured by the maximum radial extent of the separatrix
is less sensitive. In order to give a better idea of this phenomenon, we show in figure 6 the evolution of
mode energies and island structure during such a burst, for the case nmax = 8. The Poincaré maps first
show that the island tends to have a droplet shape when small scale structures are well below the size
of the dominant n = 1 component (first and last maps). The mode is rotating in the electron direction
(upwards in these figures) relative to the plasma frame (see section 3.2.5). The burst of small scale
structures gives rise to a fragmentation of the island into a chain of small islands having an effective

structure corresponding to the highest n’s. Note that during this phase, the quantity 0.5 M
1/4
(2,1) under-

estimates the maximum distance between separatrices (because the island chain has n > 1), and is no
longer representative of the island width on q = 2.

This phenomenon is reminiscent of current sheet instabilities observed with the standard resistive
MHD model Waelbroeck (1993); Loureiro et al. (2005). In such a case, however, the critical island size
Wc above which the current sheet becomes unstable is relatively large, with a threshold that scales as
a∆′Wc > C(η) with C(η) > 8.2 following Loureiro et al. (2005). In our case where the cylindrical
a∆′ ≈ 27, the current sheet would be unstable for W > 0.3, i.e. much above the actual size of our (2, 1)
island. Such a disagreement is not surprising because the issue of current sheet instabilities is usually
encountered in large ∆′ reconnection problems, such as for the internal kink, space plasmas, or for the
forced reconnection problem Ishii et al. (2007); Comisso et al. (2015). However, the constant-ψ hypothesis
that is usually assumed in tearing mode theory becomes invalid as diamagnetic effects are increased Yu
et al. (2003), so that the current sheet instability criterion mentioned above is outside its domain of
validity for drift-tearing modes. Secondary island formation Lazzaro et al. (2010) or island fluctuations

10



Figure 7: Evolution of M1/4 with M the magnetic energy of toroidal mode numbers n = 1 (full line)
and n = 7 (dashed line) for simulations with the resistive MHD model (η-MHD), the drift-tearing model
(ω∗), including the ion neoclassical friction (fbs = 0), with the full neoclassical model with fbs = 1 and
a larger χ⊥ and D⊥, and for the reference case with fbs = 1. The shapes of the island at the end of
simulations with η-MHD, ω∗-MHD and with the full neoclassical model, are shown in the right panel.
For all these cases, nmax = 7.

Yu (2010) have been observed with advanced physical models, comparable with the one presented here,
in the simulation of drift-tearing instabilities with neoclassical effects.

In order to identify what drives these bursts, we have performed simulations at nmax = 7 with dif-
ferent MHD models, starting with the drift-tearing model (ω∗-MHD), and adding (after t ≈ 80 × 103)
ion neoclassical friction (fbs = 0). In figure 7, the evolution of M1/4 is shown for n = 1 and n = nmax
for these different cases, as well as for the reference case with fbs = 1 and for the resistive MHD model
(η-MHD). The dynamics of the tearing mode is fastened by diamagnetic rotations (as reported in several
works Yu et al. (2003); Maget et al. (2014)), and the level of the highest n-harmonics is much above that
of the η-MHD case for all models covering drift physics. Bursts are visible as soon as ion neoclassical
friction is included: they are therefore strongly connected with neoclassical forces, and are amplified by
the bootstrap current contribution. The shapes of the island at saturation are compared on the right
plots of figure 7, showing that the droplet shape emerges with the drift model, and is therefore not specific
to the neoclassical model discussed here.
Dissipation mechanisms are able to damp these bursts. We find that this is the case when the perpendic-
ular transport is increased (in figure 7, we show a simulation where perpendicular transport coefficients
χ⊥ and D⊥ are increased by a factor of 2, while χ‖ is left unchanged). We will show in the next section
(3.2.2) that plasma viscosity has a similar mitigating effect.

3.2.2 Influence of plasma viscosity

The way bootstrap current arises in the plasma means that plasma viscosity might influence not only
its amplitude at equilibrium but also its relation to perturbed fields. The island dynamics should there-
fore respond to a change of the magnetic Prandtl number Prm, as shown in Konovalov et al. (2005);
Mikhailovskii et al. (2005). In order to verify this, we restart the simulation with fbs = 1 and nmax = 7,
that exhibits for Prm= 10 an unsteady dynamics with frequent bursts of island breaking into small sec-
ondary structures. In figure 8 we show the evolution of the island size on q = 2 and of the magnetic

energy M
1/4
n with n = 1 and n = nmax = 7, for Prm= 2, 10, 20 and 50. At the time of the restart, a

burst is growing, with a decay of the n = 1 magnetic energy in favour of higher toroidal mode numbers.
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Figure 8: Island size on q = 2 (top), and M
1/4
n for n = 1 and n = nmax for Prm= 2, 10, 20 and 50.

Right plots: island separatrix at the end of the simulation for Prm= 20 and Prm= 50.

At Prm= 2, the relative contribution of the highest n is large during the burst but for Prm≥ 20, the
burst simply disappears, replaced by a situation where high n modes have a much lower importance. The
shape of the island becomes also more regular as Prm is increased, although its droplet shape remains.
The saturated island size becomes steady and decays with Prm. We have evidence from another study
with the same equilibrium that in pure resistive MHD the island size would rather increase with Prm in
this range Maget et al. (2016). The reason for the present observation is therefore to be found in the
drift-neoclassical physics that is used.

3.2.3 Neoclassical effect on island saturation

We now evidence the role of the neoclassical contribution to the island saturation for the case nmax = 4.
This resolution has been chosen because it correctly describes the saturation size without triggering the
current sheet instability that slows down simulations at larger toroidal mode numbers. For this purpose,
we restart the simulation fbs = 1 with different values of fbs. Note that since the current density source
always adapts in time with the actual averaged bootstrap current, there is no shift in the position of the
resonant surface when performing this scan. The evolution of the island size, poloidal beta, and relative
temperature perturbation is shown in figure 9.

As expected, the island size increases monotonically with the bootstrap current amplification, as well
as the peak relative temperature and bootstrap perturbations, while the poloidal beta (βp) varies as the
inverse of the island size. The non-steady nature of the NTM saturation is enhanced as the bootstrap
drive is increased. It is clear from these results that our (2, 1) island is dominated by classical effects, so
that the introduction of the neoclassical drive changes only marginally the saturated size. The dynamics
of the mode can be analysed with the simplified formalism of the Rutherford equation Rutherford (1973)
that writes

dW/dτη = a∆′ − αW − 6.35
DR√

W 2 +W 2
D

+ 6.35 fbsJ̄bs
q

s

W

W 2 +W 2
bs

(36)

Here W is the island width normalized to the minor radius and τη ≡ 1.22 t/S. The first term (a∆′)
describes the classical tearing index that drives the growth of tearing modes in resistive MHD Furth
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Figure 9: Left from top to bottom: Evolution of the q = 2 island size, poloidal beta, relative temperature
perturbation, for different amplifications of the bootstrap current. Right: saturated island size and
poloidal beta reduction as a function of the bootstrap current amplification.

et al. (1963), the second term describes the simplest form of classical nonlinear saturation Escande and
Ottaviani (2004); Militello and Porcelli (2004). The third term describes curvature stabilisation Lütjens
et al. (2001) with DR the resistive interchange index Glasser et al. (1975), and the fourth covers the
bootstrap drive Fitzpatrick (1995) with fbs the artificial amplification of the bootstrap current and J̄bs =
(µ0R0/B0)Jbs the normalized bootstrap current. Due to the role of transport in the nonlinear behaviour
of pressure-related quantities, the corresponding characteristic width Wχ is involved in both curvature

and bootstrap terms, with WD = 0.81 Wχ and Wbs = 1.8 Wχ, and Wχ = 2
√

2
(
χ⊥/χ‖

)1/4√
x/(εns), with

x =
√

Φ the radial co-ordinate with Φ the normalized toroidal magnetic flux, ε = a/R0 the inverse aspect
ratio, n the toroidal mode number, s = d(log q)/d(log x) the magnetic shear and q the safety factor. In
our example, we have Wχ ≈ 0.037, WD ≈ 0.030, Wbs ≈ 0.067 and DR ≈ 0.07. The classical drive plays an
important role because the parameter α is large : with a∆′ ≈ 27 and a saturation around 5.5% at fbs = 1,
we find α ≈ 770 1. Given these numbers, with J̄bs ≈ 0.149 at q = 2, one can compare the predictions of
the Rutherford equation (36) with nonlinear simulations in terms of saturated island width. The result is
also shown in figure 9. The impact of the bootstrap current predicted by the Rutherford model is found to
be far too large. A similar observation was already reported with a simplified bootstrap model in Lütjens
and Luciani (2005). In order to recover the simulation results, with α a free parameter, the contribution
of the bootstrap term should be reduced to about 5% of its value, or the transport with Wχ increased
by a factor 5. The Rutherford equation (36) seems therefore unable to correctly describe the island
saturation in the present case. However, by using the scaling factor fbs, we have varied independently
parameters that in reality are connected. It is possible that the reasonable qualitative agreement between
experimental measurements of NTM dynamics and simple Rutherford models like equation (36) can only
be obtained for some particular coherent parameter scans (for example a scan in β that will increase at
the same time ω∗, Jbs and DR), as was found in Yu (2010).

1A simplified evaluation like in Escande and Ottaviani (2004); Militello and Porcelli (2004) would predict α ≈ 0.41, but
our situation is not in the range of validity of these theoretical works because of a large a∆′ and non-symmetric equilibrium.
We only retain here the functional dependence.
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Figure 10: Left from top to bottom: Evolution of the q = 2 island size (determined from Poincaré maps),
and poloidal beta for the resistive MHD model, the drift-tearing model and the neoclassical model without
bootstrap current. Right: Poincaré maps at the end of each simulations, including the case fbs = 1 for
reference (here nmax = 4).

3.2.4 Diamagnetic and neoclassical effects on the island properties

Although the drive of the magnetic island is mainly classical, it would be wrong to believe that its
saturation could be described with a pure resistive MHD model, even in the case where the bootstrap
current contribution is cancelled (fbs = 0): the ion neoclassical friction as well as diamagnetic rotations
have a noticeable effect on the saturated island. This is demonstrated in figure 10 where the simulation
with fbs = 0 is pursued without the ion neoclassical friction (the MHD model is then the drift-tearing
model), and without both neoclassical terms and diamagnetic terms (only remains the pure resistive MHD
model). Removing the ion neoclassical friction reduces the saturation size, an effect that was already
observed for the Double-Tearing Mode Maget et al. (2014) and that is consistent with the destabilizing
effect of neoclassical friction in the linear regime Maget et al. (2013). When returning to the pure resistive
MHD model (η-MHD), the island first shrinks but after this transient phase, it grows to a much larger
size. This complex dynamics is to be placed in the context of previous works on the effect of diamagnetic
rotations in toroidal plasmas. It was shown in Meshcheriakov et al. (2012) that increasing diamagnetic
rotations increases the growth rate of the tearing mode in the first place, before a stabilizing effect can be
observed. Here, we are in a range of the ion skin depth di where the linear growth rate is largely increased
compared to the resistive MHD case. Removing diamagnetic rotations moves the tearing mode towards
a more stable situation from the point of view of its linear stability. On the other hand, the saturation of
the tearing mode is reduced by diamagnetic rotations Ottaviani et al. (2004); Meshcheriakov et al. (2014).
When we remove this mechanism, we logically end up with a larger island. The first instantaneous effect
of island shrinking may be related to the fact that the island, placed in the new situation of η-MHD, is
then far below its saturated value, thus putting forward the linear stabilizing effect.

We also plot in figure 10 the Poincaré map of field lines located close to the island separatrix at the
end of each simulation. As for simulations at larger nmax, we observe that the deformed island shape
essentially originates from diamagnetic rotations (see figure 7). But at this resolution (nmax = 4), the
island does not have the droplet shape (it starts to appears for nmax = 5, and is clearly observable at
nmax = 6): covering a broad spectrum of toroidal mode numbers appears therefore to be essential for
describing correctly the shape of the island, although its size does not seem to be very sensitive. Note
that such a deformation of the island shape could impact the efficiency of a current source to stabilize it
Lazzaro and Nowak (2009); Lazzari and Westerhof (2011).

The influence of the MHD model on the island shape can also be analysed from the temperature
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and density fluctuations. We will not address this issue from a quantitative point of view: for the
parameters that we have chosen, this would not only require covering a large spectrum of toroidal modes,
but also performing long simulations to obtain a correct statistics on the bursts. Instead, we aim here
at giving a qualitative idea of how the MHD model can impact observable quantities. For this purpose,
we mimic the rotation of the plasma in front of a synthetic measurement by recording the profiles
along the toroidal angle. We then compute the power spectrum PS(

√
ψ, n) = (δS)2/S̄2 of the signal

S(
√
ψ, t) (S̄ is the n = 0 component of S, that would correspond to the time averaged value in a real

experiment). This gives a radial profile of the fluctuating amplitude for the different toroidal mode
numbers that are represented in the simulation. In figure 11 we show on the left side the radial maximum
of the power spectrum as a function of the toroidal harmonic, for temperature and density fluctuations,
normalized to the power spectrum of the n = 1 toroidal harmonic. We find again, from this other
perspective, that diamagnetic rotations are the essential ingredient changing the nonlinear mode spectrum
by amplifying the contribution of high-n modes, while neoclassical friction tends to further reinforce this
trend. The decay of temperature fluctuations with the toroidal mode number can be fitted with a power
law (δT/T )2 ∼ n−α, with α ≈ 2.3 for the resistive MHD case, and α ≈ 1 when diamagnetic rotations
are included. A different fit must be chosen for density fluctuations. We find that an exponential law
(δN/N)2 ∼ exp(−αn) is adapted, with α ≈ 1.45 for resistive MHD and α ≈ 0.45 with diamagnetic
rotations. We note that the same fitting function is also convenient for density fluctuations caused by
turbulence in real plasmas Hennequin et al. (2004).

The radial profile of n = 1 fluctuations (figure 11, right plots) shows also some interesting features.
First, we find that diamagnetic rotations reduce the radial extent of density fluctuations on the high
field side (HFS) of the plasma. At the same time, the asymmetry between the high field side and low
field side (LFS) is enhanced: (δN/N)LFS/(δN/N)HFS increases from about 1.04 to about 1.5. This
is the signature of a more ballooned character of the density fluctuations. Temperature fluctuations
are less concerned in terms of radial profile or asymmetry between HFS and LFS, due to the large
parallel equilibration. However, the relative amplitude of temperature compared to density fluctuations
is increased when diamagnetic rotations are considered: the ratio (δT/T )max/(δN/N)max increases from
about 2.2 to 3. Neoclassical physics do not significantly change this picture, in the absence of the sporadic
bursts that will obviously alter the mean spectra at higher toroidal resolution.

Diamagnetic and neoclassical physics can therefore be measured qualitatively and quantitatively in
these numerical experiments, with significant departure from the resistive MHD model predictions. Com-
parison with real experimental observations may provide a confirmation of their impact on the MHD
signature of magnetic islands.

3.2.5 Plasma and island rotation

The mode pulsation is evaluated from the rotation of the X-point poloidal positions θX(t) at a fixed
toroidal angle (ϕ = 0). In order to determine the X-point positions, we detect the poloidal angles where
δp has a maximum, in the vicinity of the resonant layer. We get therefore :

mθX(t) = ω(t− t0) (37)

with m the poloidal mode number. Note that since we use here the geometrical angle, the fit can only
be adjusted at a given poloidal position, with a distortion at other angles (that is negligible in our case
due to the low β).

The plasma rotation needs to be taken into account because the important quantity is the mode
rotation in the plasma frame where VE = 0. It is computed from the n = 0 component of the plasma
flow as ωE = mωθ − nωϕ where

ωθ = 2π/

∮
J dθ

RVθ,n=0
(38)

ωϕ =

∮
dθ Vϕ,n=0/(2πR) (39)

and J ≡ 1/∇s · ∇θ×∇ϕ is the Jacobian of the co-ordinate system (s ≡
√
ψ, θ, ϕ) used in XTOR. These

formula are obtained by computing the period Tθ,ϕ ≡
∮
dlθ,ϕ/Vθ,ϕ with dlθ = J dθ/R and dlϕ = Rdϕ.
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Figure 11: Power spectrum of temperature and density fluctuations for nmax = 4: normalized to n = 1
amplitude (left column), radial profile for n = 1 (middle column), and normalized radial profiles for n = 1
(right column) for the different MHD models : resistive (η-)MHD, with diamagnetic rotations (ω∗), and
for the neoclassical model with fbs = 0 and fbs = 1. The vertical dashed line on the middle and right
plots shows the position of the magnetic axis.

The ion and electron diamagnetic pulsations are evaluated at the resonant surface q = 2 in the same way
as ωθ, using V ∗i,θ and V ∗e,θ instead of Vθ,n=0 (we have in our simulations ω∗i = −ω∗e):

ω∗e,i = 2π m/

∮
J dθ
RV ∗e,i,θ

(40)

The plasma rotation is ωE ≈ −0.9 ω∗i when considering only diamagnetic terms (figure 12). This
corresponds to the theoretical value ωE = −2q2/(1 + 2q2) ω∗i Nicolas (2013) that is expected. With
neoclassical friction, its amplitude is reduced down to ωE ≈ −0.4 ω∗i . Note that this rotation is not
identical to the one that is forced by neoclassical friction. Indeed, with ki ≈ −1 at the q = 2 surface,
neoclassical friction tends to force (ωE − ω∗n) ≈ 0 with ω∗n = −(ω∗i − ω∗Ti) and ω∗Ti = kθV

∗
Tiθ. But

ω∗n ≈ −0.2ω∗i so that the E×B flow is at an intermediate value between the diamagnetic and neoclassical
drives.

The mode frequency at saturation, after deducing the E×B pulsation, is in the electron direction,
a result that is in accordance with nonlinear computations in the cold ion limit Waelbroeck (2007); Yu
(2010). With the ω∗ model, we find ω/ω∗e ≈ 0.69 and with ion neoclassical friction (case fbs = 0), the
pulsation is ω/ω∗e ≈ 0.86. It stays in this domain of frequency when including the bootstrap current,
with ω/ω∗e ≈ 0.91 at fbs = 1.

4 Conclusion

In this paper we have presented a comprehensive implementation of neoclassical physics in a fluid repre-
sentation that is appropriate for global MHD computations. As an illustration of the model, the nonlinear
evolution of a toroidal plasma with circular cross-section, unstable to the (2, 1) tearing mode, is investi-
gated. The equilibrium bootstrap current that is obtained compares well with the inviscid solution of flux
averaged neoclassical theory, but it could depart from it at larger magnetic Prandtl number. The (2, 1)
magnetic island is shown to evolve to a non-steady saturation, where it adopts a droplet shape and is
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Figure 12: Island pulsation in the plasma frame normalized to the electron diamagnetic frequency at
q = 2, as a function of the plasma rotation, for the drift model (ω∗) and the neoclassical model.

subject to bursts of small scale structures due to secondary islands with high toroidal mode numbers that
are reminiscent of current sheet instabilities. These bursts are found to originate from neoclassical forces,
but their precise nature remains to be determined. Dissipative mechanisms (larger magnetic Prandtl
number or larger diffusion coefficients) tend to mitigate them. The saturated state is shown to increase
with the bootstrap current fraction, but much less than predicted by a generalized Rutherford equation,
an observation that is reminiscent of previous works using a simplified bootstrap representation Lütjens
and Luciani (2005). The comparison with MHD models of reduced complexity shows the essential role
of diamagnetic rotations and neoclassical friction in the island deformation and saturation level.

The implementation of this self-consistent fluid model opens the route to the investigation of several
important issues for the understanding of Neoclassical Tearing Mode physics. One particular specificity
of our neoclassical model is the fact that the bootstrap current does not depend only on the perturbed
pressure, as it is the case when neoclassical physics is implemented as an ad-hoc term in a resistive
MHD framework, but also on the perturbed electrostatic potential. This opens a wide area for studying
Neoclassical Tearing Mode physics in viscous plasmas, where theoretical approaches predict for example
a strong reduction of the bootstrap perturbation as plasma viscosity increases Konovalov et al. (2005);
Mikhailovskii et al. (2005). It was already shown that the freedom given to the plasma flow to depart
from its neoclassical reference changes significantly the NTM threshold Mellet et al. (2013). Here we
have shown, as a preliminary insight into this issue, that plasma viscosity changes the spectral content of
the MHD perturbation. Another issue is the comparison of experimental signals with the modelled ones
in order to investigate questions relative to the island shape or the spectral composition of Neoclassical
Tearing Modes in real plasmas. Finally, the impact of the deformed island shape on tearing mode
stabilization by an external current drive can be evaluated thanks to the implementation of an RF
control module Février et al. (2016).
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Appendix: Neoclassical equilibrium

We recall here for completeness the flux average neoclassical equilibrium equations Hirshman and Sigmar
(1981), in SI units:

−esns 〈E ·B〉 = −〈B · ∇ ·Πs〉+ 〈B ·Rs〉 (41)

0 = −〈B · ∇ ·Θs〉+ 〈B ·Hs〉 (42)

where 〈B · ∇ ·Πs〉 and 〈B · ∇ ·Θs〉 are the neoclassical stresses and 〈B ·Rs〉 and 〈B ·Hs〉 the frictions
related to the Coulomb collisions. They are expressed as a function of particle flows (u1‖s = Vs ·B) and
heat fluxes (u2‖,s = 2qs ·B/(5ps)) as

〈B · ∇ ·Πs〉 = nsms

[
µs1
〈
u1‖,s + Ss1θ

〉
+ µs2

〈
u2‖,s + Ss2θ

〉]
(43)

〈B · ∇ ·Θs〉 = nsms

[
µs2
〈
u1‖,s + Ss1θ

〉
+ µs3

〈
u2‖,s + Ss2θ

〉]
(44)

〈B ·Rs〉 = nsms

∑
s′

Λss
′

11 u1‖s′ + Λss
′

12 u2‖s′ (45)

〈B ·Hs〉 = nsms

∑
s′

Λss
′

21 u1‖s′ + Λss
′

22 u2‖s′ (46)

with 〈
Ss

′

1θ

〉
=

〈
B2
〉

〈B · ∇θ〉
〈(V∗s + VE) · ∇θ〉 (47)〈

Ss
′

2θ

〉
=

〈
B2
〉

〈B · ∇θ〉
〈V∗Ts · ∇θ〉 (48)

with θ the poloidal angle.
By using this system of equation (41, 42), the parallel heat flows can be expressed as a function of

flow quantities (Eq. 15) with the following coefficients:

Cee‖ = 1/A
[
Λie21Λei22 − (µe2 − Λee21)(µi3 − Λii22)

]
Cei‖ = 1/A

[
(µi3 − Λii22)Λei21 − (µi2 − Λii21)Λei22

]
Cie‖ = 1/A

[
(µe3 − Λee22)Λie21 − (µe2 − Λee21)Λie22

]
Cii‖ = 1/A

[
Λei21Λie22 − (µi2 − Λii21)(µe3 − Λee22)

]
Cee1 = −1/A µe2(µi3 − Λii22) Cee2 = −1/A µe3(µi3 − Λii22)

Cie1 = −1/A µe2Λie22 Cei2 = −1/A µi3Λei22

Cei1 = −1/A µi2Λei22 Cie2 = −1/A µe3Λie22

Cii1 = −1/A µi2(µe3 − Λee22) Cii2 = −1/A µi3(µe3 − Λee22)

where:

A = Det

(
Λee22 − µe3 Λei22

Λie22 Λii22 − µi3

)
(49)
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